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Abstract. This paper provides an overview on the approach of the IST OMEGA

project for the development of correct software for embedded systems based on
the use of UML as modelling language. The main contributions of the project are
the definition of a useful subset of UML and some extensions, a formal dynamic
semantics integrating all notations and a tool set for the validation of models
based on this semantics.

1 Introduction

Building embedded real-time software systems of guaranteed quality, in a cost-effective
manner, is an important technological challenge. In many industrial sectors, such as
automotive and telecommunications, a proper development process supported by val-
idation and formal verification tools is requested. Furthermore, the relations between
suppliers and manufacturers are changing; the suppliers provide components which
are integrated by manufacturers to produce goods and services of guaranteed quality.
This requires new software engineering environments supporting architecture-based en-
gineering practice for building complex systems by composing available components
with known properties and evaluating the impact of local design choices on their global
behaviour. There is now a general agreement that a means to achieve this is aModel
based approachwhich has the following characteristics :

– This approach is based on the existence of a global model of a software system,
consisting of possibly heterogeneous components. This model should address dif-
ferent aspects of the system - functional, architectural, non-functional, etc. Changes
may be made for some aspects during the development from very high level re-
quirements down to code; nevertheless the consistency of the global model must be
maintained throughout the development.

– At any level of abstraction, models should be executable. In the context of embed-
ded systems a model of the environment is also needed in order to allow “testing
at model level”; this is interesting as in a model there exists a better controllability
of the system and the explicit modelling of non-functional aspects (especially time
and memory) allows to avoid the “probe effect” due to the presence of a “tester”.

Such a model-based development approach is only useful if it is accompanied by
tool support for the validation of design choices. This is particularly true in the context
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of real-time systems, where non-functional properties, such as reactivity of the system,
are as important as its functionality. In order to detect design errors early, it is necessary
to take non-functional aspects into account, in particular time-related ones, in high-
level abstract models. Early decisions on the ordering of independent activities may
later need important redesign when it turns out that time constraints cannot be met. Re-
solving non-determinism when timing constraints are already taken into account allows
avoiding this problem.

Formal validation of different aspects (functional, non-functional) is usually done
on specialised analysis models. In order to guarantee consistency, these models should
be obtained by tool-supported extraction of the relevant information from the global
model, and results of the analysis must be fed back into the global model. To avoid
divergence between model and code, which would make the model useless, it is im-
portant to have automatic generation of code, depending on the target platform. More-
over, to avoid that “bugs” are eliminated at code level only, also support for round-trip-
engineering is needed, where changes in the code are reflected in the model automati-
cally.

In order to be able to implement an environment for such a model-based approach,
one needs (1) notations for representing all aspects of heterogeneous systems and their
environment, by separating as much as possible different aspects, (2) a formal seman-
tics integrating all notations into a global model of both static constraints and dynamic
behaviour, and (3) tools and methods for simulation and formal validation for both func-
tional and non-functional properties of the system. The Unified Modelling Language
(UML ), which has been developed with the goal to enable model-based development,
has become a de facto standard in the domain of software development and is imposing
itself also in the domain of real-time and embedded systems.

In this paper we report on work done in the EU-IST project OMEGA. The goal of
this project is to provide a framework the development of embedded software systems
based on UML and formal verification. The project has 6 academic partners, Verimag,
CWI, OFFIS, Weizmann Institute and the universities of Kiel and Nijmegen and 4 in-
dustrial users, EADS, France Telecom R&D, Israeli Aircraft Industries and National
Aerospace Lab of the Netherlands. The academic partners provide the formal seman-
tics and validation tools based an requirements and feedback from industrial users. The
approach is being validated and continuously improved on 4 industrial case studies.

Section 2 gives a brief overview on UML and the state-of-the-art of UML tools as
well as formal validation techniques. Section 3 presents the approach chosen by the
Omega project and section 4 contains some feedback and lessons learned from the
progress achieved within the first two years of the project.

2 Towards UML based development: state-of-the-art and problems
to be solved

This section has 3 parts, giving a critical overview on the three main ingredients of the
problem the Omega project wants to solve, UML and its semantics, formal validation
methods and tools and UML -based CASE tools.
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UML, its aims and deficiencies: UML aims at providing an integrated modelling frame-
work encompassing architecture descriptions, as supported by the various Architecture
Description Languages (ADL), and behaviour descriptions, as supported by various be-
havioural specification languages such as languages based on the concept of communi-
cating state machines. Nevertheless, in UML some aspects of model based design are
not sufficiently addressed:

– Semantic issues are hardly addressed. The UML meta-model solves a part of the
static semantics, but most of the dynamic semantics is left to the CASE tools. Not
fixing the dynamic semantics is intentional to provide a unified framework for vari-
ous domains with different needs. Nevertheless, this means that validation tools are
dependent on the semantic choices of each CASE tool. Notions for distinguishing
successive refinements of models as well as an appropriate notion of refinement are
lacking. In particular, there is no means to distinguish within a single refinement
step between the “model” of the system under development and “properties” which
can be used as a consistency check of this model and should be implied by it. All
properties expressed - in an operational or declarative manner - have a priori the
same status.

– Some of the UML notations are not expressive enough or have no appropriate se-
mantics.
• UML Sequence Diagrams are not meant for fully characterising the set of pos-

sible scenarios of a system. We want however use them for this purpose as an
alternative to temporal logic which is less well accepted by users than scenario
based specifications.

• The notions for expressing architecture and components were very weak in the
initial versions of UML . UML 2.0 has improved the situation, at least at the
syntactic level.

• UML has not been developed in the context of safety or performance criti-
cal systems, and initially, time and performance related features have not been
considered otherwise than in the form of informal annotations. The Profile for
scheduling performance and real-time (SPT) [OMG02] has brought some ad-
ditional notation, but no concrete syntactic framework, and no semantics.

In the Omega project, we address the above mentioned issues by defining a UML

Kernel model with extensions and a formal semantics. We provide also a notation for
an explicit distinction between diagrams being part of the model definition and those
representing requirements which must be implied by the model and represent the prop-
erties to be verified.

Formal verification: Little tool support exists so far for the formal verification of all as-
pects of this kind of systems. There exists many model checking tools [QS82,CES83]
for verifying properties on finite state models. Similarly, there are tools for validat-
ing properties of timed systems [Yov97,JLS00] based on timed automata [AD94] and
frameworks for scheduling analysis and performance evaluation. These tools suppose
that models of a particular form are provided. Some tools claim to handle UML models
(e.g. [LP99,CHS00]), but a closer look shows that they validate state charts [Har87] or
UML activity diagrams. There are also many tools for the verification of properties of
some form of scenarios. Nevertheless, it is impossible to use the different existing tools
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together for a more complete analysis on a common model which is, amongst others,
due to incompatibilities of semantics between tools.

Besides obvious problems of syntax compatibility, there are two main fundamental
problems to be addressed when building validation tools that are smoothly integratable
into a UML based software development process:

– The problem of adapting the verification techniques and making them scalable. In
particular, the use of UML poses several challenges:
• Verification of systems defined using object-oriented features, such as dynamic

object creation and destruction, inheritance and parameterisation.
• Verification of complex requirements on systems with a complex structure, and

including non-functional aspects, such as time related features.
– The problem of model extraction: in UML , different diagrams are used to represent

different aspects of a system which all together represent a unique model.
• To obtain a faithful semantic model (e.g., for interactive or guided simula-

tion) all these must be combined in a consistent manner into a unique semantic
model.

• Different aspects are verified in different steps, possibly using different tools.
It is important to extract for the validation of each aspect all the necessary
information, but not more than that.

Within OMEGA, UML models are translated into the formats of several existing val-
idation tools. In particular, we consider a tool for handling scenario based requirements
[DH99,HKMP03], an untimed model-checking tool [BDW00] and a model-checking
tool for timed and untimed specifications [BFG+99,GM02]. We also provide a map-
ping, dealing with general OCL constraints, to PVS [SOR93], an interactive theorem
prover allowing general reasoning about models, and thus potentially allowing to over-
come some of the problems occurring with object-orientation.

The problem of scalability is addressed in several ways. General compositional-
ity results are applied, and in particular, two aspect-depending abstract models are ex-
tracted: an untimed model dealing only with the functional aspects, and a timed model
taking into account only control, interaction and timing and scheduling related aspects.
In the future, both analysis methods should profit from each other. Presently each of
these models is simplified using abstraction and static analysis algorithms implemented
in the individual tools.

Finally, model transformation approaches are considered, in the form of scheduler
synthesis and the synthesis of a state chart model from a complete set of scenario spec-
ifications. Nevertheless, the underlying synthesis problems have a prohibitive complex-
ity, except when applied in restricted contexts.

UML CASE tools:There is a large number of generic CASE tools for UML , which allow
mainly to edit diagrams and to generate templates for code production. They only deal
with the static structure of a software. For the object-oriented development of real-time
systems, there exists a number of specialised CASE tools, such as Rhapsody of I-Logix
[Ilo], Real-time Studio of ARTiSAN [Art01b], TAU Generation-2 of Telelogic [Tel02],
Rose-RT of IBM/Rational [SR98]. Contrary to general purpose UML tools, they all im-
plement somedynamic semanticsof UML and allow the user to interactively simulate
models, as well as to generate executable code. Nevertheless, most of them pose one or
several of the following problems:
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– They are visual programming tools rather than modelling tools; non-determinism
which is not modelled explicitly - in the environment - is forbidden or eliminated
in some way by the tool.

– Some timing features, such as timers, are in general available, but no tool imple-
ments a framework as sketched in the SPT profile.

– Some notations, in particular the Object constraint Language, OCL [WK98] which
is very useful for constraining models, never really made their way into any CASE

tool.
– Apart from some simple static checks, the only available validation method is

model-based testing, i.e. interactive or guided simulation of the directly executable
part of the model. Tools for formal validation of models are lacking.

In the Omega project, our intention is not to improve CASE tools, but to develop
tools that can be used together with any CASE tool exporting models in the standard
XMI format. We achieve inter-operability by using mainly the extension mechanisms
provided by UML itself. Our tools, however, are not made to be compatible with the dy-
namic semantics of any particular tool, but propose a rather non-deterministic semantics
in which a part of the non-determinism is to be eliminated by timing, scheduling and
user defined priority constraints, and not only by predefined rules.

Many important topics are not addressed in Omega, such as code generation, test
case generation, general automatic model transformation and refinement, how to get
appropriate estimations on execution times and other durations used in the high level
model, as well as dealing with other non-functional characteristics, such as memory
or power constraints. Moreover, we do not address meta-tools for model and proof
management, which is an issue that should typically be handled within a commercial
CASE tool.

3 The Omega approach and initial developments

Within Omega, we intend to build a basis for an environment for rigorous model based
development of real-time and embedded systems addressing basic issues, such as an
appropriate set of notations with common semantic foundations, tool supported verifi-
cation methods for real-life systems, as well as real-time related aspects. This section
gives an overview on how we have addressed these problems.

3.1 UML notations and semantics

Concerning the problems ofexpressiveness, we mention here the most crucial issues
in the context of real-time systems:

– In a given UML specification, we distinguish between the model and requirements
to be verified on this model. Class and architecture diagrams, as well as state-
machines are used for the definition of the model. To strengthen the model or to
define requirements, (1) Scenarios in a formalism called Live Sequence Charts
(LSC), which are more expressive than the standard UML sequence diagram and
have a defined semantics[], (2) a subset of OCL extended with history depending
constraints [KdB02,KdBJvdZ03] and (3) particular state machines, stereotyped as
“observers” [OGO04] can be used.
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– In typical embedded systems several execution and communication modes are used4.
We consider a system as a hierarchically structured set of components.Activity
groups, which may be part of and contain components, define a mono threaded
behaviour, interacting with the environment and revealing their state only at well
defined points in between so called run-to-completion steps; no implicit choice
concerning the execution order of concurrently active activity groups is made.
Communication is either by synchronous method calls or asynchronous signals.
This semantics is defined in the form of a unique symbolic transition system in
[DJPV03]. A more abstract version by means of an interpretation in PVS is defined
in [vdZH03].

– A concrete timing framework, consistent with the SPT profile, has been developed,
allowing to define a timed extension of any model. This framework is based on
the notion oftimed event, which can also be used to define a user-defined notion
of observability, where durations between occurrences of events and constraints
on them can be expressed by particular OCL expressions. The semantics of time
extensions are orthogonal to the operational semantics.

– We consider architecture diagrams as static constraints and use components in or-
der to define an appropriate notion of encapsulation for compositional reasoning
and property preserving refinement. The interface between a component and its en-
vironment is defined by ports, where the communication between a component and
its environment is only via these ports.

Thus, in order to achievesemantic integration, we consider a quite small, but pow-
erful, subset of notations. Presently, activity diagrams are not considered but later they
could be integrated easily as an alternative way to define “tasks”, as needed in the con-
text of timing and scheduling analysis.

3.2 Tool support for verification

The aim of the Omega project is to not impose a particular development methodology,
but to provide methodological support for the use of the modelling language and tools
in combination, as validation is only feasible for models respecting some structure. To
be able to provide useful verification results in the context of software development
in the Omega framework, we propose to extend and adapt a number of existing verifi-
cation tools integrating state-of-the-art technology where each one solves a particular
verification problem. The work has two parts, adapting tools to the UML technology
and extending the verification technology, as described below.

Adapting tools to theUML technology: We have chosen to build upon the existence
of the UML exchange format XMI which includes a standard extension mechanism
useful to adapt UML to a particular framework. All the validation tools will rely on the
same XMI format, and the common semantic framework allows to ensure consistent
interpretation of a model amongst the different tools. The problems we had to face are
the weakness of the XMI standard (in particular, there exists no structured representation
of OCL or the action language, and the representation of sequence diagrams is too

4 E.g. so-called GALS - globally asynchronous, locally synchronous systems are often consid-
ered. Our model is close to this view.
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poor to represent the more powerful LSC) and the fact that XMI is still not sufficiently
adopted, or used in different ways, by the different CASE tool builders.

Extending the verification technology:The main techniques for making formal ver-
ification scalable consist in exploiting the principles of compositionality (composing
properties of subsystems to derive system properties) and abstraction (extracting just
the necessary information from the model of a system or a component for the verifica-
tion of a given aspect or property). It is well-known that time related aspects are by their
nature not very compositional and the object-oriented setting makes the static analysis
used for model extraction hard to apply. The methodology used - and its support by the
notational framework - plays an important role for obtaining models in which the rel-
evant component can be composed to system properties. This kind of methodological
support is out of the scope of the project5.

Our aim is to provide model-checking tools for establishing properties of compo-
nents, where the notion of component interface plays an important role for establishing
the notion of externally observable behaviour. We use composition theories and support
of interactive theorem provers and composability results for timing properties to deduce
system properties.

Overview on the Omega tool set:There are four main validation tools in the tool set:
– The play-in/play-out tool [HKMP03] allows user friendly editing of LSC (called

play-in), interactive simulation and verification of consistency of LSC (called play-
out) and an extension for state machine synthesis.

– A model-checking tool [BDW00] allows the verification of functional properties on
an untimed model (time is counted in terms of run-to-completion steps). Properties
can either be described by LSC or by a set of temporal logic patterns, integrated in
the user interface of the verification tool.

– The IF verification platform [BFG+99,OGO04] allows timed and untimed verifi-
cation. Nevertheless, it is more appropriate for the verification of coordination and
timing properties and scheduling analysis. It takes into account the Omega real-
time extensions and represents the UML model by a set of extended timed automata
by abstracting a variable amount of attributes. The consistency of a model can be
validated by interactive or exhaustive simulation of such a more or less abstract
model. Properties, expressed by Omega time constraints or observers can be veri-
fied. In some cases, automata representing the externally observable behaviour can
be generated. Also schedulability analysis is formulated as a consistency problem
and validated in the same way on a particular abstraction.

– A set of tools [KdBJvdZ03,KdB03,vdZH03] built upon the interactive theorem
prover PVS. They rely all on the same translation from UML , including OCL con-
straints, into a PVS expression. The aim is to verify systems which may have con-
figurations of unbounded size and unbounded message queues and data. The tools
aims at the verification of type-checking conditions, consistency checks, and prov-
ing properties of systems expressed either as temporal logic formulas or as OCL

constraints.
5 There is presently much effort devoted to this subject, e.g., in the Artist Network of excellence,

see http://www.artist-embedded.org/
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An important aspect of the Omega tool set is that all tools are based on a common
reference semantics of UML , the only way to ensure that all tools analyse the same
model. An effort will be made to provide feedback to the user in a user-friendly manner
(e.g. error traces are provided in the form of scenarios), but beyond the already men-
tioned limited synthesis approaches no feedback in the form of a corrected or refined
UML models in XMI format can be provided within the duration of the project. The
tools will only provide relevant information, helping the user to manually update or
refine the model.

4 Some lessons learned

A very preliminary analysis of the feedback from the work with the case studies allowed
us to identify some critical points from which we mention only the most important ones:

– Object orientation makes static analysis and constraint propagation, e.g., methods
which are important to make the model-checking approach feasible, are very hard
to apply due to potential aliasing. Moreover, in the context of embedded systems,
the only object oriented feature frequently used is static inheritance which can be
compiled away for validation.

– Presently, different tools handle somewhat different subsets of the Kernel UML , for
example, only one tool handles OCL, and each tool has its own internal format. A
common semantic level format, which keeps the structure and concepts useful for
validation and maps all others into more primitive ones, would be interesting for
exchanging some effort (e.g. translation of OCL constraints, operational meaning
of LSC, ...)

– Users are very satisfied with LSC for the expression of requirements, as long as
they are not required to provide complete specifications. This means that we might
have to revise our approach to synthesis of state charts from LSC.

– Interactive verification using PVS based on the general semantic model is rather
complex and requires many user interactions. This can be improved by restricting
the semantics to the features that occur in the model under investigation and by
using the powerful strategies of TLPVS, which mechanises proof rules for temporal
logic. For the verification of large models, the use of compositionality is essential.

– concerning scalability, there is still quite some effort to be made.
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