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1 Introduction

Formal validation of distributed systems relies on several specification formalisms
(such as the international standards LOTOS [15] or SDL [16]), and it requires different
kinds of tools to cover the whole development process. Presently, a wide range of
tools are available, either commercial or academic ones, but none of them fulfills in
itself all the practical needs.

Commercial tools (like ObjectGEODE [20], SDT [1], STATEMATE [14],etc.) provide
several development facilities, like editing, code generation and testing. However,
they are usually restricted to basic verification techniques (exhaustive simulation,
deadlock detection, etc) and are “closed” in the sense that there are only limited
possibilities to interface them with others. On the other hand, there exist many
academic tools (like sMv [19], HYTECH [12], KRONOS [22], UPPAAL [18], SPIN [13],
INVEST [2], etc.) offering a broad spectrum of quite efficient verification facilities
(symbolic verification, on-the-fly verification, abstraction techniques, etc.), but of-
ten supporting only low-level input languages. This may restrict their use at an
industrial scale.

This situation motivated the development of IF, an intermediate representation for
timed asynchronous systems together with an open validation environment. This
environment fulfills several requirements. First of all, it is able to support different
validation techniques, from interactive simulation to automatic property checking,
together with test case and executable code generation. Indeed, all these function-
alities cannot be embodied in a single tool and only tool integration facilities can
provide all of them. For a sake of efficiency, this environment supports several lev-
els of program representations. For instance it is well-known that model-checking
verification of real life case studies usually needs to combine different optimiza-
tion techniques to overcome the state explosion problem. In particular, some of
these techniques rely on a syntactic level representation (like static analysis and
computations of abstractions) whereas others techniques operate on the underlying
semantic level. Another important feature is to keep this environment open and
evolutive. Therefore, tool connections are performed by sharing either input/output
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formats, or libraries of components. For this purpose several well-defined application
programming interfaces (APIs) are provided.

2 Architecture

The IF validation environment relies on three levels of program representation: the
specification level, the 1F intermediate level, and the LTS semantic model level. Fig-
ure 1 describes the overall architecture and the connections between the toolbox
components.
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Fig. 1. An open validation environment for IF

The specification level is the initial program description, expressed for instance
using an existing language. To be processed, this description is (automatically)
translated into its IF representation. Currently the main input specification formal-
ism we consider is SDL, but connections with other languages such as LOTOS or
PROMELA could also be possible.

The intermediate level corresponds to the IF representation [7]. In IF, a system
is expressed by a set of parallel processes communicating either asynchronously
through a set of buffers, or synchronously through a set of gates. Processes are based
on timed automata with deadlines [3], extended with discrete variables. Process
transitions are guarded commands consisting of synchronous/asynchronous inputs
and outputs, variable assignments, and clock settings. Buffers have various queuing
policies (fifo, stack, bag, etc.), can be bounded or unbounded, and reliable or lossy.

A well-defined APr1 allows to consult and modify the abstract tree of the 1F represen-
tation. Since all the variables, clocks, buffers and the communication structure are



still explicit, high-level transformations based on static analysis (such as live vari-
ables computation) or program abstraction can be applied. Moreover, this API is
also well suited to implement translators from IF to other specification formalisms.

The semantic model level gives access to the LTS representing the behaviour of
the IF program. Depending on the application considered, three kinds of API are
proposed:

e The implicit enumerative representation consists in a set of C functions and
data structures allowing to compute on demand the successors of a given state
(following the OPEN-CAESAR [11] philosophy). This piece of C code is generated
by the 1F2C compiler, and it can be linked with a “generic” exploration program
performing on-the-fly analysis.

e In the symbolic representation sets of states and transitions of the LTS are ex-
pressed by their characteristic predicates over a set of finite variables. These
predicates are implemented using decision diagrams (BDDs). Existing applica-
tions based on this API are symbolic model-checking and minimal model gener-
ation.

e Finally, the explicit enumerative representation simply consists in an LTS file
with an associated access library. Although such an explicit representation is
not suitable for handling large systems globally, it is still useful in practice to
minimize some of its abstractions with respect to bisimulation based relations.

3 Components description

We briefly present here the main components of the environment, together with
some external tools for which a strong connection exists.

The specification level components. ObjectGEODE [20] is a commercial toolset
developed by TTT supporting SDL, MSC and OMT. In particular, this toolset pro-
vides an API to access the abstract tree generated from an SDL specification. We
have used this API to implement the SDL2IF translator, which generates opera-
tionally equivalent 1F specifications from SDL ones. Given the static nature of IF,
this translation does not cover the dynamical features of SDL (e.g., process instances
creation).

The intermediate level components. LIVE [5] implements several algorithms
based on static analysis to transform an I1F specification. A first transformation
concerns dead variable resetting (a variable is dead at some control point if its value
is not used before being redefined). This optimisation can be also applied to buffer
contents (a message parameter is dead if its value is not used when the message is
consumed). Although very simple, such optimisation is particularly efficient for state
space generation (reductions up to a factor 100 were frequently observed), while
preserving the exact behaviour of the original specification. A second transformation
is based on the slicing technique [21]. It allows to automatically abstract a given
specification by eliminating some irrelevant parts w.r.t. a given property or test
purpose [6].



IF2PML [4] is a tool developed at Eindhoven TU to translate IF specifications into
PROMELA.

The semantic model level components. CADP [9] is a toolset for the verification
of LOTOS specifications. It is developed by the VASY team of INRIA Rhéne-Alpes
and VERIMAG. Two of its model-checkers are connected to the IF environment:
ALDEBARAN (bisimulation based), and EVALUATOR (alternating-free p-calculus).
For both tools, diagnostic sequences are computed on the LTS level and they can be
translated back into MSC to be observed at the specification level.

KRONOS [22] is a model-checker for symbolic verification of TCTL formulae on com-
municating timed automata. The current connection with the IF environment is as
follows: control states and discrete variables are expressed using the implicit enumer-
ative representation, whereas clocks are expressed using a symbolic representation
(particular polyhedra).

TGV [10] is a test sequence generator for conformance testing of distributed systems
(joint work between VERIMAG and the PAMPA project of IRISA). Test cases are
computed during the exploration of the model and they are selected by means of
test purposes.

4 Results and perspectives

The 1F environment has already been used to analyze some representative SDL speci-
fications, like SSCOP, an ATM signalisation layer protocol [8], and MASCARA, an ATM
wireless transport protocol. It is currently used in several on going industrial case-
studies, including the real-time multicast protocol PGM, and the control part of the
ARIANE 5 launcher flight sequencer. The benefits of combining several techniques,
working at different program level, were clearly demonstrated. In particular, tradi-
tional model-checking techniques (as provided by ObjectGEODE) were not sufficient
to complete on these large size examples.

Several directions can be investigated to improve this environment.

First of all, other formalisms than SDL could be connected to IF. In particular, the
translation from a subset of UML is envisaged. To this purpose new features will be
added to handle dynamic process creation and parametrized network specifications.

From the verification point of view, the results obtained using the currently imple-
mented static analysis techniques are very encouraging. We now plan to experiment
some more sophisticated algorithms implemented in the INVEST tool [2], such as
structural invariant generation and general abstraction computation techniques for
infinite space systems.

Another promising approach to verify large systems consists in generating their
underlying model in a compositional way: each sub-system is generated in isolation,
and the resulting LTSs are minimized before being composed with each other. The IF
environment offers all the required components to experiment it in an asynchronous
framework [17].

The IF package can be downloaded at http://www-verimag. imag.fr/DIST_SYS/IF.
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