A Real-time Profile for UML and how to adapt it
to SDL*

Susanne Graf and Ileana Ober

VERIMAG ** — Centre Equation — 2, avenue de Vignate — F-38610 Giéres — France
{Susanne.Graf,Ileana.0Ober}Q@imag.fr
http://www-verimag.imag.fr/{graf,iober}

Abstract. This paper presents work of the IST project OMEGA, where
we have defined a UML profile for real-time compatible with the “ Profile
for Performance, Scheduling and Real-time’ accepted recently at OMG.
In contrast to this OMG profile, we put emphasis on semantics and on
its use in the context of timed analysis of real-time embedded systems.
The defined profile is compatible with the time concepts existing in SDL,
and we show how we can adapt also those notations to SDL and MSC
which do not yet exist in these ITU languages.

1 Introduction

Today’s embedded applications, have often strong constraints with respect to
deadlines, response time and other non-functional aspects'. They may be dis-
tributed and run on different execution platforms and this influences strongly the
non functional characteristics. In order to allow early analysis of timing proper-
ties, we propose to lift the choices and constraints coming from a given run-time
system, as well as assumptions on the environment, to the abstract model level
in terms of a set of annotations which can be interpreted by timed validation
tools. In order to make this approach feasible, the annotation language must be
flexible and orthogonal to the functional description. It must allow the expression
of global constraints and their refinement into a set of local constraints.

The aim:

Our aim is not only to provide means for describing systems with time de-
pendent choices, but also for defining timed models of systems, including time
related assumptions on the environment, e.g. on the arrival time of inputs of the
environment and (platform dependent) durations of tasks. Thus, the idea is to
perform validation (simulation, symbolic test or verification) on a timed model,
built from knowledge or assumptions on the environment and the platform in-
cluding aspects like resource sharing and scheduling (which have to be confirmed
later by testing, run-time monitoring or code analysis). At requirement level, this
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approach can be used to validate the consistency of a set of requirements and
to build the loosest timed model satisfying all requirements, which than can be
further refined compositionally?.

Overview on existing approaches:

Modelling languages and tools used in the domain of embedded and real-
time software, usually do have time related concepts, but in general, they are
not sufficient for timed analysis at model level. The existence of analysis tools
is crucial in this context, but presently only partially covered.

Languages using an asynchronous event driven approach, like SDL [IT00a],
ROOM [SGW94], State charts [Har87] and others, use a notion of global and
external time. In SDL and ROOM, global time is available within the system
through a special expression, and can be stored in variables or sent as parameters
of messages. The Unified Modeling Language UML [UML99] does not state its
position concerning the semantics of time progress, with the aim of being flexible
enough to accommodate all possible approaches.

The development tools existing for SDL, [Tel99a,Tel99b], allow code gener-
ation and some restricted form of analysis. Properties are expressed in terms
of MSC [IT00b| or by means of a tool internal observer language. These tools
define a particular time model and special profiles for limited performance and
timing analysis based on simulation of scenarios. Most approaches for enrich-
ing SDL with time constraints and providing tools for performance or timing
analysis are scenario based [Leu95,BAL97|. Also, an SDL methodology for the
development of real-time systems [ADL01701] and on the extension of SDL with
time constraints for timing and performance analysis [MTMC99,BGM*01] have
been studied.

Although standard UML does not include any particular time framework, a
number of tool supported frameworks have been proposed. For example, Rose RT
(a variant of the ROOM framework), the Real-Time Studio of Artisan [Art01],
Rhapsody [Ilo] and, more recently, the tool TAU Generation 2 [Tel02] propose
UML frameworks including real time aspects. These tools allow automatic or
semi-automatic code generation and have facilities for simulation and restricted
functional analysis but almost no support for timing analysis. For instance, for
Rhapsody exist validation tools [BDWO00], but only in the context of a rather
deterministic, external time semantics and not for time dependent properties.

Recently, a UML Profile for Schedulability, Performance and Time Specifica-
tions [OMGO2| has been defined. It integrates the ideas and concepts from most
previously named approaches. It is very general, in order to be able to adapt
to any possible real-time framework and for all kind of diagrams, and it defines
essentially a vocabulary. It is very much tailored towards timed scenarios, and
for the moment, it exists essentially on paper.

Timed automata [HNSY92|[BST98b| have been used for modelling real-time
aspects of systems, for defining semantics of modelling languages and for study-
ing controller synthesis [MPS95,AMP95] and scheduling frameworks [BGS00]
[HHKO1]. A number of validation and analysis tools, such as Hytech [HHWT97],
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Kronos/IF [Yov97,BGGM00,BGMO02] or Uppaal/Time [LPY97,FPY02], exist for
the framework of timed automata (extended with data), but they are in general
not closely coupled with development environments.

In the OMEGA IST project®, aiming at the definition of a development
methodology for embedded and real-time systems in UML based on formal tech-
niques, we have started to refine the UML Profile for Schedulability, Performance
and Time in order to make it usable for efficient analysis. In this article, we report
on this work and show how it can be adapted for the definition of a real-time pro-
file for SDL which is compatible with the already existing time related features
of SDL and MSC.

We start, in Section 2, with an overview of the concepts necessary in a real-
time framework. In Section 3.1, we define the basic time concepts of the UML
real-time profile of the Omega project and and their semantics. They are ex-
pressive enough to express all time related elements of a model. An increase in
expressiveness can be obtained by an extension with probabilistic features, as
used in the context of performance analysis. In Section 3.2, we define the seman-
tics of the basic time concepts as an extension of any untimed formalism which
can be interpreted as an event labeled transition system. In particular, we distin-
guish two different interpretations of Boolean expressions, either as predicates
or as constraints. In Section 3.3, we define a set of derived notations, intended
to give the user a convenient means for the expression of common constraint
patterns. They can be expressed in terms of basic concepts, at least in the con-
text of the expression language OCL [WK98|, allowing powerful quantifications.
The example in Section 4 illustrates some of the concepts introduced previously.
Finally, in Section 5, we propose a way to adapt this UML profile to SDL.

2 Needs for timed specifications

A minimal set of real-time related concepts necessary for a modelling language
with the aim to support all the stages of the development of a real-time system,
are the following ones:

A global notion of time. If necessary, local time can be defined by means of
local clocks which have a well-defined relationship to global time (which might
be defined in terms of drift (maximal deviation of speed), offset (max. deviation
of value), ...).

Explicit functional use of time by means of access to time through timers,
clocks and a construct like now (allowing access to global time), allowing to make
control- or dataflow explicitly time dependent. It is desirable that the necessary
discretization can be decided as late as possible in order to avoid unnecessary
complexity.

Means for the specification of time constraints representing requirements or
assumptions on the environment; for the underlying execution platform assump-
tions (or knowledge) on the execution time of activities must be expressible and
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taken into account at model level. We propose constraints on durations between
events as the basic means for expressing time constraints, as it is the case in
Sequence Charts and in Timed Automata. This is also in line with the UML RT
profile.

Timing issues are strongly influenced by the execution mode and the type
of concurrency between different parts of the system. Concerning parallelism
one can distinguish simulated parallelism (concurrent entities sharing computing
resources) and distributed parallelism. This distinction is generally not made in
modelling languages emphasizing on functional aspects, but it is important when
assumptions on execution times and effects of resource sharing should be taken
into account.

For entities composed by simulated parallelism, one may define restrictions
on the level of granularity at which computations of concurrent objects are in-
terleaved: in the case of functionally independent behaviours, the choice of this
granularity has no influence on the functional properties; at the level of the imple-
mentation, this granularity is defined by the preemptibility or non-preemptibility
of steps of computations. When interleaving a set of functionally dependent par-
allel behaviours, the choice of the granularity influences not only the timed but
also the functional behaviour. It defines when stimuli from outside can be taken
into account. Extreme choices consist in:

— making no hypothesis on the granularity (e.g. in Java): any parallel behaviour
of the set can accept stimuli at any time, independently of all others. This
obliges the designer to handle mutual exclusion and access of shared variables
explicitly,

— run-to-completion semantics: stimuli from the outside of each entity are only
accepted when all the parallel behaviours of the set are stable (waiting for a
stimulus) and no stimulus from within the entity is present.

In the context of the second solution, activities are insensitive to their environ-
ment before they are terminated, that is atomic as seen from outside. In this
context, it is important to have an interrupt concept, allowing for example to
terminate useless activities without cutting all the atomic steps into smaller
pieces (and adding corresponding locks, etc.). In this article, we focus only on
purely time related aspects, and we consider the execution model to be part of
the functional model. In the subset of UML we consider in Omega, a notion of
activity group (basically an active object and several passive objects, executing
like an SDL process in a run-to-completion fashion) defines how activities within
a group can interleave.

Scheduling. For schedulability analysis, one needs to distinguish between sim-
ulated and distributed parallelism between activity groups, as this determines
which execution times add up and which ones don’t. We introduce the following
notations?

— a notion of resource and a deployment mapping from activity groups to re-
sources

4 partly described in Section 3.3, but still to be worked out in detail



— the distinction between preemptible and non preemptible resources, actions
and objects for the definition of a notion of atomicity.

— the distinction between ezecution delay and execution time of actions or
transitions, where the first one refers to the time elapsing between the start
time end the end time of an action, and the second one refers to pure execu-
tion time® which is necessary for an analysis taking into account scheduling
issues.

— priorities within or between concurrent behaviours, defined in a hierarchical
fashion, are a powerful means to eliminate non determinism and can be used
at model level to define any scheduling policy. At implementation level, pri-
orities might either be reflected by a run-time scheduler (possibly a hierarchy
of explicit event handlers) or by sequential code generated according to the
defined priority rules.

3 Ingredients for a UML profile for timed verification

We start by defining a set of basic time related concepts, that give expressive-
ness to the framework, in Section 3.2 we define their semantics, and finally in
Section 3.3, derived concepts are introduced to make the use of the framework
easier.

3.1 Basic time related concepts

The only time related concept existing in the standard UML is the Time data
type. UML defines no mechanisms for representing time progress nor operations
on Time. profile for schedulability, performance and time [OMGO02] defines a large
vocabulary of time related concepts, which is not completely worked out and
which is more or less syntax so far. We consider here only the subset concerned
with real-time, add some missing concepts, and propose a semantic framework.

Primitives for modelling time. As in SDL, the time model is based on two data
types: Time, relating to time instances, and Duration, relating to the time elaps-
ing between two instances of time. These data types can be used, like any UML
data type, in attributes, parameters, etc.

A particular instance of time is now. It always holds the current time and is
visible in all parts of the model. Using the vocabulary of ASM [Gur95], now is
a monitored variable, i.e. some external mechanism changes its value. A general
constraint imposes its values to monotonically grow, and model dependent time
constraints can introduce additional restrictions on time progress as compared
with system progress.

Timing mechanisms. In the UML RT Profile, two related timing mechanisms are
introduced, informing the system on time progress: timer and clock. A timer is
an extension of its homonym in SDL (as it can be set, reset and sends timeout
signals). Additionally, timers can be periodic, can be paused or restarted. Clocks
are similar to periodic timers and emit Ticks.

5 obtained by measurements on the target platform or by static timing analysis as
done, for example, in [SRW02]



Events play an important role in the UML RT profile. They are defined in UML
as a “specification of a type of observable occurrence”, that is as an (observable)
state change. There exists no explicit notion of event in SDL, but MSC define
behaviours in terms of events. We use TimedFEvents with a time stamp holding
their occurrence time. We define a rich set of events allowing to refer to all
relevant time points of a behaviour.

For instance, with any transmission of a signal sig, are associated three events:
send(sig) - the instant at which the signal is sent by the sender, receive(sig) - the
point of time at which the signal is received by the receiver (in its input queue),
and consume(sig) - the instant at which the signal is consumed and a transition is
triggered (or the signal is discarded). Not all three events associated with a signal
must necessarily be distinct. For example, if receive(sig) and the corresponding
consume(sig) occur at the same time, they represent a single event, and this
corresponds to non buffered communication. With any action are associated
events start(action) and end(action). In case of an instantaneous action, the
start and end event are always simultaneous and denoted by the event start-
end(action). The complete list of predefined events (associated with operation
calls, signal exchange, actions, transitions, timers, etc.) is given in the Appendix.

As an event is an instant of state change, it is defined by a triple of the form
(occurrence time, current state, next state) or equivalently by a triple of the
form (occurrence time, current state, action), where the next state is defined by
the current state and the action defines the rules according to which the state
after the event can be obtained. We chose the second type of representation, by
encoding the relevant part of the current state and the action in an event name,
thus allowing constraints on an event only to depend on its occurrence time,
current state and the parameters of its action.

For instance, a send event associated with a call is identified by the relevant
part of the state in which the call is issued, that is: the object initiating the call,
the target object, the operation that is called its parameters, and possibly also
the place in the control flow of the state machine in which the call takes place
as well as some condition on the local or global state.

Ezample: The expression cond:send(o#tr@lab:target!sig) identifies all the
events in which the signal sig is sent by an object identified by o to an ob-
ject target as a result of the execution of an action labeled lab on a transition
named ¢r (of the state machine associated with o); moreover the condition cond
must hold on the global state when the event occurs. Events can be specified
partially, for example send(0:sig) represents any event in which the signal sig is
sent by an object o, regardless of target, action that generated it, parameters or
the global state.

Note that, even if all the parameters are identified, the event may have mul-
tiple occurrences in a given execution. Thus, for any given execution, an event
specifications defines a sequence of event occurrences. In order to be able to dis-
tinguish different occurrences of an events and to to talk about the history of
a given event, previous occurrences of an event can be referred to by means of
expressions of the form pre(event), pre(pre(ev)),...



Time expressions evaluate to Time instances. A particular time expression, eval-
uated only in events, is now. In any state, the expression time(ev) evaluates to the
time point of the last occurrence of an event matching ev, whereas time(pre(ev))
evaluates to the point of time of the occurrence before the last one, ... Simple
arithmetic expressions, as in SDL, are other examples of time expressions.
Ezxample: t:Time £ d :Duration, t :Time + real X d: Duration .

Duration expressions evaluate to Duration instances. All evaluations of features
of type Duration are duration expressions. Other duration expressions are, as in
SDL, simple arithmetic expressions, such as time instance subtraction.
FEzxamples:

t1: Time - ty:Time (under the condition that t; > t3)

pos_real X d:Duration (a scalar product)

now - time(ev) (time elapsed since the last occurrence of event ev)

time(ev) - time(pre(ev)) (time elapsed between the very last and the

previous occurrence of event ev)

Predicates on Time and Duration: any Boolean expression containing duration
or time instances is a time dependent predicate. It can be used (just as any
Boolean expression) as guard or test within an action, or as a predicate in a
property to be checked. Although in principle arbitrary time dependent Boolean
expression can be used, in practice only simple forms of predicates are really
useful. Indeed, the type of predicates used in properties or guards determine the
possibility of analysis (see Section 5).
FEzxamples:

t1 :Time - t2 : Time < d:Duration (simple duration constraint)

time(evy) - time(evz) < d (simple duration constraint)

now - time(event) < time(pre(event)) - time(pre(pre(event))) (constraint on

difference of durations, as used in auto adaptive algorithms).

Time dependent predicates are evaluated in events, and the fact that an event
satisfies some predicate amounts to the evaluation of an assertion of the form
(s,t,a) = p® which is equivalent to the assertion (s,a) = p[t/now] or s |
p[t/now] if p is independent of the parameters of the action. The interpretation
of time dependent predicates can be extended to states:

skE=p iff Vte [time(enter(s)), time(exit(s))] . (s,t) Ep

that is if p holds in all time points in which the system stays in state s.

We distinguish between predicates, which are evaluated to true or false in
individual events (or states), and invariants - of the form invariant(p) (where p is
a predicate) - which hold if p has been true ever since the initial state. Interesting
invariants are often of the form invariant(in(s) = p) or invariant(at(e) = p),
requiring p to hold at each occurrence of event e, respectively in all time points in
which the system is in state s. In order to ease the expression of such invariants,
we allow to “attach” invariant(p) with states s or events e as a short hand.

5 where s is a state,t a time value, and a represents the parameters of the action
represented by the event



3.2 Semantics

The semantics of time related concepts is defined independently of the semantics
of the formalism used for expressing functional behavior. We only suppose that
the semantics of the functional behaviour of systems can be viewed as a labelled
transition system, where transitions represent events. An additional requirement
is that all the events referred to, are identifiable in the transition system defining
the functional semantics.

We define the semantics of the time related concepts by a set of timed au-
tomata with urgency [BST98b|” constraining the occurrence time (and only on
the occurrence time) of all the events whose possible occurrence ordering are
given by the untimed semantics.

Thus, the timed behaviour of a system can be represented by the synchro-
nized product of the possibly infinite event labeled transition system defining its
behaviours in terms of state changes and (partial) order of events, and a set of
time automata defining allowed occurrence times of events.

How time related concepts can be represented as timed automata is relatively
straightforward for most constructs. We present here the timed automaton asso-
ciated with a timer to demonstrate that this way of defining time extension has
the expected effect, and we discuss the interpretation of time dependent Boolean
expressions, as for them several interpretations coexist.

The time automaton associated with any timer instance is given in Figure 1a.
It does not express any constraint on the occurrence times of the actions set and
reset, but we suppose that they occur immediately after the preceding action (in
the same sequential behaviour), which in the timed automaton is expressed by
an eager transition. Also, given an occurrence of set, this automaton constrains
the occurrence time of the timeout (i.e. the occur event) to exactly the defined
timeout time time(set(timer,delay)) + delay which is also expressed by an eager
transition.

The point of time of the consumption of the timeout, however, is not re-
stricted by the timer itself, but possibly by some additional constraint, for ex-
ample “always the time between the timeout and the corresponding consumption
is smaller than d”®, which can be expressed by an invariant of the form

invariant( at(consume(t)) = now - time(occur(t)) < consume-delay )
or, as we will see in the next section, by the shorthand
invariant( duration(occur(t), consume(t)) < consume-delay )

Figure 1b shows the timed automaton corresponding to the composition of the
timer timed automaton and the timed automata associated with this constraint,
where the transition associated with the consume event is delayable, meaning
that it will occur somewhere within the specified delay.

7 Alternatively, we could have another formalism, such as ASM, but the advantage of
timed automata is that they have as predefined concepts, all the primitives making
the expression of the semantics easy

8 under the condition on the functional model that the timer is only set again after
the timeout has been consumed



reset(timer)

set(timer,dela;
set(x)

reset(timer)

reset(timer)

x = delay

occur(timer)
set and reset transitions are not time constraint, but
eager, they occur immediately after the preceding action
occur transitions are time constraint and eager
that is, they happen exactly at timeout time
in (b), consume transitions are time constaint and delayable
that is, they occur within the specified interval

consume(timer)
y = consume-delay

(@) (b)

Fig. 1. timed automaton for a timer (a) with constraint consumption delay (b)

Interpretations of time dependent Boolean expressions
Boolean expressions can be interpreted in different ways, depending on their use:

Predicates: Time dependent Boolean expressions used as guards of transition
triggers or in decisions are predicates, which take at each occurrence of the tran-
sition either a value true or false depending on the value of time at the instance
the trigger event occurs. The value of complex predicates can be combined from
basic ones and can be used in other event based property formalisms: for example
in sequence charts, predicates are used as conditions.

A timed automaton representing a time dependent predicate, is an observer

which, depending on the point of time at which the concerned events are ob-
served, provides a Boolean value. In such a timed automata all transitions are
lazy, meaning that no constraint on possible time progress is expressed, but the
Boolean value (the value of the predicate) depends on time progress. As an ex-
ample, see the timed automaton representing the predicate duration(start, end)
in Figure 2.
Invariants: The value of a (time dependent) invariant of the form invariant(p)
is true only if p holds on the entire execution leading to the current state or event.
Invariants can be used as properties, meaning that they should be derivable from
a given system description. Live Sequence Charts [DH99,HMO02], as they are used
in Omega, provide an intuitive means to express complex invariants as well as
liveness properties. The timed automaton associated with invariant(p) is that
of p, except that, once it takes the value false, its value remains false forever.

Constraints: invariants can also be used as constraints or (assumed) facts on
the system under consideration, its environment or the underlying execution
platform. An assignment x := 0 represents the invariant whenever this step
is ezecuted, in the state just after the execution the variable x has the value 0
without necessarily saying how this is achieved exactly. Analogously, an invariant
of the form duration(action) < 5% can be used to restrict the model to the set

9 see next section for the definition



active

end
forever(not(x<=d))
eager

active

if x<=d then "true" else "false" x<=d error
delayable
a) automaton representing a predicate on duration(start,end) b) automaton representing a constraint on duration(start,end)

Fig. 2. timed automata representing a predicate(a) or an invariance constraint (b)

of executions satisfying the functional constraints in which not more than 5
time units pass between the event start(action) and the corresponding event
end(action).

Such a constraint on the time elapsing between two events, forces time
progress or waiting in accordance with the constraint. In timed automata, this is
obtained by means of eager or delayable transitions. Whenever, it is impossible
to force time progress in such a way as to satisfy some constraint, this means
that the set of time constraints is either inconsistent or incomplete and can be
represented in the timed automaton implicitly by a timelock or explicitly by an
error condition (see Figure 2b for an example).

Constraints restrict the model on which properties are verified. If constraints
are non overlapping, that is, in every possible execution, any event is under the
scope of at most one time constraint, they are consistent. In this case, the set
of associated timed automata define indeed an executable model, in the sense
that any computation satisfying the constraints up to some point of time, can be
continued by satisfying all constraints. When constraints are overlapping, they
might be inconsistent or incomplete. Inconsistency must lead to some redesign.
Figure 3 shows two incomplete sets of (overlapping) constraints. Both sets of
constraints are satisfiable, but must be completed by a constraint on the occur-
rence time of the event ez (relative to the occurrence time of e;) in order to
guarantee that all other constraints remain satisfiable. Most existing tools, such
as the simulation tools for SDL or the tool for executing timed live sequence
charts of [HMO02], avoid this problem by a priori choosing the earliest point of
time at which an event is possible. This corresponds often to a possible exe-
cution (at least when the set of constraints is consistent), but not always, as
shows the second example of Figure 3. Moreover, our aim is to keep constraints
as loose as possible, and thus to characterize the largest set of timed behaviours
of (sequential) subsystems and to enable compositional analysis.

In [BSO00] is described a framework for more flexible composition of duration
constraints than conjunction which could be used to further extend the real-time
profile presented here.

3.3 Derived duration expressions

Our approach is based on duration constraints between the occurrences of an
event ev! and a subsequent event ev2. In a sequence of occurrences of ev! and ev2,

10



2 <= duration(e3,e4) <= 3 2 <=duration(e3,e4) <= 3
1 1

el e3 e4 e2 el e3 ed e2

| | 3<=duration(e4,e2)<=4
duration(el,e2) <=10 duration(el,e2) <=10

Fig. 3. Incomplete Time constraints

several options exist to identify the “matching” pairs between which to impose
the constraint. We propose expressions for three different ways of identifying
such matching pairs.

1. duration(evl, ev2) represents the duration between an occurrence of evl

and the next occurrence of ev2 such that there is no other occurrence of
evl in between. If evaluating duration(ev!, ev2) only at the occurrence of
the first ev2 after a (series of) evl, the value of duration(evl, ev2) is that of
now - time(evl) that is the time passed since the last event evl. At other
points of time, its value is difficult to express only in terms of occurrence
times of events: time(pre™ (ev2)) - time(evl) where n is chosen such that
time(pre"~!(ev2)) < time(evl) < time(pre™(ev2)). Using additional time
stamp variables or a timed automaton makes the expression of this constraint
easy (see Figure 2 for the expression of duration(start,end) < d).
A particular instance is duration(evl,now) which represents at any point of
time the duration since the last occurrence of evi, that is now - time(evl).
This expression corresponds thus to an implicit duration counter associated
with event evl, and it can alternatively be expressed by means of a time
stamp at each occurrence of evl.

2. When several request events (each corresponding to ev!), may all be an-
swered by a single effect event (corresponding to ev2), and this should hap-
pen within a limited time starting from the first request, the time elapsed
between the first event of a series of occurrences of ev! and the first consec-
utive ev? is relevant. The expression duration-first(evl, ev2) can be used in
this case (the timed automaton associated with duration-first(start,end) <
d is obtained by eliminating in the timed automaton of Figure 2 the set(z)
action in case of repeated start events).

3. Finally, the case where several observations on pairs (evl,ev2) are “active”
simultaneously, must be considered. In most cases, one can find a parameter
z (or combination of parameters) identifying the matching pairs, and express
the required constraint by a constraint of the form

for any z: duration(evl(*,z,*),ev2(*z,%)) < d.
Nevertheless, due to the implicit use of FIFO buffers for storing signals in
objects, it might be impossible to always find the matching parameters,
and for this purpose pipelineDuration(evl, ev2) is introduced, where the
matching pairs may be overlapping, observed in a pipelined fashion. In any
case, such a set of constraints cannot be be expressed by a single timed
automaton, but by multiple instances of a parameterized timed automaton,
such that at every occurrence of evl, a new instance (with appropriate values

11



of parameters) is instantiated, constraining only its corresponding ev2 event;
each instance is killed when the constrained event ev2 occurs.

Moreover, we propose some convenient shorthands

1. Instead of duration(enter(state),exit(state)) or duration(trued(cond),falsed(cond)),
the shorthands duration(in(state)), respectively duration(in(cond)) can be
used, and analogously for any type of “duration”.

2. We allow also expressions of the form duration(SE1,SE2), where SE1, SE2
are lists of events!?, representing the distance between any occurrence of an
event in SE and the next instance of any event in SE2.

Additionally, duration expressions are defined which correspond to frequently
used duration patterns. We define their semantics by a mapping to basic duration
expressions:

Client response time attached with operation calls and signals with some
specified response, is defined as duration(invoke(op),consume-return(op)), that
is, the time elapsed between the moment at which the operation call (respectively
the initiating signal) is emitted and the moment at which the response (return
or defined response signal) is consumed by the client.

Ezample: ClientresponseTime(sourceObj:sigl, sig2)< 7, means that each time
the object o sends sig1, then, if it receives a response sig2 some time later, this
will happen within less than 7 time units.

Similarly, a Server response time attached with operation calls or signals with
specified response, is defined by duration(receive(op),invoke-return(op)), that is,
the time between the reception of a request (in the input queue) and the moment
at which the response (or return) is sent back (from the server point of view).

A Duration can be associated with some behaviour (action, transition, opera-
tion, or signal with specified response), as a shorthand for the duration between
the start and the termination time of the behaviour. That is, one can simply
write duration(act) for duration(start(act),end(act)). It does not include waiting
time in the event queue when the execution refers the treatment of a signal, but
it does include potential preemption time during the execution of the behaviour.
FEzecution time associated with a behaviour, is similar to its duration, except
that it also takes deployment issues into account and accounts only for the time
during which the object is executing and neither preempted nor waiting for some
response from external objects.

A Period, attached with an event, is defined as the duration between succes-
sive occurrences of the event, that is duration(pre(event),event).

Reactivity is attached with objects or groups of objects and is defined as the
maximum delay between any event of the form Receive(req) and the correspond-
ing event Consume(Reg), that is the maximal delay which may elapse between
the moment at which a request reaches the object and the moment at which
it starts to treat it. This feature is useful, when the size of input queue can be
statically bounded.

A Transmission delay attached with associations stereotyped as communica-
tion paths (similar to SDL channels), defines a communication delay.

10 where a list is used to represent a set of events
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The list of derived duration expressions has the status of an initial proposal.
It contains a number of concepts likely to be interesting and serves to illustrate
the general idea. Nevertheless, a larger discussion and more feedback from users
is necessary. Some of the concepts may need adaptation; for instance, the more
restricted notion of Worst case erecution time might be more useful than Eze-
cution time, it might be interesting to distinguish different kinds of transmission
delays, and predefined notions of jitter might be introduced explicitly, instead
of asking the user to write down his preferred formula relating the occurrence
times of n consecutive events ev, pre(ev), ..., pre™(ev).

4 Example

We illustrate a possible use of time annotations by modeling a part of the traffic
light system of the SDL design contest. Given the level of description of this
example, execution times, response times, etc play no role. At control level, only
expressions of type duration() and the distinction of different types of invariants
are relevant. The main idea is to illustrate the possibility of complete separation
of functional and time dependent specifications and of the expression of time
constraints by means of a set of relative simple constraints, each one depending
on not more than a few events.

A traffic light controller consists of a set of traffic light controller proxies
(TLCP)!!. Each TLCP controls the light switches of all its associated traffic
lights and gets information about presence or absence of traffic on its controlled
lanes from a number of sensors (at different distances from the lights on all
the lanes) by means of signals traffic and notraffic from a traffic sensor handler
associated with each TLCP, not described here. The information about the status
is stored in a Boolean variable traffic. The state machine of TLCP described
using SDL (see Figure 4) has only two states, red and green, and it can pass
from green to red without any condition, and from red to green when traffic has
been detected and all other traffic lights are red (this requires a global variable
AllRed updated by all the TCLPs at every transition). Each traffic light has an
additional orange phase of some fixed length, but this is handled in the traffic
lights themselves (not described here).

The state machine of Figure 4 describing the functional behaviour is totally
time independent. In addition, a number of time constraints need to be satisfied.
We show that also for this type of “functional” time constraints, it can be advan-
tageous to use a constraint based approach, instead of starting immediately with
an implementation in terms of timers or some cyclic environment observation.

The first constraint prevents livelocks: whenever there is traffic, the light will be
turned green within some delay maz,. This is expressed by an invariant of the
following form, where we omit the context TLCP (i) to simplify the expressions:

1 In the contest only two TLCP corresponding to two “directions” (that is sets of
coupled traffic lights) are considered, but in a more general setting a larger number
of directions may exist (the approach could also be extended to dynamically formed
sets of lights with common green phases).
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Fig. 4. TLCP functional behaviour

duration({enter(red),trued(traffic)}, enter(red)) < maz, (1)

Due to the existence of an orange phase, and in order to avoid unstable behaviour,
a minimal duration of both the green and the red phase must be fixed:
duration(in(green)) > ming (2)
duration(in(red)) > min, (3)
Constraint (1) implies a constraint on the “nominal” length of the green phase,
depending on the number N of “directions”. Moreover, once the minimal delay
passed, as soon as there is no traffic anymore on the lanes of TLCP(3), the
green phase should be terminated within a delay € (except if within e new traffic
arrives). When there is traffic all the time (with the exception of some durations
not longer than €), the green phase takes its nominal length mazy < maz, /(N —
1). We express this as an invariant!? attached with the green-to-red transition:
(duration(in(green))= ming = duration(trued(notraffic),now)> e)
A (ming <duration(in(green))< maxy, = duration(trued(notraffic),now)= €)
A (duration(in(green))> maxy, =  duration(trued(notraffic),now)< € )
A (duration(in(green)) < maxg) (4)
The composition of the timed automata associated with all constraints!? is given
in Figure 5. The so defined traffic light never turns green without traffic and stays
green a limited amount of time. In order to make sure that even with permanent
traffic on all directions each light turns green after at most max, time, the order
in which the lights turn green cannot be chosen non deterministically'4. Instead
of choosing some fixed order, we propose a more flexible solution based on a
dynamic priority, initialized arbitrarily to
ingt(priority) = forall j (priority(7):=j) (5)
and updated each time TLC P(i) changes to green by
update(i,priority) = forall j (priority(j):= (if =i then 0 else priority(j)+1)) (6)

'2 using the “min-synchronization” of the framework of [BS00] instead of conjunction
with constraint (2), would allow to simplify a lot the expression of constraint (4)

13 taking into account that the green and the red phase alternate, and simplified by

the assumption that traffic cannot go away in the red phase

in order to allow a non deterministic choice, the condition for turn greenm must also

depend on the waiting time of all the TLCP(i)

14
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Fig. 5. TLCP behaviour: time constraints

that is, the longer a light remains red, even in absence of traffic on its lanes,
the higher gets its priority, allowing occasional traffic to pass quickly without
disturbing lanes with heavy traffic.

Figure 6 shows a possible run for 3 directions, depending on traffic. If per-
manent traffic is present on all directions, each traffic light spends the maximum
time in red and in green (the first period in Figure 6). If there is no traffic on
direction 2 before the end of the nominal green phase, then its light turns red
earlier. If no traffic is present on some direction (here 2), even if it has the highest
priority, it passes its turn keeping its priority.

| green3 green2 | greenl green3] green2 | greenl |  green3 ‘greenll green3 1
l : oy '
time
@3 a3 @3 . d3 [dLd3 43 d [dag "
traffic3
traffic2
trafficl

Fig. 6. A possible evolution of traffic lights over time

The timed traffic light behaviour is defined by the conjunction of the behaviours
defined by Fig. 4 and Fig. 5. It can not be directly translated into SDL by
replacing clocks by time stamps, for two reasons:

— the use of urgency is essential to obtain the expected behaviour

— SDL transitions represent actions or activities which might take time, whereas

timed automata transitions represent events that is instantaneous state changes.

An actual traffic light satisfying all the constraints can finally be implemented
in different ways. One consists in introducing signals trued/falsed(traffic) and
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timers for the € waiting period. A second solution consists in a process scanning
every € for changes of the traffic variable, where the length e of the cycle is
induced by the required minimal reaction time. Notice that the cycle length is
not necessarily constant: during the red phase, it depends on the precision with
which one wants to determine the time of traffic occurrence, and, as long as the
minimal waiting time (ming, min,) has not been reached, there is no need to
scrutinize for changes of traffic at all.

Choosing mazy, = maz, /(N — 1) allows to respect constraint (1). Neverthe-
less, in case of high traffic on all lanes, no flexibility is possible: the only solution
satisfying all the constraints consists in turning the lights green in a round robin
fashion. A smaller value of maxy, would allow to modify the priority rules and
to provide additional green phases to those lanes with the highest traffic.

Another flexibility could be obtained by not a priori fixing the maximal length
of the green phase: there is no need to quit the green phase if there is no traffic
on any other line. This can be done by relaxing constraint (4) when there is no
traffic on any other line.

Notice also that the proposed solution making use of a global variable priority
would be made easy by the introduction of a flexible notion of global priority in
SDL.

5 Discussion: Adapt this profile to SDL

SDL already contains most primitives for dealing with time. Nevertheless, SDL
suffers from some deficiencies which are discussed in this section.

SDL does not offer the possibility to define local time, timers are less pow-
erful as they cannot be periodic and they cannot express clocks which “tick”
periodically, where ticks are consumed instantaneously or lost. The extension
of SDL with more powerful timers and UML clocks has already been proposed
previously [BGM*01,MSDHO1|. Also the introduction of local time is straight-
forward by having a different now attached with each “locality”. The values of
different local times need not to evolve strictly synchronously, but by respect-
ing some specified drift, offset,... Nevertheless, explicit modelling of local clocks
should be avoided whenever possible, and the uncertainty on the relative speed
or values of local clocks expressed in terms of uncertainties on the occurrence
times or durations.

In SDL, it is left open how concurrent activities are sequentialized (when
they do not run in a distributed fashion). It is however specified that activities
within a process agent are executed in a run-to-completion fashion. This makes
the definition of “interrupts” in principle impossible. It has been proposed (e.g.
in [BGM™01]) to use the exception mechanism of SDL, which can be considered
as a kind of exception to the run-to-completion principle, for the definition of
interrupts.

Our main concern is the expression of time constraints on execution times and
durations between events. The SDL semantics says that time passes in actions
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and not in states, but no means is provided to specify constraints on the time
passed in actions. Waiting can be forced by means of timers and time guards. Ex-
isting tools implement a different interpretation: Like in MSC or timed automata,
“atomic” parts of transitions are viewed as instantaneous events. Moreover, time
passes only where explicitly required by waiting conditions. This view allows the
expression of time constraints by means of time guards, decisions and explicit
error states. Nevertheless, such error states do not exist in SDL, and they make
the models cumbersome. Moreover, some of the identified events, such as “re-
ception of a signal in the input queue” has no syntactic representation and can
therefore not be constraint.

Alternatives for the expression of time constraints exist, which can be ex-
tended in such a way as to serve our purpose.

MSC: are an event based formalism allowing the expressing of constraints on

time elapsing between events. By introducing also instances of agents which
are implicit in SDL, such as the input queue of a process or the agent as-
sociated with a process set, all introduced events can be represented. MSC
are indeed used in practice to express time constraints of SDL specifications.
But MSC are not expressive enough for this purpose. For example, they do
not allow the expression of constraints of the form “if the entire scenario in
between two constraint events occurs, then the time constraint must hold,
otherwise no constraint is imposed”. Live Sequence Charts [DH99| are more
powerful as they allow to express such implications by means of cold event
occurrences and hot time constraints.
An extension of MSC, with the concepts of LSC would be very useful and
allow the expression of timed scenarios in practice. Notice however, that
scenario based formalisms can be very cumbersome when the number of
possible alternative scenarios is high or when only events at the interface
of a single agent are constraint, and they should not be the only means for
expressing time constraints.

Annotations: Some tools allow the expression of duration constraints on ac-

tions in the form of special comments. The inconvenience is that each tool
defines its own notation and semantics.
For simple constraints associated with processes tasks, signals,... specifying
execution times of tasks or durations like response times, process execu-
tion periods,...as they occur for example in contracts specifying interfaces,
annotations, using the event names and duration expressions defined in Sec-
tion 3.3, are a convenient means. These annotations can take the form of
special comments, but their syntax and semantics shouldn’t be left open as
a tool issue.

Observers: Some SDL tools provide the facility to define observers as a means
for defining constraints and properties. Observers allow to impose constraints
on occurrences of events like MSC, but they can also observe and constrain
the global state of the observed system, and look almost like SDL processes.
Observers are a very powerful means for expressing properties and con-
straints, but they exist only in particular tools, SDL does not provide any
standard notation for them.
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Triggers of observers are any of the defined events, and they define con-
straints on their occurrence time may using either time stamps (e.g. now—t <
3) or the duration expressions defined in Section 3.3 (e.g. duration(ev,now)
< 3). In order to define properties and constraints, they may use the above
mentioned error states or an explicit urgency like in timed automata.
In order modelling languages to be used in practice, it is very important that
the user has the freedom to express time constraints in the most convenient
manner, depending on each situation. For this reason all three above mentioned
approaches are useful. The interest to separate functional specification and tim-
ing information, can be motivated by the fact that timing information is mostly
platform or implementation dependent. Separation makes it easier to adapt the
time related specifications to a different platform. In all three types of formalisms,
we distinguish between constraints which are part of the definition of the sys-
tem, and properties which must be derivable from the system definition and
constraints.

In order to take into account scheduling and deployment related information,
new notations have to be introduced in SDL. The simplest way is almost the
one proposed in QSDL [MTMC99]. At the architecture level, a list of resources
with an attribute defining their preemptibility is defined. For block and process
agents as well as tasks, it is specified on which resource they are executed, where
inner agents and tasks run on the same resource as long not otherwise stated.
Scheduling policies are defined by keywords, such as RMA or EDF, or by priority
rules. They are attached with resources or with agents, in an hierarchical fashion.
Within a process, priorities are defined between transitions or their triggers, and
within a block, they are defined between sub-agents. Priorities may be dynamic,
where dynamic priorities can be specified in a declarative way, that is depending
on some precondition, or by means of an observer (attached with the concerned
agent), which explicitly updates priorities depending on the observed states and
events.

Perspectives of simulation and validation

In section 3.2 we have already discussed the the simulation issue: any SDL model
with time constraints can be simulated. This is an important property, as this
means that such a model can be used for model based testing.

Obviously, any interesting property is in general undecidable on an SDL
specification due to infiniteness of data domains, and unbounded message buffers
and agent creation. Nevertheless, the verification of time related properties can
often been done on a finite control abstraction, that is a system with finite data
domains, bounded message buffers and bounded agent creation. A number of
interesting verification problems are decidable on such a finite control abstraction
under the condition that in the timed automata, obtained by translation, clocks
can only be reset to zero, stopped and restarted, and the only allowed tests
are comparisons of clock values or differences of clock values with constants.
This means that the only allowed constraints imposed on events are boolean
combinations of comparisons of the type “duration since the occurrence of some
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event lays within an interval” or “the difference of occurrence times between two
past events lays within an interval”.

MSC which impose only interval constraints on occurrence times of events
or on durations between pairs of events and timers, are in this restricted set.

Observers satisfy this constraint if they use only constraints which are Boolean
combinations of interval constraints on expressions of the form duration(e,e2)*>.
An alternative, is using time stamps of the form “¢ := now” and comparisons of
the form “now —t € [2,3]” or “t2 —t; € [2,3]”. The general time stamping mech-
anism - which allow the comparison of time distances with different end points
(e-g- “(now — tg) < (t2 — t1)”), as they are used in auto-adaptive algorithms - is
more expressive and outside the decidable set.

Schedulers make use of integrators, that is, they imply clocks used for count-
ing execution time which are stopped when the process is suspended and restarted
when it becomes executing again. As long as only interval constraints on such in-
tegrators are tested, which is typically the case when worst-case execution times
and deadlines are specified, decidability is preserved.

There exist several tools based on timed automata allowing some verifica-
tion under the above mentioned restrictions, such as Hytech [HHWT97], the
Kronos/IF tool [Yov97,BGGMO00] and Uppaal [LPY97].

Let us consider a number of relevant time related verification problems:

— Consistency checking of a time constraint system and verification of proper-
ties expressing requirements of the same kind, that is interval constraints on
distances between events are very similar in nature, and can be done with
the same tools.

Notice that, when execution time constraints and deadlines are specified, and
several concurrent behaviours are executed on the same resource, consistency
checking and verification includes schedulability checking.

— Incomplete specifications, as in Figure 3, are problematic, as they may re-

quire backtracking during simulation. Under the before mentioned restric-
tions, the verification algorithm does synthesize for any transition the weak-
est constraint guaranteeing the satisfaction of all future constraints. When
constraints are not “cyclically overlapping”, completing an incomplete se-
quential specification can be done in linear time, even when interval bounds
have parameters. This is useful for simplifying simulation, even in the case
where the overall system is infinite.
Nevertheless, constraint propagation can be done automatically with a rea-
sonable effort only within a sequential behaviour (defined by an agent or a
small set of agents. In general, budgeting over concurrent agents, must be
provided by the user.

Notice that in the case where the intervals defining constraints are closed,
there always exists an exact discretization. Thus which time model is used is not
important. In practise, dense time leads often to more tractable models.

5 or first-duration(ei,e2) or any of the predefined duration expression. Notice that

pipeline-duration poses a problem when no bound on the maximal number of con-
currently active constraints can be given a priori
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What to do when the system does not satisfy the requirements making the
verification problem decidable? As long as all constraints are expressible by lin-
ear inequalities on time points or durations, the above mentioned verification
problems are “semi-decidable”, that is, successor sets can still be computed and
termination detected, but there is no guarantee that the underlying model is
finite and the verification procedure terminates. For these systems, one can still
hope that the actually generated model is finite and small enough to be verified.
Other remedies consist in using approximations of fixpoints or approximations
based on reformulations of the constraints so that they can be analyzed by the
above mentioned tools which use a more restricted internal representation than
general linear inequalities.
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6 Appendix : Predefined events

The set of predefined events which can be used in time-constraints are the follow-
ing ones. Moreover, the user can define additional events by means of “named”
instantaneous skip actions (corresponding to SDL informal tasks)
The events associated with an operation call are:
. Invoke: emission of the call request;
. Receive: reception of the call by the provider
. Accept: start of the actual processing of the call by the provider;
. Invokereturn: emission of the return reply;
. Receivereturn: reception of the return by the caller;
. Acceptreturn: consumption of the return'®.
Events associated with a signal exchange are:
1. Send: sending a signal;
2. Receive: reception of the signal by the target (i.e. when the signal is added
in the queue);
3. Consume: start of treatment of the signal (triggering of transition or the
moment the signal is discarded).
The events associated with an action are:
1. Start: starting time of the action;
2. End; termination time of the action;
3. Startend: simultaneous start and an termination of an instantaneous action..
The events associated with a transition of a state machine are:
1. Start: starting time of a transition;
2. FEnd: termination of a transition (and entering the next state);
The events associated with a state of a state machine are:
1. Entry: time at which a state is entered;
2. FExit: time at which a state is exited;
The change events associated with Boolean conditions are:
1. Trued time at which the condition becomes true;
2. Falsed time at which the condition becomes false.
The events associated with timers and clocks are (some of can be seen as
synonyms for some other kinds of events described above):
1. set/reset/start/stop (a timer or clock): events corresponding to the instan-
taneous actions defined for timers and clocks;
2. Occur : reaching of timeout time and notification of timeout;
3. Tick: equivalent to occur, but related to clocks;
4. Consume: timeout or tick consumption.

UL W

16 in blocking call semantics Acceptreturn it is the same as Receivereturn or Invokere-

turn

22



