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Abstract This paper presents a technique and a tool for
model-checking operational (design level) UML models
based on a mapping to a model of communicating extended
timed automata. The target language of the mapping is
the IF format, for which existing model-checking and
simulation tools can be used.

Our approach takes into consideration most of the
structural and behavioural features of UML, including
object-oriented aspects. It handles the combination of
operations, state machines, inheritance and polymorphism,
with a particular semantic profile for communication
and concurrency. We adopt a UML profile that includes
extensions for expressing timing. The breadth of concepts
covered by our mapping is an important point, as many
previous approaches for applying formal validation to UML
put much stronger limitations on the considered models.

For expressing properties about models, a formalism
called UML observers is defined in this paper. Observers
reuse existing concepts like classes and state machines, and
they allow expressing a significant class of linear temporal
properties.

The approach is implemented in a tool that imports
UML models from an XMI repository, thus supporting
several editors like Rational Rose, Rhapsody or Argo. The
generated IF models may be simulated and verified via an
interface that presents feedback in the vocabulary of the
original UML model.

Keywords UML · Object oriented · Model checking ·
Timed automata · Real-time · Observer

This work has been partially supported by the OMEGA European
Project (IST-33522). See also http://www- omega.imag.fr

I. Ober · S. Graf (B) · I. Ober
VERIMAG 2, av. de Vignate, 38610 Gières, France
E-mail: {ober, graf, iober}@imag.fr

1 Introduction

This paper presents a technique and a tool for validating
UML models by simulation and property verification. We
are focusing on UML as we feel some of the techniques that
emerged in the field of formal validation are both essential to
the reliable development of real-time and safety critical sys-
tems, and sufficiently mature to be integrated in a real-life
development process.

Our past experiences (for example with the SDL
language [6]) show that this integration can only work
if validation takes into account widely used modelling
languages. Currently, UML-based model driven develop-
ment encounters a big success in the industrial world and
is supported by several CASE tools furnishing editing,
methodological help, code generation and other functions,
but very little support for validation.

This work is part of a broader project (IST OMEGA
[11]) which aims at building a UML-based methodology
and a validation environment for real-time and embedded
systems. An important part of this project was concerned
with defining a suitable operational UML profile for real-
time applications [13, 20], and a formal semantics of it [49]
as well as real-time extensions [22]. The work presented in
this paper builds upon the foundation of this profile (called
OMEGA UML in the following) and is concerned only with
validation and tool-related issues such as: implementing the
semantics, defining a property specification formalism and
applying model-checking techniques. The choices and the
semantics of the profile itself are explained only to the ex-
tent necessary for understanding the paper.

1.1 Basic assumptions

The following assumptions provide the starting point for this
work:

• UML is broader than what we need or can handle in au-
tomatic validation. In UML 1.4 [46] there are nine types
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of diagrams and about 150 language concepts (meta-
classes). Some of them are too informal to be useful
in validation (for example use cases) while for others
the relationships and the consistency with the rest of the
UML model are not clearly (nor uniquely) defined (for
example collaborations, system-level activity diagrams,
deployment diagrams).
As a consequence, in this work we focused on a subset
of UML concepts that define an operational view of the
modelled system: objects, their structure and their be-
haviour.

• UML has neither a standard nor a broadly accepted
dynamic semantics. The OMEGA profile used in this
work defines a semantics for UML which is suitable for
distributed real-time applications. It identifies necessary
concepts such as the mechanisms of communication be-
tween objects, the concurrency model, the formalism for
specifying actions and timing. The main aspects of this
semantics are presented in Sect. 2.

• To produce powerful tools we have to build upon the ex-
isting. This motivates our choice to do a translation to the
IF language [7], for which there exists a rich set of tools
performing static analysis, model checking, model con-
struction and manipulation, etc. The experiments per-
formed so far confirm that many of these tools can han-
dle UML-generated models. Moreover, mapping UML
to IF yields a flexible implementation of the OMEGA
semantics in which one can test semantic choices and
propose improvements.

On the side of model editing, we are relying on common
UML CASE tools such as Rational Rose or I-Logix’s Rhap-
sody, via the standard XML representation for UML (XMI).

1.2 Overview of our approach

The approach presented here covers an operational subset
of UML (presented in Sect. 2). The structure of models is
captured through class definitions, linked by association
relationships, aggregation or inheritance. The behaviour
of each class is described in the standard way by means
of state machines and operations, containing structured
imperative actions. A particular model of concurrency and
communication is adopted. The combination of all these
features, goes beyond previous work done in this area
(see Sect. 1.3), which has until now mainly focused on
verification of statecharts.

In order to analyse the potential behaviours of UML
models, we are translating them into the input language of
the IF toolset [7, 8]. The translation, explained in Sect. 3,
does not yield a particular implementation of an abstract
UML model, it rather yields another model which is se-
mantically equivalent to the initial one. Abstractions, such
as non-deterministic behaviour of certain objects or infor-
mal specification of certain actions are preserved in the IF
model.

IF is a formal language based on communicating ex-
tended timed automata (CETA), for which powerful simula-
tion and verification tools exist. It has been previously used
in a number of research projects and case studies. Its main
features are presented in Sect. 1.4.

On the level of UML modelling, an important issue in
designing real-time systems is the ability to capture quanti-
tative timing requirements and assumptions as well as time
dependent behaviour. A set of timing extensions for UML
are defined in the OMEGA profile [22], and are summarised
in Sect. 4 together with their mapping to IF.

Section 5 presents a lightweight extension of UML (ob-
server classes) which is used as a property description lan-
guage. Instances of observer classes allow expressing lin-
ear temporal property by using a specific semantics for their
state machines. Experience shows that the use of such fa-
miliar concepts diminishes the shock of introducing formal
verification to UML users.

Section 6 presents the UML validation toolset IFx. The
functionalities of the tool, ranging from static analysis and
optimisations to model generation and model checking, are
presented in Sect. 7 on a concrete and complex example — a
model of the Ariane 5 flight configuration software.

1.3 Related work

Work on formalising and reasoning with the semantics of
UML appeared in the literature during the late 1990s (see
e.g. [10, 19, 30]). During the more recent years, theoretical
work, as well as tools supporting formal analysis (and par-
ticularly model checking) of the UML models has become a
very active field of study, as witnessed by a number of papers
[3, 16, 17, 34, 35, 40, 41, 42, 48, 52].

Like ourselves, many of these authors base their work
on existing model checkers (SPIN [32] in the case of [40,
41, 42, 48] COSPAN [31] in the case of [52], Kronos [53]
for [3] and UPPAAL [39] for [34]), and on the mapping of
UML to the input language of the respective tool.

As for specifying properties, some authors opt for the
property language of the model checker itself, e.g., [40–
42]. Others [34, 48] use UML collaboration or sequence
diagrams, which specify required or forbidden sequences
of messages between objects, but are too weak to express
stronger properties. We propose the use of a variant of UML
classes and state machines to express properties.

Concerning language coverage, most previous ap-
proaches do not handle dynamic object creation, inheritance
or behaviour described through operations. These are some
of the features which make UML an object-oriented formal-
ism. The approach presented in this paper is, to our knowl-
edge, the first one to fill this gap. Our handling of UML state
machines was inspired by the material cited above, together
with the previous work on statecharts [14, 29, 44].

The concurrency model of the OMEGA profile is
inspired by the concurrency model adopted in the Rhapsody
tool [28]. The improvements are the formalisation of
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its semantics, and a more relaxed interpretation of non-
determinism which allows a higher level of abstraction and
opening to different implementations (Rhapsody adopts
an implicitly defined scheduling scheme). In the definition
of the profile, we also took inspiration from our previous
assessment of the UML concurrency model [45], and from
other positions on this topic (see e.g. [51]).

Finally, the work presented in this paper is part of a
broader effort [11, 20] to produce a toolset and a method-
ology which integrate UML and formal techniques for
the development of real-time and embedded systems. The
framework supports activities like:

• static wellformedness checks
• checking (timed) models against (timed) observers as

well as scheduling analysis, formulated as a model-
checking problem on the model

• checking of (untimed) models against LTL formulas or
Live Sequence Chart specifications (LSC, a variant of
interaction diagrams with stronger structuring constructs
[12])

• Consistency analysis of LSC (requirements analysis)
[27] and state diagram synthesis from LSC specifications
[26]

• deductive verification using the interactive theorem
prover PVS: compositional verification, consistency
checks and reasoning on requirements specified in OCL
[36, 37].

For more details, the reader is referred to [11, 20].

1.4 The back-end: model, techniques, tools

The validation approach proposed in this work is based on
the formal model of communicating extended timed au-
tomata and on the IF verification environment built upon this
model [7–9]. We summarise the elements of this model as
follows.

1.4.1 Modelling with communicating extended
timed automata

The IF language and the associated toolset developed at Ver-
imag are conceived for modelling and validating distributed
systems which can manipulate complex data, and which
involve dynamic aspects and real-time constraints. The IF
language is sufficiently expressive to describe the opera-
tional semantics of user level formalisms such as UML or
SDL at a similar level of abstraction; IF has also been used as
a format for inter-connecting model-based validation tools.

An IF description defines the structure of a system and
the behaviour of its components. A system is composed of
a set of communicating processes that run in parallel (see
Fig. 1). Processes are instances of process types. They have
their own identity (Pid), they may own complex data vari-
ables (defined through ADA-like data type definitions), and
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Fig. 1 Constituents of a communicating extended automata model in
IF

their behaviour is defined by a state machine. The state ma-
chine of a process type may use composite states and the
effect of transitions is described using common (structured)
imperative statements.

The notion of process is similar to the notion of object
from object-oriented languages. The difference is that a pro-
cess type does not define operations and there is no notion of
inheritance. Operations, inheritance and other notions may
be layered on top of the IF model resulting in a more modu-
lar definition of the semantics of object models (see Sect. 3).

Processes may communicate via asynchronous signals
(similar to the UML 1.4 homonym), via shared variables
(corresponding to public attributes in UML), or via syn-
chronous rendezvous. Asynchronous signals are buffered in
input queues (one for each process). Parallel processes are
composed asynchronously (i.e. by interleaving). The model
allows dynamic creation of processes, which is an essential
feature for modelling object systems.

IF provides support for real-time constraints expressed
using clock variables and guard conditions on them. The val-
ues of clocks increase all at the same rate as time progresses.
The underlying semantics is based on finite timed automata
with urgency [2, 4]. For more details on the IF model and its
semantics, the reader is referred to [8, 9].

1.4.2 A framework for modelling priority

On top of the set of processes, one may specify a set of
system-wide priority rules of the following form:

StateCondition(p1, p2) ⇒ p1 ≺ p2

The rules are evaluated at each stable state of the system
and they define a partial priority order between processes:
for every pair of distinct Pids (p1, p2), if the condition
StateCondition(p1, p2) holds in the current system state
then the process with ID p1 has priority over p2 for the next
system step. This means that if p1 has an enabled transition,
p2 is not allowed to execute.

This priority framework is formalised in [1, 23, 24].
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1.4.3 Property description and verification with observers

Dynamic and time dependent safety properties may be ex-
pressed in IF using observers. These are special processes
used as language acceptors, which execute synchronously
with the system and can monitor changes of state (variable
values, contents of queues, etc.) and events that occur (input
and output of signals, creation and destruction of processes,
etc.).

For expressing properties, some of the states of an ob-
server may be classified (syntactically) as error or as invalid
states. An execution that does not go through an invalid state
but reaches an error state is an error trace. Thus, observers
can be used to express safety properties.

IF observers are inspired by the observer concept intro-
duced by Jard et al. in the VEDA tool [33]. This intuitive and
powerful property specification formalism has been adapted
over the past 15 years to other modelling languages (LO-
TOS, SDL) and implemented in industrial case tools like
ObjectGEODE.

1.4.4 Analysis techniques and the IF-2 toolbox

The IF toolbox [7, 8] is the validation environment built
upon the language presented before. It is composed of three
categories of tools (see also Fig. 5):

1. behavioural tools for simulation, verification of proper-
ties, automatic test generation. The tools implement state
of the art techniques such as partial order reductions and
some form of symbolic simulation, and thus present a
good level of scalability.

2. static analysis tools providing source-level optimisations
that help reducing furthermore the state space of the
models, and thus improve the chance of obtaining re-
sults from the behavioural tools. The implemented data
and control flow analysis techniques, leading to exact ab-
stractions of the initial model, are dead variable reduc-
tion, dead code elimination and slicing.

3. front-ends and exporting tools which provide an in-
terface with higher-level languages (UML, SDL) and
with other validation tools (Spin [32], Agatha [43],
etc.).

The IF language allows its user to describe models
ranging from very abstract specifications to detailed,
directly implementable design models. In order to tackle
the complexity of detailed models, the IF toolbox supports
abstraction in several ways. For example, data abstraction
can be done either by static analysis (computing a slice and
throw away a part of the system state which is irrelevant
with respect to an observation criterion) or by abstract
interpretation of some variables (e.g. symbolic handling of
timers and clocks). Another (exact) abstraction often used in
IF is provided by partial-order reductions during exhaustive
state-space exploration; the effect of this reduction is to
render deterministic the interleaving of parallel compo-
nents whenever the non-deterministic interleaving cannot

influence the result of the verification of a given property.
Finally, other techniques such as input queue abstraction (a
very efficient method for particular object topologies such
as Kahn networks) have been experimented.

Compositional verification is not directly supported by
IF, but some functionalities of the toolbox provide support
for a more manual application of a compositional verifica-
tion methodology. For example, minimal model generation
with Aldebaran can be used to extract an abstract model of
the behaviour of some component(s), which can then be used
instead of the concrete models for constructing and verify-
ing the model of the composed system, or user defined ab-
stractions of subsystems can be checked conform to a more
concrete version of a module.

The toolbox has already been used in a series of
industrial-size case studies [8].

2 The OMEGA UML profile

This section outlines the main features of the operational
OMEGA UML profile [13, 15, 22, 38] implemented in our
tools.

2.1 UML concepts covered

The operational subset of UML considered here consists of
the following model element types:

• Classes: active or passive (see Sect. 2.2).
• Operations: triggered/primitive (see Sect. 2.2), construc-

tors, destructors.
• Signals for asynchronous communication.
• Attributes with basic types or object reference types.
• Basic data types: currently Integer, Boolean, Real.
• Associations: simple and composite, with bounded mul-

tiplicity.
• Generalisations: their semantics involves polymorphism

and dynamic binding of operations.
• Statecharts: they are not presented in detail in this paper

as already tackled in many previous works, such as [3,
17, 34, 35, 40–42, 48, 52].

In order to describe a meaningful behaviour for a UML
model, one also needs to describe actions. Actions in UML
describe the effect of a statechart transition, or the body of
an operation. Thus, they allow the description of expressive
control structure (not limited to finite automata) or even
the description of the implementation of operations and
transitions. Beginning with version 1.4 of UML, there is a
standard for describing actions, but this standard is defined
only in terms of a metamodel (giving the types of actions
and their components). In order to make it usable, one still
has to define a concrete syntax, but which is allowed to vary
from one tool to another.

The OMEGA profile [38] defines a textual action lan-
guage compatible with UML 1.4 which covers: object cre-
ation and destruction, operation calls, expression evaluation
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(including navigation expressions), variable assignment, sig-
nal output, return action as well as control flow structuring
statements (conditionals and loops). The concrete syntax of
this action language is not presented here as it has only been
introduced as a common format to circumvent the problem
that none of the UML tools existing today export actions in
a structured form.

Additionally to the elements mentioned earlier, a number
of UML extensions for describing timing constraints and as-
sumptions are supported. They are discussed in Sect. 4, and
a more detailed description can be found in the companion
paper [22].

2.2 The execution model

The purpose of this section is to illustrate the features and
particularities of the OMEGA profile taken into account
in our tool, not its totality and also not its complete for-
mal semantics, which may be found in [13, 15, 49]. The
execution model chosen in OMEGA and presented here
is an extension of the execution model of the Rhapsody
UML tool (see [25, 28] for an overview), which is used in a
large number of UML applications. Other execution models
can be accommodated to our framework by adapting the
mapping to IF accordingly.

2.2.1 Activity groups and concurrency

There are two kinds of classes: active and passive ones. At
execution, each instance of an active class defines a concur-
rency unit called activity group. Each instance of a passive
class belongs to exactly one activity group, the one of the
instance that has created it.

Apart from defining the partition of the system into ac-
tivity groups, there is no difference between how active and
passive classes (and instances) are defined and handled. Both
kinds of classes are defined by their attributes, relationships,
operations and state machine, and their operational seman-
tics are identical.

Different activity groups are considered as concurrent,
and each activity group treats external requests (all signals
and operation calls from outside the group) one by one
in a run-to-completion fashion. During a step, the above
mentioned external requests are deferred and stored in the
activity groups’ request queue as long as the activity group
is not stable.

An activity group is stable when all its objects are stable.
An object is stable if it has no enabled spontaneous transi-
tion1 and no pending operation call from inside its group.

The motivation for making activity groups working in
run-to-completion steps is to be able to consider such a
step as atomic from the point of view of the environment
of the group. This interpretation of activity groups implies
that every activity group has a single control thread, and the

1 That is a transition which is guarded only by a Boolean condition
and not triggered by an event.

atomicity of steps allows preemptive scheduling at run-time.
Notice however, that the atomicity of steps can only be
guaranteed when some conditions on the outgoing commu-
nications hold in each step and if direct data access (through
navigation) in between activity groups is not possible. The
OMEGA profile does not enforce such a constraint, but the
OMEGA methodology proposes to systematically use data
access via get and set operations instead.

The semantics of activity groups described here corre-
sponds to that of concurrent components, which make visi-
ble to the outside world only the stable states in-between two
run-to-completion steps. Such a model has been already suc-
cessfully used in many concurrent object-oriented languages
and in synchronous languages.

2.2.2 Operations, signals and state machines

We consider only synchronous operation calls, where the
caller (and its group) are blocked in a suspended state until
the completion of the call. In the UML model we distinguish
syntactically between two kinds of operations: triggered and
primitive ones.

The body of triggered operations is described directly in
the state machine of a class: the operation call is seen as a
special kind of transition trigger. Triggered operations differ
from asynchronous signals in that they may have a return
value.

Primitive operations are closer to methods in usual
object-oriented programming language. They have a body
described by an action. Their handling is more delicate since
they may be overridden in the inheritance hierarchy and they
are dynamically bound, like in all object-oriented models.
When a call for a primitive operation is sent to an object, the
appropriate operation implementation with respect to the ac-
tual type of the called object in the inheritance hierarchy has
to be executed.

With respect to call initiation, when an object having the
control in its activity group calls an operation on an(other)
object from the same group, the call is handled immediately
(i.e. on the same control thread), like in usual programming
languages. Notice that in case of triggered operation calls,
the dynamic call graph should be acyclic, since an object
that is already waiting for the termination of a call — made
from within a statemachine transition — is in a suspended
state in which it is not able to handle any new calls. (This
type of conditions may be verified using the IF tools.)

Calls received from other activity groups are, indepen-
dently of the type of operation call, queued by the receiving
group and handled in a subsequent run-to-completion step.

Signals are always put in the target object’s group queue
for handling in a later run-to-completion step, regardless of
whether the target is in the same group as the sender or not.
This choice is made in order to be able to distinguish trig-
gering an action within the same step (an operation call) and
triggering an action in a later step (signal trigger). It has also
the effect that concurrency within an activity group cannot
be created by sending asynchronous signals.
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3 Mapping UML models to IF

In this section, we give the main lines of the mapping of a
UML model to an IF system. The intermediate layer of IF
helps us tackle the complexity of UML and provides a se-
mantic basis for re-using our existing model checking tools
(see Sect. 6).

The mapping is done in such a way that all runtime
UML entities (objects, call stacks, pending messages, etc.)
are identifiable as a part of the IF state. In simulation and ver-
ification, this allows tracing back to the UML specification.

3.1 Mapping the object domain to IF

3.1.1 Mapping of attributes and associations

Every class X is mapped to a process type PX that has a
local variable corresponding to each attribute or association
of X . Inheritance is flattened and all inherited attributes and
associations are replicated in the process type corresponding
to a class.

3.1.2 Activity group management

Each activity group is managed by a special group manager
process (of type G M). This process dispatches all signals
and external operation calls and thus contributes to ensure
the run-to-completion policy. Each process PX has a local
variable leader , which points to the G M process managing
its activity group.

3.1.3 Mapping of operations and call polymorphism

For each operation m(p1 : t1, p2 : t2, . . .) in class X , the
following components are defined in IF:

• a signal callX ::m(waiting : pid, caller : pid, callee :
pid, p1 : t1, p2 : t2, . . .) used to indicate an operation
call. The parameter waiting holds the Pid of the process
that waits for the completion of the call (the caller if it
is in the same group as the callee, the group manager of
callee, otherwise). The parameter caller designates the
process waiting for a return value, while callee desig-
nates the process receiving the call (a PX instance).

• a signal returnX ::m(r1 : tr1, r2 : tr2, . . .) used to indi-
cate the return of an operation call (sent to the caller ).
Several return values may be sent with this signal.

• a signal completeX ::m() used to indicate completion of
computation in the operation (may differ from return, as
an operation is allowed to return a result and continue
computation). This signal is sent to the waiting process
(see callX ::m).

• for a primitive operation (see Sect. 2.2), a process
type PX ::m(waiting : pid, caller : pid, callee :
pid, p1 : t1, p2 : t2, . . .) is defined which describes
the behaviour of the operation using an automaton. The

parameters have the same meaning as in the callX ::m
signal. The callee Pid is used to access local attributes
of the called object, via the shared variable mechanism
of IF.

• the implementation of a triggered operation (see
Sect. 2.2), is modelled in the state machine of PX and
it is required that there exists an explicit return action
in the state machine. Transitions triggered by a X :: m
call event in the UML state machine are triggered by
callX ::m in the IF automaton.

The action of invoking an operation X :: m is mapped to
sending a signal callX ::m . The signal is sent either directly
to the concerned object (if the caller is in the same group) or
to the object’s active group manager. This group manager
queues the call and forwards it to the destination when the
group becomes stable. As operation calls are blocking, the
sender of a call signal enters a state in which it expects, in
order to be unblocked, either a return signal (if X and Y are
in different activity groups) or a complete signal (if X and
Y are in the same group).

The handling of incoming primitive calls is modelled by
transition loops in every state2 of the processes PX , which,
upon reception of a corresponding callX ::m signal create a
new instance of PX ::m and wait for it to terminate (see se-
quence diagram in Fig. 2).

In general, the mapping of primitive operation (activa-
tions) into separate automata created by the called object has
several advantages:

• it allows extensions to non-usual types of calls, such
as non-blocking calls. It also preserves modularity and
readability of the generated model.

• it provides a simple solution for handling polymorphic
calls in an inheritance hierarchy: if A is a base class
and B is on of its heirs, both implementing the method
m, then PA responds to callA::m by creating a handler
process PA::m , while PB responds to both callA::m and
callB::m , in each case creating a handler process PB::m
(Fig. 3).
This solution is similar to the one used in most object-
oriented programming language compilers, where a
“method lookup table” is used for dynamic binding of
calls to operations; here, the object’s state machine plays
the role of the lookup table and the dynamically created
method instances represent the call stack.

3.1.4 Mapping of constructors

Constructors differ from primitive operations in that their
binding is static. Consequently, they do not need the defi-
nition of the callX ::m signal and the call action is mapped
directly to the creation of the handler process PX ::m . The
handler process begins by creating a PX object and its com-
ponents (i.e. all the aggregate objects defined by UML com-
position relationships), after which it continues execution as
a normal operation.

2 This is eased by IF’s support for hierarchical automata.
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Fig. 2 Handling primitive operation calls using dynamic creation
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Process type A : statechart of A
        + response to call A::m
           by creating PA::m

Process type PA::m   : action of A::m

Process type B : statechart of B
        + response to call A::m  and call B::m
             by creating PB::m

Process type PB::m   : action of B::m

Fig. 3 Mapping of primitive operations and inheritance

3.1.5 Mapping of state machines

UML state machines are mapped almost syntactically to IF.
Several prior research papers tackle the problem of map-
ping statecharts to (hierarchical) automata (e.g. [44]). The
method we apply is similar.

3.1.6 Actions

The action kinds enumerated in Sect. 2.1 are supported as
follows:

• object creation is modelled by the creation of the con-
structor’s handler process

• method call is modelled by sending a call signal and
waiting for a return/complete signal

• assignment is directly supported in IF. Access to at-
tributes is supported by the shared variable mechanism.

• signal output is directly supported in IF.
• return action is modelled by the sending of a return

signal.
• control structure actions are directly supported

in IF.

3.2 Modelling run-to-completion with dynamic priorities

The concurrency model introduced in Sect. 2.2 is real-
ized using the dynamic partial priority order mechanism
presented in 1.4. As already mentioned, the calls or sig-
nals coming from outside an activity group are placed
in the group’s queue and are handled one by one in
run-to-completion steps. In IF, the group management pro-
cesses (of type G M) handle this queueing and forwarding
behaviour.

In order to obtain the desired run-to-completion (RTC)
semantics, the following priority rules are applied (the rules

concern processes representing instances of UML classes,
and not the processes representing operation handlers, etc.):

• All objects of a group have higher priority than their
group manager:

(x .leader = y) ⇒ x ≺ y

This guarantees that as long as an object inside a group
may execute, the group manager will not initiate a new
RTC step.

• Each G M object has an attribute running which points
to the presently running or most recently run object in the
group. This attribute behaves like a token that is taken or
released by the objects having something to execute. The
priority rule:

(x = y.leader.running) ∧ (x �= y) ⇒ x ≺ y

ensures that as long as an object that is already executing
has something more to execute (the continuation of an
action, or the initiation of a new spontaneous transition),
no other object in the same group may start a transition.

• Every object x with the behaviour described by a state
machine in UML will execute x .leader.running := x
at the beginning of each transition. As a consequence
of the previous rule, such a transition may be executed
only when the previously running object of the group
has reached a stable state, which means that the current
object may take the running token safely.

The non-deterministic choice of the next object to exe-
cute in a group (stated in the semantics) is ensured by the
interleaving semantics of IF.

3.3 Preserving non-determinism

High level specifications described in UML usually abstract
away from implementation details or scheduling policies
of concurrent computations. Such aspects may appear as
non-deterministic choices. When verifying properties of
the dynamics of a model, it can be important to take into
account all possible resolutions of this non-determinism by
an implementation.

The translation of UML to IF preserves non-determinism
at several levels:

• the non-deterministic interleaving of actions in parallel
activity groups is preserved by the non-deterministic
interleaving of processes in IF (modulo the restrictions
induced by priority orders described above).

• the non-deterministic choice of the executing object
inside an activity group, when several can be activated
(as mentioned above).

• the non-deterministic choices described explicitly by the
designer in the behavioural model of an object (e.g. in
the state machine).

Notice that this preservation of non-determinism holds
for interactive simulation where the user might want to see
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all possible orders and when executions are assumed to take
time. For verification purposes, we generally eliminate as
much non-determinism as allowed for still preserving all
properties under consideration (partial order reduction).

4 UML extensions for capturing timing

To build a faithful model of a real-time system, one needs to
represent different types of timing information:

• time-triggered behaviour (prescriptive modelling). For
example, it is common practice in real-time program-
ming environments to limit the execution of an action or
waiting for a signal by a delay which can be represented
by a timer object.

• knowledge about the timing of events (descriptive mod-
elling). Such information is taken either as a hypothesis
under which the system works (e.g. worst case execution
times of system actions, scheduler latency, etc.) or as
a requirement to be imposed upon the system (e.g.
required end-to-end response time).

Different UML tools targeting real-time systems adopt
different extensions for expressing such timing information.
A standard profile targeting real-time applications was de-
fined by the OMG [47] and provides a common set of con-
cepts for modelling timing.

In this work, we are using a subset of the concepts
of [47] (timers, clocks, time-related data types and timed
events). Concerning timed events, we refine the profile in
order to gain some flexibility by identifying a number of
event types (e.g. message reception, object creation) and
by differentiating event types and their occurrences. We
also allow the definition of duration constraints between
arbitrary events occurring in the system. This framework
is described in more detail in [22] and accompanied by a
formal semantics in terms of OCL.3

4.1 Features for modelling timing

Here, we present the subset of the OMEGA time extensions
taken into account in the tool. We introduce two time related
types: time — representing absolute time points — and du-
ration — representing time differences or relative time —
and a global operator now for retrieving the current time
(since system start).

The following concepts are used for modelling time-
triggered behaviour:

• timer objects, which measure durations. They may be
set to a relative deadline, reset, and they send an asyn-
chronous signal when the deadline is reached.

• clock objects, which measure also durations; their value
may be consulted by other objects.

3 In an earlier version of [22] which can be found in [21], we used
timed automata to define the semantics of the real-time profile which
makes the translation to IF easier.

For modelling descriptive timing information, the exten-
sions defined in [21] allow to:

• identify syntactically many of the meaningful events of
a system execution. An event has an occurrence time, a
type and a set of related information depending on its
type. The event types that can be identified are listed in
Sect. 5.1, as they also constitute an essential part of our
property specification language.

• express duration constraints between events identified
as above. The constraints may be either assumptions
(hypotheses to be enforced upon the system runs) or
assertions (properties to be verified on system runs).
If several events of the same type and with the same pa-
rameters may occur during a run, there are mechanisms
for identifying the particular event occurrence that is
relevant in a certain context.

• finally, we introduce scheduling related concepts such
as resources, execution times and priorities.

The class diagram in Fig. 4 shows an example using
these features. This model describes a client–server archi-
tecture. When a client connects to the server (modelled by
LicServer) by calling the method connect, a worker object
(LicClientWorker) is created to handle the requests from that
specific client. The worker object is supposed to expire after
a fixed delay of 10 s.

A timing assumption attached to the client (LicClient)
says that: ”whenever a client connects to the server, it will
make a request before its worker object expires, that is be-
fore 10 seconds”. This is specified using two event types,
one corresponding to calls (actually, returns from calls) to
LicServer::connect, and the other corresponding to calls to
LicClientWorker::request. Using instances of these event
types (ec, er), a duration constraint is specified.

LicServer

<<TriggeredOperation>> connect() : LicClientWorker

LicClientWorker

<<PrimitiveOperation>> request(t : LicToken) : Boolean
0..n +lcws0..n

LicClient

id : Integer

1

+ls

1

0..1 +lcw0..1

timeevents {
 ec : EC;
 er : ER;
}
timeconstraints {
 duration(ec,er) <= 10
      when ec.c = er.c
}

EC

c : LicClient

<<TimedEvent>>

ER

c : LicClient

<<TimedEvent>>

match receivereturn LicServer::connect(void) by c

match invoke LicClientWorker::request(void) by c

Fig. 4 Using events to describe timing constraints
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4.2 Mapping timed specifications to IF

The time-related concepts presented in the previous section
are mapped to IF as follows. Clocks exist as a native concept,
while Timers are implemented using a clock and a timer
process sending timeout signals. Events and their associated
parameters correspond to transitions of the IF model: for
example, the event of invoking an operation X :: m corre-
sponds to the transition in which the callX ::m signal is sent.

For expressing timing constraints, there are two alterna-
tives:

• the constraint is local to some IF process, in the sense
that all involved events are directly observed by the
process (e.g. its inputs, outputs, etc.). This is the case in
Fig. 4. In this case, the constraint may be tested or
enforced by looking at the process alone, and by using
an additional clock for measuring the duration to be
constrained.

• the constraint is global, that is depending on events
attached to several objects. In that case, the constraint
will be tested or enforced by an observer or a set of
observers, which may possibly be dynamically created,
running in parallel with the system.

The tools ensure that runs not satisfying a constraint are
either ignored — if it is an assumption, or diagnosed as error
— if it is an assertion.

5 Expressing properties by UML observers

For specifying and verifying dynamic properties of UML
models, we introduced the notion of UML observers anal-
ogously to IF observers (Sect. 1.4): they are special ob-
jects monitoring run-time state and events. Observers are
described by classes stereotyped with � observer �. They
may have local memory (attributes) and their behaviour is
described by a state machine.

As for IF observers, we use sates classified as � error
� states or � invalid � states to express properties and
hypotheses.

Several examples of properties specified by observers
can be found in Sect. 7. For the designer, the advantage
of observers compared to other property specification
languages is that they use already known concepts while
remaining formal and allow the expression of any safety
properties.

5.1 Observations

The main issue in defining observers is the choice of events
which trigger their transitions, and which must include spe-
cific UML event types. We use the timed events introduced
in the OMEGA time extensions [22] from which we mention
here the most important ones:

• Events related to signal exchange: send, receivesignal,
consumesignal.

XMI
UML model

+ time
annotations

Rose,
Rhapsody,

Argo,
...

UML tools
IF tools

IF
model

IF behavioral tools

state explorer

simulator verifier

test generator

IF static
analysis

live variables

IF
exporters

UML-IF frontend

UML2IF
translator +
compliance

checker

UML
validation

driver

slicing

abstraction

time
constraint

propagation

scheduling
analysis

Graph level tools (CADP)

minimization, comparison, composition...

Fig. 5 Architecture of the IFx validation toolbox

• Events related to operation calls: invoke, receive (recep-
tion of call), accept (start of actual processing of call —
may be different from receive), invokereturn (sending
of a return value), receivereturn (reception of the return
value), acceptreturn (actual consumption of the return
value).

• Events related to the execution of actions or transitions:
start, end and startend for instantaneous actions.

• Events related to states: enter, exit.
• Events related to timers: occur, timeout as well as star-

tend events associated with timer specific actions set and
reset which are considered instantaneous.

The trigger of a transition is a match clause specifying
the type of event (e.g. receive), some related information
(e.g. the operation name) and observer variables that may
receive related information (e.g. variables receiving the val-
ues of operation call parameters).

Besides events, an observer may access any part of the
state of the UML model: object attributes and state, signal
queues. In order to express quantitative timing properties,
observers may use the concepts available in the OMEGA
profile such as clocks.

6 A simulation and verification toolset

The translation of UML models to IF models and the vali-
dation techniques presented in the previous sections are im-
plemented in an extended version of the IF toolbox — IFx.4

The architecture of the toolbox is shown in Fig. 5. It allows a
designer to simulate and verify UML models and observers
developed in third-party editors5 and stored in XMI6 format.

4 http://www-verimag.imag.fr/∼ober/IFx.
5 The CASE tools that have been tested for compatibility are: Ratio-

nal Rose Enterprise Edition 2002/Unisys Rose XMI Add-in 1.3.6 and
I-Logix Rhapsody Developer Edition, v4.1, v4.2 and v5.2

6 XMI 1.0 or 1.1 for UML 1.4
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In a first phase, the tool takes as input a UML model
and generates an IF specification and a set of observers
by applying the translation rules presented before. During
this phase, a first sanity check is performed on the model
and results are provided in the form of compiler warnings
and errors. They concern action syntax, timing annotation
syntax, type errors, etc.

In a second phase, the tool drives the back-end IF
simulation and verification tools, and translates the val-
idation results back to the UML level of the original
model. The idea is to make the back-end formalism and
tools invisible to the designer, but also to enhance the
functionality of the IF toolbox by providing more complex
interactive simulation features like conditional breakpoints,
scenario persistence, custom views for the system state,
etc.

Using the IF toolbox as underlying engine gives access
to several existing state-space reduction and analysis tech-
niques: static analysis and partial order optimisations for
state-space reduction, symbolic model exploration, model
minimisation and comparison [7]. The use of reduction
techniques improves the scalability of the tools, which is an
essential feature in the context of UML where large design
models are often manipulated.

The tool is being applied on several case studies in the
context of the OMEGA project. One of them is presented in
some detail in the next section.

7 Modelling and verification methodology illustrated
by the Ariane-5 case study7

In this section, we outline a verification methodology that
may be used when working with the IFx toolbox. We illus-
trate the steps of our methodology on hand of examples from
the Ariane-5 case study.

The Ariane-5 Flight Program is the embedded soft-
ware which autonomously controls the Ariane-5 launcher
during its flight, from the ground through the atmosphere
and up to the final orbit. This case study has been per-
formed in collaboration with EADS Space Transporta-
tion in the IST OMEGA project, in order to evaluate
the applicability of the UML profile and of the vali-
dation tools. The study consists in formally specifying
some parts of an existing software in UML with Rational
Rose and in verifying a set of critical properties on this
specification.

7.1 Overview of the Ariane-5 Flight Program

The Ariane-5 example is a non-trivial UML model
(23 classes, each one with operations and a state machine)
translated into 77 IF processes and about 7000 lines of IF
code.

7 Ariane-5 is an European Space Agency Project delegated to CNES
(Centre National d’Etudes Spatiales).

7.1.1 The phases of the flight

An Ariane-5 launch begins with the ignition of the main
stage engine (EPC—Etage Principal Cryotechnique). Upon
confirmation that it is operating properly, the two solid
booster stages (EAP) are ignited to achieve lift-off.

After burn-out, the two EAP boosters are jettisoned and
Ariane-5 continues its flight through the upper atmosphere
propelled only by the cryogenic main stage (EPC). The
fairing is jettisoned too, as soon as the atmosphere is thin
enough for the payload not to need protection. The main
stage is rendered inert immediately upon shut-down. The
launch trajectory is designed to ensure that the stages fall
back safely into the ocean.

The storable propellant stage (EPS) takes over to place
the geostationary satellites in orbit. Payload separation and
attitudinal positioning begin as soon as the launcher’s upper
section reaches the corresponding orbit. Ariane-5’s mission
ends about 40 min after the first ignition command.

7.1.2 The flight program

The flight program entirely controls the launcher, without
any human interaction, beginning 6 min 30 s before lift-off,
and ending 40 min later, when the launcher terminates its
mission.

The main functions of the flight program are as follows:

• flight control, involves guidance, navigation and control
algorithms (GNC),

• flight regulation, involves observation and control of var-
ious components of the propulsion stages (engines igni-
tion and extinction, boosters ignition, etc.),

• flight configuration, involves management of launcher
components (stage separation, payload separation, etc.).

The UML description models the regulation and config-
uration parts in detail. For the flight control part, the com-
putational aspects are abstracted to a set of empty control
functions, and only the structure of the control cycle (i.e. the
flowchart according to which the functions are called) and
timing are modelled in detail.

7.1.3 The environment

In order to obtain a realistic functional model of the flight
program, the environment of the launcher software must
also be modelled. The ground component abstracts the
nominal behaviour of the launch protocol on the ground
side, by providing the launch date and confirmations needed
for launching. Furthermore, the equipment controlled by the
flight program (like valves and pyros) is modelled to allow
both success and hardware failure scenarios.

7.1.4 Requirements

Several safety requirements ensuring the right service of the
flight program have been identified and verified on the UML
model. The requirements can be classified as follows:



138 I. Ober et al.

Cyclics

minor_cycle : Integer
fasvol : Integer
incg : Integer
guidance_period : Integer = 8

<<Active>>

Thrust_Monitor

nb : Integer
nb_conf : Integer = 3
T1delh1 : Timer
H0 : Timer
H0_time : Integer

<<Triggered>> Decide_EAP_Separation()

(from GNC)

Valves

<<Triggered>> Open()
<<Triggered>> Close()

(from Environment)

<<Active>>

Acyclic

fasvol : Integer
H0_time : Integer
tqdp : Timer
H0 : Timer
Tpstot_prep : Timer
Tpstar_prep : Timer
Tpstot_eaprel : Timer
Tpstar_eaprel : Timer
End_QDP : Boolean
Early_sep : Timer
Late_sep : Timer
clock : Timer

<<Active>>

+Acyclic

+Cyclics

+Thrust_Monitor

+Acyclic

EPC

current_is_ok : Boolean
clock : Timer
H0 : Timer
H0_time : Integer

(from Stages)

<<Active>>

+EPC

+Acyclic

+Cyclics
+EPC

1

+Thrust_Monitor

+EPC
+EVBO

+EVVP

+EVVCH

+EVVCO

+EVVGH

+EPC

EAP

H0 : Timer
H0_time : Integer

<<Triggered>> EAP_Preparation()
<<Triggered>> EAP_Release()

(from Stages)

<<Active>>

+EAP

+Acyclic

1
+EAP

+EPC

Pyro
(from Environment)

<<Active>>+Pyro1

+Pyro2

+Pyro3

Fig. 6 Structure of the UML specification (part)

• general requirements, not necessarily specific to the
flight program but general for all critical real-time sys-
tems, such as the absence of deadlocks, signal loss, time-
locks;

• overall system requirements, specific to the flight pro-
gram and concerning its global behaviour. For example,
it is required that the firing and the extinction functions
perform a series of actions in a specific order;

• local component requirements, concerning the function-
ality of some part. For example, it is required that the
opening and closing commands sent to the valves con-
form to their state.

• scheduling requirements, concerning the preservation of
scheduling objectives under the given the scheduling
policy and action execution times.

7.2 UML modelling

The Ariane-5 flight program is modelled as a collection of
objects communicating mostly through asynchronous sig-
nals, and the behaviour of which is described by state ma-
chines. Operations (with an abstract body) are used to model
the guidance, navigation and control (GNC) tasks. For mod-
elling timed-dependent behaviour, timers and clocks are be-
ing used.

The model (a partial view of its structure is visible in
Fig. 6) is composed of:

• a global controller class responsible of flight configura-
tion (Acyclic);

• a model of the regulation components (e.g. EAP, EPC
corresponding to the launcher stages);

• a model of the regulated equipment (e.g. Valves, Pyros);
• an abstract model of the cyclic GNC tasks (Cyclics,

Thrust monitor, etc.);
• a model of the environment (classes Ground for the ex-

ternal events and Bus for modelling the communication
with synchronous GNC tasks).

The behaviour of the flight regulation components (EAP,
EPC) involves mainly the execution of the firing/extinction
sequence for the corresponding stage of the launcher (see
e.g. the partial view of the EPC stage controller’s behaviour
in Fig. 7). The behaviour is time-driven with the possibility
of safe abortion in case of anomaly.

The flight configuration part implements several tasks:
EAP separation, EPC separation, payload separation, etc.
The separation dates are provided by the control part, based
on the current flight evolution.

7.3 Validation methodology and results

Formal validation is a complex activity, which may be struc-
tured into several tasks as depicted in Fig. 8.

7.3.1 Translation to IF and basic static analysis

This phase provides a first sanity check of the model.
The user can find simple compile-time errors in the model
(name errors, type errors, etc.) but also more elaborate
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Wait_Igniti
on_Time

Open_EVB
O

Wait_Start

Abort

timeout(clock) /
current_is_ok:=EVVP.

Open()

Stop1

Stop2

[ current_is_ok = false ]

[ current_is_ok = true ]

Wait_Clos
e_EVBO

timeout(clock) / begin current_is_ok:=EVBO.Close();
Cyclics!Anomaly();Acyclic!Anomaly();Guidance_Task!An
omaly(); EAP!Anomaly(); Thrust_Monitor!Anomaly() end

 / clock.set(TimeConstants.MS_100)

Wait_Clos
e_EVVP

 / clock.set(TimeConstants.MS_100)

Start(H0_time) / begin
clock.set(298900);

H0.set(H0_time) end

timeout(clock) / begin
clock.set(TimeConstants.MS_100);
current_is_ok:=EVBO.Open() end

[ current_is_ok = false ] / clock.reset()[ current_is_ok = true ]

timeout(clock) / current_is_ok:=EVVP.Close()

Fig. 7 Behaviour of the EPC regulation process (part)

Translation from UML to IF

Requirements

Specification

Basic Static Analysis

State Space Generation
Model Checking

Advanced Static Analysis

Model Exploration

Fig. 8 Verification methodology in IF

information (uninitialised or unused variables, unused sig-
nals, dead code).

7.3.2 Model exploration

The validation process continues with a debugging phase.
Without being exhaustive, the user begins to explore the
model in a guided or random manner. Simulation states do
not need to be stored as the complete model is not explicitly
constructed at this moment.

The aim of this phase is to inspect and validate known
(nominal) scenarios of the specification. The user can also
test simple safety properties. Such properties range from
generic ones, such as absence of deadlocks or signal loss,
to more specific and application dependent ones, e.g. invari-
ants tested using conditional breakpoints.

7.3.3 Advanced static analysis

The aim at this phase is to prepare the specification to an
exhaustive simulation. Optimisation based on static analysis
(see Sect. 1.4) are applied in order to reduce both the state
vector and the state space, while completely preserving its
behaviour.

For example, one possible optimisation introduces sys-
tematic resets for variables which are dead in certain control
states of the specification. In this way, it prevents the tool
to distinguish between simulation states which differ only
by values of variables which are dead in a given state. This
technique is very effective, given that it can be applied lo-
cally at control-state level, and may collapse large (bisimu-
lation equivalent) parts of the state graph. For this case study,
however, the live reduction was not impressive due to the rel-
atively small number of loops in the simulation graph of the
system.

7.3.4 State-space generation and model checking

Some verification techniques implemented in IFx, like
observer and µ-calculus based model checking, work
on-the-fly without the need of generating the state space
beforehand. Others, like minimisation, work on an already
generated state space.

In the context of UML models, the most intuitive verifi-
cation techniques presented in the following are model min-
imisation and observer based model checking.

Model minimisation is an intuitive method for a non-expert
end-user. It consists in computing an abstract model (with
respect to given set of observations) of the overall be-
haviour of the specification. Such a model can be visualised
and possible incorrect behaviours detected by the user.
These abstract models are computed by ALDEBARAN (a
tool connected to IFx [5]) and, depending on the (bi)-
simulation relation used, they preserve different classes of
properties.

In order to obtain an abstract model, the state space mist
first be generated by exhaustive simulation. In order to cope
with the complexity in this phase, the user can choose an ad-
equate state representation, e.g. discrete or dense representa-
tion of time, as well as an exploration strategy, e.g. traversal
order, use of property preserving partial order reductions,
under-approximating scheduling policies, etc.

Example 1 For Ariane-5, the use of partial order reduction
has been useful to construct tractable models. We applied
a simple static partial order reduction which eliminates
spurious interleaving between internal steps occurring in
different processes at the same time. Internal steps are
those which do not perform visible communication actions,
neither signal emission nor access to shared variables. This
partial order reduction imposes a fixed exploration order
on internal steps and preserves all properties expressed in
terms of visible actions.
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Fig. 9 A minimal model generated with ALDEBARAN

By using partial order reduction of internal steps, we
reduced the size of the model by 3 orders of magnitude,
i.e from more than 106 states (model generation did not
terminate, due also to the large size — about 10 KB — of
the system state) to about 1000 states and 1200 transitions,
which can be easily handled by the minimisation tool.

After the generation of the state space, it can be min-
imised modulo bisimulation using ALDEBARAN. Minimi-
sation takes into account the observation criteria which are
relevant for both, the observations relevant for the property
being verified (i.e. the actions that have to remain visible)
and the type of property (e.g. safety, absence of deadlocks,
etc.).

Example 2 The graph in Fig. 9 is the quotient model of
Ariane-5 with respect to branching bisimulation [50], in
which the only observable events are opening/closing the
EPC valves, igniting the EPC stage and detecting anomalies.
The branching structure and all safety properties involving
these actions are preserved on the graph from Fig. 9. It is
easy to check by inspection on this abstract model that if
an EAP anomaly occurs, then all the valves are closed and
afterwards an EPC anomaly is signalled. Also, it is easy to
check that the EPC sends the Ignition signal only after all
valves have been (correctly) opened.

Observer-based model-checking is useful for more complex
safety properties, which depend on quantitative time or on

valve_not_abused

t : Clock

<<Observer>>

initial

wait

match invoke ::EADS::Environment::Valves::Close() / t.set(0)

match invoke ::EADS::Environment::Valves::Open() / t.set(0)

KO
<<error>>

match invoke ::EADS::Environment::Valves::Open()

match invoke ::EADS::Environment::Valves::Close()

[ t >= 50 ]

Fig. 10 A timed safety property of the Ariane-5 model

the values of system variables, signal parameters, etc. This
type of verification is done on the fly, while the state graph
is generated.

Example 3 Figures 10–12 show some of the timed safety
properties of Ariane-5 that were checked over the UML
model using observers:

Figure 10: between any two commands sent by the flight
program to the valves there should elapse at least 50 ms.

Figure 11: if some instance of class Valve fails to open (i.e.
enters the state Failed Open) then
• No instance of the Pyro class reaches the state Igni-

tion done.
• All instances of class Valve shall reach one of the

states Failed Close or Close after at most 2 s since
the initial valve failure.

• The events EAP Preparation and EAP Release are
never emitted.

Figure 12: if the Pyro1 object (of class Pyro) enters
the state Ignition done, then the Pyro2 object shall
enter the state Ignition done at a system time be-
tween T imeConstants.M N 5 ∗ 2 + T pstot prep and
T imeConstants.M N 5 ∗ 2 + T pstar prep.

Scheduling analysis: A particular type of property that can
be checked using observers is schedulability of a set of tasks
(with arbitrarily complex activation patterns and execution
times) on a set of computation resources, according to a pre-
defined scheduling policy.

In order to perform an analysis of this type, the following
elements have to be modelled:

• the computation resources (CPUs): A CPU is a special
type of object, upon which other objects request execu-
tion time necessary for their computations. A request for
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liftoff_aborted_right

v : Valves
t : Clock

<<Observer>>

ok

aborting

aborted

not_yet

aborted

not_yet

 / t.set(0)

[ t >= 2000 ]

ko
<<error>>

[ v.EPC.EAP.Pyro1 @ Ignition_done or
v.EPC.EAP.Pyro2 @ Ignition_done or
v.EPC.EAP.Pyro3 @ Ignition_done ]

match send ::EADS::Signals::Request_EAP_Preparation()

match send ::EADS::Signals::Request_EAP_Release()

match accept ::EADS::Environment::Valves::Open() by v

[ v @ Open ]
[ v @ Failed_Open ]

[ (v.EPC.EVBO @ Open or v.EPC.EVBO @ Failed_Open) or
(v.EPC.EVVCH @ Open or v.EPC.EVVCH @ Failed_Open) or
(v.EPC.EVVCO @ Open or v.EPC.EVVCO @ Failed_Open) or
(v.EPC.EVVGH @ Open or v.EPC.EVVGH @ Failed_Open) or

(v.EPC.EVVP @ Open or v.EPC.EVVP @ Failed_Open) ]

Fig. 11 A timed safety property of the Ariane-5 model
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@ Ignition_done ]

[ now >= (tc.MN_5 * 2 + mc.Tpstar_prep) ]

[ g.Acyclic.EAP.Pyro2 @ Ignition_done ]

[ now >= (tc.MN_5 * 2 + mc.Tpstot_prep) ]

[ now < (tc.MN_5*2 + mc.Tpstot_prep) ]

liftoff_performed_right2

g : Ground
mc : MissionConstants
tc : TimeConstants

<<Observer>>

Fig. 12 A timed safety property of the Ariane-5 model

execution time may be accompanied by a set of parame-
ters (such as priority, or a time deadline). The CPU allo-
cates execution time according to these parameters and
to the other requests it is currently processing (in a way
determined by its scheduling policy), and notifies the re-
questing object when the execution time has elapsed.

Depending on the complexity of the scheduling pol-
icy, CPUs can in most cases be modelled using the fea-
tures of the OMEGA UML profile described in this pa-
per. For example, a quite general model for a CPU,
which uses dynamic fixed priority preemptive schedul-
ing, can be modelled using the technique proposed in
[18]. In this model each request for execution time comes
with a priority, which can be computed dynamically by

the functional model but is fixed once the request is
made. A UML package containing this CPU model is
available together with our tools and can be imported
and used directly in any system model.

• the execution requests made by the different system ob-
jects.

• the scheduling objectives which are usually safety prop-
erties which can be expressed by observers.

Once these elements are modelled, scheduling analysis
consists in verifying (model-checking) that the observers en-
coding the scheduling objectives are not violated.

Example 4 In the Ariane-5 model, tasks performed by the
regulation components and by the guidance–navigation–
control components are executed on the same CPU, using
a fixed priority preemptive scheduling policy:

• Time consuming tasks of the Regulation components
have the highest priority and are sporadic (they appear
at certain moments during the 40 min flight, according
to the application logic, and have small execution times
of 2–5 ms).

• Time consuming tasks of the Navigation and Control
components have medium priority and execute cyclically
every 72 ms. They take 30–60 ms every cycle depending
on the application logic.

• Time consuming tasks of the Guidance component have
low priority and execute cyclically every 576 ms. They
take about 200 ms every cycle.

There are several scheduling objectives. We mention
here the most basic one, which is that the Navigation–
Control computation and the Guidance computation finish in
their respective cycle time (72 ms, respectively 576 ms). The
objective for the Guidance task, formalised by an observer,
is shown in Fig. 13. It describes the fact that, when the
Guidance object receives the signal Start Guidance cycle, it
should be in state Idle, i.e. it should have finished the com-
putation from the previous cycle.

Verification has been performed on a version of the
EADS model in which the cyclic part is fully described,
while the acyclic regulation part is over-approximated (its
logic is preserved, but its timing is modelled as non-
deterministic). Verification can provide a yes/no answer to
the question of whether the system is schedulable under the
described policy. In case of a negative answer, it can also
provide hints on which executions overflow and by what
amount of CPU time. For example, it has been determined
that the the system is safe if Guidance computation takes not
more than 230 ms, but above this value it may sometimes
overflow the 576 ms cycle.

7.4 Assessment and lessons learned

The EADS case study has shown the feasibility of our ap-
proach, but also some of its weaknesses. On the positive
side:
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wait

match send
::EADS::Signals::Start_Guidance_cycle() to g

KO_G_cycle_is_schedulable
<<error>>

[ g @ Idle ]

[ not (g @Idle) ]

Fig. 13 A scheduling objective expressed as observer

• Verification of the functional properties of the acyclic
part have been performed on a quite detailed spec-
ification of the Regulation components, combined
with an abstract specification of the cyclic Guidance–
Navigation–Control part. The state space has about 1000
states and is generated in less than 1 s, after static anal-
ysis and using partial order reduction.

These techniques prove to be essential: without static
analysis, the state space is infinite due to some counters
and clocks which continue to grow after they stop being
used. Without partial order reduction, the state space is
necessarily finite, but we could not generate it (over 106

states, with a state vector of about 10 kB).
• Verification of scheduling properties has been performed

on a detailed description of the Guidance–Navigation–
Control part, combined with a specification of Regula-
tion components from which time has been abstracted
away. The state space has around 66000 states and is
generated in about 1 min 10 s on a dual Pentium-II sys-
tem with 2 GB of memory.

• We have assessed the impact of translation on the state-
space size. For this we have compared the size of the
state space generated by a handwritten IF description
with the size of the space generated by an equivalent
model translated from UML. (The comparison considers
UML models which only use the structure and commu-
nication mechanisms available directly in IF. Inheritance
or behaviour described through operations is not consid-
ered, as this would require an encoding in IF similar to
that implemented by the UML translator.)

We found that the translation induces a linear growth in
space size, by a factor of around 4. This is mostly due to
the processes which manage activity groups and the run-to-
completion policy of the OMEGA semantics.

On the other hand, the case study has pointed out the
necessity of using abstractions. When trying to verify both
acyclic and cyclic parts of Ariane-5 without abstraction, the
result is an intractable state-space explosion.

The IFx tool provides several abstractions which can be
applied automatically: removing or resetting dead variables,
slicing away irrelevant variables for a given property, partial
order reduction, symbolic representation of clock values,
queue abstraction. These abstractions are “exact” in the
sense that they preserve the reachability of observable states
and preserve both the satisfaction and the non-satisfaction
of safety properties.

However, such abstractions are generally not sufficient
for complex problems. To exploit compositionality, one
often needs to verify the properties of a component in
conjunction with an abstract (over-approximated) version
of the other components of the system. The state space of
the whole system is in this case over-approximated. Such
abstractions preserve the satisfaction of safety properties,
but do not preserve their non-satisfaction (i.e. may lead to
false negative answers).

In the Ariane-5 case study, this technique was exploited:
safety properties of the regulation and configuration com-
ponents were verified using an exact model for the acyclic
part and an over-approximated behaviour of the cyclic part.
Likewise, scheduling properties were verified using an exact
model of the cyclic part and a time-non-deterministic model
of the acyclic part.

This form of abstraction has to be handled mostly manu-
ally: using several versions of the model, checking manually
compliance between the abstract and the concrete model of
a component. A part of this management burden could be
better supported by tools.

Finally, another conclusion of the case study is that
static analysis is less effective on models generated from
UML. This is caused by the heavy use of dynamic pro-
cess creation and of shared variables in the IF counter-
part. For models where architecture is mostly static, like
in the case of Ariane-5, describing the architecture with a
diagram (as can be done in UML 2.0) instead of describ-
ing the system creation phase with class constructors could
largely improve performance of static analysis tools. Also,
using operation inlining instead of our compilation scheme
(Sect. 3.1) when possible, will improve the impact of static
analysis.

8 Conclusions and plans for future work

We have presented a method and a tool for validating UML
models by simulation and model checking, based on a map-
ping to an automata-based model (communicating extended
timed automata).

Although this problem has been previously studied [16,
34, 35, 40, 41, 48], our approach introduces a new dimen-
sion by considering the object-oriented features present in
UML: inheritance, polymorphism and dynamic binding of
operations, and their interplay with statecharts and the con-
currency semantics. A solution is given for modelling these
concepts with timed automata extended with variables and
dynamic creation.
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Our experiments show that the overhead introduced by
handling these object-oriented aspects during simulation and
model checking remains low, thus not hampering the scala-
bility of the approach.

For expressing and verifying dynamic properties, we
propose a formalism that remains within the framework of
UML: observer objects. We believe this is an important facil-
ity for the adoption of formal techniques by the UML com-
munity. Observers are a natural way of writing a large class
of properties (linear properties with quantitative time).

8.1 Handling semantic variations

Several features of the IF language, such as dynamic ad-
dressing, the default atomicity of transitions or the dynamic
priority mechanism, make it a satisfactory compromise be-
tween expressiveness and level of abstraction for describ-
ing different communication and synchronisation schemes.
Consequently, our approach of defining the semantics of
UML models by translation to IF proves to be flexible and
open to semantic variations.

In the future, we plan to exploit the openness of the trans-
lation and explore variations in the:

• communication paradigm: Currently our model supports
communication via asynchronous signal passing, syn-
chronous (blocking) method calls and shared (public)
object attributes.
Extensions may include:
– Communications which are not point-to-point, such

as asynchronous signal multicast or broadcast. They
may be mapped to IF by using dynamic addressing
which allows processes to communicate without a
pre-established link.

– Asynchronous calls: They may be mapped to IF
using an exchange of asynchronous signals by
loosening the constraints of our implementation of
blocking calls.

– Data-flow communication between functional mod-
ules. This form of communication can be achieved
using protected (atomic) access to shared variables.
Dynamic priorities can be used to describe generi-
cally the activation order of functional modules in a
network.

– Rendez-vous communication is also a powerful
communication mechanism used in certain types
of systems. It can be implemented in IF by means
of a (relatively complex) protocol. Nevertheless,
rendez-vous is interesting as a primitive concept, and
for this reason, we plan to extend the IF language
with a rendez-vous-like primitive [24].

• Concurrency model: In our model, activity groups are
executed concurrently, and requests to a group are
treated in run-to-completion steps. Other execution
models may be useful in different applications, and can
be accommodated by changing the translation to IF:
– models which loosen some of the hypotheses of

the OMEGA semantics. For example, relaxing

the hypothesis that a passive object is part of one
activity group only, and that calls are sequenced by
the activity group, can yield a model closer to that of
Java or C++/Posix (in which threads are orthogonal
to objects).

– models which strengthen the hypotheses of the
OMEGA semantics, e.g. by introducing a notion of
synchronous step (during which all activity groups
execute a run-to-completion step, all communication
being taken into account only in the next step).

• Step granularity: The current semantics supposes
that only basic actions (assignments, signal output,
etc.) are atomic by construction. Different scales of
granularity, up to forcing entire run-to-completion steps
as atomic, are possible depending on the considered
applications.

8.2 UML 2.0 and other future plans

The present work focuses on UML 1.4 as this is the most
recent version of UML implemented by mature and open (in
the sense of XMI export) CASE tools. In the future we plan
to adapt this work to UML 2.0.

On the side of the OMEGA UML profile, the extensions
proposed here are compatible with UML 2.0: the concur-
rency and communication model is a specialisation of that of
UML 2.0, the action language syntax is compatible as there
were no major changes versions 1.4 and 2.0. Observers are
defined by means of standard extension mechanisms which
have been preserved. Finally, the declarative time constraints
defined in OMEGA have a formal counterpart in UML 2.0
(Duration, DurationInterval, DurationConstraint, etc. from
Common Behaviors) but the precise identification of event
types and occurrences, and the different kinds of event pair
matching defined in OMEGA are still missing.

We also plan to integrate the component and architec-
ture specification frameworks of UML 2.0 and to study the
possibility of using these additional structures for improving
verification, static analysis and abstractions.

On the side of translation tools, upgrading to UML 2.0
will bring major changes in the XMI format and the tool’s
internal repository structure which is an image of the meta-
model. However, both XMI de-serialisation and UML-to-IF
translation are built based on the reflectivity capabilities of
Java and are loosely coupled with the repository. Also, a
new repository for UML 2.0 can be generated automatically
from an XMI representation of the metamodel, which we ex-
pect to be available from the OMG as it was the case with
UML 1.4.

Finally, our plans include assessment of the applicability
of our technique to larger models. The tool is already being
applied to a set of case studies provided by industrial part-
ners within the OMEGA project.
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