
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Validating timed UML
models by simulation and
verification ?

Iulian Ober
Susanne Graf
Ileana Ober

VERIMAG
2, av. de Vignate
38610 Gières, France
E-mail: e-mail: {ober,graf,iober}@imag.fr

The date of receipt and acceptance will be inserted by the
editor

Abstract. This paper presents a technique and a tool
for model-checking operational (design level) UML mod-
els based on a mapping to a model of communicating ex-
tended timed automata. The target language of the map-
ping is the IF format, for which existing model-checking
and simulation tools can be used.

Our approach takes into consideration most of the
structural and behavioral features of UML, including
object-oriented aspects. It handles the combination of
operations, state machines, inheritance and polymorphism,
with a particular semantic profile for communication
and concurrency. We adopt a UML profile (defined in
[22]) that includes extensions for expressing timing. The
breadth of concepts covered by our mapping is an im-
portant point, as many previous approaches for applying
formal validation to UML put stronger limiting condi-
tions on the input models.

For expressing properties about models, a formalism
called UML observes is defined in this paper. Observers
reuse existing concepts like classes and state machines,
and they may express a significant class of linear tem-
poral properties.

The approach is implemented in a tool that imports
UML models from an XMI repository, thus supporting
several editors like Rational Rose, Rhapsody or Argo.
The generated IF models may be simulated and verified
via an interface that presents feedback in the vocabulary
of the original UML model.

? This work is supported by the OMEGA European Project
(IST-33522). See also http://www-omega.imag.fr

1 Introduction

This paper presents a technique and a tool for validat-
ing UML models by simulation and property verifica-
tion. We are focusing on UML as we feel some of the
techniques that emerged in the field of formal validation
are both essential to the reliable development of real-
time and safety critical systems, and sufficiently mature
to be integrated in a real-life development process.

Our past experiences (for example with the SDL lan-
guage [10]) show that this integration can only work
if validation takes into account widely used modeling
languages. Currently, UML based model driven devel-
opment encounters a big success with the industrial
world, and is supported by several CASE tools furnish-
ing editing, methodological help, code generation and
other functions, but very little support for validation.

This work is part of a broader project (IST
OMEGA [1]) which aims at building a UML-based
methodology and a validation environment for real-
time and embedded systems. An important part of this
project was concerned with defining a suitable UML
profile for real-time applications [15,13], and a formal
semantics of it [27]. The work presented in this pa-
per builds upon the foundation of this profile (called
OMEGA UML in the following) and is concerned only
with validation and tool-related issues such as: imple-
menting the semantics, defining a property specification
formalism and applying model-checking techniques. The
choices and the semantics of the profile itself are ex-
plained only to the extent necessary for understanding
the paper.

1.1 Basic assumptions

The following assumptions are the starting point for this
work :

– UML is broader than what we need or can handle
in automatic validation. In UML 1.4 [39] there are 9
types of diagrams and about 150 language concepts
(metaclasses). Some of them are too informal to be
useful in validation (for example use cases) while for
others the relationships and the coherence with the
rest of the UML model are not clearly (nor uniquely)
defined (for example collaborations, system-level ac-
tivity diagrams, deployment diagrams).
In consequence, in this work we focused on a subset of
UML concepts that define an operational view of the
modeled system: objects, their structure and their
behavior.

– UML has neither a standard nor a broadly accepted
dynamic semantics. The OMEGA profile used in this
work defines a semantics for UML which is suitable
for distributed real-time applications. It identifies
necessary concepts such as the mechanisms of com-
munication between objects, the concurrency model,

2 Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification

the formalism for specifying actions and timing. The
main aspects of this semantics are presented in sec-
tion 2.

– To produce powerful tools we have to build upon the
existing. This motivates our choice to do a transla-
tion to the IF language [8,11], for which there exists
a rich set of tools performing static analysis, model
checking, model construction and manipulation, etc.
The experiments performed so far confirm that many
of theses tools function on UML-generated models.
Moreover, mapping UML to IF yields a flexible im-
plementation of the OMEGA semantics in which one
can test semantic choices and propose improvements.
On the side of model editing, we are using common
UML CASE tools such as Rational Rose or I-Logix’s
Rhapsody, via the standard XML representation for
UML (XMI).

1.2 Overview of our approach

The approach presented here covers an operational sub-
set of UML (presented in section 2). The structure
of models is captured through class definitions, linked
by association relationships, aggregation or inheritance.
The behavior of each class is described in the standard
way by means of state machines and operations, contain-
ing structured imperative actions. A particular model of
concurrency and communication is adopted. The combi-
nation of all these features, goes beyond previous work
done in this area (see section 1.3), which has until now
mainly focused on verification of statecharts.

This semantics is implemented by translating UML
models to IF descriptions. IF [7] is a formal lan-
guage based on communicating extended timed au-
tomata (CETA), for which there exist powerful valida-
tion tools[8,11], and which has been productively used
in a number of research projects and case studies [9,21].
The main features of the IF model are presented in sec-
tion 1.4. The translation is explained in section 3.

An important issue in designing real-time systems is
the ability to capture quantitative timing requirements
and assumptions, as well as time dependent behavior.
A set of timing extensions for UML are defined in the
OMEGA profile [22,20], and are summarized in section 4
together with their mapping to IF.

Section 5 presents a lightweight extension of UML
(observers classes) which is used as a property descrip-
tion language. Instances of observer classes may express
a large class of linear temporal properties, by using a
specific semantics for their state machines. Experience
shows that the use of such familiar concepts alleviates
the cultural shock of introducing formal verification to
UML users.

Section 6 presents the UML validation toolset IFx.
The various functions of the tool, ranging from static
analysis and optimizations to model generation and
model checking, are presented in section 7 on a concrete

and complex example – the Ariane 5 flight configuration
software.

1.3 Related work

The application of formal analysis techniques (and par-
ticularly model checking) to UML is a very active field
of study in recent years, as witnessed by the number of
papers on this subject ([34,35,33,31,30,41,18,19,44,4]
are most oftenly cited).

Like ourselves, many of these authors base their work
on existing model checkers (SPIN[26] in the case of [34,
35,33,41], COSPAN[25] in the case of [44], Kronos[45]
for [4] and UPPAAL[29] for [30]), and on the mapping
of UML to the input language of the respective tool.

For specifying properties, some authors opt for the
property language of the model checker itself, e.g., [33–
35]. Other authors [30,41] use UML collaboration or se-
quence diagrams, which specify required or forbidden se-
quences of messages between objects, but are too weak
to express more complex properties. We propose the use
of a variant of UML classes and state machines to ex-
press properties.

Concerning language coverage, all previous ap-
proaches are restricted to flat class structures (no inher-
itance) and to behaviors, specified exclusively by state-
charts. In this respect, many important features which
make UML an object-oriented formalism (inheritance,
polymorphism and dynamic binding of operations) are
missed. The approach presented in this paper is, to our
knowledge, the first to fill this gap. However, the material
cited above, together with previous work on Statecharts
([24,16,37] to mention a few), provided us inspiration
for handling of UML state machines.

The concurrency model of the OMEGA profile is
inspired by the concurrency model of the Rhapsody
tool [23]. The improvements are the formalisation of
its semantics, and a more relaxed interpretation of non-
determinism which allows a higher level of abstraction
and opening to different implementations (Rhapsody
models have a predefined scheduling scheme). In the def-
inition of the profile we also took inspiration from our
previous assessment of the UML concurrency model [38],
and from other positions on this topic (see for example
[43]).

Finally, the work presented in this paper is part of a
broader effort [1] to produce a toolset and a methodol-
ogy which integrate UML and formal techniques for the
development of real-time and embedded systems. The
framework supports activities like:

– static well formedness checks
– timed model checking models against observers (pre-

sented here) as well as scheduler analysis based on a
timed automata model

Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification 3

p : P

+
 int
 x

-
 array A

-
 timer
 t

<<process>>

s

t

?s(x)
 [x=0]

// A[1] = x

int
 p1

<<signal>>

s

<<process>>

q
 :
 Q

<<process>>

r
 :
 R

[t=0]

instances

shared

variable

(hierarchical)

state machine

time triggered

transition

signal queue

signal

definition

rendez-vous

Fig. 1. Constituents of a communicating extended automata
model in IF.

– non-timed model checking against LTL formulas or
LSC specifications (a variant of interaction diagrams
with stronger structuring constructs [14])

– state diagram synthesis from LSC specifications
– deductive verification using the interactive theorem

prover PVS: compositional verification, consistency
checks and reasoning with OCL specifications

For more detail, the reader is referred to [1].

1.4 The back-end: model, techniques, tools

The validation approach proposed in this work is based
on the formal model of communicating extended timed
automata and on the IF environment built around this
model [8,11,12]. We summarize the elements of this
model in the following..

Modeling with communicating extended timed
automata

The IF language and the associated toolset developed
at VERIMAG are conceived for modeling and validat-
ing distributed systems which can manipulate complex
data, and which involve dynamic aspects and real time
constraints. The IF language is sufficiently expressive to
describe the operational semantics of higher level for-
malisms such as UML or SDL, and is also used as a
format for inter-connecting model-based tools.

An IF description defines the structure of a system
and the behavior of its components. A system is com-
posed of a set of communicating processes that run in
parallel (see figure 1). Processes are instances of process
types. They have their own identity (PID), they may own
complex data variables (defined through ADA-like data
type definitions), and their behavior is defined by a state
machine. The state machine of a process type may use
composite states and the effect of transitions is described
using common (structured) imperative statements.

The notion of process is similar to the notion of ob-
ject from object-oriented languages. The difference is
that a process type does not define operations, and there

is no notion of inheritance, which makes it easier to de-
scribe their formal semantics in terms of finite automata.
Operations, inheritance and other notions may be lay-
ered on top of the IF model resulting in a more modular
definition of the semantics of object models (see section 3
.

Processes may inter-communicate via asynchronous
signals (similar to the UML 1.4 homonym), via shared
variables (corresponding to public attributes in UML),
or via synchronous rendez-vous. Asynchronous signals
are buffered in input queues (one for each process). Par-
allel processes are composed asynchronously (i.e. by in-
terleaving). The model allows dynamic creation of pro-
cesses, which is an essential feature for modeling object
systems.

IF provides support for real time constraints ex-
pressed using clock variables and guard conditions on
them. The values of such variables increases with time.
The underlying semantics is based on finite timed au-
tomata with urgency [3,5].

For more details on the IF model and its semantics,
the reader is referred to [8,11,12].

A framework for modeling priority

On top of the set of processes, one may specify a set
of system-wide priority rules of the following form:

StateCondition(p1, p2)⇒ p1 ≺ p2

The rules are evaluated at each stable state of the sys-
tem and they define a partial priority order between pro-
cesses: for every pair of distinct PIDs (p1, p2), if the con-
dition StateCondition(p1, p2) holds in the current sys-
tem state then the process with ID p1 has priority over
p2 for the next system step. This means that if p1 has
an enabled transition, p2 is not allowed to execute.

This priority framework is formalized in [2].

Property description and verification with ob-
servers

Temporal properties may be expressed in IF using
observers. These are special processes which execute syn-
chronously with the system, and which may monitor
changes of state (variable values, contents of queues,
etc.) and events that occur (input and output of signals,
creation and destruction of processes, etc.).

For expressing properties, some of the states of an ob-
server may be classified (syntactically) as error states.
Thus, observers may be used to express safety proper-
ties. A re-interpretation of success states as accepting
states of a Büchi automaton could also allow observers
to express liveness properties.

IF observers are inspired by the observer concept in-
troduced by Jard, Groz and Monin in the VEDA tool
[28]. This intuitive and powerful property specification
formalism has been adapted over the past 15 years to
other modeling languages (LOTOS, SDL) and imple-
mented in industrial case tools like ObjectGEODE.

4 Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification

Analysis techniques and the IF-2 toolbox

The IF toolbox [8,11] is the validation environment
built around the language presented before. It is com-
posed of three categories of tools:

1. behavioral tools for simulation, verification of
properties, automatic test generation. The tools im-
plement state of the art techniques such as partial
order reductions and some form of symbolic simula-
tion, and thus present a good level of scalability.

2. static analysis tools which provide source-level op-
timizations that help reducing furthermore the state
space of the models, and thus improve the chance of
obtaining results from the behavioral tools. The im-
plemented data and control flow analysis techniques
are dead variable reduction, dead code elimination
and slicing.

3. front-ends and exporting tools which provide
an interface with higher-level languages (UML,
SDL) and with other validation tools (Spin [26],
Agatha [36], etc.)

The toolbox has already been used in a series of
industrial-size case studies [8,11].

2 The OMEGA UML profile

This section outlines the main features of the OMEGA
UML profile [32,17,15] implemented in our tools.

2.1 UML concepts covered

The operational subset of UML considered here consists
of the following model element types:

– Classes : active or passive (see section 2.2).
– Operations : triggered/primitive (see section 2.2),

constructors, destructors.
– Signals for asynchronous communication.
– Attributes with basic types or object reference types.
– Basic data types : currently Integer, Boolean, Real.
– Associations : simple and composite, with bounded

multiplicity.
– Generalizations. Their semantics involves polymor-

phism and dynamic binding of operations.
– Statecharts. They are not presented in detail in this

paper as already tackled in many previous works like
[34,35,33,31,30,41,19,44,4].

In order to describe a meaningful behavior for a UML
model, one also needs to describe actions. Actions in
UML describe the effect of a statechart transition, or
the body of an operation. Begining with version 1.4 of
UML, there is a standard for describing actions, but this
standard is defined only in terms of a metamodel (giving
the types of actions and their components). In order to

make it usable, one still has to define a concrete syntax,
which thus varies from one tool to another.

The OMEGA profile [32] defines a textual action
language compatible with UML 1.4, which covers: ob-
ject creation and destruction, operation calls, expres-
sion evaluation (including navigation expressions), vari-
able assignment, signal output, return action as well as
control flow structuring statements (conditionals and
loops). The details concerning the concrete syntax of this
action language are left out of the scope of this paper.

Additionally to the elements mentioned above, a
number of UML extensions for describing timing con-
straints and assumptions are supported. They were in-
troduced in [20,22] and are discussed in section 4.

2.2 The execution model

The purpose of this section is to illustrate some of the
particularities of the OMEGA model and not to give
its complete formal semantics, which may be found in
[17,15,27]. The execution model chosen in OMEGA and
presented here is an extension of the execution model
of the Rhapsody UML tool (see [23] for an overview),
which is used in a large number of UML applications.
Other execution models can be accommodated to our
framework by adapting the mapping to IF accordingly.
Activity groups and concurrency.

There are two kinds of classes: active and passive.
At execution, each instance of an active class defines a
concurrency unit called activity group. Each instance of a
passive class belongs to exactly one activity group, more
precisely to the group of the instance that has created
it.

Apart from defining the partition of the system into
activity groups, there is no difference between how ac-
tive and passive classes (and instances) are defined and
handled. Both kinds of classes are defined by their at-
tributes, relationships, operations and state machine,
and their operational semantics is identical.

Different activity groups execute concurrently, and
objects inside the same an activity group execute sequen-
tially. The consequence is that requests (asynchronous
signals or operation calls) coming from other groups (or
even from the same in case asynchronous signals) are
placed in a queue belonging to the activity group. They
are handled one by one when the whole group is stable.

The motivation for making activity groups sequential
is to have some level of protection against concurrent ac-
cess to shared data in the group. Moreover, this hypothe-
sis implies that every activity group has (or may be seen
as) a single control thread, which simplifies subsequent
analysis (like scheduling analisys) and implementation.

An activity group is stable when all its objects are
stable. An object is stable if it has nothing to execute
spontaneously and no pending operation call from inside
its group. Note that an object is not necessarily stable
when it reaches a stable state in the state machine, as

Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification 5

there may be transitions that can be taken simply upon
satisfaction of a Boolean condition.

The above notion of stability defines a notion of run-
to-completion step for activity groups: a step is the se-
quence of actions executed by the objects of a group
from the moment an external request is taken from the
activity group’s queue by one of the objects, and until
the whole group becomes stable. During a step, other
requests coming from outside the activity group are not
handled and are queued.

The semantics of activity groups described here cor-
responds to that of concurrent, internally-sequential
components, which make visible to the outside world only
the stable states in-between two run-to-completion steps.
Such a model has been already successfully used in many
concurrent object oriented languages and in synchronous
languages.
Operations, signals and state machines.

In the UML model we distinguish syntactically be-
tween two kinds of operations: triggered operations and
primitive operations.

The body of triggered operations is described directly
in the state machine of a class: the operation call is
seen as a special kind of transition trigger, besides asyn-
chronous signals. Triggered operations differ from asyn-
chronous signals in that they may have a return value.

Primitive operations are more close to methods in
usual object oriented programming language. They have
a body described by an action. Their handling is more
delicate since they may be overridden in the inheritance
hierarchy and they are dynamically bound, like in all
object-oriented models. When a call for a primitive op-
eration is sent to an object, the appropriate operation
implementation with respect to the actual type of the
called object in the inheritance hierarchy has to be exe-
cuted.

With respect to call initiation, when an object hav-
ing the control in its activity group calls an operation
on an(other) object from the same group, the call is
stacked and handled immediately (i.e. on the same con-
trol thread), like in usual programming languages. How-
ever, in case of triggered operation calls, the dynamic
call graph between objects should be acyclic, since an
object that has already made a call from inside a trig-
gered operation is necessarily in an unstable state of the
state machine and may not handle any more calls. (This
type of condition may be verified using the IF mapping.)

Calls to primitive or triggered methods from other
activity groups are queued and handled by the target
of the call in a subsequent run-to-completion step. The
caller (and its group) are blocked until the return of the
call.

Signals are always put in the target object’s group
queue for handling in a later run-to-completion step, re-
gardless of whether the target is in the same group as
the sender or not. This choice is made so that there is
no intra-group concurrency created by sending signals.

3 Mapping UML models to IF

In this section we give the main lines of the mapping of a
UML model to an IF system. The intermediate layer of
IF helps us tackle the complexity of UML, and provides
a semantic basis for re-using our existing model checking
tools (see section 6).

The mapping is done in such a way that all run-
time UML entities (objects, call stacks, pending mes-
sages, etc.) are identifiable as a part of the IF state. In
simulation and verification, this allows tracing back to
the UML specification.

3.1 Mapping the object domain to IF

Mapping of attributes and associations. Every
class X is mapped to a process type PX that has a local
variable corresponding to each attribute or association
of X. As inheritance is flattened, all inherited attributes
and associations are replicated in the processes corre-
sponding to each heir class.
Activity group management. Each activity group is
managed at runtime by a special group manager process
(of type GM). This process sequentializes the calls and
the signals coming from objects in other activity groups,
and helps to ensure the run-to-completion policy. Each
PX has a local variable leader, which points to the GM
process managing its activity group.
Mapping of operations and call polymorphism.
For each operation m(p1 : t1, p2 : t2, ...) in class X, the
following components are defined in IF:

– a signal callX::m(waiting : pid, caller : pid, callee :
pid, p1 : t1, p2 : t2, ...) used to indicate an operation
call. waiting indicates the process that waits for the
completion of the call in order to continue execution
(either the caller if it is in the same group as the
callee, or the group manager of callee otherwise).
caller designates the process that is waiting for a
return value, while callee designates the process re-
ceiving the call (a PX instance).

– a signal returnX::m(r1 : tr1, r2 : tr2, ...) used to in-
dicate the return of an operation call (sent to the
caller). Several return values may be sent with it.

– a signal completeX::m() used to indicate completion
of computation in the operation (may differ from re-
turn, as an operation is allowed to return a result
and continue computation). This signal is sent to the
waiting process (see callX::m).

– if the operation is primitive (see section 2.2), a pro-
cess type
PX::m(waiting : pid, caller : pid, callee : pid, p1 :
t1, p2 : t2, ...)
which describes the behavior of the operation using
an automaton. The parameters have the same mean-
ing as in the callX::m signal. The callee PID is used

6 Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification

: Y
 : X

X::m()

m()

: Py
 :Px

call
 X::m
(…)

:Px::m

return
 X::m
(…)

complete
 X::m
(…)

UML level
 IF level

Fig. 2. Handling primitive operation calls using dynamic creation.

to access local attributes of the called object, via the
shared variable mechanism of IF.

– if the operation is triggered (see section 2.2), its im-
plementation is modeled in the state machine of PX .
Transitions triggered by a X :: m call event in the
UML state machine will be triggered by callX::m in
the IF automaton.

The action of invoking an operation X :: m is
mapped to sending a signal callX::m. The signal is sent
either directly to the concerned object (if the caller is in
the same group) or to the object’s active group manager
(if the caller is in a different group). The group manager
queues the call and forwards it to the destination when
the group becomes stable.

The handling of incoming calls is modeled by tran-
sition loops in every state1 of the process PX , which,
upon reception of a callX::m create a new instance of
PX::m and wait for it to finish execution (see sequence
diagram in figure 2).

In general, the mapping of primitive operation (ac-
tivations) into separate automata created by the called
object has several advantages:

– it allows extensions to non-usual types of calls, such
as non-blocking calls. It also preserves modularity
and readability of the generated model.

– it provides a simple solution for handling polymor-
phic calls in an inheritance hierarchy: if A is a base
class and B is on of its heirs, both implementing the
method m, then PA responds to callA::m by creating
a handler process PA::m, while PB responds to both
callA::m and callB::m, in each case creating a handler
process PB::m (figure 3).
This solution is similar to the one used in most object
oriented programming language compilers, where a
“method lookup table” is used for dynamic binding
of calls to operations; here, the object’s state machine
plays the role of the lookup table.

Mapping of constructors. Constructors differ from
primitive operations in that their binding is static. Con-
sequently, they do not need the definition of the callX::m

signal and the call action is mapped directly to the cre-
ation of the handler process PX::m. The handler process
begins by creating a PX object and its components (i.e.

1 This is eased by IF’s support for hierarchical automata.

+m()

A

+m()

B

Process type A : statechart of A

 + response to
 call
 A::m

 by creating
 P
A::m

Process type
 P
A::m
 : action of A::m

Process type B : statechart of B

 + response to
 call
 A::m
 and call
 B::m

 by creating
 P
B::m

Process type
 P
B::m
 : action of B::m

Fig. 3. Mapping of primitive operations and inheritance.

all the aggregate objects defined by UML composition
relationships), after which it continues execution like a
normal operation.
Mapping of state machines. UML state machines are
mapped almost syntactically in IF. Several prior research
papers tackle the problem of mapping statecharts to (hi-
erarchical) automata (e.g., [37]). The method we apply
is similar.
Actions. The action kinds enumerated in section 2.1 are
supported as follows:

– object creation is modeled by the creation of the con-
structor’s handler process

– method call is modeled by sending a call signal and
waiting for a return/complete signal

– assignment is directly supported in IF. Access to at-
tributes is supported by the shared variable mecha-
nism.

– signal output is directly supported in IF.
– return action is modeled by the sending of a return

signal.
– control structure actions are directly supported in IF.

3.2 Modeling run to completion with dynamic
priorities

The concurrency model introduced in section 2.2 is real-
ized using the dynamic partial priority order mechanism
presented in 1.4. As already mentioned, the calls or sig-
nals coming from outside an activity group are placed
in the group’s queue and are handled one by one in
run-to-completion steps. In IF, the group management
processes (of type GM) handle this simple queuing and
forwarding behavior.

In order to obtain the desired run-to-completion
(RTC) semantics, the following priority protocol is ap-
plied (the rules concern processes representing instances
of UML classes, and not the processes representing op-
eration handlers, etc.):

– All objects of a group have higher priority than their
group manager:

(x.leader = y)⇒ x ≺ y

Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification 7

This guarantees that as long as an object inside a
group may execute, the group manager will not initi-
ate a new RTC step.

– Each GM object has an attribute running which
points to the presently or most recently running ob-
ject in the group. This attribute behaves like a token
that is taken or released by the objects having some-
thing to execute. The priority rule:

(x = y.leader.running) ∧ (x 6= y)⇒ x ≺ y

ensures that as long as an object that is already exe-
cuting has something more to execute (the continua-
tion of an action, or the initiation of a new sponta-
neous transition), no other object in the same group
may start a transition.

– Every object x with the behavior described by a state
machine in UML will execute x.leader.running := x
at the beginning of each transition. As a consequence
of the previous rule, such a transition may be ex-
ecuted only when the previously running object of
the group has reached a stable state, which means
that the current object may take the running token
safely.
The non-deterministic choice of the next object to ex-
ecute in a group (stated in the semantics) is ensured
by the interleaving semantics of IF.

4 UML extensions for capturing timing

To build a faithful model of a real-time system, one needs
to represent different types of timing information:

– time-triggered behavior (prescriptive modeling). For
example, it is common practice in real-time program-
ming environments to link the execution of an action
to the expiration of a delay (represented sometimes
by a timer object).

– knowledge about the timing of events (descriptive
modeling). Such information is taken either as a hy-
pothesis under which the system works (e.g., worst
case execution times of system actions, scheduler la-
tency, etc.) or as a requirement to be imposed upon
the system (e.g., end-to-end response time).

Different UML tools targeting real-time systems
adopt different extensions for expressing such timing in-
formation. A standard Real-Time Profile, defined by the
OMG [40], provides a common set of concepts for model-
ing timing, but their definition remains mostly syntactic.

In this work, we are using the framework defined in
[22] for modeling timed systems. Its main ideas are given
in the following. The framework reuses some of the con-
cepts of the standard real-time profile (timers, certain
data types), and additionally allows expressing duration
constraints between various events occurring in the sys-
tem.

4.1 Features for modeling timing

The following concepts, compatible with those of the
standard real-time UML profile [40], are used for mod-
eling time-triggered behavior :

– two data types: Time and Duration, and a global
operator now for retrieving the current absolute time
(since system start).

– timer objects, which measure time. They may be set
for a deadline, reset, and they send an asynchronous
signal upon expiry.

– clock objects, which measure time and their relative
value may be consulted by other objects.

For modeling descriptive timing information, the ex-
tensions defined in [22] allow to:

– identify syntactically many of the meaningful events
occurring in a system execution. An event has an oc-
currence time, a type and a set of related information
depending on its type. The event types that can be
identified are listed in section 5.1, as they also con-
stitute an essential part of our property specification
language.

– express duration constraints between events iden-
tified as above. The constraints may be either as-
sumptions (hypotheses to be enforced upon the sys-
tem runs) or assertions (properties to be tested on
system runs).
If several events of the same type and with the same
parameters may occur during a run, there are mecha-
nisms for identifying the particular event occurrence
that is relevant in a certain context.

The class diagram in figure 4 contains an example us-
ing these features. This model describes a client-server
architecture in which worker objects on the server are
supposed to expire after a fixed delay of 10 seconds.
A timing assumption attached to the client says that:
”whenever a client connects to the server, it will make a
request before its worker object expires, that is before 10
seconds”.

For additional details on this framework for modeling
timing and its semantics, the reader is referred to [22].

4.2 Validation of timed specifications

The time-related concepts presented in the previous sec-
tion are mapped to IF as follows. Clocks exist as a native
concept, while Timers are implemented using a clock
and a manager process sending timeout signals. Events
and their associated parameters can be identified in the
IF model: for example, the event of invoking an oper-
ation X :: m equates to the IF event of sending the
callX::m signal, etc.

For testing or enforcing a timing constraint, there are
two alternatives:

8 Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification

LicServer

<<TriggeredOperation>> connect() : LicClientWorker

LicClientWorker

<<PrimitiveOperation>> request(t : LicToken) : Boolean

0..n
 +lcws
0..n

LicClient

id : Integer

1

+ls

1

0..1
 +lcw
0..1

timeevents {

 ec : EC;

 er : ER;

}

timeconstraints {

 duration(ec,er) <= 10

 when ec.c = er.c

}

EC

c : LicClient

<<TimedEvent>>

ER

c : LicClient

<<TimedEvent>>

match receivereturn LicServer::connect(void) by c

match invoke LicClientWorker::request(void) by c

Fig. 4. Using events to describe timing constraints.

– the constraint is local to an IF process, in the sense
that all involved events are directly observed by the
process. (For example, the outputs and inputs of a
process are directly observed by itself, but they are
not visible to other processes.) This is the case in
figure 4. In this case, the constraint may be tested or
enforced by the IF process itself, using an additional
clock for measuring the duration concerned by the
constraint.

– the constraint is not local to a process (it is global).
In that case, the constraint will be tested or enforced
by an observer running in parallel with the system.

The semantics implemented by tools ensures that
runs not satisfying a constraint are either ignored – if
it is an assumption, or diagnosed as error – if it is an
assertion.

5 Expressing properties by UML observers

For specifying and verifying dynamic properties of UML
models we use an operational formalism: UML observers.
Similarly to IF observers (section 1.4), these are special
objects executing synchronously with a system and mon-
itoring run-time state and events.

Observers are described in UML by classes stereo-
typed with � observer �. They may have a local mem-
ory (attributes) and their behavior is described by a state
machine.

Properties are expressed by classifying some observer
states as � error � states. A system execution which
leads the observer to an error state is a violation of the
property. An observer may also formalize a hypothesis
under which the system works, by marking some of the
states as � invalid� with respect to the hypothesis.

Several examples of properties specified with ob-
servers can be found in section 7. For the designer, the
advantage of observers compared to other property spec-
ification languages is that they use already known con-
cepts while remaining formal and sufficiently expressive
for a large class of linear temporal properties.

5.1 Observations

The main issue in defining observers is the choice of event
types which trigger their transitions, and which must in-
clude specific UML event types. We are using the follow-
ing event types defined in [22]:

– Events related to operation calls: invoke, receive
(reception of call), accept (start of actual process-
ing of call – may be different from receive), invok-
ereturn (sending of a return value), receivereturn
(reception of the return value), acceptreturn (ac-
tual consumption of the return value).

– Events related to signal exchange: send, receive,
consume.

– Events related to actions or transitions: start, end
(of execution).

– Events related to states: entry, exit.
– Events related to timers (this notion is specific to the

model considered in [20,22] and in this work): set,
reset, occur, consume.

The trigger of a transition is a match clause specify-
ing the type of event (e.g., receive), some related infor-
mation (e.g., the operation name) and observer variables
that may receive related information (e.g., variables re-
ceiving the values of operation call parametersP).

Besides events, an observer may access any part of
the state of the UML model: object attributes and state,
signal queues. In order to express quantitative timing
properties, observers may use the concepts available in
the OMEGA profile such as clocks.

6 The simulation and verification toolset

The translation of UML models to IF and the validation
techniques presented in the previous sections are imple-
mented in an extended version of the IF toolset - IFx2.
The architecture of the toolset is shown in figure 5. With
it, a designer may simulate and verify UML models and
observers developed in third-party editors3 and stored in
XMI4 format.

In a first phase, the tool takes as input a UML model
and generates an IF specification and a set of observers
by applying the translation rules presented before. Dur-
ing this phase a first sanity check is performed on the

2 http://www-verimag.imag.fr/˜ober/IFx.
3 Rational Rose, I-Logix Rhapsody and Argo UML have been

tested for compatibility.
4 XMI 1.0 or 1.1 for UML 1.4

Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification 9

XMI

UML model

+ time

annotations

Rose,

Rhapsody,

Argo,

...

UML tools

IF tools

IF

model

IF behavioral tools

state explorer

simulator
 verifier

test generator

IF static

analysis

live variables

IF

exporters

UML-IF frontend

UML2IF

translator +

compliance

checker

UML

validation

driver

slicing

abstraction

time

constraint

propagation

scheduling

analysis

Graph level tools (CADP)

minimization, comparison, composition...

Fig. 5. Architecture of the IFx validation toolbox.

model and results are provided in the form of compile
warnings and errors. They concern action syntax, timing
annotation syntax, type errors, etc.

In a second phase, the tool drives the back-end IF
simulation and verification tools, and translates the val-
idation results back to the level of the original model.
The idea is to make the back-end tools invisible to the
designer, but also to enhance the functionality of the IF
toolbox by providing more complex interactive simula-
tion features like conditional breakpoints, scenario per-
sistence, custom views for the system state, etc.

Using the IF tools as underlying engine gives access
to several existing state space reduction and analysis
techniques: static analysis and partial order optimiza-
tions for state-space reduction, symbolic model explo-
ration, model minimization and comparison [8,11]. The
use of reduction techniques improves the scalability of
the tools, which is an essential feature in the context of
UML where large design models are often manipulated.

The tool is being applied on several case studies in
the context of the OMEGA project. One of them is pre-
sented in some detail in section 7.

7 The Ariane-5 case study 5

This case study has been performed in collaboration with
EADS Launch Vehicles in the IST OMEGA project, in
order to evaluate the applicability of both the description
language and the validation tools. The study consisted in
formally specifying some parts of an existing software in
UML with Rational Rose, and in verifying a set of criti-
cal properties on this specification. The Ariane-5 Flight
Program is the embedded software which autonomously

5 Ariane-5 is an European Space Agency Project delegated to
CNES (Centre National d’Etudes Spatiales).

controls the Ariane-5 launcher during its flight, from the
ground through the atmosphere and up to the final orbit.

In the following we summarize the interesting results
of the experiment, and give the main lines of a verifica-
tion methodology that may be used in connection with
the IFx toolbox. Indeed, even if recent research has con-
siderably improved the efficiency of validation tools, one
is still unlikely to be able to apply them on large exam-
ples in a strict push-button manner, and some form of
iterative methodology is necessary.

7.1 Overview of the Ariane-5 Flight Program

The Ariane-5 example is a non-trivial UML model (23
classes, each one with operations and a state machine)
translated into about 7000 lines of IF code.

The launcher flight.
An Ariane-5 launch begins with ignition of the main

stage engine (epc - Etage Principal Cryotechnique).
Upon confirmation that it is operating properly, the two
solid booster stages (eap - Etage Accélérateur à Poudre)
are ignited to achieve lift-off.

After burn-out, the two solid boosters (eap) are jetti-
soned and Ariane-5 continues its flight through the upper
atmosphere propelled only by the cryogenic main stage
(epc). The fairing is jettisoned too, as soon as the atmo-
sphere is thin enough for the satellites not to need pro-
tection. The main stage is rendered inert immediately
upon shut-down. The launch trajectory is designed to
ensure that the stages fall back safely into the ocean.

The storable propellant stage (eps - Etage à Prop-
ergol Stockable) takes over to place the geostationary
satellites in orbit. Payload separation and attitudinal
positioning begin as soon as the launcher’s upper sec-
tion reaches the corresponding orbit. Ariane-5’s mission
ends 40 minutes after the first ignition command.

A final task remains to be performed - that of passiva-
tion. This essentially involves emptying the tanks com-
pletely to prevent an explosion that would break the
propelling stage into pieces.

The flight program.
The flight program entirely controls the launcher,

without any human interaction, beginning 6 minutes 30
seconds before lift-off, and ending 40 minutes later, when
the launcher terminates its mission.

The main functions of the flight program are the fol-
lowing:

– flight control, involves navigation, guidance and con-
trol algorithms,

– flight regulation, involves observation and control of
various components of the propulsion stages (engines
ignition and extinction, boosters ignition, etc),

– flight configuration, involves management of launcher
components (stage separation, payload separation,
etc).

10 Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification

The UML description models only the regulation and
configuration parts in detail. The flight control part is
abstracted as a set of empty control functions, since
this part is a relatively independent synchronous reac-
tive control system.

The environment.
In order to obtain a realistic functional model of the

flight program, the environment of the launcher software
must also be modeled. We have considered an abstract
and deterministic version of the environment, in which
the flight control part sends the right flight commands
at specific moments in time which correspond to a par-
ticular flight of the Ariane-5 launcher. The ground part
abstracts the nominal behavior of the launch protocol on
the ground side, by providing the launch date and confir-
mations needed for launching. Furthermore, the equip-
ment controlled by the flight program (like valves and
pyros) are modeled to allow both success and hardware
failure scenarios.

Requirements.
Several safety requirements ensuring the right service

of the flight program have been identified and verified on
the UML model. The requirements can be classified as
follows:

– general requirements, not necessarily specific to the
flight program but general for all critical real-time
systems, such as the absence of deadlocks, signal loss,
timelocks;

– overall system requirements, specific to the flight pro-
gram and concerning its global behavior. For exam-
ple, it is required that the firing and the extinction
(in case of anomaly) sequences perform a series of
actions in a specific order;

– local component requirements, concerning the func-
tionality of some part. For example, it is required
that the opening and closing commands sent to the
valves conform to their state.

7.2 UML modeling

The Ariane-5 flight program is modeled as a collection
of objects communicating mostly through asynchronous
signals, and the behavior of which is described by state
machines. Operations (with an abstract body) are used
to model the guidance, navigation and control tasks. For
modeling timed-dependent behavior, timers and clocks
are being used.

The model (a partial view of its structure is visible
in figure 6) is composed of:

– a global controller class responsible of flight configu-
ration (Acyclic);

– a model of the regulation components (e.g., EAP,
EPC corresponding to the launcher’s stages);

– a model of the regulated equipment (e.g., Valves, Py-
ros);

Wait_Igniti

on_Time

Open_EVB

O

Wait_Start

Abort

timeout(clock) /

current_is_ok:=EVVP.

Open()

Stop1

Stop2

[current_is_ok = false]

[current_is_ok = true]

Wait_Clos

e_EVBO

timeout(clock) / begin current_is_ok:=EVBO.Close();

Cyclics!Anomaly();Acyclic!Anomaly();Guidance_Task!An

omaly(); EAP!Anomaly(); Thrust_Monitor!Anomaly() end

 / clock.set(TimeConstants.MS_100)

Wait_Clos

e_EVVP

 / clock.set(TimeConstants.MS_100)

Start(H0_time) / begin

clock.set(298900);

H0.set(H0_time) end

timeout(clock) / begin

clock.set(TimeConstants.MS_100);

current_is_ok:=EVBO.Open() end

[current_is_ok = false] / clock.reset()
[current_is_ok = true]

timeout(clock) / current_is_ok:=EVVP.Close()

Fig. 7. Behavior of the EPC regulation process (part).

– an abstract model of the cyclic GNC tasks (Cyclics,
Thrust monitor, etc.);

– a model of the environment (classes Ground for the
external events and Bus for modeling the communi-
cation with synchronous GNC tasks).

The behavior of the flight regulation components
(eap, epc) involves mainly the execution of the fir-
ing/extinction sequence for the corresponding stage of
the launcher (see for example the partial view of the EPC
stage controller’s behavior in figure 7). The sequence is
time-driven, with the possibility of safe abortion in case
of anomaly.

The flight configuration part implements several
tasks: eap separation, epc separation, payload separa-
tion, etc. The separation dates are provided by the con-
trol part, based on the current flight evolution.

7.3 Validation methodology and results

Formal validation is a complex activity, which may be
structured into several tasks as depicted in figure 8.

Translation to IF and basic static analysis.
This phase provides a first sanity check of the model.

The user can find simple compile-time errors in the
model (name errors, type errors, etc.) but also more
elaborate information (uninitialized or unused variables,
unused signals, dead code).

Model exploration.
The validation process continues with a debugging

phase. Without being exhaustive, the user begins to ex-
plore the model in a guided or random manner. Simu-

Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification 11

Cyclics

minor_cycle : Integer

fasvol : Integer

incg : Integer

guidance_period : Integer = 8

<<Active>>

Thrust_Monitor

nb : Integer

nb_conf : Integer = 3

T1delh1 : Timer

H0 : Timer

H0_time : Integer

<<Triggered>> Decide_EAP_Separation()

(from GNC)

Valves

<<Triggered>> Open()

<<Triggered>> Close()

(from Environment)

<<Active>>

Acyclic

fasvol : Integer

H0_time : Integer

tqdp : Timer

H0 : Timer

Tpstot_prep : Timer

Tpstar_prep : Timer

Tpstot_eaprel : Timer

Tpstar_eaprel : Timer

End_QDP : Boolean

Early_sep : Timer

Late_sep : Timer

clock : Timer

<<Active>>

1

+Acyclic

+Cyclics

+Thrust_Monitor

+Acyclic

EPC

current_is_ok : Boolean

clock : Timer

H0 : Timer

H0_time : Integer

(from Stages)

<<Active>>

1
 1

+EPC

+Acyclic

1

1

+Cyclics

+EPC

1

1

+Thrust_Monitor

+EPC

1

1

+EVBO

1
 1

+EVVP

1

1

+EVVCH

1

1

+EVVCO

1

1

+EVVGH

1

+EPC

EAP

H0 : Timer

H0_time : Integer

<<Triggered>> EAP_Preparation()

<<Triggered>> EAP_Release()

(from Stages)

<<Active>>

1

1

+EAP

+Acyclic

1

1

+EAP

+EPC

Pyro

(from Environment)

<<Active>>

1

1

+Pyro1

1

1

+Pyro2

1

1

+Pyro3

Fig. 6. Structure of the UML specification (part).

[t]

Translation from UML to IF

Requirements

Specification

Basic Static Analysis

State Space Generation
Model Checking

Advanced Static Analysis

Model Exploration

Fig. 8. Verification methodology in IF.

lation states do not need to be stored as the complete
model is not explicitly constructed at this moment.

The aim of this phase is to inspect and validate
known (nominal) scenarios of the specification. Secondly,
the user can test simple safety properties, which might
hold on all execution paths. Such properties might range
from generic ones, such as absence of deadlocks or signal
loss, to more specific and application dependent ones,
e.g., invariants tested using conditional breakpoints.

Advanced static analysis.

The aim at this phase is to prepare the specifica-
tion to an exhaustive simulation. Optimization based on
static analysis (see section 1.4) are applied in order to

reduce both the state vector and the state space, while
completely preserving its behavior.

For example, one possible optimization introduces
systematic resets for variables which are dead in a certain
control state of the specification. In this way, it prevents
the simulator to distinguish between simulation states
which differ only by values of dead variables. This tech-
nique is very effective given that it can be applied locally
at control-state level, and may collapse large (bisimula-
tion equivalent) parts of the state graph. For this case
study, however, the live reduction was not impressive due
to the relatively reduced number loops in the simulation
graph of the system.

State space generation and model checking.

Some verification techniques implemented in IFx, like
observer and µ-calculus model checking, work on the fly
without the need of generating the state space before-
hand. Others, like model abstraction and minimization,
work on a generated state space.

In the context of UML models, the most intuitive ver-
ification techniques presented in the following are model
minimisation and observer model checking.
Model minimisation is an intuitive method for a non
expert end-user. It consists in computing an abstract
model (with respect to given observation criteria) of the
overall behavior of the specification. Such a model can be
then visualised and possible incorrect behaviors can be
detected. These abstract models are computed by Alde-
baran (a tool connected to IFx [6]) and, depending on

12 Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification

0

11

{Valves}0 ?Open

14

{Valves}0 ?Open

10

{Valves}1 ?Open

13

{Valves}1 ?Open

6 {Valves}0 ?Close

1

2

{Valves}4 ?Open

8

{Valves}4 ?Open

4
{EPC}0 !Ignition

9{Valves}4 ?Close

5

i

7
i

3{Valves}3 ?Open

{Valves}3 ?Open

12{Valves}3 ?Close

{EAP}0 !Anomaly

{EPC}0 !Anomaly

{Valves}2 ?Close

{Valves}2 ?Open

{Valves}2 ?Open

{Valves}1 ?Close

Fig. 9. A minimal model generated with Aldebaran.

the (bi)-simulation relation used, they preserve different
classes of properties.

In order to obtain an abstract model, the state space
is first generated by exhaustive simulation. In order to
cope with complexity in this phase, the user can choose
an adequate state representation e.g., discrete or dense
representation of time as well as an exploration strat-
egy e.g., traversal order, use of partial order reductions,
scheduling policies, etc.

Example 1. For Ariane-5, the use of partial order reduc-
tion has been necessary to construct tractable models.
We applied a simple static partial order reduction which
eliminates spurious interleaving between internal steps
occurring in different processes at the same time. Inter-
nal steps are those which do not perform visible commu-
nication actions, neither signal emission nor access to
shared variables. This partial order reduction imposes a
fixed exploration order between internal steps and pre-
serves all the properties expressed in terms of visible
actions.
By using partial order reduction on internal steps, we
reduced the size of the model by 3 orders of magnitude
i.e, from more than 106 states (model generation did not
finish, due also to the large size – about 1KB – of the
system state) to about 1000 states and 1200 transitions,
which can be easily handled by the model checker.

After the state space is generated, it may be ab-
stracted with Aldebaran. Abstraction takes into ac-

count both the observation criteria which are relevant
for the property being verified (i.e. the actions that have
to remain visible), and the type of property that has to
be preserved (e.g., safety, absence of deadlocks, etc.).

Example 2. The graph in figure 9 is the quotient model
of Ariane-5 with respect to branching bisimulation [42]
and keeping observable only some of the actions. In this
case we are interested in the actions corresponding to
the opening/closing of the epc valves, the ignition of
the epc stage and the detection of anomalies
The branching structure and all safety properties involv-
ing these actions are preserved on the graph from fig-
ure 9. It is easy to check on this abstract model that if
an eap anomaly occurs, then all the valves are closed
and afterwards an epc anomaly is signaled. Also, it is
easy to check that the epc sends the Ignition signal only
after all valves have been (correctly) opened.

Observer model-checking may be used for more com-
plex safety properties, which depend on quantitative time
or on the values of system variables, signal parameters,
etc.

This type of verification is done on the fly, but the
different state representations and exploration strategies
presented in the previous paragraph may be applied.

Example 3. Figures 10 to 12 show some of the timed
safety properties of Ariane-5 that were checked over the
UML model using observers:

Figure 10: between any two commands sent by the flight
program to the valves there should elapse at least
50ms.

Figure 11: if some instance of class Valve fails to open
(i.e. enters the state Failed Open) then
– No instance of the Pyro class reaches the state

Ignition done.
– All instances of class Valve shall reach one of the

states Failed Close or Close after at most 2 sec-
onds since the initial valve failure.

– The events EAP Preparation and EAP Release
are never emitted.

Figure 12: if the Pyro1 object (of class Pyro) enters
the state Ignition done, then the Pyro2 object shall
enter the state Ignition done at a system time be-
tween TimeConstants.MN 5 ∗ 2 + Tpstot prep and
TimeConstants.MN 5 ∗ 2 + Tpstar prep.

8 Conclusions and plans for future work

We have presented a method and a tool for validating
UML models by simulation and model checking, based
on a mapping to an automata-based model (communi-
cating extended timed automata).

Although this problem has been previously stud-
ied [18,34,33,31,30,41], our approach introduces a new

Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification 13

valve_not_abused

t : Clock

<<Observer>>

initial

wait

match invoke ::EADS::Environment::Valves::Close() / t.set(0)

match invoke ::EADS::Environment::Valves::Open() / t.set(0)

KO

<<error>>

match invoke ::EADS::Environment::Valves::Open()

match invoke ::EADS::Environment::Valves::Close()

[t >= 50]

Fig. 10. A timed safety property of the Ariane-5 model.

liftoff_aborted_right

v : Valves

t : Clock

<<Observer>>

ok

aborting

aborted

not_yet

aborted

not_yet

 / t.set(0)

[t >= 2000]

ko

<<error>>

[v.EPC.EAP.Pyro1 @ Ignition_done or

v.EPC.EAP.Pyro2 @ Ignition_done or

v.EPC.EAP.Pyro3 @ Ignition_done]

match send ::EADS::Signals::Request_EAP_Preparation()

match send ::EADS::Signals::Request_EAP_Release()

match accept ::EADS::Environment::Valves::Open() by v

[v @ Open]

[v @ Failed_Open]

[(v.EPC.EVBO @ Open or v.EPC.EVBO @ Failed_Open) or

(v.EPC.EVVCH @ Open or v.EPC.EVVCH @ Failed_Open) or

(v.EPC.EVVCO @ Open or v.EPC.EVVCO @ Failed_Open) or

(v.EPC.EVVGH @ Open or v.EPC.EVVGH @ Failed_Open) or

(v.EPC.EVVP @ Open or v.EPC.EVVP @ Failed_Open)]

Fig. 11. A timed safety property of the Ariane-5 model.

dimension by considering the object-oriented features
present in UML: inheritance, polymorphism and dy-
namic binding of operations, and their interplay with
statecharts and the concurrency semantics. A solution is
given for modeling these concepts with timed automata
extended with variables and dynamic creation.

Our experiments show that the overhead introduced
by handling these object-oriented aspects during simu-
lation and model checking remains low, thus not ham-
pering the scalability of the approach.

For expressing and verifying dynamic properties, we
propose a formalism that remains within the framework
of UML: observer objects. We believe this is an impor-
tant facility for the adoption of formal techniques by the
UML community. Observers are a natural way of writing

wait_start

wait_ignition_

p1

p1_ignited

ko

<<error>>

ok
choice

match send ::EADS::Signals::Start(void) / begin mc :=

g.Acyclic.MissionConstants; tc := g.Acyclic.TimeConstants end

[g.Acyclic.EAP.Pyro1

@ Ignition_done]

[now >= (tc.MN_5 * 2 + mc.Tpstar_prep)]

[g.Acyclic.EAP.Pyro2 @ Ignition_done]

[now >= (tc.MN_5 * 2 + mc.Tpstot_prep)]

[now < (tc.MN_5*2 + mc.Tpstot_prep)]

liftoff_performed_right2

g : Ground

mc : MissionConstants

tc : TimeConstants

<<Observer>>

Fig. 12. A timed safety property of the Ariane-5 model.

a large class of properties (linear properties with quan-
titative time).

In the future, we plan to assess the applicability of
our technique to larger models. The tool is already be-
ing applied to a set of case studies provided by indus-
trial partners within the OMEGA project. We also plan
to integrate the component and architecture specifica-
tion frameworks of UML and to study the possibility of
using these additional structures for improving verifica-
tion, static analysis and abstractions.

Acknowledgemens. The authors wish to thank
Marius Bozga and Yassine Lakhnech who contributed
with ideas and help throughout this work.

References

1. http://www-omega.imag.fr - website of the IST OMEGA
project.

2. K. Altisen, G. Gössler, and J. Sifakis. A methodology
for the construction of scheduled systems. In M. Joseph,
editor, proc. FTRTFT 2000, volume 1926 of LNCS, pages
106–120. Springer-Verlag, 2000.

3. R. Alur and D.L. Dill. A theory of timed automata. In
TCS94, 1994.

4. Vieri Del Bianco, Luigi Lavazza, and Marco Mauri.
Model checking UML specifications of real time software.
In Proceedings of 8th International Conference on Engi-
neering of Complex Computer Systems. IEEE, 2002.

5. S. Bornot and J. Sifakis. An algebraic framework for
urgency. Information and Computation, 163, 2000.

6. M. Bozga, J.-C. Fernandez, A. Kerbrat, and L. Mounier.
Protocol verification with the aldebaran toolset. Soft-
ware Tools for Technology Transfer, 1:166–183, 1997.

7. M. Bozga, J.Cl. Fernandez, L. Ghirvu, S. Graf, J.P.
Krimm, and L. Mounier. IF: An intermediate representa-
tion and validation environment for timed asynchronous

14 Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification

systems. In Proceedings of Symposium on Formal Meth-
ods 99, Toulouse, number 1708 in LNCS. Springer Verlag,
September 1999.

8. M. Bozga, S. Graf, and L. Mounier. IF-2.0: A validation
environment for component-based real-time systems. In
Proceedings of Conference on Computer Aided Verifica-
tion, CAV’02, Copenhagen, LNCS. Springer Verlag, June
2002.

9. M. Bozga, D. Lesens, and L. Mounier. Model-Checking
Ariane-5 Flight Program. In Proceedings of FMICS’01
(Paris, France), pages 211–227. INRIA, 2001.

10. Marius Bozga, Jean-Claude Fernandez, Lucian Ghirvu,
Susanne Graf, Jean-Pierre Krimm, Laurent Mounier, and
Joseph Sifakis. IF: An Intermediate Representation for
SDL and its Applications. In R. Dssouli, G. Bochmann,
and Y. Lahav, editors, Proceedings of SDL FORUM’99
(Montreal, Canada), pages 423–440. Elsevier, June 1999.

11. Marius Bozga, Susanne Graf, and Laurent Mounier. Au-
tomated validation of distributed software using the IF
environment. In 2001 IEEE International Symposium
on Network Computing and Applications (NCA 2001).
IEEE, October 2001.

12. Marius Bozga and Yassine Lakhnech. IF-2.0 common
language operational semantics. Technical report, 2002.
Deliverable of the IST Advance project, available from
the authors.

13. The Omega consortium (writers: Susanne Graf and Jozef
Hooman). The Omega vision and workplan. Technical
report, Omega Project deliverable, 2003.

14. W. Damm and D. Harel. LSCs: Breathing life into Mes-
sage Sequence Charts. In P. Ciancarini, A. Fantechi, and
R. Gorrieri, editors, FMOODS’99 IFIP TC6/WG6.1.
Kluwer Academic Publishers, 1999.

15. W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Un-
derstanding UML: A formal semantics of concurrency
and communication in real-time UML. In Proceedings of
FMCO’02, LNCS. Springer Verlag, November 2002.

16. Werner Damm, Bernhard Josko, Hardi Hungar, and
Amir Pnueli. A compositional real-time semantics of
STATEMATE designs. Lecture Notes in Computer Sci-
ence, 1536:186–238, 1998.

17. Werner Damm, Bernhard Josko, Amir Pnueli, and An-
gelika Votintseva. Omega project deliverable d.1.1.1 : A
formal semantics for a UML kernel language. Technical
report, 2002. Available at http://www-omega.imag.fr.

18. Alexandre David, M. Oliver Möller, and Wang Yi. For-
mal Verification of UML Statecharts with Real-Time
Extensions. In R.-D. Kutsche and H. Weber, edi-
tors, Fundamental Approaches to Software Engineering
(FASE’2002), volume 2306 of LNCS, pages 218–232.
Springer-Verlag, April 2002.

19. Maria del Mar Gallardo, Pedro Merino, and Ernesto
Pimentel. Debugging UML designs with model check-
ing. Journal of Object Technology, 1(2):101–117, August
2002. (http://www.jot.fm/issues/issue 2002 07/article1).

20. S. Graf and I. Ober. A real-time profile for UML and
how to adapt it to SDL. In Proceedings of SDL Forum
2003 (to appear), LNCS, 2003.

21. Susanne Graf and Guoping Jia. Verification experiments
on the MASCARA protocol. In Proceedings of SPIN
Workshop ’01 (Toronto, Canada), January 2001.

22. Susanne Graf, Ileana Ober, and Iulian Ober. Timed
annotations with UML. Proceedings of SVERTS’2003,
satellite workshop of �UML’2003�. VERIMAG, 2003.

23. David Harel and Eran Gery. Executable object modeling
with statecharts. Computer, 30(7):31–42, 1997.

24. David Harel and Amnon Naamad. The STATEMATE
semantics of statecharts. ACM Transactions on Software
Engineering and Methodology, 5(4):293–333, 1996.

25. Z. Har’El and R. P. Kurshan. Software for Analysis of
Coordination. In Conference on System Science Engi-
neering. Pergamon Press, 1988.

26. G. J. Holzmann. The model-checker SPIN. IEEE Trans.
on Software Engineering, 23(5), 1999.

27. J. Hooman and M.B. van der Zwaag. A semantics of
communicating reactive objects with timing. In Pro-
ceedings of SVERTS’03 (Specification and Validation of
UML models for Real Time and Embedded Systems), San
Francisco, October 2003.

28. C. Jard, R. Groz, and J.F. Monin. Development of
VEDA, a prototyping tool for distributed algorithms.
IEEE Transactions on Software Engineering, 14(3):339–
352, March 1988.

29. H. Jensen, K.G. Larsen, and A. Skou. Scaling up Up-
paal: Automatic verification of real-time systems using
compositionality and abstraction. In FTRTFT 2000,
2000.

30. Alexander Knapp, Stephan Merz, and Christopher Rauh.
Model checking timed UML state machines and collab-
orations. In W. Damm and E.-R. Olderog, editors, 7th
Intl. Symp. Formal Techniques in Real-Time and Fault
Tolerant Systems (FTRTFT 2002), volume 2469 of Lec-
ture Notes in Computer Science, pages 395–414, Olden-
burg, Germany, September 2002. Springer-Verlag.

31. Gihwon Kwon. Rewrite rules and operational se-
mantics for model checking UML statecharts. In
Bran Selic Andy Evans, Stuart Kent, editor, Proceedings
of UML’2000, volume 1939 of Lecture Notes in Computer
Science. Springer-Verlag, 2000.

32. Marcel Kyas, Joost Jacob, Ileana Ober, Iulian Ober, and
Angelika Votintseva. Omega project deliverable d.2.2.2
annex 1 : OMEGA syntax for users. Technical report,
2004. Available at http://www-omega.imag.fr.

33. D. Latella, I. Majzik, and M. Massink. Automatic ver-
ification of a behavioral subset of UML statechart dia-
grams using the SPiN model-checker. Formal Aspects of
Computing, (11), 1999.

34. J. Lilius and I.P. Paltor. Formalizing UML state ma-
chines for model checking. In Rumpe France, editor,
Proceedings of UML’1999, volume 1723 of Lecture Notes
in Computer Science. Springer-Verlag, 1999.

35. Johan Lilius and Ivan Porres Paltor. vUML: A tool for
verifying UML models. In Proceedings of 14th IEEE
International Conference on Automated Software Engi-
neering. IEEE, 1999.

36. D. Lugato, N. Rapin, and J.P. Gallois. Verification and
tests generation for SDL industrial specifications with
the AGATHA toolset. In Real-Time Tools Workshop af-
filiated to CONCUR 2001, Aalborg, Denmark, 2001.

37. Erich Mikk, Yassine Lakhnech, and Michael Siegel. Hi-
erarchical automata as a model for statecharts. In Pro-
ceedings of Asian Computer Science Conference, volume
1345 of LNCS. Springer Verlag, 1997.

Iulian Ober Susanne Graf Ileana Ober: Validating timed UML models by simulation and verification 15

38. Iulian Ober and Ileana Stan. On the concurrent object
model of UML. In Proceedings of EUROPAR’99, LNCS.
Springer Verlag, 1999.

39. OMG. Unified Modeling Language Specification (Ac-
tion Semantics). OMG Adopted Specification, December
2001.

40. OMG. Response to the OMG RFP for Schedulability,
Performance and Time, v. 2.0. OMG ducument ad/2002-
03-04, March 2002.

41. Timm Schäfer, Alexander Knapp, and Stephan Merz.
Model checking UML state machines and collabora-
tions. Electronic Notes in Theoretical Computer Science,
55(3):13 pages, 2001.

42. Rob J. van Glabbeek and W. Peter Weijland. Branching
time and abstraction in bisimulation semantics. Journal
of the ACM, 43(3):555–600, May 1996.

43. WOODDES. Workshop on concurrency issues
in UML. Satelite workshop of UML’2001. See
http://wooddes.intranet.gr/uml2001/Home.htm.

44. Fei Xie, Vladimir Levin, and James C. Browne. Model
checking for an executable subset of UML. In Proceedings
of 16th IEEE International Conference on Automated
Software Engineering (ASE’01). IEEE, 2001.

45. S. Yovine. Kronos: A verification tool for real-time sys-
tems. Springer International Journal of Software Tools
for Technology Transfer, 1(1-2), December 1997.

