
Contract-Based Verification of Hierarchical Systems of Components

Sophie Quinton and Susanne Graf
Université Joseph Fourier, VERIMAG

{graf, quinton}@imag.fr

1 Introduction and related work

Our aim is to provide a framework for contract-based
reasoning for the component-based design of complex hier-
archically defined systems.

Compositional verification is necessary to scale to sys-
tems of arbitrary complexity. One well-studied approach
to it is Assume/Guarantee reasoning ([6]) which proposes
proof methods that allow to verify a system – defined as a
composition of components – by (1) expressing the global
property as a composition of local properties and (2) veri-
fying the local properties on individual components, taking
into account some assumptions on their environment that
must be proven to hold.

In the context of system design, models of the compo-
nents may not be available at early stages of development,
and one may want to reason about assumptions and prop-
erties only. In [5], a notion of interface specification has
been introduced in terms of I/O automata,where the con-
straint expressed on inputs is interpreted as the assumption
and the constraint on outputs as the guarantee (under the
given assumption). When dealing with such contracts, rele-
vant notions are those of composability and compatibility of
sets of contracts and of refinement between contracts. Com-
posability is a purely syntactic criterion on interfaces and
compatibility expresses the fact that there exists an environ-
ment preventing the composition to enter some predefined
error state. Finally, in the context of contracts, refinement is
sometimes also called dominance [3], and a refined contract
is a contract that requires more from the implementation and
less from the environment. Separation between assumption
and guarantee has been proposed in [9] while interface au-
tomata have been enriched with modalities in [10]. In this
paper we present a framework encompassing those inter-
face theories and offering and heterogeneity of interaction
thanks to the BIP framework.

In [7, 2, 4], the framework BIP (Behavior, Interaction,
Priority) has been proposed for component-based design
and verification. In BIP, the concept of input/output is re-
placed by the more general concept of multi-party inter-
action which allows each of the involved interaction part-
ners to impose constraints on when the interaction may take

place and thus does not require input completeness.
That means, contracts, as defined by interface specifica-

tions, are not needed to avoid error states. But it is still
relevant to have a framework for assume/guarantee reason-
ing which allows to (1) characterize a set of environments
E for which the composition γ(K,E) is consistent, that is,
deadlock-free, or (2) those for which γ(K,E) guarantees
that K behaves as specified by some property B where B
may express a stronger property than a BIP behavior spec-
ification. This allows deriving global properties of a com-
posed system in a compositional manner, as well as defini-
tion of frameworks for reusability and tailoring of compo-
nents.

This paper is organized as follows: in section 2, we gen-
eralize the definitions of contract and dominance introduced
in [3] by introducing a framework for contract-based rea-
soning parameterized by notions of interface, composition,
behavior semantics and refinement in a context. Composi-
tions of interfaces is defined within an abstract version of
BIP without variables, values nor priorities. We then pro-
vide a proof rule for dominance that is the parameters.

In section 3, we apply the general framework to behav-
iors expressed as modal specifications [8], which are pow-
erful enough to deal with loose specifications and properties
implying some progress ensurance in absence of input en-
abledness: in a modal transition system, a must-transition
represents a progress guarantee of all its implementations
while may-transitions define safety properties as in usual
transition systems. We define a notion of composition un-
der context which takes into account (1) the composition
operator γ and (2) which guarantees the soundness of ap-
parent circular reasoning.

We finally present a possible use of this framework
that is being implemented using the Maude rewrite engine
[1]. This method addresses the problem of verifying that a
global contract is satisfied by a given composition of behav-
iors. If the global guarantee G is “projectable” with respect
to the interaction model defined by the hierarchical com-
ponent structure, it automatically generates and discharges
assumptions for the projection of G onto properties of com-
ponents that must be verified in the context. The interested

reader is referred to [11] for a more comprehenseive de-
scription of the approach.

2 Frameworks for contract-based reasoning

2.1 The BIP framework

BIP [7, 2, 4] is a component framework for constructing
systems by superposing three layers of modeling: Behavior,
Interaction, and Priority. This implies a clear separation be-
tween behavior and structure as composition at the priority
and interaction level does not depend on the behavior level.
Besides, it is general enough to encompass heterogeneity of
interaction, allowing description of synchronous as well as
asynchrous and heterogeneous systems.

In this paper, we build upon an abstract version of BIP
without variables nor priorities. The interface of a com-
ponent is a set of ports, and a composition operator γ is
defined by a set of legal interactions (multi-partner rendez-
vous) given as a set of connectors of the algebra AC(P) in-
troduced in [4]. In the following, when referring explicitely
to the set of legal interactions of γ, we will denote it L(γ).
Interactions are sets of ports. For readability’s sake, we rep-
resent union of two interactions α1 and α2 by α1|α2.

BIP also defines how operators γ are composed. For
example, in Figure 2.3, the composition of B1, E1 and
E2 is represented in (a) as γ(B2, γE(E1, E2)) and in (b)
as γ2(γ1(B2, E1), E2)). As BIP ensures associativity and
commutativity of composition, it is always possible to com-
pute composition operators to compose a set of components
in any order.

While in [7, 2] behaviors are expressed as LTSs, we will
in section 3 we use MTSs. As the definition of framework
for contract-based reasoning given in the next section is in-
dependent of the representation of behaviors, our results can
easily be applied to the usual BIP behavior semantics.

2.2 A generic framework for contract-
based reasoning

Definition 2.1 (Contract-based framework) A contract-
based verification framework is given by a tuple
(B,P,Γ, ‖ . ‖, θ), where:

• B is a set of behaviors; each behavior B ∈ B has as
interface a set of ports denoted PB .

• P =
⋃
B∈B PB.

• Γ is a set of BIP composition operators on subsets of P .

• ‖ . ‖ : Γ× 2B −→ B is a partial function defining a be-
havior semantics for the composition of behaviors, ensur-
ing associativity and commutativity of composition oper-
ators as defined in [7]. For γ ∈ Γ and B1, ... , Bn ∈ B,
‖(γ, (B1, ... , Bn))‖, denoted γ(B1, ... , Bn), is defined
iff γ is defined on

⊔n
i=1 PBi .

• θ : B × Γ −→ 2B×B is a partial function that is mono-
tonic w.r.t composition as defined below. For each pair
(E, γ) such that γ is a composition operator defined on
PE t PB for some set of ports PB , θ(E, γ), denoted
vE,γ , is a preorder (a reflexive and transitive binary re-
lation) over the set of behaviors with associated set of
ports PB . θ is called refinement in a context.

A behavior B is said to be on P iff PB = P . In the follow-
ing we suppose given a contract-based verification frame-
work (B,P,Γ, ‖ . ‖, θ).

Definition 2.2 (Context for an interface) Let P ∈ 2P be
an interface. A context for P is a pair (E, γ) where E is
such that P ∩ PE = ∅ and γ is a composition operator
defined on P t PE .

Definition 2.3 (Monotony) θ is monotonic w.r.t. com-
position iff for any interface P , any context (E, γ) for
P , the following implication always holds. If there ex-
ist γE on PE and E1, E2 such that PE = PE1 t PE2

and E = γE(E1, E2), then for all B1, B2 behaviors
on P : B1 vγE(E1,E2),γ B2 implies γ1(B1, E1) vE2,γ2

γ1(B2, E1), where γ1 and γ2 are calculated from γ and γE
for respectively P t PE1 and P t PE1 t PE2 .

Figure 1 gives a graphic representation of the above im-
plication. We expect any function defining refinement in
a context in a contract-based verification framework to be
monotonic w.r.t. composition. Indeed otherwise refine-
ment in a context does not convey any information about
the global system.

Definition 2.4 (Refinement) If a behavior B1 refines a be-
havior B2 in all contexts, i.e. for all (E, γ), B1 vE,γ B2,
we use the notation B1 v B2.

Definition 2.5 (Contract for an interface) A contract C
for an interface P consists of:

• a context E = (A, γ) for P , where A is called the as-
sumption

• a behavior G on P called the guarantee

We write C = (A, γ,G) rather than ((A, γ), G).

Definition 2.6 (Satisfaction) Let P ∈ 2P be a set of ports.
Let C = (A, γ,G) be a contract for P and B a behavior on
P . We say thatB satisfies C, denotedB |= C, iffB vA,γ G.

The satisfaction relation depends on the verification
framework. Intuitively, a component K satisfies a contract
C = (A, γ,G) if K “behaves according to” G provided that
the environment behaves according to A.

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

=⇒ E2E1

E1

E2E1

The composition model γ (resp. γ2) as defined in definition 2.3 is repre-
sented in the left (resp. right) part as full lines with black connector ends,
while γE (resp. γ1) is shown as dotted lines with white connectoir ends.

B1

B2

B1

B2

Figure 1. Monotony of refinement

Definition 2.7 (Dominance) Let {Pi}ni=1 ∈ 2P be a family
of pairwise disjoint sets of ports, with P =

⊔n
i=1 Pi. Let C

be a contract for P and for each i = 1..n, Ci be a contract
for Pi. Let γ be a composition operator on P . We say that
C dominates {Ci}ni=1 w.r.t. γ iff ∀B1, ... , Bn ∈ B:

∀i, PBi = Pi ∧ Bi |= Ci =⇒ γ(B1, ... , Bn) |= C
A contract C dominates a set of contracts {Ci}ni=1 w.r.t a
composition operator γ if any set of behaviors satisfying
the “subcontracts”, when composed using γ, yields a com-
ponent satisfying C.

2.3 A generic condition for apparent cir-
cular reasoning and dominance

Definition 2.8 (Apparent circular reasoning) A frame-
work (B,P,Γ, ‖ . ‖, θ) allows apparent circular reasoning
iff for any given interface P , behavior B on P , context
(E, γ) for P and contract C = (A, γ,G) for P we have:

B vA,γ G ∧ E vG,γ A =⇒ B vE,γ G
This means that every component with a contract (A, γ,G),
if integrated into an environment that is compatible with γ
and that ensures A, can be replaced in the system by a com-
ponent with the same interface and with G as behavior. Ev-
erything that can be proved in the new system can also be
proved in the original system.

Theorem 2.9 Let (B,P,Γ, ‖ . ‖, θ) be a framework allow-
ing circular reasoning. Let {Pi}ni=1 ∈ 2P be a family
of pairwise disjoint interfaces, with P =

⊔n
i=1 Pi. Let

C = (A, γ,G) be a contract for P , and for each i = 1..n,
Ci = (Ai, γi, Gi) be a contract for Pi. Let γI be a com-
position operator on P . Then the following conditions are
sufficient to prove that C dominates {Ci}ni=1 w.r.t. γ:{

γI(G1, ... , Gn) |= C
∀i, γ(A, γI\i(G1, ... , Gi−1, Gi+1, ... , Gn)) |= C−1

with γI\i standing for the restriction of γI to P\Pi and
C−1 = (Gi, γi, Ai).

This proof rule can thus be applied in any framework
allowing apparent circular reasoning.

3 Application to a framework based on
modal transition systems

3.1 A framework based on MTSs

Modal transition systems ([8]) are labeled transition sys-
tems where transitions have in addition a modality, either
must or may.We suppose a set of ports P .

Definition 3.1 (Modal Transition System) A modal tran-
sition system (MTS) on an interface P is a structure B =
(Q, q0, P, δ), where Q is a set of states, q0 ∈ Q is an initial
state, P ∈ 2P is an interface, and δ consists of two relations
−→ and 99K on Q× 2P ×Q such that:

∀q1, q2 ∈ Q,∀α ∈ 2P , q1 α−→ q2 =⇒ q1
α

99K q2

The condition that must-transitions may also be interpreted
as may-transitions ensures modal consistency of the MTSs
([8]). Notice that transitions are labeled by sets of ports and
not by ports. Indeed, if an MTS represents the behavior
of a component K, it may have to deal with interactions
involving several ports of K.

Definition 3.2 (Composition of MTSs) Let {Pi}ni=1 be a
family of pairwise disjoint interfaces and P =

⊔n
i=1 Pi.

Let γ be a composition operator on P with L(γ) the set
of legal interactions of γ. For i = 1..n, let be the MTSs
Bi = (Qi, q0i , Pi, δ

i). The composition of B1, ... , Bn with
γ, denoted ‖γ (B1, ... , Bn), is an MTS (Q, q0, P, δ) such
that Q =

∏n
i=1Qi, q

0 = (q01 , ... , q
0
n) and −→ and 99K

are defined by: ∀α ∈ L(γ), ∀q1 = (q11 , ... , q
1
n), q2 =

(q21 , ... , q
2
n) ∈ Q,

• q1 α−→ q2 iff ∀i, q1i
αi−→ q2i

• q1 α
99K q2 iff ∀i, q1i

αi−→ q2i or q1i
αi
99K q2i

where αi = α∩Pi and with the convention that ∀q, q ∅−→ q

and q
∅

99K q.

Definition 3.3 (Refinement of MTS) Refinement � is a
binary relation defined on MTS with the same interface. An
MTS (Q1, q

0
1 , P, δ

1) refines an MTS (Q2, q
0
2 , P, δ

2) if there

exists a relation R ⊆ Q1 ×Q2 such that R is a simulation
for (Q1, q

0
1 , P, 99K1) and (Q2, q

0
2 , P, 99K2), and R−1 is a

simulation for (Q2, q
0
2 , P,−→2) and (Q1, q

0
1 , P,−→1).

This is the usual definition of refinement for MTSs ([8]).
We introduce now a refinement in a context allowing appar-
ent circular reasoning for MTSs.

Definition 3.4 (Enabled interaction) Let B be an MTS
with B = (Q, q0, P, δ). We say that an interaction α ∈ 2P

must (resp. may) be enabled in a state q ∈ Q if there exists
q′ ∈ Q s.t. q α−→ q′ (resp. q

α
99K q′). The function en2

(resp. en3) : Q −→ 22P returns for any state q ∈ Q the
set of interactions that must (resp. may) be enabled in q.

Definition 3.5 (Refinement in a context) Let P be an in-
terface, (E, γ) a context for P with E = (QE , q0E , P, δ

E).
LetB1 = (Q1, q

0
1 , P, δ

1) andB2 = (Q2, q
0
2 , P, δ

2) be MTSs
on P . B1 refines B2 in the context of E, denoted B1 vE,γ
B2, iff there exists a relation R ⊆ (Q1 × QE) × Q2 such
that (q01 , q

0
E)R q02 and for all q1 ∈ Q1, q2 ∈ Q2, qE ∈ QE ,

(q1, qE)R q2 implies:

1. en3(q1) ∩ γ ⊆ en3(q2) ∩ γ

2. αP |αE ∈ γ ∧ q1
αP
99K q′1 ∧ αE ∈ en3(qE)

=⇒ ∃q′2 s.t. a) q2
αP
99K q′2

b) ∀q′E , qE
αE
99K q′E =⇒ (q′1, q

′
E)R q′2

3. en2(q2) ∩ γ ⊆ en2(q1) ∩ γ

4. αP |αE ∈ γ ∧ q2
αP−→ q′2 ∧ αE ∈ en2(qE)

=⇒ ∃q′1 s.t. a) q1
αP−→ q′1

b) ∀q′E , qE
αE−→ q′E =⇒ (q′1, q

′
E)R q′2

Theorem 3.6 The usual refinement relation � for MTSs is
equal to refinement in all contexts v.

Theorem 3.7 Let B be the set of MTSs on P , Γ the set of
composition operators defined on all subsets of P , ‖ and θ
respectively the composition for MTSs and the refinement in
a context defined above. Then (B,P,Γ, ‖, θ) is a contract-
based verification framework allowing apparent circular
reasoning.

3.2 Consistency of a behavior with a com-
position operator and a partition

As will be shown, not all properties can be ensured by
a composition of behaviors using a given composition op-
erator if the partition of the set of ports is fixed. It can be
useful to detect such cases as early as possible in the design
flow. Hence the notion of consistency of a behavior with a
composition operator and a partition.

In the following definitions, P always denotes an inter-
face, B = (Q, q0, P, δ) an MTS on P , γ a composition
operator on P and {Pi}ni=1 a partition of P .

q′′

c1|c2
c1|c2

a b

q

q′

c1 c2

K1

a
b

K2

(a) (b)

Figure 2. Consistency of a behavior with a
composition operator and a partition.

Definition 3.8 (Consistency and decomposability) B
is consistent with (resp. decomposable w.r.t.) γ and
{Pi} if there exist some MTSs B1, ... , Bn on respec-
tively P1, ... , Pn such that γ(B1, ... , Bn) v B (resp.
γ(B1, ... , Bn) = B).

Figure 2 shows a behavior (a) defined on P =
{a, b, c1, c2} that is not consistent with the composi-
tion operator γ = {{a}, {b}, {c1|c2}} and a partition
{{a, c1}, {b, c2}} shown in (b). Indeed, as a must be en-
abled in q, then considering that q is of the form (q1, q2),
with q1 (resp. q2) a state of some behavior B1 (resp. B2),
then a must be enabled in q1. Thus in q′′, after b has been
fired, B1 is still in q1, so a must still be enabled, which is
not allowed in (a). Inconsistency here is due to some prop-
erties of the composition of behaviors. We develop this idea
in the sequel.

Definition 3.9 (Ports affected by an interaction) Let α ∈
2P be an interaction. We fix Pα = {Pi | α ∩ Pi 6= ∅}. The
set of ports affected by α is aff(α) =

⋃
I∈Pα I .

Property 3.10 (Decomposability conditions) If B is de-
composable w.r.t. γ and {Pi}, then the following properties
hold for all q, q′ ∈ Q and α ∈ 2P :

1. q
α

99K q′ =⇒ ∀a ∈ en3(q)∪ en3(q′), a∩P\aff(α) ∈
en3(q) ∩ en3(q′)

2. q α−→ q′ =⇒ ∀a ∈ en2(q)∪en2(q′), a∩P\aff(α) ∈
en2(q) ∩ en2(q′)

3. ∀α1, α2 ∈ en2(q), α1|α2 ∈ L(γ) =⇒α1|α2 ∈ en2(q)

Conditions 1 and 2 come from the fact that firing a transi-
tion labeled by α does not affect the sets of enabled inter-
actions of the components that are not involved in α, since
they remain in the same local state as a property of the com-
position defined in 3.2.Condition 3 is also a consequence of
composition: if α1 and α2 are enabled, then so is α1|α2.

A behavior B is consistent with a composition opera-
tor γ and a partition {Pi}ni=1 iff there exists a behavior B′

that is decomposable w.r.t. γ and {Pi}ni=1 and such that
B′ v B. Thus, deciding consistency ofB boils down to de-
ciding if there exists such a B′. As any such B′ satisfies the
decomposability conditions, there are syntactic constraints

that it must satisfy. Due to lack of space they are not de-
scribed here (see [11]). We use them in an algorithm that
eliminates some states that are unreachable in a well-formed
refinement as well as may-transitions that will always dis-
appear during refinement while others are transformed into
must-transitions. This allows detecting some inconsisten-
cies such as in Figure 2. If the set of behaviors B′ on P
that are decomposable w.r.t. γ and {Pi}ni=1 and such that
B′ v B has a greatest element, then we can find it and it is
complete as described below.

Definition 3.11 (Completeness) B is complete w.r.t. γ and
{Pi}ni=1 iff the decomposability conditions hold and ∀q ∈
Q,∀α1, α2 ∈ en3(q), α1|α2 ∈ L(γ) =⇒α1|α2 ∈ en3(q).

Behaviors that are complete w.r.t a composition operator
and a partition have the nice property that they are decom-
posable and that a decomposition can easily be computed,
as explained below. Let us underline here the role of com-
position operators in completeness.

Definition 3.12 (Projection) Let P ′ ⊆ P be an interface
and B = (Q, q0, P, δ) an MTS. The projection of B on P ′,
denoted ΠP ′(B) is (Q, q0, {τ}∪P ′, δ′) where δ′ is defined
as δ except that labels have been projected on {τ} ∪ P ′.

Theorem 3.13 If B is complete w.r.t. γ and {Pi}ni=1, then
B is also decomposable w.r.t. γ and {Pi}ni=1 and B =
γ(ΠP1(B), ... ,ΠPn(B)).

3.3 Verifying a global contract directly
from behaviors

In section 2.3, we have given a sufficient condition to
prove dominance between contracts. We sketch (see [11]
for more) here a methodology to generate such contracts
from a global contract and the behaviors (or specifications)
of the atomic components. This method only applies to be-
haviors that are complete w.r.t the global composition oper-
ator, as it is based on projection of the global property. Due
to the expressivity of the interaction layer of BIP, this still
represents an interesting class of systems.

Our verification problem is the following: let P be an
interface, C = (A, γ,G) a contract for P , γI a composition
operator on P and {Pi}ni=1 a partition of P . For all i =
1..n, let Bi be a behavior on Pi and B = γI(B1, ... , Bn).
We want to know if γI(B1, ... , Bn) |= C. If G is complete
w.r.t. γ and {Pi}ni=1, then it is sufficient that all Bi refine
Gi = ΠPi(G) in the context ofA and the other components.

From that statement we build for allBi an assumptionAi
on its environment such that Bi vAi,γi Gi. This construc-
tion is adapted from [12] but our approach is different here
in so far it does not involve any global guarantee. The Ai
are deterministic. Furthermore, if control is not distributed,
they are minimal in the sense that if the environment does

not verify them, then B will in some refinement violate G.
If the Ai are complete w.r.t. their context, it is possible to
iterate the process by projecting them as done for G.

4 Conclusion and future work
In this paper, we add to the usual notion of contract a

structural part specifying the composition operator used to
compose the component and its environment. We provide a
framework for compositional verification including a proof
rule for dominance between contracts based on apparent
circular reasoning. We also briefly describe a consistency
condition and a method based on assumption generation to
generate or refine contracts.

An implementation of this contract-based verification
framework, using the rewriting tool Maude [1] is currently
under development. Plain MTSs do not allow to express
such properties as ”one of the following interactions must
be enabled”. It is therefore not always possible to prove
deadlock-freedom of a component-based system. Using
disjunctive modal transition systems could solve this issue.
Besides, we would like to investigate how such a method-
ology applies to the full BIP framework with priorities and
data transfer through connectors.

References

[1] Maude website. http://maude.cs.uiuc.edu/.
[2] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous

real-time components in bip. In SEFM, pages 3–12, 2006.
[3] A. Benveniste, B. Caillaud, and R. Passerone. A

generic model of contracts for embedded systems. CoRR,
abs/0706.1456, 2007.

[4] S. Bliudze and J. Sifakis. The algebra of connectors: struc-
turing interaction in bip. In EMSOFT, pages 11–20, 2007.

[5] L. de Alfaro and T. A. Henzinger. Interface automata. In
ESEC / SIGSOFT FSE, pages 109–120, 2001.

[6] W. P. de Roever, F. S. de Boer, U. Hannemann, J. Hooman,
Y. Lakhnech, M. Poel, and J. Zwiers. Concurrency Veri-
fication: Introduction to Compositional and Noncomposi-
tional Methods, volume 54 of Cambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, 2001.

[7] G. Gößler and J. Sifakis. Composition for component-based
modeling. Sci. Comput. Program., 55(1-3):161–183, 2005.

[8] K. G. Larsen. Modal specifications. In Automatic Verifica-
tion Methods for Finite State Systems, pages 232–246, 1989.

[9] K. G. Larsen, U. Nyman, and A. Wasowski. Interface in-
put/output automata. In FM, pages 82–97, 2006.

[10] K. G. Larsen, U. Nyman, and A. Wasowski. Modal I/O au-
tomata for interface and product line theories. In ESOP,
pages 64–79, 2007.

[11] S. Quinton and S. Graf. Contract-based verification of hier-
archical systems of components. Technical report, Verimag,
2008.

[12] J.-B. Raclet. Residual for component specifications. Tech-
nical Report 6196, INRIA, May 2007.

