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Abstract. in this paper we give an overview on a set of time related features, 
useful in the context of real-time system design and classify them into two 
categories, those needed for modelling of non functional aspects and analysis, 
and those needed for functional design. We  allow the distinction between 
functional and non functional timing aspects of a specification. We show how 
these features are represented at the semantic level with a minimal number of 
primitives.  

1. Introduction 

The ITU Specification and description language SDL is increasingly used for the 
development of real-time and embedded systems, where the functional behaviour is 
time dependent. 

SDL is a modelling language in which sufficient details can be given for the 
generation of code preserving all the properties of the specification, including those 
concerning time dependent behaviour. SDL has already some important time related 
features, such as a notion of global time (allowing to measure durations throughout 
the system by means of appropriate time stamps), and the possibility to allow time 
dependent decisions in the functional design (timeouts and time dependent enabling 
conditions allow to define constraints on the triggering time). Explicit means to quit a 
current activity, that is interrupts, and means to describe systems where time is 
(partly) under the control of the systems, that is clocks, are needed. 

We call (purely) non-functional aspects those which exclusively restrict the time 
extended model. The time restrictions of such a model are due to hypothesis or 
knowledge on the environment or the underlying execution systems. Modelling such 
non-functional aspects of systems, such as execution times of tasks or sequences of 
tasks, for analysis, can not be done so far with SDL. Several proposals exist, which 
enhance SDL to make time and performance analysis possible. Previous work is 
mainly dealing with performance evaluation [BB93, SPI97, Rou98, MIT99, Mal99] 
or on requirements expression [Leu95, ALH95, DDH+01], and some work on timed 
verification [OCK00] and schedulability [ALV99, ADL+99, ADL+01]. A general real 
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time framework for SDL is presented in [SDM+00] and [BGK00, BGM*01], where 
the first one is mainly for hardware software co-design. 

Most of these approaches, in particular the ones mainly concerned with 
performance analysis, advocate scenario based timing information, by means of 
scenario based languages (such as Message sequence charts or activity diagrams) 
which provide timing information for a set of “relevant” scenarios, whereas for all 
other scenarios (supposed to occur rarely and therefore not to be relevant) no timing 
information is available. Some tools, for example time enhanced versions of 
ObjectGeode [Geode] as presented in [Rou98, O01] and Tau [Tau] and the tool and 
methods based on Queuing SDL [QSDL, MIT99] allow to attach explicit timing 
information with SDL constructs such as tasks, and to provide some deployment 
information. 

Our approach [BGK00,BGM01, ITU02] is an extension of these latter approaches, 
where we focus on timing properties rather than on performance1. In section 2, we 
discuss how language level real-time concepts can be expressed by means of a small 
set of primitives at the semantic level which we express in terms of timed automata 
with urgency [BST98]. Concerning the needs for real-time primitives at SDL level, as 
introduced in [ITU02], we distinguish between annotations for non functional aspects 
– discussed in section 3 - and needs for functional design – discussed in section 4, 
where we motivate the need of concepts, propose a solution and provide an informal 
mapping to the semantic level.  

2. Time in semantic models 

At the semantic level, it is interesting to have a minimal number of basic primitives 
allowing to express all primitive concepts of the specification language, where we are 
interested in time related primitives for SDL. . Notice that in  semantic level models, 
time is the object of modelling and can be constraint in various ways. 

An interesting semantic framework is that of timed automata [HNSY92, AH94, 
BST98, AGS00, BGS00], where  
− time progress and system progress are along orthogonal dimensions, such that 

system transitions are timeless (corresponding to instantaneous events) and time 
progresses in system “states” only 

− the system can restrict time progress in states (by means of an urgency attribute 
associated with transitions) 

− and system transitions can be enabled or disabled by time progress.  
Timed automata have a notion of global state, an explicit notion of concurrency and 
the possibility to synchronize transitions in concurrent entities. 

 
The standard semantic of SDL as given in [Z100] is expressed by means of 

Abstract State Machines [Gur97, EGG*00], which can be considered both as a 
semantic level formalism and modelling language itself. The ASM model has no 
                                                           
1 Notice that the approach can be adapted to performance evaluation in an almost 

straightforward way by using constraints of probabilistic nature. The main problem is that 
only for memoryless probability functions, tractable analysis methods exist (see [H00]) 
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predefined time concept attached with it, but is expressive enough to express almost 
any time semantics. The semantics for SDL as presented in Z100:  
1. defines the level of atomicity of SDL by cutting each SDL transition into a number 

of atomic steps - that is, discrete transitions leading from some state to a next state, 
where all intermediate “micro steps”, if they exist, do not appear in the model (the 
granularity concerns   mainly the functional model, and is not the object of the 
discussion in this paper) 

2. it does not enforce orthogonality of time and system progress; on the contrary, it 
forces time progress to happen in transitions rather than in states, such that an 
atomic step is a combined system and time progress (where time progress is 
allowed to be zero, but there is no time progress without a system state change.  

These constraints on time and system progress are not mainly due to deficiencies in 
the ASM model, but to the SDL semantics itself2. Controllable time and orthogonality 
of time and system progress are fundamental concepts at the semantic level, and as 
timed automata with urgency [BST98, AGS00, BGS00] are based on these concepts, 
we use them here as an intuitive semantic modelling formalism 
Obviously, for any ASM model with time progress in transitions, can be defined an 
equivalent one with the additional constraint that time does not progress in system 
transitions and conversely. Every atomic step is split into at least two instantaneous 
atomic steps,  one or several time steps and  an instantaneous system step and (see the 
figure below, where we represent time progress in each of the states by a single “time 
progress transition”; this transition may be cut into as many steps as needed in the 
global system). 
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Fig. 1. transforming an atomic step taking time into two time progress transitions and 
two instantaneous transitions 
 
  

                                                           
2 Nevertheless, the ASM model has some difficulties to express continuous time; it cannot 

express continuously changing entities in a compositional manner, as time progress can only 
be represented by an explicit state change in which time progresses by some value. For a 
realizable system, there exists always a discretisation of time allowing to represent all 
equivalence classes of possible behaviours, but this discretisation can not be chosen for a 
subsystem without knowing its context, that is the global system in which it is going to be 
embedded. 
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Timed automata, and modelling languages based upon them such as 
[BFG*99,BGM01, BLL*98], provide for measuring time progress a primitive called 
“clock” instead of a global time now. Such a clock can be set (to zero) to start 
measuring a duration, consulted for its current value (that is the duration since it has 
been set). The aim of the use of clocks is the encapsulation of time stamping for 
measuring durations without explicit use of the absolute system time now. Here, we 
use in all examples the notation using now, which from the point of view of 
expressiveness is equivalent. 
At semantic level, a transition (an instantaneous state change of the system, as in 
Fig.°1) is fully characterized by: 
− its functional triggering condition and transition function or relation, which we 

suppose to be encoded in explicit states and transitions 
− a time dependent enabling condition, expressing at which time points the transition 

is possible 
− an urgency attribute which is either lazy, delayable or eager where 

lazy transitions can wait forever. Whenever a lazy transition is enabled, it 
can be taken, or likewise time can progress (always by maintaining the 
same system state) and possibly disable it. This is the default whenever 
time is considered as external to the system. 

eager transitions never wait. When an eager transition is enabled in a state, 
only one of the enabled  (instantaneous) system transitions are possible, 
and this as long as any eager transition is enabled in the reached state. 

delayable transitions can wait, but only until the falling edge of their time 
dependent enabling condition is reached, that is they can never wait until 
disabled by time progress. 

Urgency allows to control time progress at the semantic level in a very general, 
flexible and compositional way [BST98,AGS00]. Formally, the urgency of all 
outgoing transitions of a (global) system state, imposes the following restriction on 
time progress in s: at time point t, waiting is possible for a duration δ, as long as the 
Time Progress Condition  

TPC(s)(t)(d) = Λtr∈trans(s) ¬enabled(tr)(t+d) v¬urgent(tr)(t+d) 

holds for every duration d<δ. The predicate urgent(tr) expresses that a transition is 
urgent; it is equivalent to false for lazy transition, equivalent to the enabledness 
predicate for eager transition, and expresses the “falling edge” of the enabledness 
predicate (which is not allowed to be strict) for delayable transitions. 

 
An atomic  step which starts to be executed at time t1, and which has a duration of 

2 to 3 time units, is modelled as in Fig. 2: the control over the duration of the step is 
expressed exactly in the same way as the control over the starting time of the step, 
namely by a delayable time constraint on the next transition; that is the end of the 
duration of the atomic step is defined by the point of time at which the “finish”-
transition, leading to the stable state S2, is triggered.  
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S1 in step S2 delayable delayable

now <=t0;  
tstart := now 

2 <= now–tstart <= 3; 

start step finish step

S1 in step
   2

S2 delayable delayable

now <=t0; 
tstart := now 

now–tstart <= 3  

start sequence finish step 1

in step
    1 

delayable

2 <= now–tstart <= 3 

finish step 2

Fig.2: representing an atomic step with time constraints 
 
The duration of a sequence of steps can be constrained in a similar way as shown 

in Fig.23.: the intermediate steps can occur at any time, but not later than the time 
corresponding to the maximal overall duration has passed, and the last step must 
additionally make sure that the overall sequence of steps takes at least the required 
minimal duration. This does not exclude the sequence where the duration has reached 
its maximal value already in the starting state s1; just time will not progress any 
further until the end of the sequence. This is especially interesting when the 
intermediate states are considered as “unobservable” for verification and can 
altogether be identified with state s1. 

Also duration constraints on communications are expressed in the very same way 
at the semantic level, where a channel with nonzero delay can be modelled  
−  By a timed automaton, receiving signals at the time they are sent, and inserting 

them into the input queue of the receiver process at any time point at which the 
time constraint on the communication delay holds 

− or as in the SDL semantics, by a sequence of instantaneous atomic steps triggered 
by the output command, which insert the signal into the input queue of the receiver 
and associate with it an arrival time in the future. 
A potential problem of the second model appears when the receiver does not yet 

exist at sending time, and therefore also not its input channel, but does exist at arrival 
time.  

Both semantics allow in a straightforward manner to represent variants of channels, 
in which messages can be lost, reordered,….  

From a modelling point of view it is interesting to distinguish channels in which 
the communication delay of each signal is independent of other signals in transit (that 
is all time guards are independent of each other, except that their order is preserved), 
and those in which there exists some dependency between the delays of all signals in 
transit. An extreme case is sequential dependency, where the delivery date of each 
                                                           
3 Where, in order to keep the figure reasonably small, the internal states “before entering step i” 

and “in step I” are grouped into a single state, which is a correct optimization when the 
starting transitions of intermediate steps are eager, or when they are unobservable; this 
because waiting for duration d1 followed by waiting for duration d2 is equivalent to waiting 
for duration d1 and d2. 
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new signal is obtained by adding its communication delay to the delivery date of the 
preceding signal in the channel. As well ASM as timed automata allow to express any 
kinds of dependencies, which ones are useful is to be decided at modelling level. The 
complexity of validation can be measured in the number of clocks necessary in the 
corresponding timed automaton model: notice that independent delays need one clock 
per signal in transit, whereas a “sequential” channel can be modelled with a single 
clock, independently of the number of signals in transit. 

 
Eager transitions are triggered “as soon as enabled, without letting time pass”, 

whether they have a time dependent enabling condition or not: e.g. they can be used 
for modelling transitions triggered by a timeout signal to make timeout immediate, or, 
when considering a discrete time abstraction, for modelling of consecutive steps 
taking place in the same discrete “time step”.  

States with only lazy outgoing transitions are dangerous in real time design, as the 
system is allowed to never progress beyond this point. Nevertheless, lazy transitions 
are useful for modelling a time non-deterministic environment, or for modelling 
alternative behaviours which might or might not happen within a given time interval.  

 
Notice that nothing more is needed than urgency and time dependent enabling 

conditions for expressing most concepts useful at the semantic level: 
interrupts do not need any new primitive. An SDL transition which can be 

interrupted just has an alternative representing the interruption in every semantic state 
in between its starting and its end state. As system steps are modelled by 
instantaneous events with the meaning “step terminated”, an interrupt is allowed to 
occur at every point of time during which the system is within the transition. 
Interrupts which leave the process in an “undefined” state, are modelled by means of 
an undefined value or non deterministic assignments.  

suspension or pre-emption due to scheduling can also be expressed without any 
new primitive. For this purpose, the state “in-step” associated with each step, needs to 
be refined into two states “computing” and “suspended”. The transitions between 
them can either be controlled by some scheduler automaton which should guarantee 
mutual exclusion, and also that there is as often as possible a behaviour in state 
“computing” in order to guarantee maximal progress. An alternative means is to use a 
hierarchical system of priorities as in [Sif02] which allows to replace an explicit 
scheduler in a very simple manner. 

Obviously when taking into account scheduling, the enabling condition of the 
transition exiting each atomic step, which constrains the duration of the step, must 
allow to take into account the time passed in the state “suspended”; that is, in Figure 
2, if the interval [2,3] constrains the execution time and not the overall duration of the 
step, the condition “2≤(now-x)≤3” should be replaced by “2≤((now-x) –
durationsusp)≤3”. Notice that, in timed automata, there exists the concept “stopwatch”, 
a “clock” which can be stopped from time to time and restarted again later, and whose 
value is the duration since the last reset during which it has not been stopped. Thus, 
stopwatches can be used in an obvious manner to model durations in presence of 
suspension without introducing the “suspended” state explicitly in the behaviour 
automaton (see for example [AGS00]). 
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The representation of scheduling laws, according to which the schedulers suspends 
and (re)starts processes, needs a means to chose the right transition according to the 
scheduling law. In [AGS00] shows that any scheduling laws can be represented by 
means of dynamic priorities, given in the form of rules of the form “ c  ==> t1 > t2”, 
meaning that whenever condition c holds transition t1 has higher priority than 
transition t2. This is not necessarily how scheduling laws will be implemented, but it 
defines a general and compositional semantic scheduling framework, allowing to 
model any possible scheduling algorithm.  

3. Modelling duration constraints in SDL  

Modelling for analysis requires building a model of the system and of the 
environment. In the context of real time systems the environment includes time.  
The expression of constraints should be convenient. Standard SDL is very 
cumbersome and can not really be used for this purpose: modelling the time 
environment of the systems means expressing constraints on time spent in transitions, 
in communications and also in all other implicitly defined activities by means of 
timers or time guards.  
But timers and time guards allow only the specification of minimal durations. Notice 
that, the time semantics of SDL tools [Geode, Tau], in strong contradiction to the 
standard, considers SDL transitions to be instantaneous and eager, and time 
progresses exclusively where timers or time guards impose waiting. That means, time 
progress is similar as in the underlying semantic model and maximal time bounds can 
be expressed. 
Systematic modelling of durations by means of explicit time guards, leads to an 
inappropriate interdependence between functional design and time constraints. It 
makes the resulting specification hard to read and inadequate for code generation, as 
time constraints are not to be interpreted in a unique way when it comes to the 
generation of code. 
We discuss here constraints expressing (known, assumed or desired) timing 
characteristics of the environment and the underlying execution system.  

Communication delays 

For the expression of communication delays, two questions must be answered. What 
kind of constraints are needed, and how to associate them with “communications”. 
Concerning the association, there exist several possibilities: 
− as all communications are through channels, which may imply some positive delay 

or not, a straightforward option consists in attaching constraints with delaying 
channels. This option has been chosen in time enhanced versions of Geode and Tau 
and is well accepted by users. 

− SDL channels define logical communication paths, which must later on be mapped 
to physical means for communication (which might be everything from a shared 
variable to the internet); obviously taking into account the actual target 
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architectures (outside SDL), allows to obtain more faithful estimations of possible 
communication delays.  

These two options are not necessarily exclusive. The first one is to be used in absence 
of information on the target architecture. When this information is available, it is a 
better source for assumptions on communication delays. A sanity check between the 
two levels of description consists in verifying if for every possible end-to-end 
communication, the constraint obtained from the architecture refines the constraint 
defined at SDL level. 

 
The types of useful communication constraints for time and performance analysis 

are manifold, and can probably not be fully captured by simple annotations as we 
propose them. A reasonable solution consists in: 
− defining a set of annotations allowing analysis at an abstract level.  
− taking into account characteristics of the communication media given in the 

architecture description 
 
We consider only a small set of SDL channel annotations which we believe 

sufficient together with the above mentioned possibility for defining a more fine 
grained performance model. The choice of annotations has been made with the 
motivation to allow at least the features implemented in [O01] in order to take into 
account losses and two types of communication delays. Channels can have 
− a loss rate, which is defined by an expression evaluating to a real in [0,1].  
− A delay – either of type pipeline or delay –defined by an expression of type 

“interval of duration”; an interval of durations is defined by two duration 
expressions representing its minimal and the maximal value. 
 

Constraints of type “pipeline” are load independent (for modelling communication 
media with some degree of parallelism, such as the internet), and constraints of type 
“delay” are the sequential load dependent type of constraints (for modelling purely 
sequential media) as defined in section 2. “Mixed channels”, where the 
communication delay is partially load dependent, can be obtained by the sequential 
composition of channels of the two delay types. 

Restricting loss probabilities and durations to constant expressions allows static 
type checking and eases analysis, whereas data dependent constraints increase 
expressiveness. Our point of view is that, at language definition level, such 
restrictions of the subset of allowed expressions have not their place, but tools will 
define them depending on their analysis capabilities. 

Processing times 

The processing of a signal in an agent is done in several phases. From the point of 
view of the external “user”, we are interested in response time constraints, which is 
divided into queuing time and treatment time; the treatment time itself consists of 
pure  execution time and blocking time, during which it waits to be scheduled or to 
get some response to a subordinate task. A set of non-overlapping constraints are 
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sufficient as global constraints can be derived from them. Morover, non overlapping 
constraints make analysis easier.  
 
We consider duration constraints of type “interval of durations” defined by two 
duration expressions for the minimal and the maximal value of the interval 
As already mentioned, it is interesting to distinguish between  

• delay, constraining the overall time passing between the start and the 
termination of a behaviour,  

• and execution time, which does not include time for waiting for the environment 
or the availability of the processor resource. 

In models close to the implementation, the second type is more interesting, but also 
global estimations (abstracting away from exact waiting times for scheduling by 
including estimations of them) are quite frequently used. Durations allow to constrain 
signals from the environment without necessarily modelling them explicitly. 
At the semantic level, a duration constraint on a given behaviour - a sub-graph of the 
control-graph representing the functional model - are expressed by generalizing the 
idea expressed in Fig.2 of section 2. The fact that a duration measure is “stopped” in 
states waiting for the scheduler or a signal to arrive, can also be expressed exactly as 
already explained in section 2.The second question is for which sort of behaviours 
one can constrain the duration.  
− the time extended versions of SDL tools allow to associate duration constraints 

with tasks, outputs, decisions and any single SDL behaviour constructs. 
− it is also convenient to associate durations with more complex pieces of sequential 

behaviour, such as transitions or procedures constraining the duration between start 
and end state(s). The case of non termination is then a functional design error.  

− The association of a “duration” with agents can be useful if all its activities are 
subject to the same time constraints.  
 
 

I A

?e1 : t0 := now
eager 

?e2 : :min < (now- t0) – twait < max 
delayable 

?e1,?e2 :  is a CSP like synchronous rendez-vous 
twait       is the waiting time obtained by  
                refining state A 

task 1 

task 2 

e2 : constraint(x)

e1 : x=0 

 
− a more flexible way of constraining sequential behaviours which are not 

necessarily within a single process, is obtained by constraining the time passing 
between arbitrary pairs of “events” e1 and e2 which need not to be in the same 
process. In the semantic model such a constraint is represented by an automaton 
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as in the figure below, executed in parallel with the constraint functional 
behaviour, “activated” on occurrence of e1, inactivated by the occurrence of e2 
and imposing time progress by less then the minimal duration as long the 
constraint is active. Possible re-entrance can be handled by activating a new 
occurrence of the constraint automaton at each occurrence of the “start” event 
e1. These “events” correspond to semantic level events of type “change” state; 
states are graphically represented vertical lines in an SDL transition, that is 
vertical lines in SDL specifications. The set of time constraints implies 
conditions on the occurrence time of all these events. 

    Notice that timed MSC allow already exactly this type of constraints for scenario 
specifications, and in [SPI97,DDH+01] MSC like notations are used for for 
expressing constraints on processes. 

 
    The discussed features are very interesting from the point of view of expressiveness 
as they allow loose time constraints avoiding over-specification,. Nevertheless, 
analysis of systems with time constraints on behaviours containing many system 
interactions induce a tremendous amount of non-determinism. Constraining only 
pieces of behaviours without communications with the exterior of a given agent 
allows more compositional analysis.  

The use of “overlapping” time constraints is problematic as the satisfiability of the 
a set of overlapping constraints is a hard synthesis problem, and thus the construction 
of the semantic model. 

Execution Modes 

An interesting question is how to interpret parts of the system on which no time 
constraints are expressed. The SDL semantics suggests to consider them as “lazy”, 
that is time may pass arbitrarily. In the synchronous approach, however, the designer 
would on the contrary make the assumption that all non time constraint actions are 
immediate. In order to offer a flexible framework with different possible execution 
modes, the explicit introduction of urgency of not explicitly time constraint parts, at 
the user level, would be interesting. 

Time constraints on the external environment 

For the signals arriving from the environment, response times, inter arrival times, 
jitters, … are non overlapping constraints and must be expressible. 

The environment will be modelled by processes (for which no code is generated) 
and all the above features can be expressed by means of time guards 

In a component based approach however, one wants to verify a subsystem in by 
using the above mentioned timing characteristics of its environment. 
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Scheduling 

How to represent scheduling information in SDL, and the question if it is a good 
option to express scheduling within SDL, is out of the scope of this paper. We only 
discuss briefly the information necessary to construct the semantic level scheduling 
rules as mentioned in section 2.  
The information on deployment of agents on processing units, allows to define the 
association between the semantic level schedulers of section 2 (representing 
processing units) and controlled processes.. 
The set of priority rules allowing deterministic scheduling could be given as such by 
the user or calculated for standard scheduling algorithms (RMA,EDF,..) where it is 
important to have the information about the preemptibility of (sequences of) atomic 
steps. In [AGS00] a methodology is presented for defining the priority rules in a 
compositional and hierarchical manner starting with the innermost agents at every 
level one needs to relate transitions of different agents at the same structuring level. 

Local time 

A fundamental aspect of modern real-time distributed systems that makes them 
especially complex to model and reason about, is the absence of a global system 
clock, and thus time. Temporal synchronization between distributed components must 
be achieved by the system itself where the simplifying assumption that the time 
reference now has everywhere the same value is not appropriate. It is also often the 
case that this temporal coordination of the components is the key area where SDL and 
its associated model checking tools should be applied, i.e. this is the most complex 
design area where unforeseen errors such as deadlocks, live-locks etc caused by the 
temporal coordination of the components, are likely to be introduced. A notion of 
local time or local clock is therefore important. 

Local time can be expressed, but in an awkward manner: in a real time system 
there must always exist a defined relationship between the external reference time 
(now) and local time, defined for example by a maximal drift or offset. In this 
context, any condition on local time can be transformed into a (weaker) condition on 
now, reflecting the possible values of now for a given local time value.  

We proposed to introduce the notion of local time (defined by a drift and/or offset 
with respect to the global time now); local clocks or timers progress with respect to 
their reference time.  

4. Functional time related concepts  

SDL allows the description of time dependent functional behaviours by means of 
timeouts and time stamping. Timeouts allow the triggering of an action when “some 
delay has been exceeded” whereas time-stamps are more expressive and allow to 
define triggers, decisions and timers depending on all observed durations (as far as 
they can be expressed by means of (local) time stamps).  
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These constructs do not allow the specification of transitions which are taken at a 
specific point of time (or within a specific time interval), as there is no notion of 
urgency in SDL. In the application domain of communication protocols, the existing 
functional features, time guards and timeouts, are mainly used to react when some 
response (signal) is taken into account too late or to avoid indefinite waiting4.  

Interrupts 

During the entire execution of an SDL level transition, the concerned process is 
insensitive to signals from the environment. In order to increase the reactivity of a 
process it is convenient to have the possibility of interruption.  

For example in Esterel [BG92,Esterel] exists a primitive watchdog for exiting a 
transition on an external signal. State-charts offer in addition the possibility of “deep 
history re-entry” which allows to return to the point of control where the transition 
has been exited, that is to explicitly model pre-emption.  

In SDL, the possibility of pre-emption can be obtained by modelling  the pre-
empting and the pre-empted transition in concurrent processes, as concurrency leaves 
room for any sequentializations of atomic steps of the transitions at execution time, 
that is any possible pre-emptive behaviour. 

Interruption by either signal reception or time progress can not be expressed in 
SDL in a convenient way, as this implies reactivity to the environment within a 
transition. An inelegant, and often used, workaround consists in  
− testing time at various places within the transition if interrupt can be caused by 

time progress  
− cutting a transition into several transitions allowing to test the arrival of an 

interrupt signals more often. 
− modelling time consuming tasks in a slave process, started by the master process 

which waits for the slave process to terminate and remains always reactive to an 
interrupt signal. 

All these workarounds emulate in more or less precise way at SDL level the 
underlying semantic model; the first two methods imply an undesirable discretisation 
and to unreadable specifications and the third one induces a considerable modelling 
overhead and still does not allow to terminate a time consuming activity which has 
become useless for some reason. The introduction of an explicit “interrupt” primitive 
leads clearly to a greater modularity of the design. We propose to use an extension of 
the exception mechanism to represent interrupts. As it has been shown in section 2, 
the translation of this primitive in the semantic model is straightforward. 

Time under the control of the system 

The assumption that, time, represented by some system clock, is external to the 
system, is appropriate in most systems. Nevertheless, whenever a clock 

                                                           
4 E.g., for a signal that has been lost or has never been sent because a part of the system has 

failed silently 
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synchronization algorithm is designed, or the “system clocks” are “part of the system” 
rather than external, it is important to have a primitive corresponding to a partially 
controllable system clock. Clocks as those used in timed automata introduced above, 
can play this role, as they increase depending on (external) time and can be set by the 
system to any specific value allowing corrections of clock values. The recently 
accepted Profile for Real-time, Scheduling and Performance [RFP02] and [MSD+01] 
propose such “clocks”; with the difference that they are intrinsically discrete (that is, 
their value changes with some well-defined granularity). Both, timed automata clocks 
and discrete UML clocks can be used to model system clocks – which are used 
instead of “now” in all functional constructs. Nevertheless, timed automata clocks, 
which need not to be a priori discretized, are more abstract. 

5. Conclusions 

This paper motivates a number of time concepts necessary for modelling functional 
and non functional time related aspects of systems and shows how they can be 
expressed in the semantic model.  

Functional time related primitives are those which allow explicitly define 
alternative behaviours depending on observed time. Non-functional primitives express 
timing features orthogonal to the functional behaviour, and they consist in constraints 
on the (relative) occurrence time of events, and are completely lacking in the 
standard. In this paper we have not discussed the introduction of an appropriate 
atomicity. To allow compositional modelling, a sequence of steps can be considered 
as atomic if interaction with the environment takes place only at starting time and/or 
at termination time of the sequence (atomic steps are represented at the semantic 
model by two transitions, thus guaranteeing a single interaction in each transition). 
Interactions with the environment are sending or reception of signals, but also RPC, 
and use of now in decisions and tasks Thus individual transitions (and sometimes 
even the evaluation of time dependent expressions) must be cut into several atomic 
steps, resulting in a very fine grained semantic model. Especially, the use of now 
within transitions is problematic, as whatever processes are grouped into a “module”, 
reading time is always a communication with the environment. Fixing the choice of 
the value of now for at least a part of the transition leads to more reasonable 
granularity (and implementation).  

Concerning performance analysis, good analysis results can be obtained by 
“measuring” or  calculating bounds for execution times of pieces of behaviour for a 
given implementation on a given platform and back-annotating them into an (abstract) 
SDL model for analysis. The tool proposed in [CPP*01] allowing timing analysis of 
Esterel programs is based on this idea. 

The relationship with the profile on “Performance, scheduling and time” of OMG 
[OMG02] which has been recently accepted, remains to be clarified. This profile 
provides mainly a catalogue of notations and notations and the definition of their 
interdependencies. There is very little about semantics or how these notations could 
be used for analysis. The aim of the work presented here, is precisely the definition of 
a minimal set of notations, necessary for design and analysis and to provide a precise 
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semantics. Conformance with the notations defined in the UML profile, whenever this 
is reasonably possible, is ongoing work, for example in the IST project OMEGA5 
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