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Abstract. ASM is recognized as a useful formalism for defining the semantics 
of programming languages and modeling formalisms, but it has not initially 
been intended for expressing non functional properties. Also, during the work 
with the SDL formal semantics, problems of expression of time progress oc-
curred at several places. Several proposals for timed ASM based on quite dif-
ferent approaches have been made. On the other hand, there exist a number of 
frameworks for modeling timed computations outside the world of ASM. It 
seems useful to try to elaborate a common understanding of time in ASM. We 
propose a general time model based on timed events, where time passes only in 
states, to which the existing frameworks can be reduced. Furthermore, we pro-
vide a number of options for defining useful time frameworks and discuss some 
of their consequences. We use this framework to give an overview on a number 
of approaches on modeling time in and outside the context of ASM. As ASM 
are a very general framework for specifying state-transition systems, our ap-
proach is valid for state-transition systems in general. 

1   Introduction 

Abstract State Machines (ASM) [1] are considered a good formalism for giving se-
mantics of a system in terms of its set of possible executions. ASM have been used to 
define a formal semantics for programming languages (e.g. C [15] and Java [16]). It 
has also been used to define the formal semantics of SDL 2000 [17], the most recent 
version of SDL [3]. SDL includes an explicit notion of time and time progress, 
whereas ASM, at least in their initial version, have no explicit means to deal with 
real-time. Being a very general formalism, it is possible to express any notion of time. 
For the definition of the SDL semantics in ASM, we used the ASM time semantics as 
proposed in [2] and encountered some problems. The SDL view on time progress is 
slightly different from the one formalized in [2]. Moreover, ideas to extend the SDL 
timing to include models with continuous changes lead to a more thorough examina-
tion of this issue. This motivated us to summarize some essential properties of timed 
computations and to derive a methodology for dealing with time in ASM, which we 
present in this paper. We have studied the main models for timed computations used 
outside the domain of ASM and we have considered the existing time extensions of 
ASM. Our aim is to provide a framework for defining timed computations in ASM. 



For this purpose, we define also a set of generic properties of timed computations, 
which may be used to restrict the set of “well-formed timed computations”.  

We tackle the problem by considering the needs for modeling the semantics of 
concurrent and possibly distributed systems as in the context of model based verifica-
tion and testing. We want to provide a means to describe executions of timed systems 
using ASM in a convenient manner. In particular, we do not want to restrict ourselves 
to the description of a behavior depending on time – as done in real-time program-
ming languages – but we want to describe a set of timed computations which means 
also to express constraints on time progress with respect to system progress. In other 
words, we do know that some computations take some amount of time and want to 
specify this. 

In section 2, we discuss how to introduce time into the domain of ASM. Moreover, 
we give some ideas how to express timed properties. Section 3 provides a set of time 
properties that can be chosen in addition to the basic properties of section 2. Section 4 
discusses the relation of our approach to the existing approaches. The presentation is 
closed by some conclusions.  

2   An Overview on ASM and Timed Systems 

In this section, we discuss general problems occurring when introducing time in a 
computation model, and then consider the particular case of ASM. Also, our aim is 
not just to be able to describe a set of timed computations, but to get a means to con-
struct this set of computations. We give an overview on the principles of ASMs and 
discuss some general problems of timed systems. 

2.1  An overview of ASM and their computation model 

Abstract State Machines (ASM) [1] were introduced as a general computation model 
taking concurrency into account explicitly. They are defined starting with a sequential 
variant and going on to the general distributed case. 

A sequential ASM algorithm is described by a set of rules applied to states. The 
notion of state in ASM is very general1, but for the discussion of real time extension 
one can consider without loss of generality that a state is defined by the values of a 
set of variables. The notion of “atomic step” (called a move) is defined by means of 
(arbitrarily complex) rules for assigning a new value to each variable depending on 
the old values of all variables. The general idea is close to the one of synchronous 
languages [18], and like there, the result of an update is required to be deterministic. 
In order to model inputs and non determinism, a part of the state space might consist 
of “monitored variables” which are under the control of “the environment” and the 
values of which can not be written by “the system”. The monitored values evolve a 
priori in an unconstrained fashion, but the possible evolutions of their values can be 
explicitly restricted by constraints. That means, the behavior of the environment may 

                                                           
1 A state is an algebra and a rule describes transformation between algebras. 



be described in a declarative way, whereas the system description is provided in a 
constructive way: for any state, a means to construct the (set of) next states is given 
by the set of possible moves. The semantics of the system is given as the set of possi-
ble executions, i.e. countable sequences of states representing possible evolutions 
from the initial state according to the rules and the constraints on monitored variables.  

In a distributed ASM, there exist several agents (the number of which may evolve 
over time), which can read and write some part of the global state and have their own 
update rules. Teams, consisting of a set of agents, are also viewed as agents and rep-
resent synchronization actions as they exist in process algebras [19]. The semantics of 
distributed ASMs is given by a partially ordered set of moves, denoted <, and a con-
flict relation on moves, denoted #, where the order and the conflict relation are dis-
joint. This defines the set of runs as the maximal sets of moves without conflicting 
events, where absence of order between moves expresses independence. In addition it 
is required that in any run the moves of each agent are strictly ordered, meaning 
within the set of moves of an agent, all minimal successors of a move are in conflict, 
that is represent alternatives. The set of executions is the set of state sequences in-
duced by all possible linearizations of all runs. Notice that in the formalization of 
ASM, the conflict relation is implicitly defined by an enabledness predicate on states. 
The use of an explicit conflict relation as in the well-studied theory of event struc-
tures allows expressing some properties at a more abstract level and avoids introduc-
ing states. 

In ASM, there exists no predefined notion of time or trigger. Each agent has “its 
rule” which can be applied on any state independently of any other agent or the 
changes of the environment. The existence of guarded rules, representing partial 
functions from global states to global states, allows constraining the possible inter-
leavings of moves of different agents and the environment.  

Based on this general setup in ASM, we consider a system description to consist of 
(a) a description of the state (defined as the valuation of a vector of variables), and (b) 
a description of the state changes rules. Rules are described per agent. A rule defines 
a set of moves (m∈M). A run is a subset of moves (R⊆M) satisfying the above men-
tioned constraints, where each move belongs to an agent.  

Definition: A prefix F of a run is a subset of moves closed for <, that is, 
∀m∈F (∃m’∈R ∧ m’<m  ⇒  m’∈F) 

The set of runs satisfies the following closure condition, that for every possible exten-
sion of a prefix according to <, there exists indeed a run: 

Property 0: F∈prefix(R) ∧ ∃m,m’• m∈F ∧ m’∉F∧ m<m’ ∧ m’∈min{m” | m<m”} 
∀m’∈min{m” | m<m”}•∉F⇒ ∃R’ • F∪{m’}∈prefix(R’). 

2.2  Timed Systems 

We want to add timing information to a system described in terms of a set of ordered 
or partially ordered purely functional “observations” which represent states and tran-
sitions moves (or moves, in other contexts also called events). We need to decide 



which observations to extend to timed observations and how. Both states and moves 
may be interpreted as time points (instants) or durations. 

For a user level modeling formalism or a programming language, a very natural in-
terpretation is often the one attaching duration with both states and moves. There 
exist ASM frameworks where only states are extended with time points (see section 
4), but this poses the problem that the set of possible states may be dense, and so a 
computation. This is in contradiction with the requirement of ASM that computations 
contain countably many steps. There are at least two reasons why it is preferable at 
the semantic level to interpret states as having some extension in time and events as 
instants. The first reason is that the explicit distinction between “consuming time by 
waiting” and “consuming time in activity” can always be made by distinguishing two 
different kinds of states, those in which a given agent is reactive to changes in the 
environment, and those (“in activity”) in which the previous state is “frozen” and 
only a chosen move can occur after some delay.  

The second reason is that associating duration with moves poses the problem of 
the definition of the state during the move, as visible from other agents: indeed, other 
agents may be able to move during the move of a particular agent, meaning that some 
state must be defined anyway. Furthermore, when transitions are instantaneous, inter-
rupts can be modeled in a much more abstract manner: by definition, an agent is only 
reactive to its environment in states, and moves are atomic. If time consuming activi-
ties of a system are modeled by moves with duration, there exists no means to model 
the “interruption of a time consuming activity” at an abstract level. The only means 
consists in refining the activity into sub-activities (taking less time) with intermediate 
states in which the interrupt can be received. Obviously, this is the reality in an oper-
ating system, but at model level one would like to express the concept of “interrupt-
ing an activity at any point of time”. This can be done by interpreting activities as 
states which can exclusively react to “interrupts”, and moves as the “instants at which 
the result of an activity becomes visible to the outside world”. 

Another interpretation comes from the world of reactive systems, where timing is 
only important in the environment. The timed behavior of the system depends exclu-
sively on the timed behavior of the inputs – which are supposed to be time dependent 
piecewise constant functions. Under this assumption, the system is supposed to react 
only to changes of the environment, and this reaction can be considered as instanta-
neous. In this case, moves are interpreted as instantaneous because the reaction time 
of the system is abstracted away (it is supposed that the reaction of the system is al-
ways visible before the environment changes again) and states represent the time 
intervals during which the environment, or the system’s view of it, does not change. 

This brings us to a first property of timed computations. We suppose the existence 
of two related possibly dense domains Time and Duration with appropriate operations 
between them (notice that axiomatizations of these domains have been given in sev-
eral earlier works, for an example see [11]). 

Property 1: A state change takes place at a point of time, i.e. with the moves are 
attached time points, by extending M to MT⊆MxTime and introducing a function 
when providing the time point of a move as the projection on the second argument: 

when: MT  Time 



This means that time is not part of the state, but there is an external function associat-
ing a time point with moves; the duration of a state is defined implicitly as the time 
passing between the occurrence times of its two adjacent events. The next property 
concerns the relationship between the time-induced order and the partial order of the 
moves induced by the causality relation. A natural minimal requirement is given be-
low.  

Property 2: In every run each event has at most one occurrence time, the conflict 
relation on M extends to MT, and finally all causally ordered events are also ordered 
in time, i.e. 

∀(m,t),(m,t’)∈ MT • (m,t)#(m,t’) 
∀(m,t),(m’,t’)∈ MT • m#m’ ⇒ (m,t)#(m,t’) 

∀ m1, m2∈MT • m1 < m2  ⇒  when(m1) ≤ when(m2). 

A consequence of the first constraint is that, for any given run R, when can be defined 
as a (partial) function whenR: M  Time. More restrictive requirements on the time 
ordering are discussed in section 3. 

3   Choice of a Timed Framework defined by a set of properties 

So far, we have shown how to define a timed system syntactically in ASM, and how 
to interpret this extension semantically in the form of timed runs. Most frameworks 
for modeling timed systems suggest that a timed computation should have some addi-
tional properties not yet captured by these definitions. Such constraints are then either 
directly reflected in syntactic or semantic restrictions of the framework (for example, 
in VHDL the fact that causally related events must have a time distance of at least 
some infinitesimal δ) or used in the verification conditions in the form of assumptions 
(this is in particular the case for fairness or non Zenoness constraints). This means 
that these properties represent axioms of particular timing frameworks which in the 
context of ASM can be added as constraints on the monitored time progress. 

In this section we discuss a number of such constraints, which we have found in 
different frameworks.  

3.1   Global and Local Time and additional Ordering constraints 

In most existing frameworks time is global, that is the time domain is totally ordered2. 
In this case, any two timed events are either temporally ordered or simultaneous, 
which decreases the power of partially ordered runs. A notion of local time allows to 
introduce a partially ordered time domain where some time points may be incompa-
rable, that is neither ordered nor simultaneous. This distinction motivates some vari-
ants of property 2 defined in section 2.2. 

The 3rd item of property 2 states that in a timed run the time order is not smaller 
than the causal order. In order to define global time, this restriction is strengthened. 

                                                           
2 In general, real numbers are chosen representing a dense time domain. 



Property 2a: Global Time: all time stamps of a run are totally (but possibly weakly) 
ordered, i.e. the partial order of the moves is extended to a total order for their occur-
rence times, i.e.  

∀m1,m2∈MT • when(m1) ≤ when(m2) or when(m2) ≤ when(m1) 

Independently of the choice of local or global time, some frameworks impose an even 
stronger constraint on causally ordered events.  

Property 2b: Strict time progress along causal chains: whenever two events are caus-
ally ordered, their occurrence times are strictly ordered, i.e.  

∀ m1,m2: MT • m1 < m2  ⇒  when(m1) < when(m2). 

This forbids reaction chains in zero time. When distinct agents may be used to repre-
sent physical distribution, this property may make sense, but often distinct agents are 
used to express purely descriptive parallelism in a compositional manner, and here 
reaction chains may express synchronization or just conjunction of constraints.  
Some frameworks with a strict notion of local time require even a stronger property 
implying that time distances can only be measured between causally related events. 

Property 2c: Timed order is not stronger than causal order: causally non related 
events are not comparable in the timed order, i.e.  

∀ m1, m2: MT • m1 < m2  iff  when(m1)  when(m2). 

All these axioms represent safety properties which can be used to strengthen the con-
straint on the immediate successor of each state. Note that property 2a is in general 
incompatible with property 2c. 

3.2   Zeno Computations 

So far, we did not justify the choice a dense time domain but just chose it to be dense. 
Indeed, a dense time domain allows arbitrary action refinement (making more internal 
steps visible) because between any two moves always an intermediate move at an 
intermediate time point can be inserted without redefining the time scale.  

What is the meaning of density in an individual timed computation of countable 
length? For example, do we want to allow computations where the occurrence times 
of the events of a computation converge to some finite time point? This is called a 
Zeno computation, and in most frameworks considered as an invalid computation, as 
expressed by the following property. 

Property 3a: Absence of non Zeno computations: In any infinite run, there is no 
upper bound of the time values attached with moves, i.e.  

∀R ∀t∈Time ∃m∈R • when(m) > t. 

Often, we need density only to say that we do not want to require any global limit on 
the distance between two ordered events or to be able to make refinement easy. In 



any single computation, it makes sense to require the existence of some discrete dura-
tion δ such that by observing the state every δ, no local state change is missed3. 

Property 3b: Existence of a disretization: There is a lower bound of the time differ-
ences between non simultaneous causally ordered moves, i.e.  

∃δ∈Duration ∀m1,m2∈ MT • m1 > m2  ⇒  when(m1) − when(m2) > δ. 
 
Property 3b is strictly stronger than 3a, as 3a admits computations where the events of 
some agent are at time points tn, with  tn+1= tn +1/n. This computation is not Zeno, as 
tn grows over all bounds, but it does not satisfy property 3b. Notice that in the context 
of global time, 3b does not exclude the existence of “time races”, that is, moves in 
different agents which are arbitrarily close, so that there exists no uniform δ to sepa-
rate any pair of moves by a discrete observation. 

We can give an even sharper way of defining the time points of moves which de-
fines time as discrete. 

Property 3c: Events at discrete steps: Any two moves occur either at the same instant 
or the time differences between their occurrence times are a multiple of a given value, 

∃δ∈Duration∀m1,m2∈ MT ∃k∈N • when(m1) − when(m2)=k*δ 

Amongst the properties of this section, only 3c represents a safety property which can 
be checked locally and satisfied by restricting the order relation < and increasing the 
conflict relation #. Notice however, that these properties are to be taken as axioms 
defining valid runs as a subset of the runs induced by (M,<,#). This means that it is 
not necessary to check that a given run satisfies them, but it is sufficient to verify that 
valid runs satisfy a set of specified requirements.  
In the context of timed automata, sufficient syntactic conditions on rules have been 
obtained guaranteeing the absence of Zeno computations and verification methods 
exists for checking that that all finite prefixes can be extended to non Zeno computa-
tions. 

3.3   Maximal Progress and Urgency 

In general, a set of time constraints allows several alternative time stamps to be at-
tached with any event. In this case, the question arises if one should implicitly choose 
a particular one or make the choice non deterministically. This brings us to the ques-
tion if one wants to impose some urgency, for example by requiring maximal pro-
gress: Should transitions be taken at the earliest possible time point with respect to all 
the constraints?  

Property 4a: Maximal progress: Each state change takes place as soon as it is en-
abled or is disabled by a conflicting transition which is a constraint on the set of con-
tinuations of a prefix: 

∀F,F∪{(m,t)}a prefix  ⇒                                         . 

                                                           
3 In this context, multiple state changes at the same time are considered as a single state 

change. 



.        ¬∃(m,t’) • t≤ t’ ∧ F∪{(m,t’)} a prefix  ∧ 
                                ∃R.F∈prefix(R) ∧ (m,t)∉R  ⇒  (m’,t’)∈R ∧ m#m’ ∧ t’≤ t 

Computations with maximal progress are intuitively the most interesting ones. Never-
theless, it supposes to assume the controllability by the system over the time points at 
which a transition is taken. In practice, maximal progress is not the right option for all 
transitions: the execution time of an action of 2 to 3 time units has to be modeled by a 
state for which there exist runs with outgoing transitions at any time point between 2 
and 3, but for which no run exists in which time progresses beyond 3 without that the 
state has been left. In this case a different form of urgency is needed, saying that a 
move is taken in the time interval in which it is enabled (there exists a run including a 
corresponding move) or it is disabled by a conflicting move 

Property 4b: time progress does not disable transitions, i.e.  
∀F,F∪{(m,t)}a prefix exactly for t∈[t1,t2] ⇒                                         . 

                       ∃R.F∈prefix(R) ∧ (m,t)∉R ⇒  (m’,t’)∈R ∧ m#m’ ∧ t’∈[t1,t2] 

3.4 Consistent time extension 

We have said earlier, that a timed computation is defined by extending partially or-
dered moves with time points. An interesting constraint is the one saying that time 
extension does not introduce local deadlocks: that is, the duration in some local state 
cannot be infinite unless the untimed computation ends in this state.  

Property 5a: Time extensions do not introduce local deadlocks, i.e a timed computa-
tion can be extended with an action an agent i if this is the case for the corresponding 
untimed computation 

∀F⊆MT a prefix ∧ m∈agenti ∧ FM ∪{m} an untimed prefix  ⇒  
∀R.F∈prefix(R)• ∃m’∈agenti  ∧ m’∈R ∧ m’∉F 

A framework in which this condition is syntactically enforced is when agents are time 
complete: a typical example is when time extensions are introduced in the form of 
timers, and whenever time progress disables some move, an alternative timeout move 
is enabled.  
A stronger requirement, expressing orthogonality of timed behavior and functional 
behavior, says that the projection of timed runs to untimed ones is exactly the set of 
untimed runs up to the equivalence introduced by causal independence between 
events. 

Property 5b: Timed behavior is orthogonal to system behavior, i.e. for any untimed 
partially ordered run there exists a timed one:  

∀F⊆M F conflict free ∃FT⊆MT where FT conflict free 

A stricter, but constructive version requires that every timed prefix of an untimed run 
can be extended in accordance to the untimed run.  
This is an interesting property which in frameworks with pure interleaving semantics 
is even hard to formulate. This property is not satisfied by time dependent systems. A 
framework for syntactically enforcing it is not very interesting (it can be enforced by 



allowing only time constraints imposing minimal occurrence times of moves). Never-
theless, a typical schedulability analysis consists in validating exactly this property, 
given time constraints in the form of worst case execution times and deadlines. 

Notice, that these properties, contrary to the properties 2 and 3, do not restrict the 
set of runs, but require the existence of certain runs. For this reason, they do not rep-
resent axioms, but typical requirements that are often imposed. For example [22] 
provides a framework for guaranteeing deadlock free systems. 

4 Related Work 

In this section, we discuss several frameworks for modeling of timed systems and 
relate them to the set of properties introduced in the preceding section.  

4.1  Timed and Hybrid automata 

Timed automata [9] are a model focusing exclusively on timing aspects of models. A 
system is represented as a transition graph and a transition is labeled by a name and a 
constraint on when it can take place. Transitions represent named instants of change 
(events) and time progresses in the states (property 1). The semantics of a timed 
automaton is formally defined as a transition system on states defined by a pair con-
sisting of a control state and a time point, where transitions are either discrete moves 
without state change or time progress moves in the same state, that is non countable 
executions are not forbidden. Executions as we have defined them in section 2 are 
obtained from a timed automaton execution by the stuttering reduction of the projec-
tion to a sequence of discrete states, where the time point at which each discrete move 
take place is used to define the function when.  

In timed automata, time constraints are expressed by means of constraints on 
clocks. The values of all clocks increase at the same pace (at the pace of external time 
which is not explicitly represented); clocks can be reset to zero in transitions; they 
represent the duration since this transition or event until they are reset for the next 
time. A set of timed automata defines a conjunction of constraints where events with 
the same name are considered as the same event4.  

The time model of timed automata is that of global but relative time, where the ab-
solute value of time may or may not be defined in any particular system. With respect 
to the set of properties of section 3: timed automata impose only the minimal restric-
tion (property 2) on timed behaviors. In particular, causal chains in zero time are 
possible. Only non Zeno computations are considered as valid (property 3a). Some-
times, it is proposed to enforce non Zenoness by enforcing 3b syntactically (require a 
minimum delay in each syntactic loop). Timed automata do not require maximal 
progress, but there exist several means to express urgency: 

                                                           
4 In [12] more flexible compositions of constraints have been defined close to those of timed 

Petri nets[20]. 



• Invariants, associated with states are used to limit the time during which the 
system is allowed to stay in this state; when the invariant becomes false (due to 
time progress or if the invariant is false on entering the state) the state must be 
left by some enabled transition5. 

• Timed automata with urgency [11] associate a urgency with transitions (specify-
ing constraints on when transitions must be taken, meaning that time cannot pro-
gress beyond such a point without that this transition or an alternative one is 
taken). They define three different kinds of transitions: eager transitions (enforc-
ing maximal progress, that is property 4a), delayable transitions (must be taken 
before the time guard becomes false, that is they satisfy property 4b) and lazy 
ones (which may be disabled by time progress).. 

Conservation properties such as expressed by properties 5 are not enforced by timed 
automata, but for most systems these properties (or variants of them) are added to the 
set of requirements. Notice that in the IF language [13], which is close to abstract 
state machines, timed automata with urgency have been adopted as the underlying 
timing model. 

Hybrid automata 
Hybrid automata are a generalization of timed automata adding continuous entities 
other than time. Again, states represent “modes” in which continuous entities evolve 
with time according to certain laws – expressed in terms of differential equations – 
whereas state changes represent discrete changes between different modes - in which 
the continuous entities may evolve according to different laws. This means, state 
changes are considered to occur “at” some instant t.  

As timed automata are special hybrid automata, where the only continuous vari-
ables are clocks which increase at the same pace as time and can be reset to 0 in dis-
crete transitions, the above mentioned variants of timed automata can also be defined 
for hybrid automata. 

4.2 Timed Petri nets and time extensions in process algebras 

The aim of Process algebras [19] and Petrinets is the description of coordination of 
activities. The main aim of their time extension is to express constraints on the occur-
rence times of synchronization events. Thus, they have Property 1. They are based on 
global time and impose only the minimal restriction on timed computations as formu-
lated by property 2. Properties of infinite sequences, such as non Zenoness are not 
part of the framework, but have to be added at analysis time as verification conditions 
or a hypothesis. They differ with respect to properties 4 and 5. 

The timed process algebra E-Lotos [21] attaches interval waiting constraints with 
actions (similar as timed automata). The semantics is defined in a compositional man-
ner and partial actions (which are able to synchronize with other subsystems) are 

                                                           
5 Obviously, the non proper usage of invariants can lead to time lock which has to be consid-

ered as an inconsistent specification. 



delayable – can be taken at any point in their time interval, whereas invisible or com-
plete actions –which cannot synchronize anymore with other actions - must be taken 
as early as possible. This enforces maximal progress for system internal actions 
(property 4a). There exists also the possibility to set time in a transition, and this is 
not interpreted differently from reading time and constraining its occurrence time to a 
single time point. As in the previous frameworks, property 5 is not part of the model 
but has to be added as a property to be verified. 

A Petrinet [20] defines a set of partially ordered runs and time extensions express 
constraints on the occurrence times of synchronization events. Petrinet “transitions” 
are interpreted as “waiting states” and an event is a token consuming move from 
states to a transition or a token producing move from a transition to a set of states. 
There are several variants of timed Petrinets. We mention here two of them. One 
variant is very close to the model of timed process algebras. Each arrow leading into 
a transition has a constraint on when this synchronization can happen. If possible, it 
takes place at the earliest possible time point, but it might also be impossible if the 
intersection of the constraints is empty. That is, property 4a holds, but not property 5. 
Another variant of Petrinets, constrains only the ready times of the arrows entering a 
synchronization transition. The actual occurrence time of a synchronization event 
may be any time point in which all participants are ready before some defined limit 
time, and at the earliest possible time, if all participants are ready after this time limit. 
That means that a synchronization event is delayable up to some point of time, and 
then becomes eager, in terms of urgency in timed automata. As no synchronization 
becomes ever impossible through time progress, property 5b is enforced by this 
framework. This makes it particularly interesting when liveness is more important 
than hard real time constraints. The approach for timed automata in [21] is close to 
this model. 

4.3   Time extensions of ASM 

The general problem to introduce time into ASM is that in the ASM framework the 
notion of state is central to the whole theory, but in the definition of partially ordered 
runs the events (moves) play the central role. Most of the time extensions for ASM 
start by considering time as a part of the state (a priori, it is the only way in which it 
can be done without extending ASM) and try to make this fit with the rest of the 
formalism. 

Extension 1 
The first framework we want to discuss is the one defined in [2] which we have used 
for the definition of the semantics of SDL. 

It presents the idea, not only to associate a time value with every state but also to 
attach a state with every time value, meaning that consecutive states in a execution 
have different times and so enforcing property 2b. The main problem in this frame-
work is that time is part of the state, and thus time progress implies state change. The 
model is hence described using a dense sequence of states for each time point. This is 
contradictory to the requirement that computations are countable. Therefore, one will 



observe time only at points of moves. This, in turn, brings the problem of consecutive 
state changes and of immediate reaction for more than two consecutive state changes.  

Extension 2 
In [4], the concepts of [2] have been modified by allowing a state change to take time, 
meaning that this framework does not use property 1. The agents may but cannot be 
forced to react immediately (property 4 does not hold). 

This model is due to the observation that the application of a set of update rules de-
fining the state changes does in many cases not correspond to an event, but to an 
activity which might have duration. Depending on the considered computation 
model, the variables changed during the update might 
• either keep the old value during the update time (supposing that their value is 

copied into some internal non observable variable and updated at the end) 
• have an undefined value to express the fact that if the environment tries to touch 

or read this value during the state change, this is an error 
• or have an arbitrary value in the domain; in this case it is often more appropriate 

to consider the computation at a finer granularity to be able to say more about the 
possible values of the variables when an interaction with the environment hap-
pens. 

As already mentioned in section 2, the transition, in the untimed setting considered as 
a state change, becomes a state, the state “in transition” with some duration; there are 
two state changes associated with an update, each of them occurring at an instant in 
time: “start transition” - which might render undefined a set of variables, but has 
otherwise no effect on the state - and “end transition” - which results in the updated 
state. We have discussed the inconveniences of this approach as a basic feature in 
section 2. 

Extension 3: AsmL  
AsmL [8] is an implementation of ASM for execution and testing of ASM specifica-
tion. The real-time concept of AsmL is based on external time (monitored), where in 
practice the system time of the computer used for the execution of the model is used 
as the external source for providing the value of time: it is possible to read the system 
time and to react depending on its value. It is also possible to define triggers on time 
– which in any particular execution may be missed - and waiting conditions. This 
model enforces property 2c. As finite experiments cannot express properties of infi-
nite sequences, properties of infinite sequences (properties 3) are irrelevant. The 
problem of this approach (which is chosen also in other real-time modeling tools, for 
example the UML based CASE tool Rhapsody) is that time is not abstract but con-
crete, and the obtained timed execution sequences are only relevant if the execution 
time for a given set of rules has a well defined relationship to the execution time of 
the implementation of the model executed at run-time in its target environment. No-
tice, that the smaller the observed time intervals are, the more important becomes the 
probing effect from the model, even if one can suppose the measured times are rele-
vant for the times observed on the target platforms. Some experiments with Rhapsody 
showed that the observed results are extremely sensitive to scaling, which is unsur-



prising, but disappointing from the point of view of the modeler. These kinds of mod-
els are useful, but they do clearly not cover all the needs in modeling of real-time 
systems. 

Extension 4: HASM 
The Hybrid ASM or HASM approach [6] tries to marry the discrete world of state 
changes with continuous changes of a part of the state. This is done by introducing 
hyper-real numbers, especially infinitesimal numbers. Using an infinite but hyper-
natural number of steps, these infinitesimals add up to "real" numbers that in turn 
represent time. A similar framework has been chosen in VHDL, where any causally 
related events must be separated by at least some infinitesimal duration, denoted δ 
and where only an infinite amount of delta steps have a positive duration. This 
framework thus imposes a weakened form of property 2b which is covered by the non 
Zenoness requirement 3a: an infinite number of steps cannot be done in zero time. 

Also in this model computations must be made countable, and in this case it is not 
totally clear what the introduction of hyper-reals brings in. In any case it seems more 
appropriate for modeling systems interacting with a continuous environment without 
sticking to a discretization a priori, similar as hybrid automata. Moreover, there is no 
validation method being able to profit from this fine grained modeling concept. 

4.4   SDL Time 

SDL is promoted for the specification and design of distributed real-time systems. 
However, its support for real-time behavior is essentially limited to the use of timers 
and the underlying notion of global system time. In SDL, time is considered as exter-
nal to the system and the system can only react depending on time (like in ASML). 
Time can basically pass everywhere, e.g. in states, in tasks, in evaluations of guards, 
and in communications. There is no means in SDL to limit these durations (such 
means are meant to be left to particular implementations). There are two exceptions to 
this general concept: there exists a notion of “nodelay” channel where sending and 
receiving a signal takes place at the same point of time. Also, once a transition has 
been detected as enabled, it must be taken as soon as possible, i.e. immediately. 

The formal semantics of SDL 2000 has been defined in terms of ASM [3]. In this 
work we have introduced time as a monitored variable of type real with only very few 
constraints, in particular the one saying that the values of time must be increasing6. 
We had problems to define sending over nodelay channels (which is at the semantic 
level represented by a sequence of actions) due to the fact that all ASM frameworks 
insist on enforcing at least property 2c (non zero delay between causally related 
events).  

                                                           
6 In fact, this is very similar to the approach in [2], mentioned earlier. 



5   A proposal for representing and handling time in ASM 

In ASM there exists no predefined notion of time, but an appropriate representation 
of time may be introduced explicitly, depending on the nature of the system to be 
modeled. We propose the introduction of some primitive and derived features defin-
ing a framework compatible with properties 1 and 2a, and where the other properties 
can be chosen freely.  

Reading time 
We want to be able to model systems in which the behavior can depend explicitly on 
time. For this purpose, we introduce an explicit expression allowing to access time in 
moves 
monitored now: Time 

which provides in any move m the current instant when(m), which is also the exit 
time of the preceding and the entry-time of the next state.  

This function is monitored, that is defined by the environment. The occurrence 
time of an event can be constrained by a guard which may depend on the current state 
and the occurrence time of any causally preceding event7.  

Time progress and urgency 
We are interested in simulated time where the possible evolutions of the values of 
now may depend on system progress. In particular, we need to describe timed behav-
iors, in which the time distance between two moves is within some interval like re-
quired by properties 4. Due to the partial order semantics, in ASM, an explicit notion 
of urgency is not needed, when each agent has at any point of time only one enabled 
transition. But there are two situations, where the explicit definition of urgency is 
useful: 

• when an agent has two alternative transitions, t1 enabled upto 5ms and t2 en-
abled after that time, then, one wants to express the fact that if the first one is 
enabled, then it will be taken, whereas the second is not possible. 

• It is also useful to distinguish between transitions that are taken at the point 
of time at which they become enabled (they do not necessarily have a time 
dependent guard) and those which may be delayed. 

Adopting maximal urgency as a general principle, both situations can be handled by 
adding transitions and by strengthening guards. In the first case, an additional transi-
tion t0 is taken as soon as t1 gets enabled, and t0 disables t2 and decides some arbitrary 
waiting time before t1 is taken.  

In order to obtain more readable timed ASM specifications, we propose the intro-
duction as a shorthand of a notion of urgency associated with transitions, as defined 
in the context of timed automata. 

                                                           
7 Like any value, the value of the occurrence times of events can be stored in variables and 

made locally or globally accessible 



Updates which take time 
We consider ASM models where state changes correspond to events and time passes 
in states. In order to simplify the expression of models where the application of up-
date rules are interpreted as activities taking time, it is possible to define a notion of 
“timed update rules”, which associate with an update rule a time guard, expressing 
when it can be started, an urgency, expressing when it must be taken, and a duration 
(in fact a constraint on its duration) expressing when it will be terminated. This is a 
shorthand which can be translated into a sequence of two moves where the first move 
just starts to count time8 and the second one checks the constraint on the termination 
time and does the actual update. 

6   Summary and Conclusions 

We have discussed a set of properties which can be used to characterize and distin-
guish existing formalisms for the description of timed behaviours.  

We have come to the conclusion that the best way of adding time to a system is: 
1. No time progress in state changes, they are instantaneous. 
2. Time progresses in states. 
3. Time values are attached to state changes. 

Apart from these general guidelines, there are several ways to adapt the time mecha-
nism to the application, and some high level derived notations are proposed, which 
have been proven useful in practise and which lead to more readable models 
Another conclusion is that the fact that in ASM there exists no explicit notion of input 
of an update, but only a state, shared between system and environment, complicates 
the introduction of an appropriate notion of time within this framework. In particular, 
if time is part of the state, time progress is a state change leading to several unwanted 
state changes. A framework in which time passes in states and transitions represent 
instants is more flexible than one in which transitions “take time”, and most formal-
isms existing in the literature are of this kind. In order to obtain such a framework for 
ASM in a convenient manner, we consider time as visible only in transitions and not 
in states. 

A final observation is that frameworks for modelling timed systems defined inde-
pendently of ASM do generally admit causal chains taking zero time, at least as long 
as there only finitely many zero time steps in a row. All the papers on time extensions 
of ASM we have studied make an important point out of the requirement of absence 
of such zero time steps. May be this should be reconsidered.  

We thank the ASM community for many helpful remarks during the period of 
writing of this article and for many interesting discussions around this topic. 

                                                           
8 It might also make the local state inaccessible to other agents. 
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