
Using an UML profile for timing analysis with the IF validation tool-set ∗

Iulian Ober University of Toulouse-II ober@univ-tlse2.fr
Susanne Graf VERIMAG, Grenoble susanne.graf@imag.fr

Yuri Yushtein NLR, currently at CIMSOLUTIONS B.V, NL yushtein@xs4all.nl

Abstract: This paper shows on hand of a case study the usefulness of the UML profile with real-time
defined in the Omega project and of the IF validation tool-set. The case study is about intricate timing as-
pects arising in a small but complex component of the airborne Medium Altitude Reconnaissance System
produced by NLR1.

The purpose is to show how automata-based timing analysis and verification tools can be used by
field engineers for solving isolated hard points in a complex real-time design, even if the press-button
verification of entire systems remains a remote goal.

We claim that the accessibility of such tools is largely improved by the use of a UML profile with
intuitive features for modeling timing and related properties.

1 Introduction

Designing a real-time system, so as to satisfy all its real-time properties, leads often to complex verification
problems. This complexity is due to the fact that time is intrinsically aglobalnotion, implicitly aggregating
therelativeandlocal timing conditions appearing in system design.

For defining non-trivial systems, it is nevertheless mandatory to conceive them in terms of local hypotheses
and solutions. Consequently, in a component-based approach, designers seem to be condemned to build
systems by component aggregation, without knowing a priori what effect this aggregation will have on the
timeliness of each component and of the system as a whole. Some relevant examples of unexpected timing
conditions resulting from this aggregation will be shown on the case study presented in this paper.

A solution to this problem consists in using automated tools to analyze the timeliness of a subsystem. There
are two large classes of methods: model-checking which analyzes a semantic model algorithmically, and
theorem proving. This paper is mainly about using a model-checking approach, which is more automatic.
Very high-level parametric models are sometimes tackled better by proof-based techniques; but in general
these models are elaborated by the verification experts rather than the engineers and the distance between
these high-level models and the developed system may be quite important. E.g. when using duration
calculus [CHR92] as verification framework, almost everything of the functional model has to be abstracted.

Model-checking techniques can be more easily applied to models that are obtained by starting from a
functional model of a system (which is a design artifact normally available for any system), and which can
be enriched by adding timing relevant information. Such a model can be quite naturally obtained by the
designer and provides a faithful representation of the system under development. It can be directly analyzed
with an appropriate simulation tool.

Nevertheless, automated verification tools have well-known limitations, and a first obstacle for putting these
tools effectively to work, is that the designers have to understand them and build the models having these
limitations in mind. From our experience, interesting insights in the timing aspects of a system are usually
gained only when the (unrelated) details of the functional part are abstracted away. This means that a model
must be decomposed into small functionalities, which makes property depending abstractions more easy
to construct and even to mechanize. In our experience, not many engineers do this naturally, but they can
easily learn it when they see the benefit.

∗This work has been partially funded by the European OMEGA project (IST-2001-33522).
1National Aerospace Laboratory, The Netherlands.

The second obstacle is the complexity of the formalism for capturing a timing model and its properties. A
good formalism is one that is intuitive for the designers and based on concepts they are already using. In the
literature there are various extensions of temporal logics with quantitative time operators, which have the
required expressiveness. However, from our experience, property formalisms based on familiar concepts
(like state machines) are more easily accepted by the users and are more expressive.

In this paper, we present the results of a case study conducted jointly by experts and industrial users, in
which meaningful results about timing were obtained by analyzing a custom made model using a user
friendly UML-based validation tool. The rest of the paper is structured as follows:§2 presents the case
study, with focus on the timing aspects.§3 presents the approach and the model obtained for this case
study using a specific formalism (the OMEGA UML profile), the main results of timing validation and the
techniques employed in this experience. In§4 we discuss some conclusions that might be drawn from this
study.

2 The MARS system

The acronym MARS stands for Medium Altitude Reconnaissance System. It controls a high resolution
photo camera embedded in a military aircraft, taking pictures of the ground from medium altitude. The
system counteracts the image quality degradation caused by the forward motion of the aircraft by creating
a compensating motion of the film during the film exposure. The system is also responsible for annotating
the frames with the current time and position. The system also performs health monitoring and alarm
processing functions.

Exposure control (Forward Motion Compensation and Frame Rate) as well as annotations are being com-
puted in real-time based on the current aircraft altitude, ground speed, navigation data (latitude, longitude,
heading), time-of-day, etc. These parameters are acquired from the avionics data bus of the aircraft.

2.1 The Databus Manager

For the purpose of this case study we concentrated on a sub-system which presents interesting timing
problems, called Databus Manager (DM); it monitors the health of the data bus controller and, in general,
of any communication going trough the data bus.

The system receivesdataconcerning altitude and navigation from other components of the avionic system.
TheDM component supervises the reception of data messages and provides astatusused by the system’s
alarm logic. In addition, theDM periodically polls the databus controller status and changes its own status
accordingly toOperational, BusError or ControllerError. The precise requirements on theDM status
computation are described below.

The two types ofdata inputs of theDM are received periodically, with some period (P = 25ms in the
concrete example) and jitter (±J = 5ms), and may occasionally get lost. The periods are not synchronized
and may have any offset (smaller than the period). Figure 1 shows a possible configuration of the reception
windows along the time axis (windows in which no message reaches theDM are marked withKO). The
basic functional requirements on theDM status are:

• Controller failure leads to a change of status toControllerError. Recovery leads toBusError.

• Status changes fromBusError to Operationalwhen two consecutive messages are (correctly) re-
ceived from both sources (assuming no controller error).

• Status changes fromOperationalto BusError when three consecutive messages from a source are
lost.

Note that these requirements do not definewhen the status change must take place. In fact, maximal
reactivity is desirable. Two reactivity measures (at least) can be defined:

: Navigation
Data Source

: Altitude
Data Source

KO

Operational BusError Operational

{ 25ms } { 10ms }

DM Reactivity
{ R1 }

DM Reactivity
{ R2 }

idle

sending

idle

sending

:DatabusManager
.status

jitter

jitter
KO KO

KO

Figure 1: Timing of the message reception windows,DM status and reactivity measures.

• reactivity to losses, defined as the upper bound thatDM guarantees for the time (R1) between the
last correctly received message from the source causing a switch toBusError, and the actual moment
of the switch.

Simple problem analysis shows that the optimalR1 is 85ms (3P + 2J), in the case of fixed commu-
nication time between sender and receiver. This is the ideal reactivity that theDM design should try
to approach.

• reactivity to recovery, defined as the upper bound thatDM guarantees for the time (R2) between
the first message in a series of correct messages leading to a switch toOperational, and the actual
moment of the switch.

In this case, the optimalR2 depends on the offset between the periods of the two data sources.
However, even in the worst case, it is less than60ms (2P + 2J).

Our experiments are described in the next section. They had two goals: (1) to check that the proposed
designs verify the above mentioned functional properties, and (2) to determine the reactivity bounds offered
by the different proposed designs (and point out the optimal solution).

3 UML modeling and validation experiments

3.1 Background on the OMEGA profile and the IFx toolset

The MARS sub-system was modeled using the OMEGA UML profile and timing and functional validation
was performed using the IFx toolset. Here, we briefly introduce these technologies.

The OMEGA profile defines an operational semantics for a subset of UML, designed to suit the needs of
designers of real-time embedded systems. On thefunctionalside, the semantics defines aspects pertaining
to control (like the rules governing concurrency) and communication primitives. These aspects are handled
similarly as in the profile of the Rhapsody tool, and they are detailed in [DJPV03, DJPV05].

The timing aspects are described in detail in [GOO05]. The profile is compatible with the basic time
related notions of UML 2.0 by defining a series of lightweight extensions to UML for describing time-
driven behavior using timers, clocks, and timed guards. In addition, it allows to define transition urgency
for categories of transitions2. For the expression of timing and functional requirements, the OMEGA UML
proposes to use a notion ofeventsandobserver objects. Events are any semantic level state changes, similar
as the notion oftimed eventin the SPT profile [OMG02]; in order to make this notion concrete, a notation
has been defined for being able to name all semantic events by referring to a syntactic entity. Observers
are characterized by a state machine which reacts to (semantic level) events and conditions occurring in the

2this concept is taken from timed automata with urgency [BS97]

system, and which acts as an acceptor of system executions – by use of states stereotyped with<<error >
> as final states. An example of a property expressed by an observer can be seen in figure 5.

IFx [OGO05] is a toolset providing extended simulation and verification functionalities for OMEGA UML
models. The core of the tool is a state space exploration engine for systems consisting of extended com-
municating timed automata (IF [BGM02, BGO+04]). In order to scale to complex models, IF provides
several optimizations and and supports abstraction. The tool implements static and dynamic optimizations
like dead variable factorization, dead code elimination, partial-order reduction and abstract interpretation
of clocks. All optimizations strongly preserve timed safety properties which are of interest in the MARS
system. In addition, the tool supports simple abstractions which preserve satisfaction of safety properties,
but may show spurious counter-examples.

3.2 Overview on the UML model for MARS

The architecture of the MARS model as proposed by the designer of the system, is shown in the UML
context diagram in Figure 23. The main component is theDatabusManagerobject which maintains the
global status and monitors message loss. For simplicity, the designer has separated the polling of the bus
controller in a different object, theControllerMonitor.

: DatabusManager

AltMsgTimeoutCount : int
NavMsgTimeoutCount : int
altDataTimer : Timer
navDataTimer : Timer

: ContollerMonitor

currentStatus : int
previousStatus : int

: DatabusController

status : int

altDataSource : DataSource

cOffset : Clock
tPeriod : Timer
cJitter : Clock

navDataSource : DataSource

cOffset : Clock
tPeriod : Timer
cJitter : Clock

MARS
system

Environment

Figure 2: Structure of the MARS model.

In order to verify theDM under the assumptions on message arrival and controller errors mentioned in
§2.1, the OMEGA profile allows to model the environment using the same concepts as for modeling the
system, in particular an explicit object with the behavior expressed by the assumption. In Figure 2, we see
therefore three environment objects corresponding to the altitude data source, the navigation data source
and the bus controller.

Init

/cOffset.set(0)

WaitCycle ProduceData

[cOffset <= 25]
/ tPeriod.set(25)

timeout(tPeriod) /
begin
 cJitter.set(0);
 tPeriod.set(25)
end

[cJitter <= 10]
/ self.sendData()

[cJitter <= 10]
/ informal "lost data"

Figure 3: Environment model : state machine of the data sources.

In particular for modeling the environment, the possibility to express nondeterministic behavior is impor-
tant. This is allowed in the Omega profile. For example, Figure 3 shows the state machine of data sources,

3associations express here the fact that the corresponding objects may communicate through signals or method calls

ControllerError

Operational

BusError

/timeout(altDataTimer)//
begin
 AltMsgCount := 0;
 altDataTimer.set(25)
end

/evNavDataMsg()//
begin
 NavMsgTimeoutCount := 0;
 navDataTimer.set(35)
end

/evControllerError()//begin
 navDataTimer.reset();
 altDataTimer.reset()
end

/evAltDataMsg()//
begin
 if (AltMsgCount < 2) then
 AltMsgCount := AltMsgCount + 1
 endif;
 altDataTimer.set(35)
end

[NavMsgCount >= 2 and AltMsgCount >= 2]/begin
 NavMsgTimeoutCount := 0;
 AltMsgTimeoutCount := 0
end

/timeout(navDataTimer)//
begin
 NavMsgCount := 0;
 navDataTimer.set(25)
end

/timeout(navDataTimer)//
begin
 NavMsgTimeoutCount := NavMsgTimeoutCount + 1;
 navDataTimer.set(25)
end

[NavMsgTimeoutCount = 3 or AltMsgTimeoutCount = 3]/begin
 NavMsgCount := 0;
 AltMsgCount := 0
end

/evNavDataMsg()//
begin
 if (NavMsgCount < 2) then
 NavMsgCount := NavMsgCount + 1
 endif;
 navDataTimer.set(35)
end

/timeout(altDataTimer)//
begin
 AltMsgTimeoutCount := AltMsgTimeoutCount + 1;
 altDataTimer.set(25)
end

/evAltDataMsg()//
begin
 AltMsgTimeoutCount := 0;
 altDataTimer.set(35)
end

/begin
 NavMsgCount := 0;
 AltMsgCount := 0
end

/evControllerError()//begin
 navDataTimer.reset();
 altDataTimer.reset()
end

/evControllerOK()//
begin
 NavMsgCount := 0;
 AltMsgCount := 0
end

Figure 4: State machine of the DatabusManager.

using interval conditions on clocks to model the nondeterminism introduced by the starting time and by
jitter. This state-machine indeed describes a data source with the required period and jitter as all transitions
of environment objects are interpreted asdelayable4, that is, once they are enabled, they will be taken be-
fore their time guard becomes false or they may be disabled by some discrete transition. Moreover, Zeno
computations5 are not valid computations which guarantees in this example that the computation cannot
“get stuck” in any state.

As we will see later, the requirements concerning theDM can be achieved in several ways. The first
design provided by the engineer, shown in Figure 4, consisted of a single state machine with transitions
triggered by events from both data sources (evAltDataMsg, evNavDataMsg) and from theController-
Monitor (evControllerError, evControllerOK), or by timeouts corresponding to message loss detec-
tion (altDataT imer, navDataT imer). The principle is to use a timer to measure the duration of the
period for each Data source — where the end of the period is defined by the reception of a message, where
the timer is rearmed, or a timeout — and to always keep track of the number of consecutive received, re-
spectively lost, messages. Notice that in this design we have chosen system transitions to beeager, that is
they do occur at the earliest point of time at which they are enabled6. must progress,

4according to the terminology defined in timed automata with urgency [BS97]
5infinite computations with finite time progress
6Note also, that transitions are event triggered rather than time triggered astimeoutis the event associated with a time condition.

This is equivalent, but closer to operational way of thinking of the designers

3.3 Expressing properties and first evaluation results

Both, the functional and the reactivity properties described in§ 2.1 can be expressed as observers to be
verified on this model. Figure 5 shows the observer checking a bound guaranteed forR1, that is the
maximal delay needed for transmission problem detection (see section 2.1). Note that observer transitions
synchronizewith observed events, and thus take place at the same time point as the observed event. Note
also that this observer monitors only one data source (the altitude data source); we argue that the failure of
the other source can only bring theDM into theBusError status earlier, thus the maximum value forR1
is exposed when the other source does not fail (or it’s failure is not observed).

init

wait

match send evAltDataMsg() to dm
[dm @ Operational] //
c.set(0)

match send evAltDataMsg() to dm //
c.set(0)

C

[dm @ ControllerError]

[dm @ BusError]

[c = BR1]

<<error>>
KO

[dm @ Operational]

<<observer>>
PR1

BR1 : int
c : Clock

Figure 5: Observer for verifying the reactivity bound forR1.

All functional and reactivity properties were verified against the initial design presented above.

Due to state explosion problems encountered, a simplifying assumption was made first on the environment:
the cycles of the two data sources are synchronized (i.e., their periods start always at the same time; their
data may nevertheless be sent at different moments due to jitter). This assumption is not conservative7 as the
reaction time to message loss may (and turn out to) be longer when the two sources are not synchronized.
In order to fully verify the properties, a different model, which is a conservative abstraction, is presented
later on.

Nevertheless, this initial model was useful for understanding the potential problems, for debugging the
model and ruling out some variants that had been proposed to increase efficiency. Under the simplifying
assumption, all functional properties have finally been proved to hold on debugged versions of theDM
design. An interesting outcome is that very similar designs may present different reactivity bounds.

For example, consider a slight variant of the design model presented above, in which in theoperational
status along timeoutis used, detecting the absence of messages during three consecutive periods, instead of
detecting absence of individual messages and counting them. At a first sight, this new version looks more
efficient as it does not need counter when the status isoperational.

Using different variants of the reactivity constraints defined by the observer in Figure 5, we have determined
with the help of our verification tool that the initial design has a better reactivity (85ms8) than the new one
(only 110ms). As the motivation for the entire case study was to gain reactivity with respect to the existing
synchronous design, which observes events only at fixed time points, this is not an acceptable solution.

The diagnostic traces provided by the model checker show that the difference stems from the way timers
are handled at the transition from theBusError to theOperationalstatus: in the initial version, timers are
not affected by a status change, they just count periods of the data sources, while in the new version, the

7it leads to a simplified model that allows to find bugs, but we are not allowed to deduce correctness of the initial model from the
fact that this model does satisfy some property

8that means it achieves the optimal reactivity as explained in section 2.1

: DatabusManager

: DatabusController

altDataSource : DataSource

navDataSource : DataSource

MARS
system

Environment

nr : Receiver

ar : Receiver

: ErrorLogic

: ContollerMonitor

Figure 6: Decomposition of theDM .

long timer is not needed inBusErrorstatus and initialized when entering the operational mode. This might
delay the detection of a bus error occurring right at this moment by an entire period. In order to correct the
problem, the timer must be set depending on the actual “age” of the ”period timer” which is used when the
status isBusError.

This kind of errors is quite common when trying to optimize a design, and the tools were very helpful by
checking after any modification all the properties. This allows to get immediate feedback as running the
verification is generally really fast (see also the table at the end of the section). Another group has used in
parallel a tool based automatic or interactive theorem proving. They could prove at the end a parametric
version of the property which is impossible to prove with a model-checker like ours, but they were extremely
thankful to the extremely quick feedback provided by our tool: once we had a (simplified) working model
on which the properties can be shown to hold, one can analyze small modifications of the UML model, just
by “pushing the button” to translate the model and then run the verification of all properties, or “find a bug”.

3.4 Use of a compositional model and abstractions

In order to fully verify the desired properties without making the (unrealistic) assumption that both data
sources are synchronized, we have proposed to use a model of theDM that is itself a composition of
smaller entities (see Figure 6), in particular

• A Receivercomponent for each data source; it supervises the messages of a single source and keeps
track of the message status in the last 3 windows and sends this status by means ofevCntmessages
at the end of each period.

• An ErrorLogic component which, based on theevCntmessages from the differentReceivers, defines
the status. The status changes fromBusErrorto Operationalwhen allReceivershave received correct
messages during the last 2 windows, and fromOperationalto BusError when at least oneReceiver
has not received any correct message during the last 3 windows.

Using this model, we could verify all properties — or rather adaptations of them — using a compositional
and conservative abstraction.

The abstraction used consists in replacing oneReceiverwith a chaotic abstractionReceiverAbswhich may
sendevCntwith any parameter at any time. This is a very rough over-approximation of the source–receiver
pair, but it proved to be sufficient for preserving the desired properties. The abstraction is particularly
interesting as it represents an over approximation of an arbitrary number of data receivers, meaning that it
allows to verify theDM for the case with an arbitrary number of such data sources9.

9always under the hypothesis that the time for taking decisions remains “negligible”

Configuration Number of Number of User time
states transitions

Initial model with only one source 1084 1420 < 1s
(noCM polling)
(non-conservative)
Initial model with two synchronized sources 99355 151926 36s
(noCM polling, non-conservative)
Initial model with two de-synchronized sources> 1136768 > 1676126 > 9m30s
(noCM polling)
(conservative– exploration doesn’t terminate)
Abstract model, 10msCM polling > 1494864 > 701120 > 8m12
(conservative– does not terminate)
Abstract model (noCM polling) 118690 174871 45ms
(non-conservative)
Abstract model with non-det.CM polling 155166 263368 1m21s
(conservative)

Figure 7: Verification times and state spaces for different verification configurations.

A second conservative abstraction used consists in replacing the deterministic polling cycle of theCon-
trollerMonitor (10ms in the initial model) by a completely non-deterministic polling policy. While this
introduces new executions, impossible in the initial model, the resulting state space is smaller as many
previously disjoint states are grouped together10.

The table in Figure 7 below shows the size of the state space and the processing time for several con-
figurations of the MARS system which allows to draw some conclusions on the efficiency of the use of
compositional models and in particular compositional abstractions. In particular, desynchronizing two re-
sources has a tremendous effect on the size of the state space which is in fact due to the simultaneous
presence of jitter and desynchronization. Notice that the effect is much more important than it looks like as
we have stopped the exploration when, after reaching 1 mio states and 10 minutes, the state space was still
growing rapidly — experience told us that it was likely not to be worth to wait until reaching 10 mio states;
even if it would converge by then, what we didn’t anticipate really, the result was not very useful for us, as
we wanted to be able to rerun experiences on variants in short time. As we have not run our experiences on
particularly well equipped machine (especially in memory), this means that we can still gain a few orders
of magnitude and handle slightly more complex systems.

The use of both types of conservative abstractions leads to a state space of about the same size as the much
simpler system with synchronized sources, which is still precise enough to satisfy all properties.

4 Conclusion

By using a case study as support, we have shown both, the convenience of the OMEGA UML profile
for the expression of timed models and timed properties and the usefulness of the IF front-end for UML
which allows for both flexible interactive simulation and complete state space exploration for debugging
and verification of UML models.

We believe that the experiment presented shows that timing analysis tools can be used efficiently for solving
isolated, hard timing problems in a UML design, even if fully automated verification for large designs
remains a remote goal. Also we believe that more systematic use of functional decomposition as used in the
example, can definitively help to make possible the verification of much larger designs in a compositional
fashion, as there is no need for the verification of a model in which all parts are described in all details.

10but only if a symbolic representation of time constraints is used

The use of the OMEGA UML profile to capture timing properties has favored a very quick learning and
adoption of our tools by experienced UML designers. Without the knowledge of a verification expert, the
designers were able to use even advanced techniques like abstractions.

The relaxation of timing constraints — such as the abstraction from the polling period in the example
— shows to be a very efficient abstraction technique in such models, and it is usually very simple to
model. This kind of abstractions is always conservative for the satisfaction of (timed) safety properties.
On the other hand, can introduce spurious error traces. However, in the MARS example this has never
occurred, showing first, that with some exercise, a designer can learn to use abstractions which do not
break the verified properties. And second, that the designers tend in the first place to build over constrained
models. The reason is probably that they are strongly influenced by the requirement that programs must
be deterministic, and they apply this also to specifications even if this is not needed for satisfying the
requirements.

We have also found out during the experiments that some methodological guidelines for writing observers
and for using the IFx toolbox are necessary during the learning process. A set of guidelines has been
developed as a side result of this teamwork (see also [OGL05]).

References

[BGM02] Marius Bozga, Susanne Graf, and L. Mounier. IF-2.0: A Validation Environment for Component-Based
Real-Time Systems. InProceedings of Conference on Computer Aided Verification, CAV’02, Copenhagen,
number 2404 in LNCS. Springer Verlag, June 2002.

[BGO+04] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph Sifakis. The IF toolset. InSFM-04:RT
4th Int. School on Formal Methods for the Design of Computer, Communication and Software Systems:
Real Time, number 3185 in LNCS, June 2004.

[BS97] S. Bornot and J. Sifakis. Relating Time Progress and Deadlines in Hybrid Systems. InInternational
Workshop, HART’97, Grenoble, LNCS 1201, pages 286–300. Spinger Verlag, March 1997.

[CHR92] Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A Calculus of Durations.Information Processing Letters,
40(5):269–276, 1992.

[DJPV03] Werner Damm, Bernhard Josko, Amir Pnueli, and Angelika Votintseva. Understanding UML: A Formal
Semantics of Concurrency and Communication in Real-Time UML. In Frank de Boer, Marcello Bon-
sangue, Susanne Graf, and Willem-Paul de Roever, editors,Proceedings of the 1st Symposium on Formal
Methods for Components and Objects (FMCO 2002), volume 2852 ofLNCS Tutorials, pages 70–98, 2003.

[DJPV05] Werner Damm, Bernhard Josko, Amir Pnueli, and Angelika Votintseva. A discrete-time UML semantics
for concurrency and communication in safety-critical applications.Science of Computer Programming,
2005. (to appear).

[GOO05] Susanne Graf, Ileana Ober, and Iulian Ober. Timed annotations in UML.STTT, Int. Journal on Software
Tools for Technology Transfer, 2005. under press.

[OGL05] Iulian Ober, Susanne Graf, and David Lessens. A case study in UML model-based dynamic validation: the
Ariane-5 launcher software. submitted, 2005.

[OGO05] Iulian Ober, Susanne Graf, and Ileana Ober. Validating timed UML models by simulation and verification.
STTT, Int. Journal on Software Tools for Technology Transfer, 2004, 2005. Under press.

[OMG02] OMG. Response to the OMG RFP For Schedulability, Performance and Time, v. 2.0. OMG document
ad/2002-03-04, March 2002.

	Introduction
	The MARS system
	The Databus Manager

	UML modeling and validation experiments
	Background on the OMEGA profile and the IFx toolset
	Overview on the UML model for MARS
	Expressing properties and first evaluation results
	Use of a compositional model and abstractions

	Conclusion

