Characterization of a Sequentially Consistent Memory
and
Verification of a Cache Memory by Abstraction*

Susanne Graf

VERIMAG**, Avenue de la Vignate, F-38610 Giéres* **

Abstract. The contribution of the paper is two-fold. We give a set of properties ex-
pressible as temporal logic formulas such that any system satisfying them is a sequen-
tially consistent memory, and which is sufficiently precise such that every reasonable
concrete system that implements a sequentially consistent memory satisfies these prop-
erties.

Then, we verify these properties on a distributed cache memory system by means
of a verification method, based on the use of abstract interpretation which has been
presented in previous papers and so far applied to finite state systems. The motivation
for this paper was to show that it can also be successfully applied to systems with an
infinite state space.

This is a revised and extended version of [Gra94].

1 Introduction

We propose to verify the distributed cache memory presented in [ABM93] and [Ger94] by
using the verification method proposed in [BBLS92,LGS*94,CGL94,Lon93]. This method,
based on the principle of abstract interpretation [CC77], proposes to verify a set of YoTL*
[SGI0] formulas on a composed program as follows: define an appropriate abstract program,
obtained compositionally from the given program, and verify the required properties on it.
Our way of computing abstract programs is similar to that proposed in [CGL94,Lon93,Cri95],
but

e in the opposite to most other approaches, our approach allows to deal with arbitrary data
types,

e our abstractions are harder to obtain, but possibly much more precise as the “standard”
abstractions proposed in [Cri95] as they are property oriented,

e our concept of compositionality is different from that proposed in [Lon93] or in [Pnu85].

We construct a global abstraction of the system by composing abstractions of its components,
whereas the usually compositionality consists in deducing properties of the composed system
from properties of its components under some hypotheses on its environment — which must

* This work was partially supported by ESPRIT Basic Research Action “REACT”
** Verimag is a Research Laboratory affiliated to CNRS, Université Joseph Fourier and Institut

Nationale Polytechnique of Grenoble
*** e-mail: Susanne.Graf@imag.fr, URL: http://www-verimag.imag.fr/PEOPLE /Susanne.Graf

be proven to hold. The abstractions of components not directly involved in the property play
the same role as the hypotheses on the environment, except that their correctness is obtained
“by construction”. An abstraction of each component is obtained applying the principle of
abstract interpretation by means of a relation g relating the domain of its variables and the
domain of the set of some abstract variables.

In [GL93,L0i94] is described a tool allowing to verify finite state systems in a fully au-
tomatic way by using this method. Here, we show that the same method is also tractable
for infinite state systems. In fact, if — depending on the formula one wants to verify — for
each component P; one can guess an appropriate abstraction relation g;, verification becomes
often a relatively simple task as

e the corresponding finite state abstract program is reasonably easy to obtain,
e the verification of the properties on the abstract program can be fully automatized.

Despite the fact that VOCTL* contains also liveness properties, this method does in general
not support directly the verification of liveness properties as they often do not hold on finite
abstractions. Here, we succeed to verify the liveness property of the cache memory by apply-
ing variants of the induction rules given in [Pnu85,JPR94] which allow under some fairness
assumptions to reduce a liveness property to a set of safety properties.

In Section 2, we recall all the ingredients we need for our verification method:

e a simple program formalism similar to that used e. g., in [Pnu86],

e a method to compute abstract programs, which consists in defining for each operator
occurring in the program a corresponding abstract operator,

e the temporal logic CTL* and its fragments, used for the description of properties,

e the preservation results allowing to deduce the validity of a property on the concrete
program from its validity on the abstract program which include compositionality results
allowing to compute an abstract program by composing abstractions of its components.

We illustrate all the definitions and results on a small buffer example. In Section 3, we give a set
of temporal logic formulas guaranteeing that, whenever a system satisfies all these properties,
it is a “sequentially consistent memory” [Lam?79]. This set of properties has been chosen
in such a way that most reasonable implementations of sequentially consistent memories will
satisfy it. In Section 4, we verify this set of properties on the distributed cache memory system.
It turns out that, using our method, this verification is almost as simple as the verification of
the tiny buffer, as we can use almost the same abstract types and corresponding operations,
and this is the most time consuming part of the verification process.

2 A verification method using abstraction

2.1 A program description formalism

We adopt a simple program formalism which is not meant as a real programming language
but which is sufficient to illustrate our method. A system is a parallel composition of basic
programs of the form

Name : P
Variables : T1: Ty eyt Ty,

Transitions : (¢1) actiony (1, ..., Tn, T}, ..., T))

(£p) actionp(x1, ..., Ty, T, ..., zh)

Initial States : Init(z1,...,2Zn)

where P is an identifier used to refer to the program in a composition expression, x; are
variables of type T, — defining its set of possible valuations — and Lp = {1, ...,4,} is a
set of program labels. Each action; is an expression with free variables in the set of program
variables and the corresponding set of primed variables which for each state variable contains
a variable z’ with the same type as z. As e.g. in [Pnu86,Lam94], action; represents a transition
relation on the set of valuations of the program variables by interpreting the valuations of
Xp = (21, ..., Zn) as the state before, and the valuations of Xp = (21, ..., z,,) as the state after
the transition. For any set of variables Y = {y1,...,yx} C X, we denote its set of valuations
by Ty =Ty, x...xTy,.

Semantics: A program P defines a transition system Sp=(Qp, Rp) where

e p = Tx, is the set of states,
e Rp C QpxQp is a transition relation defined by Rp = {(q,¢') | 3i . action;(q,q")}.

The predicate Init defines the set of initial states. It is used in the formulas specifying the
program: they are in general of the form Init=>¢ — where ¢ is a temporal logic formula —
as we are only interested in properties of reachable states.

Variables representing inputs need not to be distinguished as they are not treated in a
particular manner. However, we indicate in programs the variables which are meant as inputs
as this makes them easier to read. We also indicate sometimes which variables are shared
with other programs and which ones are used only locally, even if in the model, for simplicity,
all variables are interpreted as globally.

Labels are used to name “events” or “actions”. If ¢; is the label of action; and (v,v') a
pair of valuations such that action;(v,v') evaluates to true, then the transition from state v
to state v’ is called an event £;. If e is the valuation of the “input” variables extracted from
v, then we call this event also £;(e). Events are used for the expression of properties.

Example 1. : An infinite lossy buffer The following program represents an unbounded buffer
taking as input elements e of some data type elem. The event push(e) enters e (if it has never
been entered yet) into the buffer or arbitrarily “loses” it, and pop(e) takes e out of the buffer
if it is its first element.

Name: Lossy buffer

Variables: e:elem (Input)
E : set of elem (already occurred events push(e))
B : buffer of elem

Transitions: (push(e)) allowed(e, E,E') A (append(B, e, B’) V unch(B))
(pop(e)) first(B,e) Atail(B,e,B') A unch(E)

Initial States: empty(B)

At any moment the value of variable E contains the elements e € elemn such that push(e)
has already occurred before, and for all elements e and sets E and E', allowed(e,E,E'")
is true if e ¢ E and E' = E U {e}. This guarantees that the event push(e) can occur at
most once in every execution sequence. All other predicates have the intuitive meanings:
append(B, e, B') holds if the buffer B’ is obtained by appending element e at the end of the
buffer B; tail(B, e, B') holds if B’ is obtained by eliminating e from B if e is its first element
(first(B, e) holds); empty(B) is true if B is the empty buffer. unch(Y'), where Y = (y1,.--yx)
is a tuple of program variables is a shorthand for /\le(y; = y,;), that means it holds if all
variables in Y have the same value in the actual and in the next state.

We use predicates of the form append(B,e,B’) instead of B' = Append(B,e) where
Append is a function, as abstract operations are in general non deterministic. This is the
same way of representing operations which has been proposed in [MP91,CGL94,Lam94].

Composed programs: In [GL93] results for more general parallel composition operators
are given, but here we need only composition obtained by interleaving of the actions of the
composed programs. If P, and P, are programs defined on a tuple of state variables Xi,
respectively Xo, then P || P2 is the parallel composition of P; and P, defining the transition
system S=(Tx,ux,,R) where

R = Rp, ANunch(X2 — X1) V Rp, A unch(X: — X»)

Each transition of P || P, is either a transition of P; which leaves all variables not declared in
Py unchanged or a transition of P» which leaves all variables not declared in P, unchanged.

2.2 Abstract programs

Let P be a program on the set of variables X, and let X4 be a set of abstract variables,
defining a set of abstract states T'x,. Then, a relation ¢ C Tx xT'x, which is total on Tx,
is called an abstraction relation (from T'x to T'x,). For the ease of expression of properties,
we suppose that g is represented by a predicate on concrete and abstract variables denoted
0(X, X 4). Furthermore, the abstraction relations we use in practice, are often (total) functions
0:Tx — Tx,. In this case, we denote for v € Tx by p(v) the (unique) value v4 € Tx, such
that o(v,v4) holds.

Definition 1. (Abstract programs) Let, in addition to the above conventions, P4 be a pro-
gram defined on X 4. P4 is an abstraction, or more precisely a p-abstraction of P, if for every
action act of P, there exists an action acta of Pa (with the same label), such that

VYo,v' € Tx . act(v,v') = Fwa,vy € Tx, . o0(v,va) AoV ,v4) Aacta(va,vly)
and (1)
VYo € Tx . init(v) = Fva € Tx, . o(v,v4) Ninita(va).

This condition ensures that ¢ defines a simulation in the sense of [Mil71] between the transition
systems associated with the concrete and the abstract program.

Remark: Obviously, it is in principle sufficient, that the above conditions hold only in those
states v € T'x which are reachable, which means that whenever one has a known invariant of
the system, the conditions need only be checked on the states satisfying this invariant. For
states outside this invariant, nothing is required. If one has a “desired” invariant (a property
to be proved) of the system, a usual method consists in considering a trivial set of successors
(such as true) of the states outside this desired invariant. This simplifies the definition and
respects the conditions above.

For the verification of programs composed of several parallel components, it is interesting
to compute an abstract program compositionally, i. e., as a parallel composition of abstract
component programs. From a more general result [LGS94], we deduce the following, sufficient
for the verification of the distributed cache memory system.

Proposition 1. (compositionality of abstraction) Let o'(X?, XY) be abstraction functions
represented by predicates on concrete and abstract variables. Let the program Py be a g'-
abstraction of P* fori € {1,2}. If the predicate o' Ag® represents a total function o : Tx1,x2
Txiuxz, then Py || P is a o-abstraction of P || P>.

Computation of abstract programs in practice: The idea of abstract interpretation [CC77] is
to interpret every function on concrete values used in the program by a corresponding abstract
function on the abstract values, and then to analyze the so obtained simpler abstract model
instead of the concrete one.

Consider the program Progs obtained by replacing every basic predicate op (such as tail,
first,...) on the concrete variables by a predicate opa on abstract variables X 4 satisfying (1).
If the expressions in Prog are negation free (as it is the case in the lossy buffer), then Proga
is in fact a p-abstraction of Prog.

Our intention is to define for any predicate op — depending in general only on a small
subset of the concrete variables — an abstract predicate on the “corresponding”, hopefully
also small, set of abstract variables. Also, in order to be able to verify interesting properties
on Progy, the abstract predicate should be “reasonably close” to the “optimal” abstract
predicate which is defined by the requirement

Yoa,v)y € Tx, . (opa(va,vy) = Fv,v' € Tx . p(v,v4) A o(v',v) A op(v,v')) (2)
This approach makes no sense for arbitrary abstraction relations. We are interested in ab-
straction relations relating each variable of type 7, to a single abstract variable of type T,
such that, e.g. each occurrence of expression first(e,B) in the concrete program can be re-
placed by an expression of the form firsta(ea,B4) in the abstract program where e4 is a
variable of some type “abstract element”, B 4 a variable of some type “abstract buffer” and
first4 is a predicate satisfying condition (1). That means, given a set of abstract variables,
we are interested in abstraction functions such that

\V/(’U1, ey 'Un) €Tx . Q(v) = (Ql(vk1)= e Qp(vkp))

where p is the cardinality of X4 and the indices k; are all different. That means that if
n = p, every abstract variable is related to exactly one concrete variable. Otherwise, i.e., if
p < n, there exist concrete variables related to no abstract variable; these variables are called
existentially abstracted variables. For the verification of the cache memory, we use also an
abstraction function mapping the values of a pair of variables (a,d) onto the value of a single
variable e, but in this case, the two variables represented by a single abstract one are such
that (almost) all predicates depend on both or on none of them.

The use of such an abstraction function allows to construct an abstract program in a very
simple way: Each variable z : T, of the concrete program is either eliminated (existentially

abstracted) or it is declared of an abstract type T;‘ instead of the concrete type T,. Then, each
A A

basic predicate op’='Tv>-(z,y,....) is replaced by a predicate opix T "(z,y,....) depending
on the same variables as the concrete predicate except the existentially abstracted ones. All
these predicates must satisfy condition (1) which is simplified as it depends only on the (few)
concrete variables occurring in predicate op and the corresponding abstract variables.

The guess of appropriate abstract types and the definition of abstract predicates is the only
part of our verification method which in general cannot be automatized. The abstract predi-
cates defined by condition (1) or (2) make reference to existentially quantified concrete vari-
ables. These quantifiers must be eliminated in order to explicitly construct the finite abstract
model. If all concrete types are finite, this can always be done automatically [Loi94,Lon93].

Notice also, that for a given “guess” of an abstract predicate, the verification of condi-
tion (1) is often easy if ¢ is a function.

In the domain of protocol verification, the used data structures are “messages” on which
no operations are carried out, “memories” or “registers” in which data can be stored, integers
which are mostly used as counters or constant parameters, and “buffers” with the usual
operations append, tail, first,.. as in our example. As furthermore the properties to be
verified are often similar, for the verification of many algorithms similar abstract types and
corresponding operations (with adaptations to each particular case) may be used.

Example 2. : An abstract lossy buffer To illustrate the idea, consider again the lossy buffer of
Example 1. In order to show that it has the property of “order preservation” (see Example 3),
it is sufficient to show order preservation for any two of elements e;, es € elem. To show order
preservation for eq, ez, all the information we need about the value of the variable B is, if and in
which order, it contains the elements e; and e,. Similarly, for the input variable e we only need
to distinguish if its value is e;, e or any other value. Concerning the value of E determinating
which events push(e) are still allowed, we only need to know if the event push(e;), respectively
push(es), is still possible or not. In general, all the abstract types for the type elem that we
need, distinguish n particular elements of elem and merge all others in a single abstract
value. Suppose that we want to distinguish the elements e.obs = {ey,...,e,} C elem, we use
as abstract type for variables of type elem:

elemy = {0} Uabs.elem where abselem = {1,...,n}
where the concrete type elem and the abstract type elem 4 are related by

0 if e € e.obs
e_obs —
Ve € elem . 05223 (e) = {z if e = e; (€ e.obs)

We denote by p%2%% also the pointwise extension of this function to a function from sets,
sequences, ... containing concrete elements, to sets, sequences, ... where the concrete elements
are replaced by the corresponding abstract ones.

The choice of the abstract type elem 4, determines the abstract types used for sets and
buffers in an obvious way: as abstract type for variables of type “set of elem” we use the type

“set of abs_elem”, where the concrete and the abstract types are related by
VE € set of elem . 9= (E) = {05 (e) | e € E} N abselem

set elem

We use abstract sets subsets of abselem and not of elem 4 as the property to be verified
depends only on information concerning distinguished elements. Finally, we use as abstract
type for variables of type buf fer of elem

buf ferk of elema = (sequences® of abselem) U {1}

consisting of the sequences of abstract elements of length less or equal to some constant K
which has to be chosen depending on the program under study. The element L represents all
buffers such that their restriction to elements in e.obs — denoted Bj._,;, — is of length greater
than K. We denote the empty sequence by € and the concatenation symbol of sequences by e.
Concrete and abstract buffers are related by

€ if length(Bjeops) = 0
VB € buf fer of elem . gi‘ﬁ;g(B) = 055 (Beops) if 1 < length(Bjeops) < K
1 if length(Bjeops) > K

Thus, the abstract buffer 1 e 2 represents all concrete buffers containing any number of non-
distinguished elements and the distinguished elements e;, es, exactly once, and ey before e;.

It remains to define abstract predicates for all the basic predicates used in the concrete buffer
program, such as allowed, append, tail, unch, depending on the abstract types chosen for their
parameters. The following abstract predicates satisfy condition (1). The proofs are omitted,
but they are simple.

The abstract predicate associated with unch is obviously unch itself (where all the exis-
tentially abstracted variables are omitted). For the other predicates occurring in the lossy
buffer, we have,

Vey € elema VE4, Ey' € set of abs.elem VBg4,B!, € bufferK of abselem:
allowedA(eA,EA,EA') = (eA = 0) N (EAI = EA) \% (eA ;ﬁ 0) N (eA ¢ EA) A (6,4 € EAl)
appendX (Ba,ea,BY) = (ea=0)A (Ba=B) Vv
(ea #0) A ((length(Ba) < K) AN (By =es 9 By) V
(length(B.) = K) A (B)y = 1))
tail y4(Ba,ea,By) = (Ba=1) V (ea=0A(Ba=BY) V (ea#0)A(Bs=Bee4)
empty ,(Ba) = (Ba =€)

first,(Ba,ea) = (Ba= 1)V (ea=0) V (ea #0)A3B) . (Ba =B/ eea)

The concrete predicate tail defines a function, whereas the corresponding abstract predicate
cannot be a function on the given abstract domain: tail ,(L,1, B);) must, in order to satisfy
condition (1), hold for B/ = L and for all values of B! with length equal K, as after the
concrete tail operation on a concrete buffer related with L the obtained concrete buffer may
contain K or more than K elements in e obs. Here, we have chosen an approximation allowing
any value for B';. According to the remark after Defintion 1, this is is a reasonable choice as
the value of variable B should never become 1. All other abstract predicates are optimal in
the sense of condition (2) with respect to the chosen abstraction function g.

Using a type abselem = {1,2} and elemy = {0} U abselem and all the above definitions,
the program

Name : Abstract lossy buffer
Variables : e : elema (input)

E : set of abselem

B : buffer? of abselem

Transitions: (push(e)) allowed ,(e,E,E') A (append’ (B, e, B’) V unch(B))
(pop(e)) first%(B,e) Atail ,(B,e,B) A unch(E)

Init : empty 4(B)

represents a g-abstraction of the lossy buffer where

Ve € elemy VE € set of abselem Vb € buffer® of abselem

bs,2
o(e, E, B) = (05t (€), 055" (B), 0 i 5or(B))
This abstract program represents a transition system with at most 60 states on which any
property can easily be verified.

The abstraction for the choice eobs = §), i.e., elem 4 = {0} defines an existential abstrac-
tion for all variables, and all the abstract predicates appendf ,... are equivalent to true as
ea # 0 can never hold; the corresponding abstract program is the program “Chaos” which
can produce any event at any moment and which is obviously not very interesting for the
verification of properties. The abstraction function defined by

o(e, B, B) = (0iem (€), 0557 (E))
for e.obs containing at least one element, defines an existential abstraction only for the vari-
able B. The abstract program obtained for this abstraction function has no variable B; the
corresponding abstract predicate append$’ — which has a single parameter of type elem —
is equivalent to true, and analogously for the other predicates having variable B as parameter.

This abstract program can be used to verify that for e € eobs, the action push(e) can be
executed at most once in any execution sequence.

In [CGLY4] a similar method is proposed and in [Lon93] particular abstraction schemes
are proposed for bounded integers and operations on them.

2.3 Temporal Logic

It remains to recall the definition of temporal logic. Here we restrict ourselves to subsets of
CtL* [EH83] for the expression of properties. The preservation results in [LGST94] are given

for subsets of the more powerful branching time p-calculus [Ko0z83] augmented by past time
modalities. p-calculus and CTL* can express both branching time and linear time properties;
p-calculus by using nested fixed points and CTL* by using explicitly state and path formulas.
Our tool presented in [GL93,L0i94] only deals with state formulas; however formulas with
nested fixed points are in general not very intuitive, so we prefer here for readability reasons
to stick to CTL* even if it is less expressive.

Definition 2. CTL* is the set of state formulas given by the following definition.

1. Let P be a set of atomic (a) state respectively (b) path formulas.

2. If ¢ and ¢ are (a) state respectively (b) path formulas then ¢ A, ¢V b and —¢ are (a)
state respectively (b) path formulas.

3. If ¢ is a path formula then A¢ and E¢ are state formulas.

4. If $ and) are (a) state or (b) path formulas then X¢, U and ¢W1) are path formulas.

U is a “strong until” and W a “weak until” operator, a sequence satisfies W1 if ¢ holds
as long no state satisfying 1 has been encountered, and ¢U?1 expresses the same property
and moreover the obligation that such a state satisfying ¢ exists. That means that U and
W are related as follows: ¢Wv = =(—¢pU—(¢ V 9)) and, as usual, we use also the abbrevia-
tions ¢;=¢2 denoting implication, F¢ denoting trueU¢ (expressing “eventually” ¢) and G¢
denoting ¢W false (expressing “always” ¢).

CTL is the subset of CTL* obtained by allowing in all rules only the choice (a) whereas
PTL is the subset obtained by allowing only the choice (b) and restricting Rule 3 by allowing
only the path quantifier A. VOTL and VCTL* [SG90] are the subsets of CTL respectively CTL*
obtained by allowing negations only on atomic formulas and restricting Rule 3 by allowing
only the universal path quantifier A; that means that PTL is contained in VCTL*.

The semantics of CTL* is defined over Kripke structures of the form M = (S,Z) where
S=(Q, R) is a transition system and T : P + 2% is a function interpreting the propositional
variables of P as sets of states of S.

Definition 3. A path in a transition system S=(Q,R) is an infinite sequence of states
T = q14a... such that for every n > 1, R(qn,qn+1). We denote by m, the nth state of path
and by 7 the suffix of © starting in w,.

Definition 4. Let M = (S,7) be a Kripke structure, ¢ € @ and 7 a path in S. Then the
satisfaction of CTL* formulas on M is defined inductively as follows.

1. Let p € P. Then,
q =m pif and only if ¢ € I(p) and @ =pr p if and only if 7o € Z(p).
2. Let ¢ and ¢ be (a) state respectively (b) path formulas. Then,
(a) ¢ Enm —¢ if and only if ¢ Fur @,
g Em @AY if and only if g = ¢ and g Fur ¥,
g VU if and only if g =u 6 or g Fur .
(b) analogous by replacing q by
3. Let ¢ be a path formula. Then,
q Em A¢ if and only if for every path © starting in q, 7 =pm ¢
q Em E¢ if and only if there exists a path w starting in q such that T = ¢.
4. Let ¢ and 1) be (a) state respectively (b) path formulas. Then,

(o) ®# =m X if and only if 1 Em @,
7 =m ¢UY if and only if I €N . (7 Em ¥ andVk <n .7, Eum @),
T v ¢WY if and only if Vn € N . (Ve <n . m |Em) implies T Eum @)
(b) the same definition obtained by replacing in (a) all states 7; by sequences w*.
We say that M = ¢ if and only if ¢ =5 ¢ for all states of M.

From the more general results given in [LGS194] we obtain the following proposition con-
cerning preservation of properties of VCTL*. This proposition uses the notion of consistency
that we define first.

Definition 5. Let M = (S,T) be a Kripke structure, and 9 C QxQa an abstraction relation,
where Q4 is some abstract set of states. We say that ¢ is consistent with Z for a set of
propositional variables P' C P if

Vp e P . (Im[o~"] o Im[g] o Z)(p) C Z(p)

where Im[g] : 29 + 294 is the image function of g, associating with any set of concrete states
the set of abstract states related via g with one of its elements. Consistency expresses the fact
that for any atomic proposition p € P’ the set of abstract states Im[o](Z(p)) represents no

state in Z(p), which means in particular that Im[g](Z(p)) and Im[o](Z(p)), used as abstract
interpretations of the formulas p, respectively —p, have an empty intersection.

Proposition 2. (Preservation of YCTL*)

Let Prog be a program, ¢ an abstraction relation from the set of states of Prog into some
abstract set of states, and Proga a p-abstraction of Prog. Let be ¢ € YCTL*, P the set of
atomic propositions in ¢ and T an interpretation function mapping P into sets of states of
Sprog- If 0 is consistent with I for the set of propositions in P occurring non negated in ¢,

then
(SProgA:Im[Q] OI) |= ¢ = (SProg;I) |= ¢

This proposition expresses that, if ¢ € YoTL* holds on a g-abstraction of the program Prog
by translating the interpretations of all atomic propositions occurring in the formula by I'm[g]
into predicates on the abstract set of states, and if all these predicates are consistent with
0, then we can deduce that ¢ holds on Prog. Consistency is not needed for predicates that
occur only negated in ¢ as Im[p~!](Im[g](Z(p))) C Z(p) holds always. We conclude that, if ¢
holds on Prog,4 using the abstract interpretation I'm[g](Z(p)) of —p, then a stronger property
than ¢ using the concrete interpretation Z(p) of —p holds on Prog. In particular, for the
verification of a formula of the form init=-¢, init need not to be consistent with p.

Ezxample 8. Suppose that we want to show that the buffer of Example 1 has the property of
order preservation — that means elements are taken out in the same order in which they are
put into the buffer. This property can be expressed using atomic propositions in

P = {init, enable(push(z)), after(push(z)), enable(pop(x)), after(pop(z)) | € elem}

by the following parameterized formula — that is a CTL* formula containing globally univer-
sally quantified rigid variables!.

Ve',e € elem . init = A([-after(push(e))W after(push(e'))] =
[—enable(pop(e))W after(pop(e'))])

! a rigid variable or parameter never changes during the execution of a program

10

This formula can be transformed into a VCTL formula in which only the propositions of the
form after(push(e)) and after(pop(e')) occur non negated. The transformation into an VCTL*
formula is immediate, due to the fact that for every operator there exists a dual one; in order
to see that they are also in VCTL one can use a result given in [EH83].

In order to verify that the concrete buffer has the property of order preservation, it is
sufficient to verify this property on the (finite) Kripke structure associated with the abstract
buffer, provided that all the atomic propositions occurring non negated in the property are
consistent (see Definition 5) with the abstraction relation g relating the concrete and the
abstract program.

How to define interpretations of atomic propositions for a program:

e The predicate init is interpreted as the predicate defining the set of initial states of the
program.

e An atomic proposition of the form enable(f) is interpreted as a predicate on program
variables representing the set of states in which event ¢ is possible. Such a predicate is
“IX' . actiong(X,X")” if £ is just a label and “3X' . action;(X, X")[E/Y]” if £ = I(E)
where [is a label and E a valuation of the vector of input variables Y.

e An atomic proposition of the form after(f) is interpreted as a predicate on program
variables representing the sets of states in which ¢ has just occurred. In order to make
this predicate expressible as a predicate on program variables, one has in general to
introduce a new boolean variable after_¢ for every proposition after(f) € P which is
set to true whenever an event labeled ¢ occurs and to false by all other events (by
appropriate operations set_true and set_false). The so obtained program is equivalent to
the original one as the values of the original variables do not depend of this new variable
(after_f is added by superposition as defined in Unity [CM88]). In the sequel, we suppose
that for every predicate after(f) € P such a variable is defined, but we do not mention it
explicitly in order to keep the programs simple. Usually, the set P of atomic propositions
associated with a property is rather small such that just a few boolean variables have to
be added.

Consistency: In the given example, the abstraction relation is not consistent with the inter-
pretation Z(init) = empty(B) as Im[o](empty(B)) = emptya(B), but Im[o~!](emptys(B))
represents much more states than empty(B) as it represents all states in which B contains
any amount of non-distinguished elements. However, this is not a problem as in the property
under study the atomic proposition init occurs negated.

The only atomic propositions of the property under study that occur non negated are of
the form after(f). It is easy to obtain the consistency of such a predicate by not abstracting
the variable after_¢; that means after_¢ has in the abstract program the same type as the
concrete one, and the abstract versions of the operations set_true and set_false are identical
to the concrete versions. That is, the abstraction function is the identity.

Now it is easy to verify each instance of the formula above on the Kripke structure associ-
ated with the abstract buffer program by instantiating e; for e and e; for €'. It is clear that for
each pair e, e’ € elem this leads exactly to the same abstract transition relation and abstract
interpretation of atomic propositions. That means that e; and es represent an arbitrary pair
of data values, and the verification of a single abstract property on a single abstract system
is sufficient in order to prove the above set of formulas.

11

3 Abstract specification of a sequentially consistent memory

3.1 Characterization by a set of properties

In order to use the method presented in the previous section to verify that the distributed
cache memory defined in [ABM93] is a “sequentially consistent memory” [Lam79], we need a
characterization of this property in terms of a set of formulas of VCTL.

Consider a system with observable events of the form read;(a, d) and write;(a, d) and may
be other (internal) events — where the index 4 indicates the process P; performing the event,
a is the address of a memory location and d a data element. The set index defining the size of
the system is an integer interval of the form [1..N]. Such a system is a sequentially consistent
memory if any of its computation sequences, projected on observable events, can be reordered
— by respecting the order of the events with the same index — into a computation sequence
of a central memory — that means a sequence in which read;(a, d) is only possible if the last
write event concerning location a is of the form write;(a,d) for some index j.

For the exact characterization of this property — by using only observable, and not imple-
mentation dependent internal event names — one needs full second order logic, whereas we
want to restrict ourselves to a set of propositional but parameterized temporal logic formulas
which can be evaluated by model checking on a finite abstract model. Therefore, our charac-
terization is necessarily stronger than required. For our convenience, we suppose that every
pair of the form (a, d) can occur at most once as parameter of some write event. This assump-
tion can be made without loss of generality as it is equivalent to adding (by superposition)
an integer variable associating with each write event a unique index.

In implementations of a sequentially consistent memory (as the one we study here), a con-
siderable amount of time may elapse, between the occurrence of the event write;(a, d) and the
moment in which read;(a, d) is allowed; if write; events occur too often, some of the elements
that have been written may never be readable in P; (because they are “overwritten” before
they are “available”). This makes the expression in terms of temporal logic difficult. However,
suppose that for a given concrete system we can identify auxiliary predicates avail;(a,d) —
the interpretation of which depends on the concrete system under study — which are weaker
than enable(read;(a,d)) (C1) but such that each event write;(a,d) is eventually followed
by a state in which awail;(a,d) holds (C3), and — if read;(a,d) becomes possible in some
future — from that moment on, until avail;(a,d) becomes “false forever”, events of the form
read;(a,d’) for d # d' are impossible (C2). Then, the expression of “sequentially consistent
with a central memory” becomes possible.

In the sequel, instead of “avail;(a,d) holds”, we write sometimes “(a,d) is available in
process P;”.

Proposition 3. (Properties guaranteeing sequential consistency)
Let S be a transition system and P the set of predicates
P = {init,enable(read;(a,d)),after(read;(a,d)),
enable(writei(aa d)); after(writei (a; d)) }i:indem,(a,d):addressxdatum

with the interpretation T defined as explained in the previous section. If it is possible to define
an interpretation L,,, for the set of predicates

Poave = {availi(a; d)}i:indez,(a,d):addressxdatum

12

such that M = (S,ZUZsuz) satisfies the following set of properties, then the program gener-
ating model M is a sequentially consistent memory.

(C1) Y(a,d) € addressxdatum Vi € index
init = AG(enable(read;(a,d)) = avail;(a,d))

(C2) Y(a,d),(a,d') € addressxdatum .d # d' Vi € index
init = AG((avail;(a,d) A EF (enable(read;(a,d))) =
Al-avail;(a,d YW AG(-avail;(a,d))])

(C3) V(a,d) € address x datum Vi, k € index
init = AGlafter(writey(a,d)) = AF(availi(a,d))]

(S1) V(a,d) € address x datum Vi € index
init = AG] after(write;(a,d)) = A(—enable(read;)W avail;(a,d))]

(S2) V(a,d) € addressxdatum Vi € index
init = A(-availi(a,d)W V,.ingee after(writeg(a,d)))

(88) Y(a,d),(a',d") € addressxdatum .d # d' Vi, k € index
init = A([Hafter(writeg(a,d))W after(writeg(a',d'))] =
[Cavail;(a,)W avail;(a’,d')])

(S4) V(a,d),(a',d") € addressxdatum .d # d' Vi, k € index
init = A([~availi(a,d)W (avail;(a’,d') A —availi(a,d))] =
[-availy(a,)W availy(a',d")])

First a few remarks oncerning the choice of appropriate predicates avail;(a,d). In a central
memory, read;(a,d) is enabled immediately after write;(a,d), that means avail;(a,d) and
enable(read;(a,d)) (the central memory holds datum d at address a) coincide. We will show
that the distributed memory system that we want to verify satisfies the set of properties
given above if we choose avail;(a,d) to be “the cache memory of process P; holds datum d at
address a”; for this choice, the condition (C1) is trivially satisfied in the system under study
(given in Section 4.1).

Property (S1) expresses the requirement that in every process P; as soon as an event
write;(a,d) has occurred, read; events are impossible until (a,d) becomes available. This
requirement looks very strong. However, the weaker and more intuive requirement that, after
write;(a,d) only events read;(a) are forbidden until (a,d) is available in P;, is not sufficient.
Suppose that P; reads (a,d;), then (a',d), then (a,dz) and then (a’,d)) which guarantees
by (S4) and (C2) that in all processes, (a,d;) is available before (a,dz2) and analogously for
the primed pairs. If in process Py, writes(a,dz) is followed by reads(a’,d}) and in process
Ps, writes(a’,d}) is followed by reads(a,d;), then these sequences cannot be merged and
completed into a sequence of a central memory, but the system may satisfy all the above
properties except that (S1) is replaced by the proposed weaker property.

Property (S2) expresses that in process P; (a, d) cannot become available before writey (a, d)
has occurred for some index k. This property is quite natural but could be weakened; what
we need to express in order to guarantee sequential consistency is only that whenever (a, d) is
available in P;, then (a, d) must be written at some moment (earlier or later) by some Py, and

13

only if it is written by F; it cannot be later. However, most concrete systems implementing a
sequentially consistent memory satisfy property (S2).

Property (S3) expresses that the write, events become available in P; in a compati-
ble order, i.e., whenever writeg(a’,d') occurs before writey(a,d), then (a,d) cannot become
available in P; before (a’,d'); they may become available at the same moment, except if the
premiss of (C2) holds.

Property (S4) expresses that in any pair of processes pairs (a,d) become available in a
compatible order; that means if avail;(a, d) holds strictly before avail;(a’, d'), then avail j(a, d)
and avail;(a’,d’) may become true at the same moment but not in the opposite order.

Both (S3) and (S4) have the intended meaning only because of (C3). For example an
execution sequence, in which process Py reads (a’,d}) then (a,d;) and then (a,ds>), process
P, reads (a',d}) then (a',d}) and then (a,d;), and process P; reads (a,ds2) and then (a’,d)),
can obviously not be merged and completed to a sequence of a central memory, but may
be completed to a sequence satisfying all the above properties except (C3). In fact, pairwise
compatibility of the order in which pairs (a, d) become available (required by (S3) and (S4))
implies global compatibility only then, when all pairs (a,d) which are read by some process
become effectively available at some moment in all processes and not only in those in which
a corresponding read event occurs (as required by (C1)).

However, despite the fact that the original abstract specification does not contain any
liveness condition, a liveness property (slightly weaker than (C3)) is necessary in order to
obtain a sufficient temporal logic characterization of a sequentially consistent memory.

Notice that, all the above formulas can easily be translated into YOTL formulas.

3.2 Proof of the correctness of this characterization

It remains to be shown that every system satisfying the requirement of Proposition 3 is a
sequentially consistent memory. In order to do so, we show that the sequence of observable
events associated with an arbitrary computation sequence 7 of a system satisfying properties
(C1) to (S4), is a sequence of a sequentially consistent memory; that is, it can be finitely
reordered respecting the order of the events of each individual process into a sequence 7.4
of central memory.

In order to do so, we define for all indices ¢ the sequence 7; of observable events of process
P; in 7 — that means, 7; is the sequence of events of the form write;(a,d) and read;(a,d)
occurring in the order defined by 7. We define also a sequence OW E, defining the order of
write events in Tgeq. Let

A ={(a,d) | Ik.writey(a,d) € 7}

be the set of pairs (a,d) occurring as the parameter of some write event in 7. Notice that,
due to property (S1), this is in fact exactly the set of pairs (a,d) occurring as the parameter
of any event in 7. Property (C3) guarantees that for all indices i € [1..N],

<i={((a,d),(a',d')) € A?| first occurrence of avail;(a,d) is not after
first occurrence of avail;(a’,d') in 7}

is a preorder on A. Denote by <; the corresponding strict relation (which is not necessarily
an order on 4 as there may exist unordered pairs (a,d), (a’,d") such that (a,d) <; (a’,d") A

14

(a',d") <; (a,d) holds). Property (S4) guarantees that for all pairs of indices these preorders
are compatible in the sense that

Vi, k. <; N >,=0 or equivalently <;C<j

This guarantees that <’ = (] <j is a preorder on A and its corresponding strict relation is
<' = <. If <’ is not an order, then extend <’ to an order < by ordering all unordered pairs
according to the order of the corresponding write events in the sequence 7. Let OWE be
the sequence of elements of A defined by < starting with the smallest element. Thus, OW E
contains each pair (a,d) € A exactly once.

Using these definitions, build a (possibly infinite) sequence s, in which write events
occur in the order defined by OW E, that is by <, by means of the following procedure.

Tseq := €; Va € address.lw(a) := ¢ nw := first(OWE);

b := true;
while b do
b = false;

fori:=1to N do
if Ja . first(m;) = read;(a,lw(a)) then
“ Tseq := append(Tseq, first(m;)); b := true; m; = tail(m;) ”;
if first(m;) = write;(nw) A Vj.read;(nw.a,lw(nw.a)) ¢ 7; then
“ Tseq = append(Tseq, first(m;)); b:= true; m; := tail(m);
lw(nw.a) := nw.d; OWE = tail(OWE); nw := first(OWE)”
endfor
endwhile
if 3i.—~empty(m;) then “error state” else “correct termination”;

At any moment, for any address a, lw(a) contains the last datum that has been written on
address a, and nw contains the first element of OW E which defines the next write event to be
appended to 7seq. That means, at any moment, any sequence 7; can only contain write;(a, d)
events such that nw < (a,d). We denote by nw.a and nw.d respectively the address and the
data part of the pair nw.

At any moment, “the next event to be appended to ms.,” is one that satisfies one of the
following two conditions:

(a) it is of the form write;(nw) and there remains no event of the form read;(nw.a, lw(nw.a))
in m;, (i.e. they have already been appended to 74, and eliminated from =;).
(b) or it is of the form read;(a,lw(a)) for some a.

Naturally, there may be several events satisfying one of these conditions, one write and several
read events. Notice that the conditions (a) and (b) remain true until the corresponding events
are appended to 7s.,. This guarantees — together with the fact that the algorithm looks at
all sequences 7; in a round Robin manner — that every event satisfying (a) or (b) is appended
to Tseq after a finite number of steps.

Whenever the procedure does not terminate, this means that it never gets stuck and continues
forever to produce longer and longer prefixes of the infinite sequence 7 4.

What we have to show is that, under the condition that all properties of Proposition 3 hold,

15

(1) at any moment, (the prefix so far constructed of) 74, is a sequence of a central memory
consistent with the order of the events in each ;,

(2) the procedure cannot terminate in the error state, that means, as long as there are still
non-empty sequences 7; (containing events not yet appended to 74eq), there exists at least
one sequence 7; such that its first event satisfies either condition (a) or (b).

(3) The (infinite) sequence 7y, is a finite reordering of the sequence of observable events
associated with m, that means, every event of every m; is appended to 7,4 after a finite
number of steps of the algorithm.

Proof of (1): At any moment, the prefix of 754 so far constructed is a sequence of a se-
quentially consistent memory because during the whole execution of the algorithm, an event
read;(a,d) can only be appended to the sequence 754 if the most recent write event in 74
concerning address a is of the form write;(a, d) for some index j. It is trivial to observe that
the above algorithm appends each event of 7 at most once to 744 and in an order consistent
with the order of the events in each ;.

Proof of (2): We want to show that it is not possible that the procedure can terminate in the
error state because the first elements of all sequences ; satisfy neither condition (a) nor (b).
That means that,

o cither OWE is empty — there are no more write events to be appended to ms, — but
there is at least one event of the form read;(a,d) not satisfying condition (b), i.e. such
that d # lw(a)

o or the (unique) event of the form write;(nw) occurring in 7, which is the next write event
to be appended to 74, is preceded by events not satisfying condition (b)

e or condition (a) is not satisfied because in some sequence 7y, there exist still events of the
form ready, (nw.a,lw(nw.a)) preceded by events not satisfying condition (b).

Let us show that the first case is not possible. As nw is the greatest element of OW E and
the last write event concerning address a is of the form writeg (a,lw(a)), we have necessarily
(a,d) < (a,lw(a)). In this case we call read;(a,d) an “old” event. But there cannot be
any old events in 7; as the algorithm allows to update lw(a) only if all events of the form
ready(a,lw(a)) are eliminated from .

Let us now show that the second case is impossible. Notice that the unique event write; (nw)
occurring in 7 is still in 7; as the pair nw has exactly one occurrence in OW E and as soon as
writej(nw) is appended to T4, nw is updated. Let us consider all events that could occur
in m; before write;(nw) and block the procedure.

o If write;(nw) is preceded by an event of the form write;(a, d) in m; and therefore also in 7,
this implies on one hand by a remark made just after the definition of the algorithm that
nw < (a,d) (*). On the other hand, the fact that write;(a,d) occurs before write;(nw)
implies by property (S3) (a,d) <' nw. The definition of < implies that (a,d) < nw
either because (a,d) < nw for some k or because of the above supposed order of the
corresponding write events. This is in contradiction with (*).

o If write;(nw) is preceded by an event of the form read;(a,d) which cannot be appended
t0 Tseq, then (a,lw(a)) <’ (a,d) as old read events are not possible. This implies that

16

— either d = lw(a), implying that read;(a, d) satisfies condition (b).
— or d # lw(a) and (a,lw(a)) < (a,d). As the write events occur in 74 in the order de-
fined by OW E and write(a, lw(a)) is the most recent write event concerning address
a before writej(nw), we deduce that write(a,d) cannot occur before write;(nw) in
Tseq and therefore nw <; (a,d) (**). This means that,
x either (a,d) = nw which is clearly in contradiction with (C1) and (S1) saying that
(a,d) cannot be read before it has been written.
x or (a,d) # nw. In this case, the fact that read;(a,d) occurs (strictly) before
writej(nw) in 7w implies by properties (S2) and (C1) that (a,d) <; nw contra-
dicting (**).

It remains to be shown that the third case is impossible, i.e., that events of the form
read;(a,d) where (a,d) = (nw.a,lw(nw.a)) cannot be preceded by events not satisfying con-
dition (b). Notice that a = nw.a and property (C2) imply (a,d) <; nw (***) as the event
read;(a,d) occurs in 7.

o If read;(a,d) is preceded in 7 by writej(a’,d’), then this implies on one hand, exactly as
in the second case, that nw <; (a',d'), implying with (***), (a,d) <; (a’,d’) (****). On
the other hand, the fact that write;(a’,d’) occurs before read;(a,d) implies by property
(S1) that (a’,d’) <; (a,d) which contradicts (****).

e If read;(a,d) is preceded in 7 by read;(a’,d'), then as in the second case

— either d' = lw(a') implying that read;(a’, d') satisfies condition (b).

— or nw <; (a’,d') by the same argument as in the second case. However, the fact
that @ = nw.a implies by (C1) and (C2) that a soon as avail;(nw) holds, the event
read;(a, d) is not possible anymore, and on the other hand nw < (a’,d’) implies by
(C1) that read;(a’,d") cannot occur before avail;(nw) holds, making the above order
of read events impossible.

That means that the procedure cannot terminate in the error state, as either there exists
always at least one event satisfying (a) or (b) that can be consumed or all the sequences T;
are empty and the algorithm terminates correctly.

Proof of (3): If all the sequences ; are finite and the procedure terminates (correctly), mseq
is necessarily a finite reordering of 7. It remains to be shown that, also if the procedure never
terminates, at any moment, the first element of each sequence m; will be appended to 75,
after a finite number of steps of the algorithm.

By definition of OW E, the parameter (a,d) of any event occurring in m; occurs at some
(finite) position of OW E.

First, we show that at any moment the first element nw of OW E can be consumed after
a finite number of steps appending read events to 7.4. From the proof of (2) we deduce that
the only possibility that condition (b) does not hold for write;(nw) after a finite number
of steps, is that there exists an infinite number of events of the form ready(nw.a, lw(nw.a))
in m. However, the existence in 7 of an infinite number of read (nw.a,lw(nw.a)) events im-
plies that 7 satisfies the property GF (enable(read;(nw.a,lw(nw.a)))) which by (C1) implies
GF(avail;(nw.a,lw(nw.a))). As nw occurs after (nw.a,lw(nw.a)) in OWE, property (C2)
implies that in any process, nw can only become available when (nw.a, lw(nw.a)) has become

17

unavailable forever, which due to GF(avail;(nw.a,lw(nw.a))) means that nw can never be-
come available, in contradiction with the fact that nw occurs in OW E. This implies that, if
for some pair (a,d) there exists an infinite number of read events in m, then OW E cannot
contain a pair of the form (a,d') occurring after (a,d) showing that the above situation is
impossible.

This implies that the first element of OW E becomes always consumable — and therefore
consumed — after a finite number of steps. This guarantees — using the fact that the proce-
dure cannot terminate before all sequences 7; are empty — that at any moment, if the first
event of a sequence m; has parameter (a,d), then, after a finite number of steps, the value of
the variable nw becomes (a,d), and either condition (a) or (b) will hold for this event and it
will be appended to 74, after another finite number of steps.

This terminates the proof of (3) and therefore that of Proposition 3. a

4 Verification of a distributed cache memory

4.1 Definition of the concrete system

In our program formalism, the cache memory proposed by [ABM93] can be described as a
system of the form P || Ps ... || P, where each process P; is defined as follows:

Name : P;

Variables : Input : a : address, d : datum
local : E; : set of address x datum;, (already occurred write; events)
C; : memory of addressx (datum U {e}) (local cache memory)
Out; : buf fer of address x datum,;
shared : M : memory of address x (datum U {€}) (global memory)
Ing : buf fer of (addressxdatum)x Bool, k : index

Transitions :

(writei(a,d)) allowed((a,d), E;, E}) A append(Out;, (a,d), Out}) A
unch(C;, M, Iny, ..., Iny,)

(read;(a,d)) holds(C;, (a,d)) Aempty(Out;) Aempty_true(In;) A
unch(E;, C;, Out;, M, Iny, ..., In,)

(mw;(a,d)) first(Out;, (a,d)) A tail(Out;, (a,d),Out;) A update(M, (a,d), M') A
Vk € indezx . append(In, ((a,d),i = k),In;) A unch(E;, C;)

(cu;(a,d)) 3b € Bool . (first(In;, ((a,d),b)) A tail(In;, ((a,d),b),In})) A
update(C;, (a,d), C;) A unch(E;, Out;, M, {In;,j #i})

(mri(a,d)) holds(C;,(a,€)) A holds(M, (a,d)) A —isin(In;, (a,d)) A
append(In;, ((a,d), false), In}) A unch(E;, C;, Out;, M, {In;, j # i})

(cli(a)) clear(C;, a, C;) A unch(E;, Out;, M, Iny, ..., In,)

Init : Va € address . (holds(Ci, (a,€)) A holds(M, (a,€))) A
empty(Out;) A empty(In;)

18

The predicates append, tail, first, allowed and empty are defined as in Example 1, where the
type elem is replaced by the type addressxdatum, respectively (addressxdatum)xBool. Let
B be a possible value of variable In;. Then, empty_true(B) holds if B contains no element
with boolean parameter true, that means

empty—tme(B) = empty(B\(addressxdatum)x{true})

The predicate isin(B, e) for e € addressxdatum, evaluates to true if there exists some boolean
value b such that the pair (e, b) is somewhere in B.

memory of address x (datum U {€}) is a data type representing a memory with address
space address. If M is such a memory and (a,d) € address x (datum U {e}), the predicate
holds(M, (a,d)) expresses the fact that M contains datum d at address a; it has further-
more the property that Ya € address there exists exactly one d € datum U {e} such that
holds(M, (a,d)) is true. The predicates update and clear are defined by

update(M, (a,d), M') = holds(M', (a,d)) A

Vb € address . (b# a = (holds(M, (b,d'")) = holds(M', (b,d"))))
clear(M,a, M') = holds(M', (a,€)) A

Vb € address . (b# a = (holds(M, (b,d")) = holds(M', (b,d"))))

The only differences between our system and the one described in [Ger94] concerns

e the fact that each pair (a, d) can be the parameter of at most one write event. The way we
obtain this, is by defining the type datum as | J, datum;, such that each process “signs” the
data it writes, and by using in each process a variable E; of type set of addressxdatum;
containing all the pairs (a,d) such that the event write;(a, d) has already occurred, as in
the example of the buffer.

e The additional condition —isin(In;, (a,d)) in the action mr;(a, d) which is very reasonable
in practice as otherwise too frequent mr; events may fill the buffers In; and delay the
treatment of the write events waiting in buffer OQut;. Here, we add this condition to
be able to use a simple abstraction of the buffers In;, similar to the one presented in
Section 2. We will also show how to verify the system without this restriction.

4.2 Construction of abstract systems

We verify the parameterized formulas of Proposition 3 on different abstract systems. Our aim
is not necessarily to find the smallest abstract system that can be used for the verification of
each formula, but we want to use, whenever possible, the already predefined abstractions in
order to show that the application of the method is simple.

Definition of abstract types and predicates We use the same abstract types elem 4,
set of abselem and buf ferkX of abselem and (almost) the same abstract predicates as for
the verification of the lossy buffer, despite the fact that the variables in the cache memory
system are not exactly of the same type as the variables of the lossy buffer.

Let us define elem = address x (datum U {e}) and elem; = address x datum;. As before,
given a set of pairs eobs = {(a1,d1),..., (an,dn)} C elem, where we suppose that Vk €
{1,...n} . di # €, we use as abstract type for elem the type

elemy = {0} U abs.elem for abselem = {1,...,n}

19

and relate the concrete and the abstract type by 0%2%¢.

The cache memory uses also a data type memory. Each variable of type memory is either
existentially abstracted (i.e., omitted in the corresponding abstract program) or replaced by
a variable of type set of abselem, and

VM € memory of elem . 922 (M) = {9%°%%(a, d)| holds(M, (a,d))} N abselem}

Omem elem

Then, it is obvious to define abstract predicates

hOldSA(MA,eA) = (eA = O) V (CA € MA)
clear ,(Ma,ea, M) = (ea=0) A ((Ma = M}y)VIea . (My =Ma—{ed'})) Vv
(ea Z0) A (M} = Ma—{ea})

For the definition of the abstract predicate update , we need an auxiliary predicate on abstract
elements, same_addr(ea, e4') that evaluates to true if its arguments are related via %% with

concrete pairs with the same address. Using this auxiliary predicate, we can define

update ,(Ma,ea, M)y) =(ea = 0) A ((Ma = M))VIes' . (MY = Ma—{ea'})) V
(ea ZO)AN(M)y =MaU{ea}—{ea € My | same_addr(ea’,es)}

Notice that for e4 = 0, the operations update , and clear , are the same.
For existentially abstracted memories, the abstract predicates holds¢’, clear’, ... evaluate
to true independently of the value of the argument of type elem 4.

In the processes P; occur different types of sets and of buffers: variables E; of type
set of elem;, variables Qut; of type buf fer of elem;, and variables In; of type buf fer of
elem x Bool.

Each variable E; is either existentially abstracted or replaced by a variable of type
set of abselem which is related with the concrete type via 023 (the same function as for the
lossy buffer). However, as e4 € abselem may or may not be related to some e € elem; (it is
always related to some e € elem), we have to define abstract predicates allowed’,(ea, Ea, Ea')
depending on the index ¢ or more precisely on the the fact if e4 represents some pair in elem;

or not. For this reason we need auxiliary predicates dat; on abstract elements defined by
dat;(es) = e € elem . (05°%%(€) = ea) A (e € elem;)

Qclem

Then, the abstract predicate for allowed can be defined as
allowedy (ea, Ea, Ex') = dati(ea) A allowed 4 (e, Ea, E4")

where allowed, is the predicate defined for the abstract lossy buffer. For existentially ab-
stracted variables E;, we need abstract predicates defined analogously, that is,

allowedi{”’i(eA) = dati(ea) A allowed®™(eq) = dat;(ea)

Similarly, each variable Out; is either existentially abstracted or replaced by a variable
of type bufferf of elema, related with the concrete type via g?uo?;g ; For these abstract

buffers we need abstract predicates for append and first depending on the predicates dat;:

appendf’i(BA, ea, BY) = dat;(ea) A appendX (Ba,ea, B'y)

first'y(Ba,ea) = dat;(ea) A first ,(Ba,ea)
appendy™*(ea) = dat;(es)
firsty " (ea) = dat;(ea)

20

The abstract predicates for tail and empty do not depend on dat; and we can use the abstract
predicates tail 4, empty4,... defined for the lossy buffer.

The variables In; are all of the same type buf fer of elemxBool, and in the corresponding
abstract buffers we cannot merge ((a,d), true) and ((a, d), false) for a pair (a,d) € eobs into
a single abstract value without losing the preservation of the properties we want to verify —
what we lose is in particular the consistency for the predicates enable(read;(a,d)). Therefore,
we define a slightly different abstract type

buf fer™ of abselem x Bool = (sequence’ of abselem x Bool) U {1}

where the concrete and the abstract buffers are related by

€ if length(Obs) = 0
VB € buf fer of elemxBool . sz]?ijool(B) = ¢ 05°%5(0bs) if 1 < length(Obs) < K
1 if length(Obs) > K

where Obs = B ,psxBooi- The different associated abstract predicates, such as appendﬁBml’K

... can be defined by an obvious systematic modification of the definitions given for the lossy
buffer. In the processes P; occur also predicates empty_true and isin. The abstract predicates
for empty_true can easily be defined by

7

Bool
empty true’y °” (Ba) = (BA|absetemx{true} = €)
empty true’ T = true

The predicate isin occurs negated in P;. Therefore, we need, instead of an abstract predicate
for isin, an abstract predicate for —isin satisfying condition (2) of Section 2.2:

not_isinjB""l(BA,eA) =(Ba=¢€)V(Bs= 1)V Hea,b,By,B% . (Ba=DB e (es,b) o

B3)
XBool,e:z:(

not_isin’, ea) = true

Now, if we restrict ourselves to the abstraction functions and corresponding abstract types
and predicates already defined, an abstract cache memory system is completely defined by

e its declaration part, where for each variable occurring in the concrete program we have
the choice to omit it (existential abstraction) or to use the abstract type induced by the
choice of the abstract type of the variable elem.

e the concrete set e.obs or alternatively the auxiliary predicates same_addr and dat; which
contain already all the useful information of e.obs.

This determines completely the abstract predicate to be used for every occurrence of a concrete
predicate in the program.
We define for each property of Proposition 3 one or several abstract systems.

Definition of abstract systems Each instance of the properties to be verified involves only
events of a few processes concerning at most two different pairs in addressxdatum. However,
even if the property involves only events of a few processes, it is not necessarily correct to
verify the property on the system consisting only of the concerned processes as influences
of all other processes may get lost using this approach. It is allowed to verify a property on
the abstract system obtained by replacing all other processes by the process Chaos, but on

21

this abstraction, the property under consideration does only hold if it holds in an (almost)
arbitrary environment; for example, the event mw;(a,d) of a chaotic process P; may allow
holds(C;, (a,d)) to become true before any event writey(a,d) has occurred and therefore
invalidate property (S2). For the verification of the Cache memory system under study, it is
sufficient in the processes “not concerned with the property” to keep some information on
global variables and to forget about all local variables. In practice, for global variables, the
same abstract type is chosen in all processes.

Abstract system for property (S1): Each instance of property (S1) involves only events of a
single process P; concerning a single pair (a, d). Intuitively, (S1) is guaranteed by the fact that
in process P; after the occurrence of an event write;(a, d), read; events are impossible at least
until (a, d) has traversed the buffers Out; and In; and has become available, that is, datum d
has been written at address a in the cache memory C;. That means that we need to observe
the cache C; and all variables which may cause enable(read;(a,d)) to hold. That is the buffers
Out; and In; but also the global memory M which affects In; and therefore also C; via the
action mr;. It is not necessary to observe the buffers Out; for j # i: for d € datum; the
action mw; will never push (a,d) into In; as it is not pushed into the buffer Out; by action
write;. The same holds for the abstract action mw; due to the definition of the predicate
firstS (ea). That means we need to distinguish a single pair in addressxdatum; and define
consequently the abstract element type elem!; which is completely defined by

abs.elem = {1}
Vea,ea' € elem)y . same_addr(es,es') = true
Vj € indexVey € elem!y . datj(ea) = (j =1) V (ea = 0)

The fact that we do not want to abstract existentially from the central memory and from all
variables with index 4, but from the local variables of all other processes, leads to the following
abstract programs — by choosing everywhere K = 1, the number of elements in abselem.

22

. 1
Name: P,

Variables : abstract input : e : elem;

local : E;,C; : set of abselem
Out; : buf ferl of abselem
shared : M : set of abselem

In; : buf ferly of (abselem x Bool)

Transitions : .
(write;(e)) allowed) (e, Ei, EL) A appendy’(Out;, e, Out}) A unch(C;, M, In;)

(read;(e)) holds 4,(C;,e) A empty ,(Out;) Aempty true’L % (In;) A
unch(E;, C;, Out;, M, In;)

(mw;(e)) first}‘{i(Outi, e) A tail ,(Out;, e, Out}) A
update ,(M,e,M') A appendﬁBm’l’l(Ini,(e, true),In}) A unch(C;, E;)

(cu;(e)) 3b € Bool . first{"o"! (Iny, (e,b)) A tailEo%(Iny, (e, b), In}) A
update ,(C;,e,C;) A unch(E;, Out;, M)

(mr;i(e)) holds ,(M, e) A not_isin’L°° (In;, €) A append P°°"' (In, (e, false), In}) A
unch(E;, C;, Out;, M)

(cli(e)) clear 4,(C;, e, C;) A unch(E;, Out;, M, In;)

Init : (Ci = 0) A (M = §) A empty 4(Out;) A empty’C°% (In;)

Name : le;fm for all indices j # 4

Variables : abstract input : e : elem};
shared: M : set of abs.elem
In; : buf fery of (abselem x Bool)

Transitions :

(write;(e)) dat;(e) A unch(M, In;)

(read;(e),cuj(e),cl;(e)) unch(M,In;)

(mrj(e)) holds(M, e) A unch(M, In;)

(mw;(e)) firsty?<%(e) A append P (In;, (e, false), In}) A updates(M, e, M

Init : (M = 0) A empty’ B (In;)
We have already eliminated all abstract operations that are equivalent to true, such as
appendkj’”, updates?,.... Notice that rmw;(1) can never be executed as fz'rsti{””(l) =

dat;(1) = false.

For all indices j # i, the programs le;fz define the same transition relation (they depend
on the same set of variables) which implies that also the parallel composition of an arbitrary
number of these processes represents the same transition relation as a single one. Therefore,
the system Pl | P} is equivalent to Pf% ||... | Ply ||... | P,x* which means that it is an
abstraction for an arbitrary instance of a cache memory system.

23

Abstract systems for property (S2): Property (S2) expresses that any event read;(a,d) is
preceded by an event writey(a,d) for some k. We verify a stronger property, saying that
VkV(a,d) € elemy, read;(a,d) is preceded by writey(a,d). Thus, in order to define an ap-
propriate abstract system, we distinguish a single element (a,d) € elemy, and we need a
nonexistential abstraction for two processes P; and P, whereas all other processes can be
“existentially” abstracted.

As for (S1), we observe the global memory and buffer In;, for process P; we observe the
cache C;, but neither Out; nor E; as (a,d) ¢ elem;; for process Py, we observe E; and
Outy, but neither Cy, nor Ing, as we are not interested in the events depending on the values
of these variables. We could also existentially abstract from Ej, but we use a nonexistential
abstraction of this variable, as this allows us to reuse the definition of this abstract process
for the verification of other properties.

The abstract system for the verification of property (S2) is completely defined by the
abstract element type elem? defined by

abselem = {1}
Vea,ea' € elem? . same_addr(ea,es') = true
Vj € indexVey € elem? . datj(es) = (j = k) V (ea = 0)

and by the declaration parts of all abstract processes.

Name: P2,

Variables : abstract input : e : elem?
local : C; : set of abs.elem
shared : M : set of abselem

In; : buf ferl, of (abselem x Bool)

Name: P2,
Variables : abstract input : e : elem?
local : E;, : set of abselem
Outy, : buf ferl of abselem
shared : M : set of abselem

In; : buf fery of (abselem x Bool)

Name : szjm for all indices j ¢ {i,k}

Variables : abstract input : e : elem?
shared: M : set of abselem
In; : buf ferl, of (abselem x Bool)

P2, is like P4 where the predicate defining action for write;(e) is replaced by true and that
of action mw;(e) by dat;(e) A unch(..), whereas P2, is like P}, where the actions ready, cuy,
mry, and cl; are simplified.

The processes Psz define almost the same process as Py*”

, and as before, the abstract

system defined by P2 || P24 || Pﬁf“c defines an abstraction of a concrete system with an arbi-
trary number of processes.

24

This abstract system allows to verify property (S2) for k # 4; for k = 1, it can be verified
on the abstract system constructed for the verification of (S1).

Abstract systems for properties (S3) and (C2): Property (S3) expresses due to (C3) that the
writey, events become available in any process P; in an order compatible with their occurrence.
For its verification, we need to observe events concerning two pairs (a1,d1), (az,ds) € elemy.
We can use the almost the same abstract system as for the verification of property (S2); the
only difference is that we use a different abstract element type elem3® defined by

abseelem = {1,2}

Vj € index . datj(ea) = (j = k) V (ea =0)

same_addr(es,es’) = (ea =0)V(ea' =0) V (ea = e4')
That means, we consider abstract elements related to concrete pairs with different addresses
written by the same Py. In order to verify property (S3) also for pairs with the same address

we need also the abstract system for type elem?®’ which is as elem?®® except that same_addr
is defined by

same_addr(ea,es’) = true.

These two abstract systems allow to verify property (S3) for any k # i. In order to verify
it also for k£ = 4, we can use the same abstract system as defined for the verification of
property (S1) where we define e of type elem32, respectively elem?’. That means that for the
exhaustive verification of property (S3), we need four different abstract systems.

The abstract systems defined for types elem?’, that is for a set e.obs containing elements
with the same address can also be used to verify property (C2).

Abstract systems for property (S4): In presence of properties (C3) and (S3), property (S4)
expresses that all write events issued by two different processes Py, and Py, become available
in any two processes P;, and P;, in a compatible order. For its verification we observe events
concerning two pairs (a1, d;) € elemy, and (as, dz) € elemy, where ki # ks. We define types
elem’? (and elem??) differing from the types elem3® (elem?®) only by the definition of the
predicates dat;:

Vj € index . datj(ea) = (J=ki)AN(ea=1)V (j =k2) AN(ea =2) V (ea = 0)

We define a system where four processes are not existentially abstracted; processes P,?l A P,i A
are defined exactly as P2, and processes P ,, Pt , are defined as P2 except that variable e
is of type elem?? (respectively elem?)).

This allows to verify property (S4) if the indices ki, k2,141,142 are all different for the two
cases where that the two observed data element have the same address or not. We must also
verify (S4) in the cases k; = 47 and/or ks = i5. For this, we need abstract systems in which
we replace the pair of processes (Py 4, P}) (and/or (P 4, P 4)) by a single process P} ,
(and/or P} ,) which are like P}, except that variable e is of different type; that means that
for the exhaustive verification of property (S4) we need six different abstract systems.

Here, we have defined for each property the smallest (most abstract) systems — with respect
to the predefined abstract types and operations — that still allows to verify it. The systems
defined for the verification of (S3) and those for the verification of (S4) are uncomparable (in
the sense of abstraction), and are therefore all necessary — at least without using additional

25

symmetry arguments allowing to eliminate some of them. However, all the abstract systems
defined for the verification of (S1) and (S2) are abstractions of one of the systems defined for
the verification of (S3) or (S4) and need not to be built.

Verification of properties on abstract systems using CAESAR/ ALDEBARAN :

By Proposition 2, the satisfaction of the properties of Proposition 3 of one of the abstract
systems allows to deduce their satisfaction on the given concrete system if we can show
consistency for all atomic propositions used non negated in the positive normal form of the
formulas expressing these properties. In the positive normal forms occur only predicates of
the form after(f) and avail(a, d) non negated for which consistency is obvious.

That means that the above defined abstract systems allow to verify sequential consistency
for the particular system in which the action mr;(a,d) is only allowed if (a,d) is not yet
somewhere in In;. In order to verify the system without this restriction, we need a more
complex abstraction for variables In;: without this restriction, In; may contain for any pair
(a,d) an arbitrary number of triples of the form ((a, d), false) which means that using the above
defined abstraction relations, we cannot choose a finite K without losing the satisfaction of
properties we are interested in. But even if we let (4, false) to represent an arbitrary number of
consecutive occurrences of ((a, d), false) in the concrete buffer restricted to elements in e obs,
this is not sufficient: there may be arbitrary alternations of occurrences of different triples with
boolean parameter false. However, what we need for the verification of the above properties,
is that ((a,d), true) occurs in In; always before ((a,d), false), and also that an arbitrary
amount of elements ((a, d), false) after ((a,d), true) cannot falsify the properties. That means,
we can use exactly the same abstract type as before, but use a different abstraction function
relating the concrete and the abstract type, and consequently, different abstract predicates

Bool,K,alt , .xB,K,alt
appendy °7 " taily M L

VB € buf fer of elem x Bool .

€ if length(Obs) = 0
Ohufenon (B) =\ €5t (Obs) if 1 < length(Obs) < K
1 if length(Obs) > K

where Obs is B|e_obs>< {truepu{(e.false) | (cceobs)A(e,true)¢B)} where furthermore all occurrences

but the first one of elements of the form (e, false) are eliminated. The corresponding abstract
predicates for first, empty and empty_true are unchanged, the abstract predicate for append
can be defined by

ool K-alt b= true A appendﬁlBo"l’K(B, (e,b),B") v
appendy " (B, (e,b), B') = b = false A3 .isin(B, (e,b')) A\B = B' v
A s \&y
b = falseN Ab.isin(B, (e,b")) AN B' = (e, false) e B

The abstract predicate for tail applied to a pair (e, true) eliminates this element, but it may
also insert (e, false) at any position in B.

We have used the tool CAESAR/ ALDEBARAN[FGM™92] in order to build all the necessary
abstract systems and to verify the properties on them. CAESAR/ ALDEBARAN verifies systems
described in LoTos[BB88]. In LoTos, data types and all operations and predicates on them
are described in form of abstract data types, whereas the control part is described by a
process algebra term. LOTOS allows only local variables, but has a very powerful notion

26

of synchronization by means of rendez-vous, allowing exchange of and agreement on values
between an arbitrary number of processes: we define an additional process MEMORY that
synchronizes with process P; on the events mw; and mr; and updates the global memory M.
All processes synchronize on all events mw; and each process updates its own local variable
In by appending the right pair (e,b). All other actions are local to some process. This allows
to define easily all the necessary abstract systems by modifying the type definitions of the
concrete system given as a LOTOS program:

e For efficiency reasons, we use instead of a single process type P as in the concrete system,
four different process types corresponding to
— process P}4 with all variables, which is almost identical to the concrete process P
— process P?,, without variables E and Out,
— process P,? ', without variables C and In, and finally
— process P/ which has only input variables
All these process types are obtained by simplifying the concrete process type by elimi-
nating all the predicates depending only on eliminated variables.
e We define a type elem4 for each abstract element type defined earlier in this section. It
includes also the definition of the predicates same_addr and dat; and of the constant K.
e For the abstract memories, sets, and buffers — which are parameterized by the type of
elements they can contain — we need a single definition (for each corresponding concrete
type) which is also parametrized just by the type of elements it can contain. In LOTOS,
type definitions include also the definitions of all associated predicates by means of sets
of conditional equations. The abstract predicates are in general obtained from the corre-
sponding concrete one by adding equations concerning the special values, such as abstract
input O or abstract buffer L.
The definition of abstract operations in terms of abstract data types makes the proof that
they are abstractions of the concrete operations very easy.

Verification of Property (C3): As we have already mentioned, our verification does in general
not allow to verify liveness properties directly: there exists no finite abstraction of the cache
memory system that verifies (C3). Under the hypothesis that the system is fair with respect
to the events mw; and cu; — a hypothesis that is made in the original description in [ABM93]
— one can deduce (C3) due to the proof rules given in [JPR94] from the satisfaction of the
following safety properties. Notice that these proof rules are given for a linear framework, but
its adaptation to the branching time framework is straightforward.

after(write;(a,d)) = in(Out;, (a,d))
position(Out;, 1, (a',d')) = enable(mw;(a’,d"))
Vn > 1. position(Out;,n, (a,d)) A enable(mw;(a’,d')) =
AX(position(Out;,n, (a,d)) A enable(mw;(a’,d")) V
after(mw;(a’,d")) A position(Out;,n—1, (a,d)))
enable(mw;(a,d)) = AX(enable(mw;(a,d)) V after(mw;(a,d)) Ain(Iny, (a,d))
position(In;, 1, (a',d")) = enable(cu;(a’,d"))
Vn > 1. position(Inj,n, (a,d)) A enable(cu;(a’,d')) =
AX(position(In;,n, (a,d)) A enable(cu;(a’,d')) V
after(cu;) A position(Inj,n—1, (a, d)))

27

o enable(cuj(a,d)) = AX(enable(cuj(a,d))V after(cu;(a,d)) A avail(a,d))

where ¢n and position are predicates with obvious meanings.
All these safety properties can be verified using finite abstractions.

5 Discussion

What has been achieved? A first impression could be that this verification of a cache memory
looks much like a handwritten proof. However, it is quite different: starting right from the
beginning, it is in fact rather lengthy to define all the abstract types, abstraction relations and
corresponding abstract predicates, even in order to verify a trivial buffer program. However,
having done this once, in order to verify the much more complex cache memory system, we
can reuse these definitions — for some of them by means of slight modifications — and have
to come up with a few new definitions concerning the data type memory that was not used
in the buffer program, Also, the definitions concerning abstract memories are already much
easier to obtain using analogous reasonings. In fact, there are many examples of systems,
for which we have to verify similar properties and which use similar data structures and
operations on them, such that the same (or at least similar) abstract types and operations
can be used. The abstract sets, buffers and memories given here are certainly not sufficient
to build convenient abstractions for any system involving these data types but in many cases,
the convenient abstractions can be obtained by slight modifications of the abstractions used
here. In any case, it should be very useful to collect such definitions in a “library”. A similar
approach has been followed by P. and R. Cousot and more recently by D. Long concerning
abstractions of integers and operations on them. In [DF95] a very interesting extension of
our method has been proposed which allows to avoid to restart the whole process again if a
property does not hold using the initially used abstract definitions.

The fact that for the verification of an individual property a large part of the system can
be abstracted existentially is often necessary in order to obtain tractable global models. If the
system is too large or the property is “too global” one can often get results by decomposing
the property, depending on the particular system under study, as this has been proposed, e. g.
by B. Kurshan [Kur94].

For the verification of the cache memory, an additional complexity comes from the fact that
we also have to define the set of formulas to be verified as the original abstract specification is
not given in these terms. We believe that this set of properties is interesting by itself as it can
be used for the verification of other systems supposed to implement sequentially consistent
memories. The advantage of this characterization is also that it can easily be modified in order
to obtain weaker or stronger specifications which are frequently used in real implementations.
This adaptability implies also that the fact that our characterization is slightly stronger than
required is not a problem.

Another point which makes an abstract specification given as a set of properties so at-
tractive, is the fact that the modification of a single property does not require to redo the
whole verification process. Our method is also incremental with respect to modifications of
the program, as long as they allow to use the same or at least very similar abstract types
and operations, as we have seen when we modified the action mr;(a,d) in the cache memory.
That means that exactly the time consuming and difficult part of the verification process

28

need not to be redone. In the case that the obtained abstract program is not already identical
to the previous one, only the part of the verification process that can be automatized, i.e. the
reconstruction of a model and the verification of the properties on it, must be redone.

Note at the moment of edition: time passing showed that the general approach pre-
sented is very useful in different domains. Since the development of tools like the Invariant
Checker[GS97] and InVesT[BLO98] the kind of abstractions used without formal proofs in
this paper, can be computed algorithmically just from the specification of the finite abstract
domain and the abstraction relation g. Also the use of the logical characterization of sequential
consistency turned out to be very useful as it allows the use of very small abstract domains.

Acknowledgements: I would like to thank the anonymous referees for pointing out several
errors, in particular the fact that the initial characterization of sequential consistency was
not sufficient, Amir Pnueli for giving me some ideas how to get a satisfactory solution and
Dennis Dams and Joseph Sifakis for many fruitful discussions.

References

[ABM93] Y. Afek, G. Brown, and M. Meritt. Lazy caching. ACM Transactions on Programming
Languages and Systems, 15(1), 1993.

[BB83] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS.
ISDN, 14(1):25—29, 1988.

[BBLS92] A. Bouajjani, S. Bensalem, C. Loiseaux, and J. Sifakis. Property preserving simulations.
In Workshop on Computer-Aided Verification (CAV), Montréal. LNCS 630, 1992.

[BLO98] S.Bensalem, Y. Lakhnech, and S. Owre. Computing Abstractions of Infinite State Systems
Compositionally and Automatically. In Proceedings of CAV’98, volume 1427 of LNCS,
June 1998.

[CCTT] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In 4th POPL, 1977.

[CGL94] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512-1542, September 1994.

[CM88] K. M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley, 1988.

[Cri95] R. Cridlig. Semantic Analysis of Shared-Memory Concurrent Languages using Abstract
Model-Checking. In Symposium on Partial Evaluation and Program Manipulation, La
Jolla, California, June 1995.

[DF95] J. Dingel and Th. Filkorn. Model checking for infinite state systems using data abstraction,
assumption-committment style reasoning and theorem proving. In Proc. of 7th CAV 95,
Liége. LNCS 939, Springer Verlag, 1995.

[EH83] E. A. Emerson and J. Y. Halpern. ‘Sometimes’ and ‘not never’ revisited: On branching
versus linear time. In 10th ACM Symposium on Principles of Programming Languages
(POPL 83), 1983. also in Journal of ACM , 33:151-178.

[FGM™92] J.Cl. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, and J. Sifakis. A tool
box for the verification of lotos programs. In 14th International Conference on software
Engineering, 1992.

[Ger94] R. Gerth. Introduction to sequential consistency and the lazy caching algorithm, 1994.
same volume.

[GL93] S. Graf and C. Loiseaux. A tool for symbolic program verification and abstraction. In
Conference on Computer Aided Verification CAV 93, Heraklion Crete. LNCS 697, Springer
Verlag, 1993.

29

[Gra94]
[GS97]

[JPR94]
[Koz83]
[Kurs9)]
[Kur94]
[Lam79]
[Lam94]

[LGST94]

[Loi94]
[Lon93]
[MP91]
[Mil71]

[Pnu85]

[Pnu86]

[SG90]

S. Graf. Verification of a distributed cache memory by using abstractions. In Conf. on
Computer Aided Verification CAV’94, Stanford. LNCS 818, Springer Verlag, 1994.

S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. In Proceedings
of CAV’97, Haifa, volume 1254 of LNCS, June 1997.

B. Jonsson, A. Pnueli, and C. Rump. Proving refinement using transduction, 1994. same
volume.

D. Kozen. Results on the propositional p-calculus. In Theoretical Computer Science.
North-Holland, 1983.

R.P. Kurshan. Analysis of discrete event coordination. In REX Workshop on Stepwise
Refinement of Distributed Systems, Mook. LNCS 430, Springer Verlag, 1989.

R.P. Kurshan. Computer-Aided Verification of Coordinating processes, the automata the-
oretic approach. Princeton Series in Computer Science. Princeton University Press, 1994.
L. Lamport. How to make a multiprocessor that correctly executes multiprocess programs.
IEEFE Transactions on Computers, C-28:690-691, 1979.

L. Lamport. The temporal logic of actions. ACM Transactions on Programming Languages
and Systems, 16(3), 1994.

C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving
abstractions for the verification of concurrent systems. Formal Methods in System Design,
Vol. 6, Iss 1, January 1995.

C. Loiseaux. Vérification symbolique de programmes réactifs 4 l’aide d’abstractions. PhD
thesis, February 1994.

D. E. Long. Model checking, abstraction and compositional verification. Phd thesis,
Carnegie Mellon University, July 1993.

Z. Manna,A. Pnueli. The temporal Logic of reactive and concurrent systems, Volume 1:
Specification. Springer Verlag, 1991.

R. Milner. An algebraic definition of simulation between programs. In Proc. Second Int.
Joint Conf. on Artificial Intelligence, pages 481-489. BCS, 1971.

A. Pnueli. In transition from global to modular temporal reasoning about programs. In
Logics and Models for Concurrent Systems. NATO, ASI Series F, Vol. 13, Springer Verlag,
1985.

A. Pnueli. Specification and development of reactive systems. In Conference IFIP, Dublin.
North-Holland, 1986.

G. Shurek and O. Grumberg. The Modular Framework of Computer-aided Verification:
Motivation, Solutions and Evaluation Criteria. In Conference on Automatic Verification
(CAV), Rutgers, NJ. LNCS 531, Springer Verlag, 1990.

30

