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Abstract This paper presents a case study in UML-based
modeling and validation of the intricate timing aspects arising
in a small but complex component of the airborne Medium-
Altitude Reconnaissance System produced by the Nether-
lands National Aerospace Laboratory. The purpose is to show
how automata-based timing analysis and verification tools
can be used by field engineers for solving isolated hard points
in a complex real-time design, even if the press-button veri-
fication of entire systems remains a remote goal. We claim
that the accessibility of such tools is largely improved by the
use of an UML profile with intuitive features for modeling
timing and related properties.
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1 Introduction

The analysis and design of real-time systems often raises
highly intricate problems as system development aims to pre-
serve certain timing conditions and guarantee that the system
responds appropriately and in a timely fashion to a complex
environment. The cause of this intricacy is the very nature of
time, which (at the level of human perception and of presently
designed systems) appears as an absolute, global notion, thus
implicitly aggregating the relative and local timing condi-
tions appearing in system design.

The construction of systems based on local hypotheses and
local solutions is nevertheless a mandatory requirement for
being able to design nontrivial systems by functional decom-
position. Consequently, designers seem to be obliged to build
systems by component aggregation, without knowing a priori
what effect this aggregation will have on the timeliness of
each component and of the system as a whole. Examples of
unexpected timing conditions resulting from this aggregation
will be shown by using the case study presented in this paper.

One solution to this problem lies in using automated tools
to analyze the timeliness of a system. When timing aspects
are limited to task execution times, task activation time
constraints, and task deadlines, it is often possible to use
scheduling theory (e.g., rate monotonic analysis or response
time analysis [6]) and tools such as MAST [12]. Howe-
ver, when the functionality of the system itself depends on
timing aspects (time-adaptive systems), as in the case of the
Medium-Altitude Reconnaissance System (MARS) system
presented in this paper, one has to use general modeling
and property verification frameworks to analyze timeliness.
There are two large classes of methods: model checking,
which analyzes a semantic model algorithmically, and theo-
rem proving. This paper is about using a model-checking
approach, which is more automatic. Very high-level
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parametric models are sometimes better tackled by proof-
based techniques; however, in general these models are ela-
borated by verification experts rather than the engineers that
develop the system, and the distance between these high-level
models and the developed system may be important; e.g.,
when using duration calculus [7] as the verification frame-
work, almost all of the functional model has to be abstracted.

Nevertheless, automated verification tools have well-
known limitations, and a first obstacle to putting these tools
to work effectively is that designers have to understand them
and build models with these limitations in mind. From our
experience, interesting insights into the timing aspects of a
system are usually gained only when the (unrelated) details
of the functional part are abstracted away. Not many software
engineers do this naturally, but they can learn to do so when
they see the benefit.

The second obstacle is the complexity of the formalism
for capturing a timing model and its properties. Although
from a theoretical point of view the verification approach
we propose in this paper is very close to what is done in
“traditional” timed model checking tools such as Kronos [22]
or UPPAAL [2], the main difference lies in how designers
model their system and its properties. We argue that a tool
is more easily adopted if the formalism it uses is intuitive
for the designers and based on concepts that they already
know. In the literature there are various extensions of tem-
poral logics with quantitative time operators, which have the
required expressiveness. However, from our experience, pro-
perty formalisms based on familiar concepts (such as state
machines) are more easily accepted by users and are more
expressive.

In this paper, we present the results of a case study conduc-
ted jointly by experts and industrial users, in which mea-
ningful results about timing properties of the studied system
were obtained by analyzing a model tailored for this purpose
using a user-friendly UML-based tool. The rest of the paper
is structured as follows: Sect. 2 presents the case study, with
focus on the timing aspects. Section 3 presents the modeling
of this case study using a specific formalism (the OMEGA
UML profile), the main results of timing validation, and the
techniques employed during the experience. In Sect. 4, we
discuss some conclusions that can be drawn from this study.

2 The MARS system

2.1 Overall presentation

The acronym MARS stands for Medium-Altitude Reconnais-
sance System. The system controls a high-resolution photo
camera embedded in a military aircraft, taking pictures of
the ground from medium altitude. The system counteracts
the image quality degradation caused by the forward motion

of the aircraft by creating a compensating motion of the film
during the film exposure. The system is also responsible for
annotating the frames with the current time and position. The
system also performs health monitoring and alarm processing
functions.

Exposure control [forward motion compensation (FMC)
and frame rate] as well as annotations are computed in real
time based on the current aircraft altitude, ground speed,
navigation data (latitude, longitude, heading), time-of-day,
etc. These parameters are acquired from the avionics data
bus of the aircraft.

2.2 The Databus Manager

For the purpose of this case study we concentrated on a sub-
system of MARS that presents interesting timing problems.
This subsystem, called the Databus Manager (DM in the fol-
lowing) monitors the health of the data bus controller and, in
general, the health of the communication going on through
the data bus.

The MARS system receives data concerning altitude and
navigation from other components of the avionic system.
The DM component supervises the (non-)reception of data
messages, and provides a status, which is used by the sys-
tem’s alarm logic. In addition, the DM periodically polls the
databus controller and changes its status when the control-
ler fails/recovers. Thus, the status computed by the DM has
three values: Operational, BusError, and ControllerError.
The precise requirements on the DM status computation are
described below.

The two types of data inputs of the DM are received perio-
dically, with a period of P = 25 ms and a jitter of±J = 5 ms,
and may occasionally be lost. The periods are not synchroni-
zed and may have an arbitrary offset smaller than the length
of one period. Figure 1 shows a possible configuration of the
reception windows along the time axis (windows in which
no message reaches the DM are marked with K O).

The basic functional requirements on the DM status are:

• Failure of the controller leads to a change of status to
ControllerError. Recovery leads to BusError.

• Status changes from BusError to Operational when two
correct consecutive messages are received from both
sources (assuming no controller error).

• Status changes from Operational to BusError when three
consecutive messages from a source are lost (assuming
no controller error).

We note that these requirements do not define quantita-
tively the moment when the status change takes place. In
fact, maximal reactivity is desirable. Two reactivity measures
(at least) can be defined for the DM :
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Fig. 1 Timing diagram showing the message emission windows, DM status, and reactivity measures

• Reactivity to errors, defined as the upper bound that the
DM guarantees for the time (R1) between the last cor-
rectly received message from the source causing a switch
to BusError, and the actual moment of the switch.
Analysis shows that R1 is necessarily greater than 85 ms
(3P + 2J ). The actual reactivity depends on the imple-
mentation chosen for the DM , as we will see in the next
section. This value of 85 ms gives us an ideal reactivity
that should be approached.

• Reactivity to recovery, defined as the upper bound that
the DM guarantees for the time (R2) between the first
message in a series of correct messages leading to a switch
to Operational and the actual moment of the switch.
In this case, R2 depends on the offset between the periods
of the two data sources. However, even in the worst case
R2 is less than 60 ms (2P + 2J ).

The experiments we conducted are described in the next
section. They had two goals:

(1) to check that the proposed implementations for the DM
verify the aforementioned functional properties

(2) to determine the reactivity bounds offered by the dif-
ferent proposed implementations (and determine the
optimal solution).

3 UML modeling and validation experiments

3.1 Background on OMEGA UML and the IFx toolset

The MARS subsystem was modeled using the OMEGA UML
profile and timing and functional validation was performed
using the IFx toolset. Here we briefly introduce these tech-
nologies; for further details we refer the reader to [11,19]

OMEGA UML is an executable UML profile designed to
suit the needs of designers of real-time embedded systems.
It is comprised of: (1) a complete syntax and operational

semantics which makes choices with respect to the UML
semantic variation points left open in the standard (e.g.,
concurrency model, object interaction primitives, concrete
syntax of actions) and (2) extensions for describing timing
aspects, which can be compared to those defined in the
MARTE profile [20] (but much simpler and more limited
in scope).

The semantic choices (1) largely correspond to the compu-
tation model of the Rhapsody UML tool (see [14] for details);
for the complete semantics of OMEGA UML we refer the
reader to [8].

The syntax of actions, used for specifying method bodies
and transition effects (see, for example, Figs. 2 and 3) is fixed
by the OMEGA action language (OMAL). This imperative
language covers object creation and destruction, operation
calls, expression evaluation, variable assignment, signal out-
put, return action, and control flow structuring statements
(conditionals and loops). The concrete syntax relies on com-
monly used conventions in object-oriented languages and is
not further detailed.

The timing aspects (2) are described in detail in [11].
The profile is compatible with the basic time-related notions
of UML 2.0 by defining a series of lightweight extensions

: DatabusManager

AltMsgTimeoutCount : int
NavMsgTimeoutCount : int
altDataTimer : Timer
navDataTimer : Timer

: ContollerMonitor

currentStatus : int
previousStatus : int

: DatabusController

status : int

altDataSource : DataSource

cOffset : Clock
tPeriod : Timer
cJitter : Clock

navDataSource : DataSource

cOffset : Clock
tPeriod : Timer
cJitter : Clock

: MARS system : Environment

Fig. 2 State machine of the DatabusManager
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ControllerError

Operational

BusError

timeout(altDataTimer)/
begin
 AltMsgCount := 0;
 altDataTimer.set(25)
end

evNavDataMsg()/
begin
 NavMsgTimeoutCount := 0;
 navDataTimer.set(35)
end

evControllerError()/begin
  navDataTimer.reset();
  altDataTimer.reset()
end

evAltDataMsg()/
begin
 if (AltMsgCount < 2) then
   AltMsgCount := AltMsgCount + 1
 endif;
 altDataTimer.set(35)
end

[NavMsgCount >= 2 and AltMsgCount >= 2]/begin
 NavMsgTimeoutCount := 0;
 AltMsgTimeoutCount := 0
end

timeout(navDataTimer)/
begin
 NavMsgCount := 0;
 navDataTimer.set(25)
end

timeout(navDataTimer)/
begin
 NavMsgTimeoutCount := NavMsgTimeoutCount + 1;
 navDataTimer.set(25)
end

[NavMsgTimeoutCount = 3 or AltMsgTimeoutCount = 3]/begin
  NavMsgCount := 0;
  AltMsgCount := 0
end

evNavDataMsg()/
begin
 if (NavMsgCount < 2) then
   NavMsgCount := NavMsgCount + 1
 endif;
 navDataTimer.set(35)
end

timeout(altDataTimer)/
begin
 AltMsgTimeoutCount := AltMsgTimeoutCount + 1;
 altDataTimer.set(25)
end

evAltDataMsg()/
begin
 AltMsgTimeoutCount := 0;
 altDataTimer.set(35)
end

/begin
 NavMsgCount := 0;
 AltMsgCount := 0
end

evControllerError()/begin
  navDataTimer.reset();
  altDataTimer.reset()
end

evControllerOK()/
begin
 NavMsgCount := 0;
 AltMsgCount := 0
end

Fig. 3 Observer for verifying the reactivity bound for R1

to UML for describing time-driven behavior using timers,
clocks, and timed guards. In addition it allows the definition
of transition urgency, a concept taken from timed automata
with urgency [5]. For the expression of timing and functional
requirements, the OMEGA UML profile proposes notions of
events and observer objects. Events are any semantic-level
state changes; the profile defines a concrete notation for refer-
ring to them in the model. Observers are characterized by
a state machine which reacts to the aforementioned events
and to conditions occurring in the system, and acts as an
acceptor of system executions by using states stereotyped
with <<error>> as final states. An example of a property
expressed by observers appears later in the paper (Fig. 3).

The IFx toolset offers simulation and verification functio-
nality for OMEGA UML models. It works by translating the
models (which are given as XMI files exported from UML
editors such as Rational Rose or Rhapsody) into the input
language of the IF model checker [3], a language based on
extended communicating timed automata. The details of the
translation and tool integration can be found in [19].

The IF model checker contains a state-space exploration
engine and is designed to scale to complex models by pro-
viding several optimizations and support for abstraction. The
tool implements static and dynamic optimizations such
as dead variable factorization, dead code elimination,

partial-order reduction, and abstract interpretation of clocks.
All optimizations strongly preserve timed safety properties
which are of interest in the MARS system. In addition, the
tool supports simple abstractions which preserve satisfac-
tion of safety properties, but may show spurious counte-
rexamples.

3.2 Overview of the UML model for MARS

The architecture of the MARS model as proposed by the desi-
gner of the system is shown in the UML composite structure
diagram in Fig. 4. The main component is the DatabusMa-
nager object which maintains the global status and moni-
tors message loss. For simplicity, the designer has separated

Init

/cOffset.set(0)

WaitCycle ProduceData

[cOffset <= 25]
/ tPeriod.set(25)

timeout(tPeriod) /
begin
  cJitter.set(0);
  tPeriod.set(25)
end

[cJitter <= 10]
/ self.sendData()

[cJitter <= 10]
/ informal "lost data"

Fig. 4 Composite structure of the MARS model
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init

wait

match send evAltDataMsg() to dm
[dm @ Operational] /
c.set(0)

match send evAltDataMsg() to dm /
c.set(0)

C

[dm @ ControllerError]

[dm @ BusError]

[ c = BR1 ]

<<error>>
KO

[dm @ Operational]

<<observer>>
PR1

BR1 : int
c : Clock

Fig. 5 Environment model: state machine of the data sources

the polling of the bus controller into a different object, the
ControllerMonitor.

In order to verify the DM under the assumptions on mes-
sage arrival and controller errors mentioned in Sect. 2.2, the
OMEGA profile allows the environment to be modeled using
the same concepts as used for modeling the system, in par-
ticular an explicit object with the behavior expressed by the
assumption. In Fig. 4, we see therefore three environment
objects, corresponding to the altitude data source, the navi-
gation data source, and the bus controller.

In particular, for modeling the environment, the possibi-
lity to express nondeterministic behavior is important. This is
allowed in the OMEGA profile; for example, Fig. 5 shows the
state machine of data sources, using interval conditions on
clocks to model the nondeterminism introduced by the star-
ting time and by jitter. This state machine indeed describes
a data source with the required period and jitter as all tran-
sitions of environment objects are interpreted as delayable1,
that is, once they are enabled, they will be taken before their
time guard becomes false or they may be disabled by some
discrete transition. Moreover, Zeno computations2 are not
valid computations, which guarantees in this example that
the computation cannot become stuck in any state (since in
every state there is an upper bound on the time that may pass).

As we will see later, the requirements concerning the
DM can be achieved in several ways. The first design pro-
vided by the engineer consisted of a single state machine
with transitions triggered by events from both data sources
(evAlt DataMsg, evNavDataMsg) and from the Control-
lerMonitor (evController Error , evController O K ), or by
timeouts corresponding to message loss detection
(alt DataT imer , navDataT imer ). The principle is to use
a timer to measure the duration of the period for each data

1 According to the terminology defined in timed automata with
urgency [5].
2 Computations with an infinity of steps but with finite time progress.

source—where the end of the period is defined by the
reception of a message, where the timer is re-armed, or a
timeout—and to always keep track of the number of conse-
cutive received or lost messages.

3.3 Expressing properties and first evaluation results

Both the functional and the reactivity properties described
in Sect. 2.2 can be expressed as observers to be verified on
this model. Figure 3 shows the observer checking a bound
guaranteed for R1, that is, the maximal delay needed for
transmission problem detection (Sect. 2.1). Note that obser-
ver transitions synchronize with observed events, and thus
take place at the same time point as the observed event. Note
also that this observer monitors only one data source (the
altitude data source); due to the symmetry of the model, the
failure of the other source will result in the DM switching to
the Bus Error state in the same time interval.

All functional and reactivity properties were verified
against the initial design presented above. Due to the impor-
tant state explosion encountered, a simplifying assumption
was made on the environment: we consider that the two data
sources are synchronized (i.e., their period of 25 ms begins
at the same time in every cycle; the two data can neverthe-
less be sent at different moments due to jitter). It is clear that
this assumption is not conservative as the reaction time due
to message loss may (and is likely to) be longer when the
two data sources are desynchronized. In order to verify the
properties fully without this nonconservative assumption, a
different model for the DM had to be designed, which is
presented later on.

Nevertheless, this initial model was useful for unders-
tanding the potential problems, debugging the model, and
ruling out some variants that had been proposed to increase
efficiency. Under the simplifying assumption, all functional
properties have finally been proved to hold on debugged ver-
sions of the DM design.

An interesting outcome is that very similar designs may
present different reactivity bounds. For example, consider a
slight variant of the design model presented above, in which
in the operational state a long timeout is used, detecting the
absence of messages during three consecutive periods, ins-
tead of detecting the absence of individual messages and
counting them. At first sight, this version looks more effi-
cient as it does not need a counter in the operational state.

Using different variants of the reactivity constraints defi-
ned by the observer in Fig. 3, we have determined with the
help of our verification tool that the initial design has a better
reactivity (85 ms) than the new one (110 ms). As the moti-
vation for the entire case study was to gain reactivity with
respect to the existing synchronous design, which observes
events only at fixed time points, this is not an acceptable
solution.
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The diagnostic traces provided by the model checker show
that the difference stems from the status of the timers at the
transition from the BusError to the Operational state: in the
initial version, timers are not affected by a status change, they
just count periods of the data sources, while in the new ver-
sion, the long timer is not needed in the error state and initia-
lized when entering the operational mode. This might delay
the detection of a bus error occurring just at this moment by
an entire period. In order to correct the problem, the timer
must be set depending on the actual “age” of the “period”
timer used in the error state.

This kind of errors is quite common when trying to opti-
mize a design, and the tools were very helpful for checking
all the properties after any modification. This allows feed-
back to be obtained immediately, as running the verification
is generally fast (see also the table). Another group has used
in parallel tool-based automatic or interactive theorem pro-
ving. They could prove a parametric version of the property
which is impossible to prove with a model-checker such as
ours, but they were grateful for the quick feedback provided
by our tool: once we had a (simplified) working model on
which the properties could be shown to hold, we could ana-
lyze small modifications of the UML model, just by “pushing
the button” to translate the model and then re-running the
verification of all properties to find bugs.

3.4 Use of a compositional model and abstractions

In order to verify fully the desired properties without
imposing unrealistic assumptions on the environment, we
need to use conservative abstractions in the model of the
DM . In order to do so, a more compositional model has
been designed. The DM is decomposed into several parts
(Fig. 6):

• A Receiver component for each data source. This com-
ponent supervises the messages sent by one source and
keeps track of the correct and erroneous messages during
the last three reception windows. It sends out a signal
evCnt with a numeric parameter of three bits, which repre-
sents the status of the last three reception windows (one
for a correctly received message, 0 for a missed message,
where the least significant bit corresponds to the most
recent message).

• An ErrorLogic component, which receives evCnt mes-
sages from the Receivers, and which maintains the global
status. It goes from the BusError state to the Operational
state when all Receivers have received correct messages
during the last two reception windows. It goes from the
Operational state to the BusError state when at least one
Receiver has received no correct messages during the last
three reception windows.

DatabusManager

nr : Receiver

ar : Receiver

: ErrorLogic

fromControllerMonitor

fromDataSource1

fromDataSource2

Fig. 6 Decomposition of the DM

Using this model, we could verify all properties for the
general case of desynchronized sources, using a compositio-
nal and conservative abstraction.

The abstraction used consists of replacing one Receiver
with a chaotic abstraction ReceiverAbs which may send evCnt
with any parameter at any time. This is a very rough approxi-
mation of the source–receiver pair, but it proved to be suf-
ficient for preserving the desired properties. The abstraction
is particularly interesting as it allows a generalization to a
system with more than two data sources.

A second conservative abstraction used consisted of repla-
cing the deterministic polling cycle of the ControllerMonitor
(10 ms in the initial model) by a completely nondeterministic
polling policy. While this introduces new executions, impos-
sible in the initial model, the resulting state space is smaller as
many previously disjoint states are grouped together (when
a symbolic representation of time is used in the verification
tool).

To assess the efficiency of these abstractions, the table
in Fig. 7 shows the size of the state space and the proces-
sing time for several configurations of the MARS system.
In particular, desynchronizing two resources has a tremen-
dous effect on the size of the state space, which is in fact
due to the simultaneous presence of jitter and desynchroni-
zation. Notice that the effect is much more important than it
appears, as we stopped the exploration when, after reaching
1 million states and 10 min, the state space was still growing
rapidly—experience told us that it was likely not to be worth
to wait any further: even if the exploration were to converge
(which we did not really anticipate) the result was not very
useful to us, as we wanted to be able to rerun experiences
on variants in a short time. As we have not run our expe-
riences on particularly well-equipped machines (especially
in terms of memory), this means that we still have the poten-
tial to extend the approach by a few orders of magnitude and
handle slightly more complex systems.

The use of both types of conservative abstractions leads
to a state space of about the same size as the much simpler
system with synchronized sources, and which is still precise
enough to satisfy all properties.
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Fig. 7 Verification times and
state-space sizes for different
verification configurations

4 Conclusion

The experiment presented here has shown that timing ana-
lysis tools may be used efficiently for solving isolated, hard
timing problems in a UML design, even if fully automated
verification for large designs remains a remote goal. Also we
believe that more systematic use of functional decomposi-
tion, as used in the example, can definitely enable the verifi-
cation of much larger designs in a compositional fashion, as
there is no need for the verification of a model in which all
parts are described in full detail.

The use of the OMEGA UML profile in order to capture
timing models and properties facilitated very quick learning
and adoption of our tools by experienced UML designers.
Without the knowledge of a verification expert, the designers
were able to use even advanced techniques such as abstrac-
tions.

A very efficient abstraction technique in such models is the
relaxation of timing constraints, which is usually very simple
to model (in many cases it involves only the change of the
urgency attribute of some transitions in the system model).
Since this kind of abstraction is always an overapproximation
of the system’s behavior, it is always conservative for the
satisfaction of safety properties, including timed ones.

On the other hand, functional abstractions may be less
obvious and may imply a refactoring of the system, as was
shown in Sect. 3.4. The experience and intuition of the analyst
plays a big role in identifying and modeling such abstractions.
The MARS example showed that, by practice, a designer can
acquire these skills and design abstractions that do not break
the verified properties (for example, the ones presented in
this paper did not introduce any spurious error trace).

Related and future work

A number of tools have been proposed for the validation of
UML models by translating a subset of UML into the input
language of some existing validation tools (see [1,4,9,10,16–
18,21] to mention only some of the relevant work in the
context of real-time and embedded systems). Like IFx, most
of these tools are based on existing model checkers such
as SPIN [15] (in [17,18]) or COSPAN [13] (in [21] for
untimed systems, and Kronos [22] (in [4]) or UPPAAL [2]
(in [10,16]) for the verification of systems with timing
constraints. Also the translation into proof-based frameworks
has been proposed.

With respect to the coverage of UML concepts, IFx goes
beyond many existing tools, as it handles a rich subset of
UML including inheritance, dynamic object creation, and
powerful timing features. Most of the cited UML validation
tools are restricted to static systems, fitting exactly the for-
malism of the underlying model checker. Often they handle
properties written in the property language of the model che-
cker, without defining an appropriate formalism, whereas IFx
proposes to use OMEGA observers for this purpose.

While our tool does not push forward the theoretical boun-
daries of verification technology, it presents a unique combi-
nation of features which prove to be very efficient in fighting
scalability problems encountered in practice. It includes and
combines the on-the-fly exploration of SPIN, the symbolic
representation of time constraints of Kronos and UPPAAL,
bisimulation-based reduction techniques, and adds
verification-targeted optimizations based on static analysis,
as well as support for industry standards such as SDL and
UML.
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At the request of the European Space Agency, the authors
are currently planning to update the tool and to integrate it
with the latest version of the Rhapsody environment.
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