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Abstract. Our goal is to use a theorem prover in order to verify in-
variance properties of distributed systems in a “model checking like”
manner. A system S is described by a set of sequential components, each
one given by a transition relation and a predicate Init defining the set
of initial states. In order to verify that P is an invariant of S, we try
to compute, in a model checking like manner, the weakest predicate P’
stronger than P and weaker than Init which is an inductive invariant,
that is, whenever P’ is true in some state, then P’ remains true after
the execution of any possible transition. The fact that P is an invariant
can be expressed by a set of predicates (having no more quantifiers than
P) on the set of program variables, one for every possible transition of
the system. In order to prove these predicates, we use either automatic
or assisted theorem proving depending on their nature.

We show in this paper how this can be done in an efficient way using the
Prototype Verification System PVS. A tool implementing this verifica-
tion method is presented.

1 Introduction

Using a theorem prover to do model checking is not a new idea?. Theorem
proving has been used successfully for the verification of temporal logic formulas
on programs, specially systems like [BM88], [OSR93a]3, [GM93] and [CCF*95].

In most of these approaches, it is mainly emphasized how to define the syntax
of a specification formalism and its semantics (in terms of sets of computations)
as well as the satisfaction of temporal logic formulas on computations. Then, a
system S satisfies a property f if every computation of S satisfies f. In general,
not much is told about how to verify the obtained formulas.

[RSS95] explains how model checking (for finite state systems) is implemented
in PVS as a tactic (which consists in transforming the model checking problem
into a decidable p-calculus formula and to run a decision procedure on this for-
mula). In [RSS95], [DF95] and [HS96] model checking is used to prove abstract

descriptions of systems, while “ordinary” theorem proving is used to show the

* Verimag is a joint laboratory of CNRS, Institut National Polytechnique de Grenoble,
Université J. Fourier and Verilog SA associated with IMAG.

2 See [RSS95], where a set of combination attempts are mentioned.

? see [CLNT95] for many examples of the use of PVS.



correctness of this abstract description with respect to a more concrete (in gen-
eral infinite state) description. In [Hun93] it is proposed to verify the correctness
of each component using model checking, and then to deduce the correctness of
the composed system by means of compositional rules embedded as inference
rules in a theorem prover. [BGMW94] describes an integration of the PVS the-
orem prover in an environment for the verification of hardware specification. It
is used for discharging verification conditions expressing the fact that a specifi-
cation simulates another.

1.1 Ouwur approach

Our intention is not to verify arbitrary temporal logic formulas, but particular
formula schematas corresponding to useful property classes. In order to prove
that a system S satisfies a property expressed by a temporal formula f, we
do not use its semantics, but a proof rule generating a set of first order logic
formulas (without temporal modalities and without new quantifiers) such that
their validity is sufficient to prove that S satisfies f. Here, we mention only safety
properties expressible by formulas of the form “OP” (invariants) or “O(P =
Py W P,)”, where P, Py, Ps are predicates?.

For example, in order to prove that P is an invariant of S (S | OP) —
where S is defined by a set T of transitions and a predicate Init defining the
set of initial states — it is necessary and sufficient to find a predicate P’ weaker
than Indt and stronger than P which is an inductive invariant, that is P’ is
preserved by any computational step of S, i.e P’ = pre[r](P’)® is valid for each
transition 7 of 7. Model checking consists in computing iteratively the weakest
predicate satisfying the implication @ = pre[T](Q) starting with Qo = P and
taking Q;+1 = Qi A pre[T](Q;) that is by strengthening the proposed solution
at each step. This method can be completely automatized under the condition
that the above predicates are decidable. However, in the case of infinite state
systems convergence is not guaranteed, and in real life systems with this very
simple tactic, convergence is too slow, anyway. Convergence can be accelerated
by replacing the predicate transformers pre[r] by some (lower) approximation
or by using structural invariants (see Section 4.3) extracted from the program
obtained by constant propagation, variable domain information, etc. Theorem
proving (or an appropriate decision procedure) is used for establishing @Q; =
Qi +1 that is for verifying that a fixed point has been reached.

1.2 Related work

Tools like STeP [MAB*94], TPVS [BLUP94] and CAVEAT [GR95] use this tech-
nique. In CAVEAT systematic strengthening of invariants is not foreseen. STeP

*in [MP95] many such schemata and corresponding verification rules are presented
for which we will implement strategies in the future

® The state predicate pre[r](P) defines the smallest set of states that via the transition
7 have only successors satisfying P.



provides a lot of automatization and implements most of the rules presented in
[MP95].

In [HS96], a new strengthening method has been proposed, in order to avoid

the fast growth of the formulas due to the systematic strengthening: suppose
that @; is not inductive for some transition 7, that is, the proof of the goal
Qi = pre[r](Q;) does not reduce to true but to some formula R. Then, instead
of checking in the next step the formula Q;+1 = @; A pre[7](Q;), it is proposed
to check R (which is often simpler) for invariance. However, this method does
not accelerate convergence.
This paper is organized as follows: in Section 2, we recall some general ideas
concerning theorem proving and give a small overview on PVS. In Section 3, it
is explained how to define our method completely within PVS and also, why we
have abandoned this approach. Finally, in Section 4, we give a short presentation
of our tool which acts like an interface with PVS. In Section 5, we demonstrate
our method and tool on two examples: a finite state program implementing a
mutual exclusion algorithm, and an infinite state program implementing a simple
buffer using lists as data type.

2 The theorem proving paradigm

Theorem proving is the paradigm of developing and verifying mechanically math-
ematical proofs. The specification languages used (higher order logic) allow to
define usual mathematical objects such as sets, functions, propositions and even
proofs®, and can be generally understood as a mixture of predicate calculus,
recursive definitions & la ML and inductively defined types. These languages
are strong enough to model systems and express properties on them. Theorem
provers provide an interactive environment for developing mathematical proofs
using a set of tactics (elementary proof steps) and tacticals (combination of tac-
tics). Possible tactics are implementations of either a deduction rule, rewriting
rule, induction scheme or a decision procedure.

PVS

PVS is an environment for writing specifications and developing proofs. It con-
sists of a specification language integrated with a powerful and highly interactive
theorem prover. PVS uses higher order logic as a specification language, the type
system of PVS includes uninterpreted types, sub-typing and recursively defined
data-types. Four “sorts” characterize this language: Theory, Type, Expression
(term), Formula (proposition). Any PVS specification is structured into param-
eterized theories. A Theory is a set of Type, variable, constant, function and
Formula declarations. The PVS theorem prover implements a set of powerful
tactics with a mechanism for composing them into proof tacticals. The tactics
available are combinations of deduction rules and decision procedures. Some of

¢ See [CCF195] for this purpose.



these tactics such as assert and bddsimp invoke efficient decision procedures for
arithmetic and boolean expressions. PVS has emacs as user interface.

3 Specification and verification within PVS

One of the drawbacks when using theorem provers is the tedious encoding of
semantics and writing of specifications. In Coq [CCF195], grammar extension is
allowed which makes specifications easier to write and to read.

In PVS, this technique can be generalized to allow user-defined specification
syntax (e.g. [Sai95]). The defined specification syntax can be a combination
of the PVS specification syntax and user specification syntax since it can be
constructed using non-terminals of the PVS grammar.

To prove that a predicate is an invariant of a system is usually done by
embedding the semantics of transition systems and the notion of invariance of a
property in the specification language of a theorem prover. In PVS| this can be
done by means of the following definitions:

Program [State : TYPE] : THEORY
BEGIN
Action : TYPE
System : TYPE

[guard:bool, assignments:Statel]
[vars:State, acts:list[Action], init:booll

is-inductive? (S:System, P:Pred[State]) : bool =
(init(s) => P(vars(S))) AND
(P(vars(S)) => WPC-System(acts(S),P))

WPC-System(L:1list[Action], P:Pred[State]) : RECURSIVE =

CASES L of

null : TRUE

cons(act,rest): WPC-Action(act,S) AND WPC_System(rest,P)
END CASES

WPC-Action(act:Action, P:Pred[Statel) : bool =
guard(act) => P(assignments(act))
END Program

The PVS theory named Program is parameterized by the type State defining
the tuple type of the state vector, that means, its i** component defines the
type of the i** state variable. System is given as list of actions, where Action
is defined as a record type with two fields, a guard and an assignment. guard is
the condition under which the given action is activated. assignments is a tuple
of type State representing the new value of the state vector after the execution
of the given action. The predicate is-inductive? taking as arguments a system
S and a predicate P, yields the result true if P is an inductive invariant of S.

In order to show that P is an invariant of S, we have to prove the following
obligation:



prove-invariant : OBLIGATION
EXISTS (P’:PRED[State]):
(FORALL (t: State) : (P’(t) => P(t)) AND is-inductive?(S,P’))

This proof obligation does not tell us how to find a satisfactory predicate P’.
This is the reason why we use the iterative computation described in Section 1.1
which replaces the above (second order) obligation by an (infinite) suite of first
order obligations such that the proof of any obligation of this suites validates
the initial obligation.

But we found that such an embedding of the semantics of transition systems
directly in PVS is still not satisfactory for the verification of large systems.
Writing programs is tedious, proofs are very slow since much time is lost in
expanding the definitions of is-inductive?, WPC-System and WPC-Action. We
also found that we cannot perform static analysis on programs written in this
way.

Therefore, we prefered to describe programs in a more natural way and not
to translate them into a PVS theory, but just to generate automatically proof
obligations equivalent to is-inductive?(S,P’) and to submit them to the PVS
proof checker.

4 A verification tool

Figure 1 shows the architecture of our tool for computer-aided verification. We
first present how systems are described in this tool and how the verification pro-
cess works. We also show how both specification and verification are connected
with the PVS system.

4.1 A specification formalism

In our tool, systems are discribed in a formalism close to Dijkstra’s language of
guarded commands. In fact, a system is defined as a set of components where
each component is given by a set of transitions defining conditional data trans-
formations, where program variables are of any data type definable in PVS and
allowed value expressions are any expressions definable in PVS. The grammar
defining this specification formalism is the following":

system = id_system [ PARAMETER id | : SYSTEM
BEGIN
( pvs_declarations )
BEGIN
( sys_components )
END
INITIALLY : { pvs_boolean_formula )
END ¢d_system

" This grammar is presented using the conventions of [OSRI3b]
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Fig. 1. Tool architecture

sys_components = ( program ) | { program ) ||{ sys_components )
program = (action )T | ( named_program )
named_program = id_program : PROGRAM
BEGIN
( pvs_declarations )
BEGIN
( action )*
END
END id_program
action = ( pvs_boolean_formula ) ---> ( assignment )T
assignment = id := ( pvs_expression )

where all declarations are global, but the variables declared within a component
of the form named_program are only used locally.

This grammar uses some non-terminals of the grammar of the PVS spec-
ification language®. This allows to type check easily all PVS declarations and
expressions by invoking the PVS parser and type checker. There are additional
type correctness conditions for actions which have the form of invariants. For

example, an action of the form
guard ---> x:= x-1

)

& The non-terminals of the form ( pvs_---)



where x is declared as natural number, is type correct if guard = x > 0 is a
valid formula; but it is sufficient that guard = x > 0 is an invariant of the whole
system under consideration.

4.2 A proof methodology

We implemented some of the verification rules presented in [MP95] such as the
Inv rule and the Waiting rule corresponding respectively to the proof of prop-
erties of the form OP and O(P = P,W Ps), where P, P; and P, are predicates.
Verification conditions are extracted automatically from the considered specifi-
cation S and the property we want to verify by a proof obligation or verification
condition (VC) generator. The VCs generated for the Inv rule are respectively
Init = Q; and {Q; = pre[7](Q:) | 7 € T} where Init is the predicate defining
the set of initial states, 7" the set of transitions of S and ); defined as in Sec-
tion 1.1. We start with ¢+ = 0 and increase it until a provable set of verification
conditions is obtained or Init = @; is not provable anymore (a counter example
for this obligation proves that P is not an invariant of S).

The VC generator generates only VCs which are not “trivially true”. For
example, if an action 7 does not affect the variables occurring in @;, then the
VC “Q; = pre[r](Q;)” is not generated. If @; is of the form “(pc = i) = Q”,
where pc a control variable and ¢ a possible value, it is only necessary to prove
that @Q; is preserved by every action leading to control point 7. In fact, it is often
the case that predicates of the form pre[r](Q;) are of the form (pc = i) = Q.
Also, the auxiliary invariants (see Section 4.3) are of this form.

The generated obligations are submitted to the PVS proof checker, which
tries to prove their validity by means of a set of tacticals we have defined. First
an efficient but incomplete tactical for first order predicates is used. It combines
rewriting with boolean simplification using Bdds® and an arithmetic decision
procedure: after rewriting all definitions, the Bdd procedure breaks formulasinto
elementary ones, where other decision procedures such as arithmetic ones can be
applied. If the proof fails, another tactical combining automatic induction and
decision procedures is applied. If the proof fails again, a set of non-reducible goals
is returned and one iteration step is performed. The user can always suspend
this process and try to prove the unproved obligation in an interactive manner
using the PVS proof checker.

4.3 Use of auxiliary invariants

It is in general essential to use already proved invariants or systematically gen-
erated structural invariants obtained by static analysis ([MABT94], [BBM95],
[MP95] and [BLS96]). Let Z stand for the conjunction of all these invariants. In
order to prove that P is inductive, it is sufficient to prove

I AP = pre[r](P) (*)

® A Bdd simplifier is available in PVS as a tactic.



instead of P = pre[r](P). As Z is usually a huge formula, we have to use it in an
efficient way, that is only its “relevant conjuncts”. Invariants of the particular
form (pc = i) = @, providing information about values of variable at some
control point 4, are only relevant for (*) when 7 starts at control point i. In
[Gri96], a more refined strategy is defined which selects in a formula of the form
hy Ahy---Ah, = ¢, formulas h; which are relevant for establishing the validity
of e.

4.4 An efficient implementation

The implementation language of PVS is Lisp. Theories, expressions and formulas
are defined as Lisp classes. In our tool, programs are also defined as Lisp classes.
Type checking a program creates a class containing the corresponding declara-
tions and actions. A current list of type checked programs is maintained. Static
analysis described in Section 4.3 is performed using the internal representation
of programs. The fact that our internal structures are very close to the internal
PVS representation, allows to use many PVS features.

5 Examples

We present two examples. The first one, which is finite state, is a mutual exclu-
sion algorithm studied in [Sif79].

mutex : SYSTEM

BEGIN

ina, inb, PAB : VAR bool

pl, p2 : VAR nat

BEGIN
pi=1 --=> pl :=2 ; ina := true (t11)
p1=2 AND inb -—-> pl =3 ; (t12)
p1=3 AND NOT(PAB) --=> pl := 4 ; ina := false (t13)
pl=4 AND PAB --=> pl :=2 ; ina := true (t14)
p1=3 AND PAB —=> pl:=2 ; (£15)
p1=2 AND NOT(inb) --=> pl :=5 (t16)
pl=5 --=> pl :=6 ; ina := false (t17)
pi=6 --=> pl :=1 ; PAB := false (t18)

[

p2=1 -==> p2 := 2 ; inb := true (t21)
p2=2 AND ina -—=> p2 :=3 ; (t22)
p2=3 AND PAB --=> p2 :=4 ; inb := false (t23)
p2=4 AND NOT(PAB) --=> p2 := 2 ; inb := true (t24)
p2=3 AND NOT(PAB) -—=> p2 :=2 ; (t25)
p2=2 AND NOT(ina) ---> p2 :=5 ; (t26)
p2=5 --=> p2 :=6 ; inb := false (t27)
p2=6 -—-> p2 :=1 ; PAB := true (t28)

END

INITIALLY : pl=1 AND p2=1
END mutex



We want to verify that the predicate
P=(pl =2)= ((p2 =2) = (ina V inb))

expressing the impossibility that both processes may enter the critical section
(pi =5) at the same moment, is an invariant for this program!®. Since Qo = P
is not inductive for the transitions t15 leading to pl = 2 and t25 leading to
p2 = 2, the predicate @1 = P A pre[t15](P) A pre[t25](P) is calculated:

Q1 =(pl =2 = (p2 =2 = (ina Vind)))
A (pl =3APAB = (p2 = 2 = (ina V inb)))
A (p2 =3A-PAB = (pl =2 = (ina V inb)))

Q1 = pre[r](Q1) is a valid formula for all transitions 7 leading to pi = 2 or
pt = 3 and the proof of this fact succeeds using our tactical. In this example,
iteration is not necessary when using the following structural invariant obtained
by an extension of the method described in [BLS96]:

I= (pl =3=ina) A (p2 =3 = inb)

The proof of Qo A I = pre[r](Qo) succeeds also for the transitions 7 = t15 and
7 = t25. This example was treated automatically by our tool.

The second example, which is infinite state, describes a simple buffer with two
actions “input” and “output”.

simple_buffer : SYSTEM
BEGIN
elem : TYPE
outp, e, x, y : var elem
IMPORTING Buffer[elem]
B : var Buffer[elem]

BEGIN

TRUE ---> B := cons(e,B)

NOT(null?(B)) ---> outp := first(B) ; B := tail(B)
END

INITIALLY : B = null
END simple_buffer

The variable e represents the input of the the buffer. The imported PVS theory
Buffer that contains the definition of buffers and some basic functions operating
on them, is defined as follows:

Buffer [elem:TYPE] : THEORY
BEGIN
IMPORTING list[elem]

10 Using the predicate =(p1 = 5) A (P2 = 5) to express the mutual exclusion property,
leads to exactly one more iteration step



Buffer : TYPE = list[elem]

isin(B1:Buffer, el:elem) : RECURSIVE bool =
CASES B1 OF
null : FALSE,
cons(e2,B2) : IF (el=e2) THEN TRUE ELSE isin(B2,el) ENDIF
ENDCASES

first(B:(cons?)) : RECURSIVE elem =
IF null?(cdr(B)) THEN car(B) ELSE first(cdr(B)) ENDIF

tail(B:(cons?)) : RECURSIVE Buffer =
IF null?(cdr(B)) THEN null ELSE cons(car(B),tail(cdr(B))) ENDIF

isbefore(x,y:elem, Bl:Buffer) : RECURSIVE bool =
CASES B1 OF
null : FALSE,
cons(el,B2) :
IF null?(B2) THEN (el=x) ELSE
IF (el=x) THEN NOT(isin(B2,y)) OR isbefore(x,y,B2)
ELSE isbefore(x,y,B2)
ENDIF
ENDIF
ENDCASES

Buffer-lemma : OBLIGATION
FORALL (B: Buffer, x: elem, y: elem):
NOT(null?(B)) AND NOT(isin(B,y)) => NOT(isin(tail(B),y))

END Buffer
We want to verify that

BOX ( NOT(null?(B)) AND (x=car(B)) AND NOT(isin(B,y))
=>
isbefore(x,y,B) WEAK-UNTIL (outp=x) )

is an invariant. It expresses the fact that elements leave the buffer in the same
order they have entered it, that is, the FIFO property. The following VCs are
generated by our tool using the Waiting rule:

VC-1 : OBLIGATION
isbefore(x,y,f)
=>
isbefore(x,y,cons(e,f)) OR (outp=x)

VC-2 : OBLIGATION
isbefore(x,y,f) AND NOT(null?(f))
=>
isbefore(x,y,tail(f)) OR (first(f)=x)



VC-3 : OBLIGATION
NOT(null?(f)) AND (x=car(f)) AND
NOT(isin(f,y)) AND NOT(x=y)
=>
isbefore(x,y,f) OR (outp=x)

The obligations VC-1 and VC-3 are proved automatically in one single step proof
using our tactical. VC=2 is proved automatically with the same tactical using
Buffer-lemma, which expresses a trivial property of buffers. That means the
property can be verified without iteration.

6 Conclusions and future work

In this paper, we have presented a method and a tool allowing to do model
checking using a theorem prover. Our approach takes advantage of the automa-
tizability of algorithmic model checking and of the power of axiomatic methods
which allows to deal with infinite state programs. It is clearly only a partial
method as the fixed point may never be reached by the algorithmic method.
Sometimes, the user will be able to guess a solution (which often can be checked
easily).

In this paper we have hardly mentioned compositionality; however, for ex-
ample for the verification of the mutual exclusion program (consisting of the
parallel composition of two components) no product is built; also the method
deriving structural invariants [BLS96] is compositional. In the future, more com-
positionality will by added by means of well-known rules.

Another interesting direction is the use of abstraction in the manner proposed
for example in [Gra94]. The present framework is appropriate for this approach
as in the above mentioned paper, the most difficult part was to argue that the
considered abstract operations are in fact abstractions of the concrete operations.
Here, all the necessary proofs can be done with PVS. Similar proposals have been
made in [DF95] or in [HS96].
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