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Abstract: This paper shows on hand of a case study the usefulness of the UML profile with real-time
defined in the Omega project and of the IF validation tool-set. The case study is about intricate timing as-
pects arising in a small but complex component of the airborne Medium Altitude Reconnaissance System
produced by NLR

The purpose is to show how automata-based timing analysis and verification tools can be used by
field engineers for solving isolated hard points in a complex real-time design, even if the press-button
verification of entire systems remains a remote goal.

We claim that the accessibility of such tools is largely improved by the use of a UML profile with
intuitive features for modeling timing and related properties.

1 Introduction

Designing a real-time system, so as to satisfy all its real-time properties, leads often to complex verification
problems. This complexity is due to the fact that time is intrinsicatiyodoal notion, implicitly aggregating
therelative andlocal timing conditions appearing in system design.

For defining non-trivial systems, it is nevertheless mandatory to conceive them in terms of local hypotheses
and solutions. Consequently, in a component-based approach, designers seem to be condemned to build
systems by component aggregation, without knowing a priori what effect this aggregation will have on the
timeliness of each component and of the system as a whole. Some relevant examples of unexpected timing
conditions resulting from this aggregation will be shown on the case study presented in this paper.

A solution to this problem consists in using automated tools to analyze the timeliness of a subsystem. There
are two large classes of methods: model-checking which analyzes a semantic model algorithmically, and
theorem proving. This paper is mainly about using a model-checking approach, which is more automatic.
Very high-level parametric models are sometimes tackled better by proof-based techniques; but in general
these models are elaborated by the verification experts rather than the engineers and the distance between
these high-level models and the developed system may be quite important. E.g. when using duration
calculus[[CHR9P] as verification framework, almost everything of the functional model has to be abstracted.

Model-checking techniques can be more easily applied to models that are obtained by starting from a
functional model of a system (which is a design artifact normally available for any system), and which can
be enriched by adding timing relevant information. Such a model can be quite naturally obtained by the
designer and provides a faithful representation of the system under development. It can be directly analyzed
with an appropriate simulation tool.

Nevertheless, automated verification tools have well-known limitations, and a first obstacle for putting these
tools effectively to work, is that the designers have to understand them and build the models having these
limitations in mind. From our experience, interesting insights in the timing aspects of a system are usually
gained only when the (unrelated) details of the functional part are abstracted away. This means that a model
must be decomposed into small functionalities, which makes property depending abstractions more easy
to construct and even to mechanize. In our experience, not many engineers do this naturally, but they can
easily learn it when they see the benefit.

*This work has been partially funded by the European OMEGA project (IST-2001-33522).
INational Aerospace Laboratory, The Netherlands.



The second obstacle is the complexity of the formalism for capturing a timing model and its properties. A
good formalism is one that is intuitive for the designers and based on concepts they are already using. In the
literature there are various extensions of temporal logics with quantitative time operators, which have the
required expressiveness. However, from our experience, property formalisms based on familiar concepts
(like state machines) are more easily accepted by the users and are more expressive.

In this paper, we present the results of a case study conducted jointly by experts and industrial users, in
which meaningful results about timing were obtained by analyzing a custom made model using a user
friendly UML-based validation tool. The rest of the paper is structured as foll@&gpresents the case
study, with focus on the timing aspect§3 presents the approach and the model obtained for this case
study using a specific formalism (the OMEGA UML profile), the main results of timing validation and the
techniques employed in this experience f#fwe discuss some conclusions that might be drawn from this
study.

2 The MARS system

The acronym MARS stands for Medium Altitude Reconnaissance System. It controls a high resolution
photo camera embedded in a military aircraft, taking pictures of the ground from medium altitude. The
system counteracts the image quality degradation caused by the forward motion of the aircraft by creating
a compensating motion of the film during the film exposure. The system is also responsible for annotating
the frames with the current time and position. The system also performs health monitoring and alarm
processing functions.

Exposure control (Forward Motion Compensation and Frame Rate) as well as annotations are being com-
puted in real-time based on the current aircraft altitude, ground speed, navigation data (latitude, longitude,
heading), time-of-day, etc. These parameters are acquired from the avionics data bus of the aircraft.

2.1 The Databus Manager

For the purpose of this case study we concentrated on a sub-system which presents interesting timing
problems, called Databus Manag@r{/); it monitors the health of the data bus controller and, in general,
of any communication going trough the data bus.

The system receivedataconcerning altitude and navigation from other components of the avionic system.
The DM component supervises the reception of data messages and prostdassased by the system’s
alarm logic. In addition, thé M periodically polls the databus controller status and changes its own status
accordingly toOperational BusError or ControllerError. The precise requirements on thg\/ status
computation are described below.

The two types ofatainputs of theDM are received periodically, with some perioB & 25ms in the
concrete example) and jittet-(/ = 5ms), and may occasionally get lost. The periods are not synchronized
and may have any offset (smaller than the period). Figure 1 shows a possible configuration of the reception
windows along the time axis (windows in which no message reaches ttieare marked withX' O). The

basic functional requirements on the\/ status are:

e Controller failure leads to a change of statu€untrollerError. Recovery leads tBusError.

e Status changes froBusError to Operationalwhen two consecutive messages are (correctly) re-
ceived from both sources (assuming no controller error).

e Status changes fro@perationalto BusError when three consecutive messages from a source are
lost.

Note that these requirements do not defiteenthe status change must take place. In fact, maximal
reactivity is desirable. Two reactivity measures (at least) can be defined:
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Figure 1: Timing of the message reception windowsy/ status and reactivity measures.

e reactivity to losses, defined as the upper bound thaf guarantees for the time?() between the
last correctly received message from the source causing a swiBtlsterror, and the actual moment
of the switch.

Simple problem analysis shows that the optitRalis 85ms (3P + 2.J), in the case of fixed commu-
nication time between sender and receiver. This is the ideal reactivity thatthelesign should try
to approach.

e reactivity to recovery, defined as the upper bound fhatf guarantees for the timeg?@) between
the first message in a series of correct messages leading to a swilgletational and the actual
moment of the switch.

In this case, the optimak2 depends on the offset between the periods of the two data sources.
However, even in the worst case, it is less thams (2P + 2.J).

Our experiments are described in the next section. They had two goals: (1) to check that the proposed
designs verify the above mentioned functional properties, and (2) to determine the reactivity bounds offered
by the different proposed designs (and point out the optimal solution).

3 UML modeling and validation experiments
3.1 Background on the OMEGA profile and the IFx toolset

The MARS sub-system was modeled using the OMEGA UML profile and timing and functional validation
was performed using the IFx toolset. Here, we briefly introduce these technologies.

The OMEGA profile defines an operational semantics for a subset of UML, designed to suit the needs of
designers of real-time embedded systems. Oriuhetionalside, the semantics defines aspects pertaining

to control (like the rules governing concurrency) and communication primitives. These aspects are handled
similarly as in the profile of the Rhapsody tool, and they are detailed in [DJPV03, DJPV05].

The timing aspects are described in detail in_ [GOOO05]. The profile is compatible with the basic time
related notions of UML 2.0 by defining a series of lightweight extensions to UML for describing time-
driven behavior using timers, clocks, and timed guards. In addition, it allows to define transition urgency
for categories of transitioE]sFor the expression of timing and functional requirements, the OMEGA UML
proposes to use a notion @fentsandobserver objectsEvents are any semantic level state changes, similar

as the notion ofimed evenin the SPT profile[[OMG02]; in order to make this notion concrete, a notation

has been defined for being able to name all semantic events by referring to a syntactic entity. Observers
are characterized by a state machine which reacts to (semantic level) events and conditions occurring in the

2this concept is taken from timed automata with urgefcy [BS97]



system, and which acts as an acceptor of system executions — by use of states stereotypedrvath >
> as final states. An example of a property expressed by an observer can be seen(in figure 5.

IFx [OGOQ05] is a toolset providing extended simulation and verification functionalities for OMEGA UML
models. The core of the tool is a state space exploration engine for systems consisting of extended com-
municating timed automata (IF [BGMD2, BG®4]). In order to scale to complex models, IF provides
several optimizations and and supports abstraction. The tool implements static and dynamic optimizations
like dead variable factorization, dead code elimination, partial-order reduction and abstract interpretation
of clocks. All optimizations strongly preserve timed safety properties which are of interest in the MARS
system. In addition, the tool supports simple abstractions which preserve satisfaction of safety properties,
but may show spurious counter-examples.

3.2 Overview on the UML model for MARS

The architecture of the MARS model as proposed by the designer of the system, is shown in the UML
context diagram in Figur@]z The main component is thRatabusManagepbject which maintains the

global status and monitors message loss. For simplicity, the designer has separated the polling of the bus
controller in a different object, th€ontrollerMonitor.

MARS

Environment
system

navDataSource ; DataSource
cOffset : Clock
tPeriod : Timer
+DatabusManager i
cJitter : Clock
AltMsgTimeoutCount : int
NavMsgTimeoutCount : int X
altDataTimer : Timer ItD: rce . D I
navDataTimer : Timer \ cOffset : Clock
tPeriod : Timer
clitter : Clock
: ContollerMonitor : DatabusController
currentStatus : int status : int
previousStatus : int

Figure 2: Structure of the MARS model.

In order to verify theD M under the assumptions on message arrival and controller errors mentioned in
§2.7, the OMEGA profile allows to model the environment using the same concepts as for modeling the
system, in particular an explicit object with the behavior expressed by the assumption. IFigure 2, we see
therefore three environment objects corresponding to the altitude data source, the navigation data source
and the bus controller.

[cJitter <= 10]
1 self.sendData()

timeout(tPeriod) /
IcOffset.set(0) begin
clitter.set(0);
[cOffset <= 25] tPeriod.set(25)

/ tPeriod.set(25, N \ end (
Init eriod set(25) WaitCycle ProduceData

[cJitter <= 10]
/informal "lost data"

Figure 3: Environment model : state machine of the data sources.

In particular for modeling the environment, the possibility to express nondeterministic behavior is impor-
tant. This is allowed in the Omega profile. For example, Fiflire 3 shows the state machine of data sources,

Sassociations express here the fact that the corresponding objects may communicate through signals or method calls



Itimeout(navDataTimer)//

levNavDataMsg()// N
begin begin
NavMsgTimeoutCount := 0; NavMngi»meoutCount := NavMsgTimeoutCount + 1;
N navDataTimer.set(25)

navDataTimer.set(35)

end
end

Operational /timeout(altDataTimer)//

levAltDataMsg()// begin
begin AltMsgTimeoutCount := AltMsgTimeoutCount + 1;
AltMsgTimeoutCount := 0; altDataTimer.set(25)
altDataTimer.set(35) end
end

/evControllerError()/begin
[NavMsgTimeoutCount = 3 or AltMsgTimeoutCount = 3]/begin navDataTimer.reset();

NavMsgCount := 0; altDataTimer.reset()
AltMsgCount := 0 end ControllerError
end

[NavMsgCount >= 2 and AltMsgCount >= 2]/begin

NavMsgTimeoutCount := 0;

AltMsgTimeoutCount := 0 JevControllerOK()//

end /evControllerError()/begin begin
navDataTimer.reset(); NavMsgCount := 0;
altDataTimer.reset() AltMsgCount := 0

F E— end end
/evNavDataMsg()// Jtimeout(navDataTimer)//

begin BusError begin
if (NavMsgCount < 2) then NavMsgCount := 0;
navDataTimer.set(25)

NavMsgCount := NavMsgCount + 1

endif; e
navDataTimer.set(35) fimeout(altDataTimer)//
end begin

JevAltDataMsg()// AltMsgCount := 0;
begin Ibegin althataTlmer.set(ZS)

if (AltMsgCount < 2) then NavMsgCount := 0; en

AltMsgCount := AltMsgCount + 1 AltMsgCount := 0

endif, end

altDataTimer.set(35)

end

Figure 4: State machine of the DatabusManager.

using interval conditions on clocks to model the nondeterminism introduced by the starting time and by
jitter. This state-machine indeed describes a data source with the required period and jitter as all transitions
of environment objects are interpretedtﬂayablﬂ that is, once they are enabled, they will be taken be-
fore their time guard becomes false or they may be disabled by some discrete transition. Moreover, Zeno
computatiorﬁ are not valid computations which guarantees in this example that the computation cannot
“get stuck” in any state.

As we will see later, the requirements concerning th&/ can be achieved in several ways. The first
design provided by the engineer, shown in Fidure 4, consisted of a single state machine with transitions
triggered by events from both data sourcesAlt DataM sg, ev N av DataM sg) and from theController-

Monitor (evController Error, evControllerOK), or by timeouts corresponding to message loss detec-
tion (altDataTimer, navDataTimer). The principle is to use a timer to measure the duration of the
period for each Data source — where the end of the period is defined by the reception of a message, where
the timer is rearmed, or a timeout — and to always keep track of the number of consecutive received, re-
spectively lost, messages. Notice that in this design we have chosen system transitioeagertibat is

they do occur at the earliest point of time at which they are erﬁbmdst progress,

4according to the terminology defined in timed automata with urgéncy [BS97]

Sinfinite computations with finite time progress

SNote also, that transitions are event triggered rather than time triggetedeamitis the event associated with a time condition.
This is equivalent, but closer to operational way of thinking of the designers



3.3 Expressing properties and first evaluation results

Both, the functional and the reactivity properties describefl[h] can be expressed as observers to be
verified on this model. Figurg] 5 shows the observer checking a bound guaranteBd, ftrat is the
maximal delay needed for transmission problem detection (see sgcfjon 2.1). Note that observer transitions
synchronizewith observed events, and thus take place at the same time point as the observed event. Note
also that this observer monitors only one data source (the altitude data source); we argue that the failure of
the other source can only bring thhi&\/ into the Bus Error status earlier, thus the maximum value for

is exposed when the other source does not fail (or it’s failure is not observed).

<<observer>>
PR1

BR1:int
¢ : Clock

match send evAltDataMsg() to dm
[dm @ ControllerError] [dm @ Operational] //
c.set(0)

match send evAltDataMsg() to dm //
c.set(0)

<<error>>
KO

[dm @ Operational]

Figure 5: Observer for verifying the reactivity bound i .

All functional and reactivity properties were verified against the initial design presented above.

Due to state explosion problems encountered, a simplifying assumption was made first on the environment:
the cycles of the two data sources are synchronized (i.e., their periods start always at the same time; their
data may nevertheless be sent at different moments due to jitter). This assumption is not corﬁawmfwe
reaction time to message loss may (and turn out to) be longer when the two sources are not synchronized.
In order to fully verify the properties, a different model, which is a conservative abstraction, is presented
later on.

Nevertheless, this initial model was useful for understanding the potential problems, for debugging the
model and ruling out some variants that had been proposed to increase efficiency. Under the simplifying
assumption, all functional properties have finally been proved to hold on debugged versiongxf/the
design. An interesting outcome is that very similar designs may present different reactivity bounds.

For example, consider a slight variant of the design model presented above, in whiclopethgonal

status dong timeouis used, detecting the absence of messages during three consecutive periods, instead of
detecting absence of individual messages and counting them. At a first sight, this new version looks more
efficient as it does not need counter when the statopésational

Using different variants of the reactivity constraints defined by the observer in Figure 5, we have determined
with the help of our verification tool that the initial design has a better reactivity @amn the new one

(only 110ms). As the motivation for the entire case study was to gain reactivity with respect to the existing
synchronous design, which observes events only at fixed time points, this is not an acceptable solution.

The diagnostic traces provided by the model checker show that the difference stems from the way timers
are handled at the transition from tBeisError to the Operationalstatus: in the initial version, timers are
not affected by a status change, they just count periods of the data sources, while in the new version, the

7it leads to a simplified model that allows to find bugs, but we are not allowed to deduce correctness of the initial model from the
fact that this model does satisfy some property
8that means it achieves the optimal reactivity as explained in sn 21
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Figure 6: Decomposition of thB M.

long timer is not needed iBusError status and initialized when entering the operational mode. This might
delay the detection of a bus error occurring right at this moment by an entire period. In order to correct the
problem, the timer must be set depending on the actual “age” of the "period timer” which is used when the
status isBusError.

This kind of errors is quite common when trying to optimize a design, and the tools were very helpful by
checking after any modification all the properties. This allows to get immediate feedback as running the
verification is generally really fast (see also the table at the end of the section). Another group has used in
parallel a tool based automatic or interactive theorem proving. They could prove at the end a parametric
version of the property which is impossible to prove with a model-checker like ours, but they were extremely
thankful to the extremely quick feedback provided by our tool: once we had a (simplified) working model
on which the properties can be shown to hold, one can analyze small modifications of the UML model, just
by “pushing the button” to translate the model and then run the verification of all properties, or “find a bug”.

3.4 Use of a compositional model and abstractions

In order to fully verify the desired properties without making the (unrealistic) assumption that both data
sources are synchronized, we have proposed to use a model 6fithehat is itself a composition of
smaller entities (see Figur¢ 6), in particular

e A Receivercomponent for each data source; it supervises the messages of a single source and keeps
track of the message status in the last 3 windows and sends this status by meatetaiessages
at the end of each period.

e An ErrorLogic component which, based on tkeCntmessages from the differeReceiversdefines
the status. The status changes fiBusErrorto Operationalwhen allReceiversiave received correct
messages during the last 2 windows, and flOperationalto BusErrorwhen at least onReceiver
has not received any correct message during the last 3 windows.

Using this model, we could verify all properties — or rather adaptations of them — using a compositional
and conservative abstraction.

The abstraction used consists in replacing Beeeivemwith a chaotic abstractioReceiverAbsvhich may
sendevCntwith any parameter at any time. This is a very rough over-approximation of the source—receiver
pair, but it proved to be sufficient for preserving the desired properties. The abstraction is particularly
interesting as it represents an over approximation of an arbitrary number of data receivers, meaning that it
allows to verify theD M for the case with an arbitrary number of such data soﬁ]rces

9always under the hypothesis that the time for taking decisions remains “negligible”



Configuration Number of | Number of | User time
states transitions

Initial model with only one source 1084 1420 <ls

(no CM polling)

(non-conservative

Initial model with two synchronized sources | 99355 151926 365

(no CM polling, non-conservative

Initial model with two de-synchronized sources> 1136768 | > 1676126 | > 9m30s

(no CM polling)

(conservative- exploration doesn't terminate)

Abstract model, 10m&M polling > 1494864 | > 701120 | > 8ml2

(conservative- does not terminate)

Abstract model (n&M polling) 118690 174871 45ms

(non-conservative

Abstract model with non-deCM polling 155166 263368 1m21s

(conservative

Figure 7: Verification times and state spaces for different verification configurations.

A second conservative abstraction used consists in replacing the deterministic polling cycleCohnthe
trollerMonitor (10ms in the initial model) by a completely non-deterministic polling policy. While this
introduces new executions, impossible in the initial model, the resulting state space is smaller as many
previously disjoint states are grouped toge@er

The table in Figur¢]7 below shows the size of the state space and the processing time for several con-
figurations of the MARS system which allows to draw some conclusions on the efficiency of the use of
compositional models and in particular compositional abstractions. In particular, desynchronizing two re-
sources has a tremendous effect on the size of the state space which is in fact due to the simultaneous
presence of jitter and desynchronization. Notice that the effect is much more important than it looks like as
we have stopped the exploration when, after reaching 1 mio states and 10 minutes, the state space was still
growing rapidly — experience told us that it was likely not to be worth to wait until reaching 10 mio states;
even if it would converge by then, what we didn’t anticipate really, the result was not very useful for us, as
we wanted to be able to rerun experiences on variants in short time. As we have not run our experiences on
particularly well equipped machine (especially in memory), this means that we can still gain a few orders
of magnitude and handle slightly more complex systems.

The use of both types of conservative abstractions leads to a state space of about the same size as the much
simpler system with synchronized sources, which is still precise enough to satisfy all properties.

4 Conclusion

By using a case study as support, we have shown both, the convenience of the OMEGA UML profile
for the expression of timed models and timed properties and the usefulness of the IF front-end for UML
which allows for both flexible interactive simulation and complete state space exploration for debugging
and verification of UML models.

We believe that the experiment presented shows that timing analysis tools can be used efficiently for solving
isolated, hard timing problems in a UML design, even if fully automated verification for large designs
remains a remote goal. Also we believe that more systematic use of functional decomposition as used in the
example, can definitively help to make possible the verification of much larger designs in a compositional
fashion, as there is no need for the verification of a model in which all parts are described in all details.

10yt only if a symbolic representation of time constraints is used



The use of the OMEGA UML profile to capture timing properties has favored a very quick learning and
adoption of our tools by experienced UML designers. Without the knowledge of a verification expert, the
designers were able to use even advanced techniques like abstractions.

The relaxation of timing constraints — such as the abstraction from the polling period in the example
— shows to be a very efficient abstraction technique in such models, and it is usually very simple to
model. This kind of abstractions is always conservative for the satisfaction of (timed) safety properties.
On the other hand, can introduce spurious error traces. However, in the MARS example this has never

occurred,

showing first, that with some exercise, a designer can learn to use abstractions which do not

break the verified properties. And second, that the designers tend in the first place to build over constrained
models. The reason is probably that they are strongly influenced by the requirement that programs must
be deterministic, and they apply this also to specifications even if this is not needed for satisfying the
requirements.

We have also found out during the experiments that some methodological guidelines for writing observers
and for using the IFx toolbox are necessary during the learning process. A set of guidelines has been
developed as a side result of this teamwork (see also [OGLO05]).
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