A tool for symbolic program verification and abstraction *

Susanne Graf and Claire Loiseaux
VERIMAG! BP 53X, F-38041 Grenoble,

e-mail : {graf loiseaux}@imag.fr

Abstract

We give the description of a verification tool taking boolean programs of guarded com-
mands as input; internal representation of programs are sets of Binary Decision Diagrams
(BDD) (one for each guarded command). It allows to construct an abstract program of the
same form obtained using an abstraction relation given by a boolean expression on “concrete”
and “abstract” variables. The tool allows the verification of CTL formulas on programs. We
illustrate its possibilities on an example.

1 Introduction

In the domain of program verification an obvious idea is to verify some abstract program instead
of the complete specification (called concrete program) depending on the properties to be verified.
The motivation is to make the representation of the program model smaller and this for two
reasons: one is to make the verification faster; the other is that in most practical cases the model
of the concrete program is too large to be verified, whereas an abstraction of it may be sufficiently
small and still contain sufficient information with respect to the properties to be verified.

However, this approach rises the problem of property preservation, i.e., we have to know which
properties holding on the abstract program hold also on the concrete one. The investigation of
property preserving ahstractions of reactive systems has been the object of intensive research
during the last years. Results have been given e.g. in [Kur89, CGL92, BBLS92, GL93].

One way to define abstractions is via a behavioral equivalence, such as observational equiva-
lence [Mil80]; in this case, an abstract program can be calculated by constructing an equivalent
program which is minimal with respect to the used equivalence by using for example the algo-
rithm of minimal model generation given in [Fer90] or [BFH90]. These algorithms calculate the
largest possible partition on the domain (set of states) of the program, such that the following
program is equivalent to the original program: take as domain the set of the calculated classes,
and as transition relation the one relating two abstract states if and only if two elements in
the corresponding classes are related. The advantage of this method is that for a large class of
properties, the abstract program satisfies a property if and only if the concrete program satisfies
it (i.e. one has strong preservation); its disadvantage is the high cost you have to pay in order
to get such an abstract program.

*This work was partially supported by ESPRIT Basic Research Actions “SPEC” and “REACT”
'Verimag is a joint laboratory of CNRS, Institut National Polytechnique de Grenoble, Universite J. Fourier
and Verilog SA associated with IMAG

Here, we present a tool implementing the ideas presented recently in [BBLS92, G1.93] and
before in [Sif83] and in some sense also in [CC77]. Instead of calculating the largest partition
on the domain of the concrete program, such that the obtained abstraction is equivalent, we
give an arbitrary partition by defining a relation p between the concrete and some new abstract
domain. In this case, the abstract program calculated in the same manner as above is no longer
equivalent, but the concrete program does simulate it in the sense of [Mil71]. This means that
for all the safety properties and even more (see Section 3) one has that if the abstract program
satisfies a property, the concrete one also does. However, so calculated abstract program are
obtained much easier, and may also be much smaller.

This gives, at least in the case we consider only finite domains, a framework of automated
program verification: given a concrete program on domain (set of states) D and a relation p
relating concrete domain D and abstract domain D4 and a set of properties to be verified, all
the rest can be done automatically, that is:

e check that properties to be verified are preserved by the used abstraction,
e calculate the corresponding abstract program,
e verify the property on the calculated abstract program.

The tool we have currently implemented works on boolean guarded command programs which
may be composed by different parallel composition operators. It can be envisaged to extend
this approach also to more interesting calculi which are not necessarily defined on finite domains
but which must be decidable (and they should also be “reasonably implementable”). Another
possible extension is to write a translator for translating a significant subset of Lotos [BB8S]
prograims into composed guarded command prograins which is almost straightforward and gives
the tool a wide range of applications.

A tool based on similar ideas is suggested in [CGL92] and has been implemented; there,
macros for n-bit integers and corresponding integer operations but no parallel composition have
been defined. The main difference is that there only a much more restricted set of abstraction
relations are allowed (each variable must be abstracted independently) for which the abstract
programn can be computed easily.

In the next section, we give the principles of our tool, define parallel operators and show
how abstract programs are computed from a relation between states. In Section 3, we recall the
results on property preservation given in [BBLS92, GL93]. In Section 4, we give the syntax of
the programming language and the formula language accepted by the tool. In Section 5 we treat
an example and give some results concerning the performances of the tool.

2 The tool

The tool takes as input a description of a concrete program in the form of a composition of
boolean guarded command programs using operations of parallel composition and abstraction
as described in Section 4. An abstraction is given by means of a boolean expression on abstract
and concrete program variables and represents a relation between “concrete” states (those of the
program) and “abstract” states. The tool computes an abstract program such that the concrete
program simulates the abstract one in the sense of Milner [Mil71] for the given abstraction
relation. Notice that parallel composition and abstraction can be applied in any order.

Programs of the form CTL formulas f +

P ::=BgcP|P|P|P interpretation function I
[
P — abstract program P I — abstract interpretation function I
g p b

Computation of global relation L2 ok = “I, preserves basic
ok = “Pp is an abstraction of 7 predicates of f”

\Lok \1, ok

p, I 1

- ____—=

Symbolic Model-Checker
P 0 |:Ip f ?

er \im

PlErf ?

Figure 1: Principle of the tool

On so obtained abstract programs, the tool verifies properties given by formulas of CTL
[CES83]. If the formula is given using predicates of a concrete program, the tool computes their
interpretation in terms of abstract variables.

Furthermore, for any property to be verified on an abstract program, one must verify preser-
vation by the given abstraction relation which depends on two criteria:

o the subset of CTL used,
e the atomic predicates occurring in the formula.

The first point is a simple syntactic criterion and its verification is left to the user, whereas
the preservation of predicates is verified by the tool (the exact preservation criteria are given in
Section 3).

2.1 Representation choices

A guarded command program defines a [set of] transition relation[s] on the set of valuations of
its variables (which we call “domain”); any CTL formula defines a set of states (elements in the
domain), the states in which it holds. To represent relations, we need a formalism allowing to do
all necessary operations, such as “compare”, “successors”, ... with a reasonable amount of time
and space. It is now well established that Binary Decision Diagrams (BDDs) [Bry86] deserve
this objective for sets (of states, transitions, ...) represented by boolean expressions.

We never represent the global transition relation, but one for each command. The main
reason is that the BDD encoding the global relation is likely to be much larger than the set of
BDDs encoding each command.

In order to represent transition relations, i.e. sets of edges represented by pairs of states,
a double set of the program variables is necessary, one (called this-state variables) coding the
source and the other (called next-state variables) coding the target state of each transition.

A well-known characteristics of BDDs is that their size is very sensitive to the variable
ordering. Two heuristics are implemented in the tool. The first one is that in all cases each

next-state variable follows directly its corresponding this-state variable as it has been suggested
e.g. in [EFT91, BD92]; the other is that global variables (shared by several processes) come
before local variables. As good heuristics are in general strongly dependent on the underlying
transition system, we give the user the possibility to define his own variable ordering.

The user can also define an “invariant” restricting the domain to the set of states satisfying
this invariant; this allows to obtain smaller BDDs representing the transition relations by using
the “restrict” operator on BDDs which has been implemented in the BDD package we use [Rat92].
However, the use of this facility is under the plain responsibility of the user, as the computed
transition relation is an abstraction of the concrete one only if all reachable states are contained
in the invariant.

2.2 Parallel composition

We suppose a universal set of program variables V. Any transition relation R is defined on the
set of states which is the domain Dom(X) of some subset X of V. Where, e.g., for X = {z,y},
Dom(X) = Dom(x) x Dom(y).

As already mentioned, binary relations on Dom(X) can be represented symbolically by pred-
icates of the form R(X,X’) (encoded by BDDs in our tool) where X’ is a “copy” of X, i.e.
Dom(X) = Dom(X'), X encoding the source state and X' the target state of any transition in
R;e.g., if Dom(z) =N, then “z’ = 2 + 1” represents the transition relation relating any n € '
with n + 1. This approach is used e.g. in [Lam91, Pnu86]. In the same way a relation p from
Dom(X) to Dom(X 4) is represented by a binary predicate of the form p(X, X 4).

In this setting, set operations are expressed by logical connectives. E.g., the fact that a
relation R is included in R’ is expressed by R = R’ and R A R’ represents the intersection of R
and R’ if they are defined on the same set of variables.

We consider that a program is a family of transition relations represented by sets of binary
predicates on the same set of variables 5 = { R;(X,X’) };er where the elements of I are labels
used for synchronization purposes in parallel composition in Section 2.2.

Definition 2.1 (Parallel composition operators)

Let be X,Y sets of program variables. Let be 51 = {R1;(X,X")}ier and S2 = {Ro;(Y,Y")} e
be programs on Dom(X) respectively Dom(Y). Let A C I X J be a synchronizalion sel and
Ar ={i|35.(4,7) € A} and Ay = {j|3i.(¢,7) € A} the projections of A on I respectively J. Then,
parallel compositions of S1 and Sy are programs on X UY defined as follows:

Synchronous Composition :
[] 51®A52 = {Rh(X,X/) N RQJ(Y7 Y/)}(i,j)EA
Asynchronous Composition :
o 51192 =A{R(X, X)AVy € (V-X).(y = y)lier U {Ro;(Y,Y') AVz € (X-Y).(2' = 2)}jes
Mized Composilion :
o 51[A]S2 = {Ru(X, X) A R2;(Y,Y") } 5, 5)ea U
{R1(X, X)AVy € (Y =X).(y' = y)}iga, U {Roj(Y,Y') AVe € (X=Y).(a" = 2)}jga,

Comments :

e In synchronous composition, each transition of the composed program results from the
synchronous execution of two transitions of the transition relations defined by some Ry;

and some Ry; for (i,5) € A. If A =1 x J, this operator corresponds exactly to conjunction
applied on programs described by TLA formulas [Lam91]; it is also very similar to pro-
gram composition of S/R models [KK86]. If the domains of the component processes are
independent, it is exactly the one of SCCS [Mil83].

e In the asynchronous composition, in each step one of the programs executes one of the
currently enabled transitions and the other idles. This operator results in the complete
“Interleaving” of the component processes if they are defined on independent domains; if
not, the execution of a transition of one of the processes may change the enabling conditions
of the other one. This operator is in fact the union operator of Unity [CMS&S].

e Finally, in the mixed composition operator, some of the transitions must be executed syn-
chronously, whereas the others are executed asynchronously. This operator is not exactly
the one in CSP [Hoa84] or Lotos [BB88], where all processes have distinct variable sets and
communicate by exchanging values; however, it is equivalent to them.

2.3 Computation of abstract programs

Let Y be a set of abstract variables and Dom(Y') its associated domain. Then an abstraction
relation is given by a predicate of the form p(X,Y’) on concrete and abstract variables (this can
be seen as a kind of abstract interpretation).

Definition 2.2 (Computation of abstract program)
The set of lransition relations representing the abstract program calculated from § =

{Ri(X, X) }ier and p is

SP = {RZP(Yv Y/) | Z € I} = {H‘X H‘X/ . p(‘va) N RZ(XvXI) N p(leyl)}iEI-

If all the R; as well as p are represented by BDDs, the BDDs representing the R;, are
obtained by applying usual operators on BDDs. An important fact is that the BDD representing
the global transition relation needs never to be calculated. Notice that in case of finite domains,
the variables X and X' can always be eliminated.

In Section 3, we show that the so calculated abstract program is in fact well chosen. For
a large class of properties, we have property preservation from the abstract to the concrete
program.

BDD representations of programs can be transformed back into boolean guarded command
programs. Even if the obtained programs are not always easy to read, it is useful to have a look
at a composed and abstracted program. in which each command groups together one or several
commands of the originally given programs. The relation between commands of the concrete
programs and commands of the composed and abstract program is obvious by labels. (by taking
also into account possible renamings applied on labels).

2.4 Verification of CTL formulas

For the verification of properties, given by CTL formulas, the global transition relation is needed.
But as formulas are in general verified on the abstract program this is acceptable. The imple-
mented model checking algorithm is a symbolic one using the fixed point definitions of the

operators of CTL, e.g.,
EG(HI= \P;

where Py = | f], the set of states satisfying f (represented by a BDD on the set of program
variables), and P41 = P;Apre[Rg|(P;) (where pre[R¢] is the inverse image function of the global
transition relation R¢). Thus, the characteristic set of EG(f) is computed by first computing
the characteristic set of f and then adding successively the set of states having successors in the
so far computed set. The fixed point is reached when P;y; = P; and as the domain is finite
the fixed point is always reached. All these computations can be done symbolically as for any
program of the form S = {R;(X,X")}ies and for any predicate p(X) (encoded by BDDs) we
have

pre[Re)(p)(X) = \/ 3X".Ri(X, X') A p(X)

This is a predicate with free variables in X (all the quantified variables X’ can be eliminated),
and all the used operators are available in most BDD-packages.

Notice that despite the fact that we need the inverse image function of the global transition
relation, we do not need a unique BDD representing it, but we can still work with the before
calculated set of BDDs representing the global transition relation.

3 Preservation Results

In this section we give a brief overview on the preservation results, presented in [BBLS92, GL93],
guaranteeing that properties verified by the tool on an abstract program hold also on the corre-
sponding global concrete program. Notice also that if a property does not hold on the abstract
program, nothing can be said in general on its validity on the concrete program, and one should
try with a different abstraction e.g., by refining the already given one. We need three results,
concerning

e the subset of the CTL preserved by abstraction,
o the set of atomic predicates preserved by an abstraction relation p,
e compositionality of abstraction with respect to parallel composition.

In this section we precise first the notion of abstract program and give the results necessary for
the proposed use of the tool.

Definition 3.1 (p-simulation) [BBLS92]
Let R(X,X") and Ra(X4, X)) be transition relations (the global transition relations associated
with a concrete and an abstract program), and p(X, X 4) an abstraction relation. Then,

R p-simulates Ry iff R™'pC ,ORZI

Notice that “there exists p such that p-simulates” defines the standard simulation preorder
[Mil71]. For a given R and p we are interested in a abstraction relation R4 that is as close as
possible to the given R, i.e. that contains no more transitions than necessary. The least R4 does
not always exist, but we have:

Proposition 3.2 [GL93, BBGt 93] (S, is a reasonable abstraction)
For S = {R(X, X" }ier and p(X, X 4) total on Dom(X), the program S, as defined in Definition
2.2 one has that S p-simulates 5.

If furthermore po p=' o p = p holds (which means that p is a function from a partition on

Dom(X) to a partition on Dom(X 4) and is true in most practical cases), then S, is the smallest
p-abstraction of S modulo bisimulation in the sense of [Mil80]; if p is a function, R, is the least
p-abstraction.

Now we justify why we represent programs by transition relations and not by transition
functions which requires only a single set of program variables for its representation. Generally,
even if the concrete program can be given as a function, the abstract program cannot, in the
sense that one cannot compute for each basic function on concrete variables a corresponding
function on abstract variables.

A solution would be to ask the user to provide for each operator on the concrete domain
an operator on the abstract domain, which must be consistent. However, the verification of the
consistency may be impossible or at least very costly and the obtained abstract program may
be less precise than the above defined one. Nevertheless, this direction is certainly worth to be
studied further.

Theorem 3.3 (Preservation of ACTL) [BBLS92]
Let R(X,X') and R4(X 4, Xy) be transition relations and p(X, X 4) an abstraction relation total
on Dom(X), I:P — 2Dom(X) an interpretation function of atomic predicates on Dom(X) such
that R p-simulates Ry4.

ACTL is the subset of CTL [CES83] containing the formulas without negation and using only
universal quantification on paths. For any f € ACTL,

R4 |:p7'e[p—1]ol f implies R |:pre[p]op7'e[p—1]ol f

If furthermore, pre[plopre[p™'ol (p) = I(p) (p preserves I) for any predicate symbol p occurring
in f, we have even R =7 f.

This means: “if f holds on the abstract program, taking as interpretation function pre[p=!]oI,
associating with any atomic predicate p the image by p of its interpretation by I on the concrete
domain, then on the concrete program f holds taking as interpretation function pre[p]opre[p™!]o
I, obtained from I by translating it forth and back by p”. It yields for each predicate an equal
or larger interpretation than I. Thus, in order to obtain the initially required result R =1 f,
we need to make sure that each basic predicate in f translated forth and back by p remains
unchanged.

This condition is verified by our tool where atomic predicates are the (boolean) program
variables with the obvious interpretation function.

The last result we need concerns the compositionality of abstraction with respect to parallel
composition. The following theorem gives for all the parallel composition operators conditions
under which the composition of abstract programs computed by our tool is an abstraction of the
composed program (for a complete result see [GL93]).

Notation 3.4 In the following we consider a setl of variables X = X1UX>, two transition systems
Si = {Ri;(Xi, XD}Yien, 1 € {1,2} and X4 = X14 U Xo4 a set of abstract variables. We denote

also X, = X1 N Xy, the set of common variables, X;; = X; — X, the local variables of S; and
analogously X.4 = X14 N Xaoa, the set of common abstract variables and X;4 = X;4 — Xcoa the
local abstract variables of S;.

Theorem 3.5 [GLI3] Let p1(X1, X14) and p2(X2, X24) be abstraction relations such that p1 Apy
is total on Dom(X). We have,

(@)R1® 4Ry p1 A pa-simulates Ry, ®aR3,,,
Suppose that p;(Xi, X;4), © = {1,2} can be decomposed as pi((Xi, Xic),(Xiia, Xica)) =
pit(Xit, Xi1a) Npic(Xi, Xica) (values of abstract local variables depend only on values of con-

crete local variables, whereas the values of abstract common variables may depend on the values
of all concrete variables). Then,

(Il) Rill B2 p1 A pa-simulates Ry, || Rz,
([1)R1[A] B2 p1 A pa-simulates Ry, [A] Rz,

This gives for each parallel operator a necessary condition in order R, to be used for the
verification of properties of R; none of these conditions is very strong. It is even not necessary
that the two abstraction relations coincide exactly on the common domain, they have just to
coincide sufficiently in order p; A py to be total on D. Notice that in the case where nothing
about the transition relations R; is known these conditions are also necessary.

The theorem generalizes well-known results concerning compositionality of abstraction in
process algebras, and this in two ways. One is that in the here presented results simulation is
parameterized by an abstraction relations which gives a more precise compositionality result.
The other is that also processes with common variables are taken into account.

4 Syntax of the input language of the tool

A program, input of our tool, is an expression of the form

PROG ::=gcp | PROG ||| PROG | PROG * PROG | PROG [[label-list]] PROG
| PROGJabstract-exp] | PROG][label-list,label-list]

where “gcp” are filenames containing guarded command programs, ||| is the Asynchronous, *
the synchronous and |[]| the mixed parallel operators defined in Section 2.2, except that the
parameter “label-list” of |[]| is a list of labels instead of a list of pairs of labels meaning that
programs synchronize on all the “labels” (see below) in this list which therefore must occur
in both programs. PROG][label-list1,label-list2] defines a renaming operator. meaning that
labels of the list “label-list1” are substituted in the same order by labels in list “label-list2”.

PROG](abstract-exp] defines the abstraction operator.

Fach guarded command program represents a process, where all variables are global. We call
a variable local to some process if it is not used by any other process. Certainly, this is a quite
primitive “programming language”, but it is sufficient to show the possibilities of the tool. We
intend to add a mechanism similar to the abstract data type definition in Lotos with a possibility
of automatic implementation of any variable of any finite type as a set of boolean variables with
the necessary operations on it.

Fach guarded command program consists of a header and a list of guarded commands. The
header contains variables and commands numbers and eventually a variable ordering and an
invariant restricting the domain. Fach guarded command is of the form:

[’ label ']’ expression-X — expression-Xx

where

“label” is used to identify the command in parallel composition and renaming,
“expression-X” a guard, which is a predicate defined on this-state variables and
“expression-Xx” defines the transition relation by an expression on this-state and
next-state variables.

We distinguish two types of variables: The this-state variables are denoted by upper-case
first letter identifiers (“ident-X”) whereas the corresponding next-state variables (“ident-x") are
denoted by the same identifier with the corresponding lower-case first letter. Thus,

“expression-X” is an expression constructed with usual boolean operators: '=" (equiv-
alent), '=>’ (implies), '+’ (or), ".” (and), 'NOT”’, on this-state variables and

“expression-Xx” is an expression as above on both current and next-state variables
and using also the macro-notations 'ON’, "OFF’, "ANY”’ applied to lists of this-state
variables, meaning that the corresponding set of next-state variables is respectively
uniformly {rue, false or unspecified.

Notice that due to the fact that we use boolean expressions to define transition relations, any
variable not mentioned in “expression-Xx” may take any value in the next state and in order
to specify that some variable keeps its value, we have to say this explicitly. This is often quite
tedious; therefore, we preferred to allow as default that unmentioned variables are unchanged
and have added the operator ANY to define unspecified values. The operators “ON” and “OFF”
are useful to (re)set a set of variables.

“abstract-exp”, the parameter of the abstraction operator is either an expression
using the same operators as “expression-X” and the operator ’ABS’ on the this-state
variables of the concrete program and another set of this-state variables (defining the
abstract domain).

ABS is applied to a list of the concrete variables, meaning that these variables are not taken
into account at all in the abstract transition relation (application of existential quantification),
whereas for all variables X which do not occur at all in the expression, a new variable X, and
the constraint “X,= X" is added. We have introduced this convention which is the opposite of
the boolean expression way of defining abstraction as it is often very tedious to introduce a new
variable for all the variables conserving their meaning and specifying them as equivalent to the
old ones; we preferred to leave this task to the tool.

Syntax of the Logic

The formulas that can be evaluated by the tool on a given program are CTL formulas on atomic
predicates built on the program variables. In the present case, where only boolean variables

are used, the atomic predicates are just the variables themselves. In order to take into account
the labels in the formula without changing the logic, we have, similar as in XESAR [RRSVS87],
defined atomic predicates of the form

ident-X | ’sink’ | ’enable’(label)

where “sink” represents the set of deadlock states, “enable(label)” represents the set of states
in which one of the guarded commands labeled by “label” is enabled (this is the disjunction of
the corresponding guards). Notice that formulas can only use this-state variables as otherwise
we need also a “next-next” relation.

In XESAR, there was also an atomic predicate “after(label)” representing the states directly
after the execution of a command labelled by label. This predicate cannot be defined directly as
a predicate on program variables; if the user is interested in such predicates, he has to introduce
auxiliary program variables, which allows him to define as well “global” as “local” notions of

“after(label)”.

Using this definition of atomic predicates, the set of formulas is obtained by application of
the boolean operators used in the program syntax and the following CTL temporal operators :
the unary next state operators EX, AX, the unary operators AG (always), EF (possibly), AF
(inevitably), EG and the binary operators AU and EU (until on all respectively on some path).
Furthermore, we defined macros allowing to give the formulas also in “u-calculus” style [Koz83]

or in LTAC style [RRSV&7].

5 Overtaking Example

5.1 Description of the problem

The example we develop here is that of a simple overtaking protocol which has been described
in Lotos in [EFJ90] and verified using the verification tool Caesar [GS90]. We have “translated”
the Lotos specification into a parallel guarded command program, input of our tool and have
verified properties on it. Most of these formulas could be verified by using some abstractions.
As we have already mentioned, the translation from the Lotos program into a parallel guarded
command program could be done automatically.

The protocol coordinates overtaking of vehicles on a road. In a vehicle queue, each vehicle
can communicate with its immediate preceding and succeeding vehicle via two communication
mediums. A driver who intends to overtake (client vehicle) initiates a protocol entity in his
own vehicle which in turns initiates a negotiation with the vehicle in front (server vehicle). The
environment decides whether overtaking is possible. If yes, the server sends the client a positive
answer else the server waits for the next overtaking request. In case of a positive answer, actual
overtaking takes place. It consists in exchanging, via a perfect communication medium this
time, the information about their succeeding respectively preceding vehicles. Once a client has
initiated an overtaking negotiation, it will keep on trying until it succeeds in overtaking, i.e. an
overtaking cannot be aborted.

5.2 Program describing the system

The program modeling the scenario is a parallel composition of guarded command programs
describing a set of vehicles C'AR;, communication mediums M and OT for the negotiation and

10

overtake phases, an environment E and a set of timers T; associated with C'AR;.

Fach process C AR; is identified by its name (Id;), its position (Pos;), its M-address (M _o;)
and that of its preceding vehicle (M _p;) finally its OT-address (Ot_o;) and that of the preceding
vehicle (Ot_p;).

Communication through a medium is modeled using some global data variable X: in a first
step the emitter and the medium synchronize, the emitter sets the variable X and the medium
becomes busy. In a second step the medium synchronizes with the receiver, the receiver reads
X and the medium becomes free again. Notice that the medium M, used during negotiations,
may lose messages whereas the medium OT used for exchanging data during actual overtaking
phase is assumed to be perfect.

The environment F is modeled by a simple process switching spontaneously between states
ok in which overtaking is allowed and not_ok in which it is not.

The timers T; have two states active and inactive. They can be started in inactive; in active
they can be stopped or timeout may occur. They are used by the client part of each vehicle
which has to repeat its request if the authorization to overtake from the server has not been
received within a certain delay (here we model just a non deterministic choice between “received
in time” and “timeout occurs”). So, the global system is described by the expression

((CARy [A7] Ty) | (CAR: [A7] T2) | (CARs [A7] Ta) | (C AR [A7) T)) [AL (M | OT | E)

where Ap = {T_start, T _stop, Timeout} and
A={CM,M_C,COT,0OT_C,EC;, i€ {1,2,3,4}}

C_M and M _C are used for the synchronizations between the vehicles and M, C_OT and
OT_C for the synchronizations between the vehicles and OT and finally E_C; for the synchro-
nizations between the vehicles and F.

Shared variables

As we have already mentioned, variables are called global if they are shared by at least two
processes and local if they appear in only one process. Here we give the list of global variables,
their meaning and the processes they appear in (these variable declarations are not necessary
in the program). Notice that all the variables declared as m_address, ot_address, position or
identity are implemented by a pair of boolean variables (4 different values), but represented here
for simplicity by a single variable.

e Variables shared between all vehicles and medium M:
M _send, M _dest : m_address (the sender and receiver of the communication)
M _ot_req, M _ot_ok : transmitted bits

e Variables shared between all vehicles and medium OT:
OT _send, OT _dest : ot_address (the sender and receiver of the communication)
OT_id : identity (transmitted message)

e Variables shared between vehicles CAR; and FE:
E_ok : bit (the environment is in a ok mode)
E_ind; : bit (the vehicle asks allowance for its following vehicle to overtake)

In the following we give only the guarded command program C'AR; representing the behaviour
of a vehicle as other programs are quite simple.

11

5.3 Guarded command program for a vehicle C AR;

Fach vehicle C AR; has the knowledge of both addresses of its preceding vehicle (M _p;, Ot_p;).
It has also auxiliary variables to store informations temporarily.

The natural description would consist in defining each process C'AR; such that it describes
a vehicle that keeps its identity and changes its position while overtaking. We have chosen a
different but equivalent solution where C'AR; represents the car at position ¢, such that it has a
fixed position and changes its identity by overtaking. This is very useful as it allows to use much
stronger abstractions in order to verify the service properties (which refer to positions but not

to identities).

Local variables of C AR;

o Identification variables:

Id; : identity, M _p;, M _o; : m_address of preceding, own vehicle,
Pos; : position, Ot_p;, Ot_o; : ot_address of preceding and own vehicle,

o Auxiliary variables to store data while overtaking and during negotiation:
Awzx_id; : position, Auz _ot; : ot_address, Auz_m; : m_address.

¢ Control variables (boolean) :
Init; : initial state of CAR;
C1;, C2;,C3;, C4;, C5;, C6; : bit (control variables of client part)
S1;, 52, 53;, S4;, S5; : bit (control variables of server part)

We define also an invariant that expresses that in any state at most one of the control variables

is true.

Program of C'AR;

————————————————————————————— INIT PART —-—————————————mmmmmmmmmmmmmmmmm o

% becomes server or restarts server
[M_¢] (Init_i + S1_i + S2_i + S3_i + S4_i) . (M_dest = M_o_i) . M_ot_req ->
OFF(M_ot_req,Init_i) . ON(S1_i) . (aux_m_i = M_snd) ;

[] Init_i -> ON(Ci_i) . OFF(Init_i); % spontaneously becomes client

————————————————————————————— CLIENT PART ---——————————————————————————————

% ignore ot_req of the following vehicle and idle

[M_C] (C1_i + C2_1 + C3_i + C4_1i + C5_1i + C6_1i + S5_i) . (M_dest = M_o_i)
M_ot_req -> ANY(M_dest,M_ot_req);

% ignore old ot_ok
[M_C] C1_i . M_ot_ok . (M_dest = M_o_i) -> OFF(M_ot_ok) ;

% send ot_req (ask for allowance to overtake via the Medium)
[C_M] C1_i -=> (m_snd = M_o_i). (m_dest = M_p_i) . ON(M_ot_req,C2_i) . OFF(C1i_i);

% start timer
[T_start] C2_i -> ON(C3_i) . OFF(C2_1i);

% timeout: waited too long for ot_ok
[Timout] ¢€3_i -> ON(C1_i) . OFF(C3_1i);

12

% receive ot_ok (allowance to overtake via the Medium)
[M_C] C€3_i . (M_dest = M_o_i) . M_ot_ok -> ON(C4_i) . OFF(M_ot_ok,C3_1i);

% The timer is stopped
[T_stop] C4_i -> O0ON(C5_i) . OFF(C4_i);

% Overtake: sends its parameters through OT_Medium to preceding vehicle
[C_0T] C5_1i -> (ot_snd = OT_o_i) . (ot_dest = OT_p_i) . (ot_id = Id_i)
ON(C6_1i) . OFF(C5_1);

% Overtake: receives parameters through OT_Medium from preceding vehicle
[0T_c] c6_i . (OT_dest = 0T_o_i) -> ON(Init_i) . OFF(C6_1i)
(id_i = 0T_id) . ANY(OT_dest,0T_id);

——————————————————————————————— SERVER PART --—---—-—————————— - ————
% sets overtaking indication in the environment and waits for authorisation.
[C_E] S1_i -> ON(E_ind_i,S2_i) . OFF(S1_i);

% Answer: if ok, goes on else returns in the initial state.
[E_C_i] S2_i =-> (S3_i = E_ok) .(Init_i = “E_ok). OFF(S2_1i);

% sends confirmation to the client
[c_M] S3_i -> (m_dest = Aux_m_i) . (m_snd = M_o_i) . ON(M_ot_ok,S4_i) .
OFF(S3_i) . ANY(Aux_m_i);

% receives data from the client and stores them in its auxiliary variables.
[0T_C] S4_i . (OT_dest = 0OT_o_i) -> ON(S5_i) . OFF(S4_i) .
ANY(OT_id,0T_dest,0T_snd) . (aux_ot_i = OT_snd) . (aux_id_i = 0T_id);

% sends its parameter to the client and sets its variables
[C_OT] S5_i -> ON(Init_i) . OFF(S5_i) . (ot_snd = OT_o_i) . (ot_dest = Aux_ot_i).
(ot_id = Id_i) . (id_i = Aux_id_i) . ANY(Aux_ot_i,Aux_id_i);

5.4 Properties

We verify the following properties on the overtaking protocol.

1. Deadlock freedom can be expressed by the following formula:
init => AG(NOT deadlock)

where deadlock is different from sink defined as the atomic predicate A; NOT ¢; where
the ¢; are all the guards of the global guarded command program obtained after executing
all the parallel compositions and abstractions. deadlock must also contain all the states
which can only do infinitely only some “useless” transitions (such as in the example the
environment goes spontaneously from the state ok into notok, from notok into ok,...), that
means that in a state not satisfying deadlock after a finite number of steps some “useful”
transition must be possible. So NOT deadlock can be defined as \/; EF(¢;) where the ¢;
are the enabling conditions of the set of “useful” transitions.

initis a predicate specifying allowed initial states which has to precise the relative positions
of all the cars and the corresponding M and OT-addresses in the different cars. It needs
not to specify that all cars are in control state I'nit; but the set of specified states must be
reachable. As deadlock freedom is no ACTL formula, no abstraction can be applied before
its verification.

2. Safety properties: “If the vehicle in position ¢ is engaged in overtaking, neither its
preceding nor its following vehicle can engage in overtake”; this can be expressed by the

13

following set of formulas:
Sav_p; :init => AG(a-ot; => NOT a_ot;_4)

Sav_f; init => AG(aot; => NOT a_ot;y1)

where a_ot; = C4; + C5; + C6; (vehicle in position 7 is in actual overtaking phase).

5.5 Results

The first abstraction we propose yields an equivalent transition relation. We just reencode the
control variables of each vehicle in a more efficient way. This can be done in two manners.
One is to specify an invariant restricting the domain of the control variables in such a manner
that only valuations in which exactly one of the control variables is true, are considered; the
second solution consists in giving an explicit reencoding by means of an abstraction relation.
It consists in replacing the 12 control variables of CAR; (encoding 12 states) by four variables.
This abstraction relation is total on the “interesting” domain specified by the above mentioned
invariant; it is a function from the abstract to concrete domain but not in the other direction.
This has been done in order to get smaller expressions and corresponding BDDs. Therefore,
the obtained abstract transition relation is bisimilar to the original one and can be used for the
verification of any CTL formula. As this abstraction relation consists of independent relations
concerning each C'AR;, the abstraction operator can be applied before composition. We obtain
a significant reduction of memory using either the invariant or the above defined equivalent
abstraction on each process C'AR;. The gain of defining an abstraction over defining an invariant
is only little more than 15% in terms of numbers of nodes but nearly 40% of execution time (this
gain must be interpreted carefully as the overall execution time is in both cases less than 1 minute
and it is difficult to evaluate the fixed time requirement for loading and writing the files, etc).

As already mentioned, for the verification of deadlock freedom, abstraction is not possible
as it is not a formula of ACTL; we tried to verify it on the concrete program constructed using
the invariant as well as on the above defined equivalent abstraction. It was even not possible
to evaluate the predicate sink’ (which is differs from sink by the exclusion of some “useless”
actions). We also tried to use a stronger invariant, where the M and OT-addresses of each
vehicle are identical (this is not an abstraction, but a restriction which preserves the predicate
deadlock) but it turns out that in this particular case this stronger invariant gives not rise to a
smaller representation of the program and it does also not allow to evaluate sink’. From this we
conclude that in some cases it may be very useful to have at least some upper approximation of
the set of reachable states; this may be obtained by doing a forward analysis on some carefully
chosen abstraction (not yet implemented). An upper approximation of the set of reachable states
is certainly also useful in order to reduce the time and memory requirement of evaluations of
fixed point formulas.

A stronger abstraction has been used in order to verify the safety properties. E.g. for the
verification of Sav_p, we have defined an abstraction, completely abstracting away all the control
variables of CAR3 and C'AR,4, we introduced a single state “server” in C'ARs instead of the 5
server states, and in C' ARy we grouped together client states in actual overtaking and client
states not in actual overtaking; we also abstracted away the variables of the timers and the
environment, which should not change the safety properties. Here we obtain for the composed
system some 60% of gain in terms of number of nodes with respect to the smallest unabstracted

14

system. Here we have a more significant gain of execution time for the compositional instead of
the global abstraction (40 seconds instead of 2.50 minutes).

On this abstraction it took less than 1 minute to evaluate the property, whereas it was

not possible to evaluate it on the unabstracted program. In fact, the gain of memory is not

very important in this case because we have not yet introduced renaming: many of the guarded

commands represent identical transition relations, but have different labels and can therefore not

be grouped together into a single command. In this example this will certainly allow some gain

of memory, and particularly an important gain of execution time of the evaluation of formulas
as actually the same transformations are computed many times.

References

[BB88] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO specification language LOTOS.
ISDN, 14(1):25-29, January 1988.

[BBG193] A. Bouajjani, S. Bensalem, S. Graf, C. Loiseaux, and J. Sifakis. Property preserving abstrac-
tions for the verification of concurrent systems. Research Report spectre c-41, Laboratoire de
Génie Informatique , Grenoble, February 1993.

[BBLS92] A. Bouajjani, S. Bensalem, C. Loiseaux, and J. Sifakis. Property preserving simulations. In
Workshop on Computer-Aided Verification (CAV), Montréal. LNCS 630, jun 1992.

[BD92] Amar Bouali and Robert DeSimone. Symbolic bisimulation minimisation. In 4th Workshop
on Computer-Aided Verification (CAV92), Moniréal. LNCS 630, Springer Verlag, June 1992.

[BFH90] A. Bouajjani, J.C. Fernandez, and N. Halbwachs. Minimal model generation. In Workshop on
Computer-aided Verification, Discrete Mathematics and Theoritical Computer Science. LNCS
531, Springer Verlag, jun 1990. old ref : bouajjani90b.

[Bry86] R. E. Bryant. Graph based algorithms for boolean function manipulation. IEEE Trans. on
Computation, 35 (8), 1986.

[CCTT] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In 4th POPL, January 1977.

[CES83] E.M. Clarke, E.A. Emerson, and E. Sistla. Automatic verification of finite state concurrent
systems using temporal logic specification: a practical approach. In 10th ACM Symposium
on Principles of Programming Languages (POPL83), 1983. Complete version published in
ACM TOPLAS, 8(2):244-263, April 1986.

[CGL92] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. In Symposium
on Principles of Programming Languages (POPL 92). ACM, January 1992.

[CM88] K. M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley, Massachusetts, 1988.

[EFJ90] P. Ernberg, L. Fredlund, and B. Jonsson. Specification and validation of a simple overtaking
protocol using LOTOS. Technical Report T90006, SICS, Kista, Sweden, 1990.

[EFT91] R. Enders, T. Filkorn, and D. Taubner. Generating bdds for symbolic model checking in ccs.
In Workshop on Computer-Aided Verification 91, Aalborg (Denmark). LNCS 575, Springer
Verlag, June 1991.

[Fer90] J.C. Fernandez. An implementation of an efficient algorithm for bisimulation equivalence.
Science of Computer Programming, 13(2-3), may 1990.

[GL93] S. Graf and C. Loiseaux. Program verification using compositional abstraction. In TAPSOFT

93, joint conference CAAP/FASE. LNCS 668, Springer Verlag, April 1993.

15

[GS90]

[Hoa84]
[KKS6]
[Koz83]
[Kur89]
[Lam91]
[Mil71]

[Mil80]
[Mil83]

[Pnu86]

[Rat92]
[RRSVS7]

[Sif83]

H. Garavel and J. Sifakis. Compilation and verification of Lotos specifications. In L. Logrippo,
R. L. Probert, and H. Ural, editors, Proceedings of the 10th International Symposium on
Protocol Specification, Testing and Verification (Ottawa), Amsterdam, jun 1990. IFTP, North
Holland.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International, 1984.

J. Katzelson and B. Kurshan. S/R: A Language for Specifying Protocols and other Coordi-
nating Processes. In 5th Ann. Int’l Phoeniz Conf. Comput. Commun., pages 286-292. IEEE,
1986.

D. Kozen. Results on the propositional p-calculus. In Theoretical Computer Science. North-

Holland, 1983.

R.P. Kurshan. Analysis of discrete event coordination. In REX Workshop on Stepwise Refine-
ment of Distributed Systems, Mook. LNCS 430, Springer Verlag, 1989.

L. Lamport. The temporal logic of actions. Technical Report 79, DEC, Systems Research
Center, 1991.

R. Milner. An algebraic definition of simulation between programs. In Proc. Second Int. Joint
Conf. on Artificial Intelligence, pages 481-489. BCS, 1971.

R. Milner. A calculus of communication systems. In LNCS 92. Springer Verlag, 1980.

R. Milner. A calculus for Synchrony and Asynchrony. Journal of Theoretical Computer Science,
25, 1983.

A. Pnueli. Application of temporal logic to specification and verification of reactive systems:
a survey of current trends. In Current trends in Concurrency, Nordwigkerhout. LNCS 224,

Springer Verlag, 1986.

Ch. Ratel. Définition et réalisation d’un outil de vérification formelle de programmes LUSTRE :
Le systeme lesar. Thesis, Université Joseph Fourier, Grenoble, jul 1992.

J.L. Richier, C. Rodriguez, J. Sifakis, and J. Voiron. Verification in XESAR of the sliding
window protocol. In Int. Symp. Protocol Specification Testing and Validation, may 1987.

J. Sifakis. Property preserving homomorphisms of transition systems. In E. Clarke and
D. Kozen, editors, 4th Workshop on Logics of Programs, Pittsburgh. LNCS 164, Springer
Verlag, jun 1983.

16

