Program verification using abstraction compositionally*

Susanne Graf and Claire Loiseaux
IMAG, BP 53X, F-38041 Grenoble
e-mail : {graf,loiseaux}@imag.fr

April 28, 1993

to appear in FASE (TAPSOFT) 93

Abstract

We study property preserving transformations for reactive systems. A key idea is the use of β-simulations which are simulations parametrized by a relation β, relating the domains of two systems. We particularly address the problem of property preserving abstractions of composed programs. For a very general notion of parallel composition, we give the conditions under which simulation is a precongruence for parallel composition and we study which kind of global properties are preserved by these abstractions.

1 Introduction

The investigation of property preserving abstractions of reactive systems has been the object of intensive research during the last years. However, the existing theoretical results are very fragmented. They strongly depend on the choice of the specification formalism and the underlying semantics.

Some results are given in the framework of linear time semantics as e.g., in [AL88,LT88b,Kur89] where the underlying semantics of as well programs as properties are languages traces. The notions of abstractions proposed are based on the use of structure homomorphisms.

In the framework of process algebras, the problem of combination of abstraction and composition is the problem of defining property preserving equivalence relations or preorders which are congruences, respectively precongruences for parallel composition and abstraction. This problem has been studied, for equivalences e.g., in [HM85,BK85,GS86,GS89,GS90] and for preorders in [LT88a,Wal88,CS90,SG90,GI91].

The results presented here are based on those given in [BBLS92], where a general framework for property preserving abstractions is given. Program models are transition relations and abstractions are given by β-simulations, which are parameterized by a relation β between the domains of both systems. Thus, we do not restrict ourselves to abstractions defined by functions from the concrete to the abstract domain as cf. in [Kur89,CGL91].

In [BBLS92] the problem of compositional abstractions is not taken up at all. Here, we extend the results on property preservation to composed abstract programs, obtained by alternating steps of abstraction and composition. For a general notion of parallel composition (expressed on program models), we give conditions under which composition of abstract programs preserves properties of fragments of

*This work was partially supported by ESPRIT Basic Research Actions “SPEC” and “REACT”
branching-time μ-calculus.

Our program models are transition relations on some domain D and are represented symbolically. The validity of the given results does not depend on the symbolic representation, but their usability (computation of abstract programs) does. Program models may be composed by means of three composition operators, namely a synchronous, an asynchronous and a mixed one. With these three operators we can express most of the existing composition operators, for instance those of CSP [Hoa84], Lotos [ISO89], Unity [CM88], of S/R-models [KK86] and of I/O automata [LT88b].

The results presented in the paper are the following: for programs R_i and R'_i, abstraction relations ϱ_i from the domains of R_i to the domains of R'_i, we give conditions under which

1. $R_i \varrho_i$-simulates R'_i implies $R_i \parallel R_2 \varrho (\varrho_1 \cap \varrho_2)$-simulates $R'_i \parallel R'_2$, where \parallel is one of the three parallel operators.

This result allows us, using the results of [BBL92], to deduce that for any property P of the fragment $\Box L_\mu$ of the μ-calculus (defined in Section 5) such that all atomic predicates of P are preserved by ϱ (see Definition 5.1), then

$R'_1 \parallel R_2$ satisfies P implies $R_1 \parallel R_2$ satisfies P.

2. If $(R_i)_{\varrho_i}$ are reasonable ϱ_i-abstractions of R_i then, $(R_1)_{\varrho_1} \parallel (R_2)_{\varrho_2}$ is a reasonable $(\varrho_1 \cap \varrho_2)$-abstraction of $R_1 \parallel R_2$,

where R_ϱ stands for the abstract program computed from R by means of the abstraction relation ϱ.

The conditions depend on the considered parallel operator \parallel; but for all parallel operators studied here, it is not necessary that the processes are defined on independent domains. However, in order to have (2) for the asynchronous and also for the mixed parallel operator, the abstraction $\varrho_1 \cap \varrho_2$ must be decomposable so as the relation on the common domain is independent of the relations on the domains proper to each of the processes.

The paper is organized as follows. In the following section, we define the parallel operators. In Section 3, we present the results concerning composition and abstraction, which are illustrated by a small example in Section 4. In Section 5, we study which kind of properties are preserved by the abstractions defined in Section 3 and we illustrate these results in Section 6.

2 Parallel composition and abstraction operators

First, we introduce some definitions and notations concerning intersections and unions of sets on different underlying domains.

Domains are as usual sets of valuations of program variables. We suppose a universal set of global program variables \mathcal{V}. Any domain is the set of valuations of some subset of program variables $V \subseteq \mathcal{V}$, denoted D_V. Thus, e.g., for $V = \{x, y\}$, $D_V = D_x \times D_y$.

Notation 2.1 (Independency of domains, projection functions)

- For any V, W the domains D_V and D_W are called independent iff $V \cap W = \emptyset$, that means they are defined on separate variable sets.
- For any V, W, we denote by $\mathcal{R}(D_V, D_W)$, the set of binary relations from D_V to D_W.
- For V, W such that $V \subseteq W$, we denote by π_V the projection function in $[D_W \rightarrow D_V]$.
Now we can define intersections and unions of sets on different domains \(D_V \) and \(D_W \) as operators on \(D_{V \cup W} \).

Definition 2.2 (Intersection and union on different domains)
Let \(D_V, D_W, V^1, W^1 \), \(i = 1, 2 \) be domains, \(X \subseteq D_V, Y \subseteq D_W \). Then we define,

- \(X \cap Y = \{ z \in D_{V \cup W} | \pi_V(z) \in X \text{ and } \pi_W(z) \in Y \} \)
- \(X \cup Y = \{ z \in D_{V \cup W} | \pi_V(z) \in X \text{ or } \pi_W(z) \in Y \} \)

Comment: The notion of \(\cap \) and \(\cup \) defined here are compatible with the usual notions, in the sense that for \(X, Y \subseteq D_V \), \(X \cap Y \) (respectively \(X \cup Y \)) results in the same subset of \(D_V \) using the here defined or the usual definition of \(\cap \) (respectively \(\cup \)) and that they obey the same laws as the usual operators.

In order to simplify the notations, given domains \(D = D_V \) and \(D' = D_W \), we use the somewhat abusive notations \(D \cup D' \) instead of \(D_{V \cup W} \) and also \(D - D' \) instead of \(D_{V-W} \) if it is clear from the context.

Consider binary relations \(R_1 \in \mathcal{R}(D_V, D_V) \). Then, we define relations \(R_1 \cap R_2 \in \mathcal{R}(D_{V \cup V^1}, D_{W \cup W^1}) \) by

- \(R_1 \cap R_2 = \{(z, z') | z \in D_{V \cup V^1} \text{ and } z' \in D_{W \cup W^1} \text{ and } (\pi_{V_1}(z), \pi_{W_1}(z')) \in R_1 \text{ and } (\pi_{V_2}(z'), \pi_{W_2}(z')) \in R_2 \} \)

We suppose that programs are represented by binary relations (transition relations) on some domain. This is a very general form of programs. We do not consider initial states since they are not necessary to obtain the results and it makes the representation of programs much simpler. In terms of TLA [Lam91], we consider programs consisting only of the invariant part.

Definition 2.3 (Parallel compositions)
Let be domains \(D_1, D_2 \) and programs given by transition relations \(R_1 \in \mathcal{R}(D_1, D_1) \) and \(R_2 \in \mathcal{R}(D_2, D_2) \).

Then, we define the transition relations of the composed processes in \(\mathcal{R}(D_1 \cup D_2, D_1 \cup D_2) \) by

- **synchronous composition** :
 \(R_1 \circ R_2 = R_1 \cap R_2 \)

- **asynchronous composition** :
 \(R_1 \parallel R_2 = R_1 \cap Id_{D_2-D_1} \cup R_2 \cap Id_{D_1-D_2} \)
 where for any domain \(D \), \(Id_D \) is the identity relation in \(\mathcal{R}(D,D) \).

- **mixed composition** :
 Consider transition relations \(R_i \) of the form \(R_1 = \bigcup_{i \in A_1} R_{i;1} \) and \(R_2 = \bigcup_{j \in J} R_{2;j} \). Let be \(A \subseteq I \times J \), indicating which commands have to be executed synchronously, \(A_1 = \{ i | (i, j) \in A \} \) and \(A_2 = \{ j | (i, j) \in A \} \). Then,
 \(R_1 [A] R_2 = \bigcup_{i, j \in A} (R_{i;1} \cap R_{2;j}) \cup \bigcup_{i \in A_1} (R_{i;1} \cap Id_{D_2-D_1}) \cup \bigcup_{j \in A_2} (R_{2;j} \cap Id_{D_1-D_2}) \)

Comments :
- In synchronous composition, in each step both programs execute exactly one action possible in this state, such that the changes on the common variables are consistent. This operator corresponds exactly to intersection applied on programs described by TLA formulas; it is also very similar to program composition of S/R models [KK86].
- If the domains of the component processes are independent, this operator is exactly the one introduced in [GL91]: since they use also the same preorder, their results are comparable to ours in the sense that they consider a logic, subset of ours, and the particular case of independent domains.
• In the asynchronous composition, in each step one of the programs executes one of the currently enabled transitions and the other idles. This operator results in the "interleaving" of the component processes if they are defined on independent domains; if not, the execution of a transition of one of the processes may change the enabling conditions of the other one. This operator is exactly the union operator of Unity [CM88].

• Finally, in the mixed composition operator, some of the actions must be executed synchronously, whereas the others are executed asynchronously. This operator is not exactly the one in CSP [Hoare84] or LOTOS [ISO89], where all processes have distinct variable sets and communicate by exchanging values; however the here defined operator allows to simulate these operators.

The first two operators need imperatively models with shared memory between processes in order to allow communication, whereas the third one allows also communication based only on action names without shared memory. Nevertheless, in practice, processes composed by the third operator share often at least some variables which are written by one of them and read by the other (this allows to simulate the Lotos operator []).

The mixed composition operator is the most general one as it allows to express the other ones as follows: if is equal to [0] and is equal to [I x J]. We prefer however to keep these operators because they are interesting to be considered as subcases.

Lemma 2.4 Let \(R_1 = \bigcup_{\alpha \in I} R_{1\alpha} \) and \(R_2 = \bigcup_{\beta \in J} R_{2\beta} \) be transition relations and \(A \subseteq I \times J \) as in Definition 2.3. Then,

- \(R_1 \parallel R_2 = \bigcup_{(i,j) \in I \times J} (R_{1i} \cap \text{Id}_{D \rightarrow D'} \cap R_{2j}) \)
- \(R_1 \ast R_2 = \bigcup_{(i,j) \in I \times J} (R_{1i} \land R_{2j}) \)
- \(R_1 [A] R_2 = (\bigcup_{(i,j) \in A} (R_{1i} \parallel R_{2j})) \bigcup (\bigcup_{i \in A_1} R_{1i}) \bigcup (\bigcup_{j \in A_2} R_{2j}) \)

where we use the obvious n-ary extension of \(\parallel \).

- \(R_1 \parallel R_2 = R_1 [\emptyset] R_2 \)
- \(R_1 \ast R_2 = R_1 [I \times J] R_2 \)

The definition of \(g \)-simulation is the same as in [BACL92] and defines our notion of preorder on programs. First, we need to introduce the "predicate transformers" \(\text{pre} \) and \(\text{pree} \).

Definition 2.5 Given a relation \(g \in \mathcal{R}(D,D') \), we define the functions \(\text{pre}[g], \text{pree}[g] \in [2^{D'}] \rightarrow [2^{D}] \) by,

- \(\forall X \subseteq D'. \\text{pre}[g](X) = \{ x \in D \mid \exists x' \in X . g(x,x') \} \) defines the inverse image of \(X \) by \(g \).
- \(\text{pree}[g] \) is the dual of \(\text{pre}[g] \), i.e., \(\forall X \subseteq D'. \\text{pree}[g](X) = \text{pre}[g](X) = \{ x \in D \mid \forall x' \in D' . g(x,x') \Rightarrow x' \in X \} \)

Definition 2.6 (\(g \)-simulation)
Let \(R \in \mathcal{R}(D,D) \) and \(R_a \in \mathcal{R}(D_a,D_a) \) be transition relations, and let \(g \) be an abstraction relation in \(\mathcal{R}(D,D_a) \). Then \(R \) \(g \)-simulates \(R_a \) iff \(\text{pre}[g^{-1}] \circ \text{pre}[R] \circ \text{pree}[g] \subseteq \text{pre}[R_a] \).

Notice that "there exists \(g \) such that \(g \)-simulates" defines a preorder on programs which is the same as the one defined in [GL91], and which is also the standard simulation preorder [Mil71]. If there exists \(g \) such that \(R \) \(g \)-simulates \(R_a \), we say also that \(R \) simulates \(R_a \) or \(R_a \) is an abstraction of \(R \).

Definition 2.7 (Abstraction operator)
Let be given a program by a transition relation \(R = \bigcup_i R_i \in \mathcal{R}(D,D) \). For any abstraction relation \(g \in \mathcal{R}(D,D_a) \) we define an operator \(g \) yielding an abstract program \(R_g \in \mathcal{R}(D_a,D_a) \), defined by the transition relation,

\[
R_g = g^{-1} \circ R \circ g = \bigcup_i g^{-1} \circ R_i \circ g
\]
The following property justifies our motivation for computing abstract programs R_{ϕ} from R and ϕ: For a given abstraction relation ϕ we want to compute an abstract program R_{ϕ} with a reasonable cost and reasonably close to R, such that a maximum of properties that are satisfied on R are also satisfied on R_{ϕ}. In general the least abstract program R_a such that $R \phi$-simulates R_{ϕ} does not exist (since $\text{pre}[\phi^{-1}] \circ \text{pre}[R] \circ \text{pre}[\phi]$ does not necessarily distribute over \cup and it is therefore not of the form $\text{pre}[R_{\phi}]$ for some relation R_{ϕ}).

However, R_{ϕ} is still reasonable in the sense that for any transition relation R_a, such that $R \phi$-simulates R_a and $R_a \subseteq R_{\phi}$ and for any property f of the μ-calculus such that R satisfies f, we have R_a satisfies f iff R_{ϕ} satisfies f.

Eventually metter resultat FM93ZZ This is expressed by the following proposition:

Proposition 2.8 Let R be a transition relation on D, $\phi \in \mathcal{R}(D, D_a)$ an abstraction relation total on D (i.e. $\text{pre}[\phi] \subseteq \text{pre}[\phi]$). Then

- $R \phi$-simulates the abstract transition relation R_{ϕ} which defines a reasonable abstraction of R with respect to ϕ.
- If even $\text{pre}[\phi] = \text{pre}[\phi]$, i.e., ϕ is a total function from D into D_a, R_{ϕ} defines the least abstraction of R with respect to ϕ.

3 Abstraction of composed programs

When dealing with complex programs, it is interesting to construct abstractions as far as possible before composition. This allows to compute abstractions on smaller transition relations (and domains), and to compute the composition on the so obtained smaller abstract programs. Here we show in which cases one obtains an abstraction of the original composed program by proceeding this way, and furthermore, in which cases this can be done without losing too much with respect to the abstraction obtained proceeding the other way round.

We give conditions under which simulation is monotonic with respect to the different composition operators \upharpoonright, i.e.,

\[
\text{\begin{array}{c}
\text{(} R_1 \text{ simulates } R'_1 \text{) and } (R_2 \text{ simulates } R'_2 \text{)}\\
\Rightarrow \text{ } R_1 \upharpoonright R_2 \text{ simulates } R'_1 \upharpoonright R'_2
\end{array}}
\]

holds. We show also which kind of atomic predicates of the composed program are preserved.

Let $R_1 \in \mathcal{R}(D_1, D_1)$ and $R_2 \in \mathcal{R}(D_2, D_2)$ be transition relations and $\phi_1 \in \mathcal{R}(D_1, D_{1a})$, $\phi_2 \in \mathcal{R}(D_2, D_{2a})$ abstraction relations. For any composition operator \upharpoonright of Definition 2.3 we have to find an abstraction relation $\phi \in \mathcal{R}(D_1 \cup D_2, D_{1a} \cup D_{2a})$ allowing to compute $(R_1 \upharpoonright \phi_1) \upharpoonright (R_2 \upharpoonright \phi_2)$ instead of $(R_1 \upharpoonright \phi_2) \phi_2$.

We show that for all operators of Definition 2.3, $R_1 \phi_1$-simulates R'_1 implies $R_1 \upharpoonright R_2 (\phi_1 \cap \phi_2)$-simulates $R'_1 \upharpoonright R'_2$ under some conditions on the abstraction relations ϕ_i.

Furthermore, we give for the particular case that $R'_1 = R_{\phi_1}$, conditions under which the transition relations of these two abstractions of $R_1 \upharpoonright R_2$ are related, i.e., we give conditions for

\[
R_{v_1} \upharpoonright R_{v_2} \subseteq (R_1 \upharpoonright R_2)_{v_1 \cap v_2} \quad \text{and} \quad (R_1 \upharpoonright R_2)_{v_1 \cap v_2} \subseteq R_{v_1} \upharpoonright R_{v_2}.
\]

Throughout the section we consider transition relations defined on domains D_1 and D_2. In order to simplify the notations, we suppose without loss of generality, that the domain $D_1 \cup D_2$ is of the form $D = D_{1i} \times D_i \times D_{2i}$, where D_{1i} are the domains defined on local variables of S_i, whereas D_{i} is the domain defined on their common variables, i.e. we have, $D_1 = D_{1i} \times D_i$ and $D_2 = D_i \times D_{2i}$.

We consider also abstract domains D_{1a} and D_{2a}, and we suppose that the abstract domain

5
\(D_{1A} \cup D_{2A} \) is analogously of the form \(D_A = D_{1A} \times D_{a} \times D_{2A} \). Any of the subdomains of \(D \), respectively \(D_A \) may be empty (but we suppose that none of \(D_1, D_2, D_{1A}, D_{2A} \) is empty, as we have not defined transition systems on the empty domain).

Proposition 3.1 Let be given transition relations \(R_i \in \mathcal{R}(D_1, D_i) \), \(R'_i \in \mathcal{R}(D_{1A}, D_i) \) and abstraction relations \(g_i \in \mathcal{R}(D_i, D_{1A}) \) total on \(D_i \), such that \(g_1 \cap g_2 \) is total on \(D_1 \cup D_2 \). Then,

1. If \(g_i \) can be considered as functions in \([D_i \times D_{1A}] \rightarrow D_{a} \) then, \(R_i \) \(g_i \)-simulates \(R'_i \), \(i = 1, 2 \) implies \(R_i \circ R_2 \) (\(g_i \cap g_2 \))-simulates \(R'_i \circ R_2 \).
2. \((R_1 \circ R_2)_{g_1 \cap g_2} \subseteq (R_1 \circ R_2)_{g_1 \cap g_2} \)
3. If \(g_i \) can be considered as functions in \([D_i \times D_{1i}] \rightarrow D_i \) then, \(R_i \circ R_2 \circ \subseteq (R_i \circ R_2)_{g_1 \cap g_2} \)

Notice that from (2) one deduces that \((R_1 \circ R_2) \) \(g_i \)-simulates \(R_i \circ R_2 \), and it is in general much easier to compute \(R_i \circ R_2 \) than to compute \((R_1 \circ R_2)_{g_1 \cap g_2} \).

Proof:

In order to simplify the notations, we denote elements of \(D_B \) by \(d_i, d'_i \), elements of \(D_c \) by \(d_i, d'_i \), and analogously elements of \(D_{1B} \) by \(d_i, d'_i, d''_i \), and elements of \(D_c \) by \(d_i, d'_i, d''_i \). For elements of these forms we will not mention explicitly their domain.

1. In order to show (1) we use the fact that \(R \) \(g_i \)-simulates \(R' \) if \(R^{-1} \circ g_i \subseteq g_i \circ R^{-1} \). We show that,

\[
(*) \quad (R_i^{-1} \circ g_i \subseteq g_i \circ R_i^{-1}), \quad i = 1, 2
\]

\[
(**) \quad (R_1 \cap R_2)^{-1} \cap (g_1 \cap g_2) \subseteq (g_1 \cap g_2) \circ (R_1 \cap R_2)^{-1}.
\]

\((*) \) can be expressed as:

\[
\forall (d'_i, d''_i) \exists (d_i, d, g_i((d_i, d), (d'_i, d'_i), (d''_i, d''_i))) \text{ and } R_i((d_i, d), (d'_i, d')) \text{ implies } \exists (d'_i, d''_i) \exists (d_i, d, g_i((d_i, d), (d'_i, d'_i), (d''_i, d''_i))) \text{ and } R_i((d_i, d), (d'_i, d'))
\]

\((**) \) can be expressed as:

\[
\forall (d'_i, d''_i) \forall (d_i, d, g_i((d_i, d), (d'_i, d'_i), (d''_i, d''_i))) \text{ and } R_i((d_i, d), (d'_i, d')) \text{ implies } \exists (d'_i, d''_i) \exists (d_i, d, g_i((d_i, d), (d'_i, d'_i), (d''_i, d''_i))) \text{ and } R_i((d_i, d), (d'_i, d'))
\]

It is quite easy to see that if we choose the same \(d' \) and \(d''_i \) in part 1 and 2 of (\(* \)), and if we can choose \(d = dx \), then totality of \(g_1 \cap g_2 \) is sufficient to be able to choose \(d'_i = dx \), such that both \(g_i((d'_i, d''_i), (d''_i, d''_i)) \) and \(g_i((d'_i, d''_i), (d''_i, d''_i)) \) are in \((d_i, d, g_i((d_i, d), (d'_i, d'_i), (d''_i, d''_i))) \). In order to be able to choose a \(d'_i = dx \), such that also \(R_i((d_i, d, g_i((d_i, d), (d'_i, d'_i), (d''_i, d''_i))) \) and \(R_i((d_i, d, g_i((d_i, d), (d'_i, d'_i), (d''_i, d''_i))) \), it is sufficient that \(g_i \) can be considered as functions in \([D_i \times D_{1i}] \rightarrow D_{a} \), i.e. that the \(d_A \), respectively \(d''_i \) which can be chosen is unique (and therefore the same). This implies \((**) \). This is also necessary if no more information on the transition relations \(R_i \) is available.

2. \((R_1 \circ R_2)_{g_1 \cap g_2} = (g_1 \cap g_2)^{-1} \circ (R_1 \circ R_2) \cap (g_1 \cap g_2) \) is obtained from this one by choosing \(d = dx \) and \(d' = dx' \). This allows us to deduce easily the inclusion \((2) \). In order to have the inverse inclusion, we must be
sure that choosing \(d = dx \) and \(d' = dx' \) we do not obtain less than without this constraint. This is guaranteed by the condition that \(g_i \) can be considered as functions in \([D_{1A} \times D_{1t} \to D_c]\), i.e. that the \(d, d' \) respectively \(dx, dx' \) that can be chosen are unique (and therefore the same).

\[\square \]

Proposition 3.2 Let be given transition relations \(R_i \in \mathcal{R}(D_1, D_1) \), \(R'_i \in \mathcal{R}(D_{1A}, D_{1A}) \) and abstraction relations \(g_i \in \mathcal{R}(D_1, D_{1A}) \) total on \(D_1 \), such that \(g_1 \cap g_2 \) is total on \(D_1 \cup D_2 \) and such that \(g_i \) can be put into the form \(g_i = g_{i1} \cap g_{ic} \), where \(g_{i1} \in \mathcal{R}(D_{1t}, D_{1tA}) \) and \(g_{ic} \in \mathcal{R}(D_1, D_{icA}) \), which means that the abstract local variables depend only on concrete local variables, whereas abstract common variables may depend on the values of any concrete variables. Then,

1. \(S_i \sim_{g_i} \) simulates \(S'_i \), \(i = 1, 2 \) implies \(S_1 \mid S_2 \sim_{(g_1 \cap g_2)} \)-simulates \(S'_1 \mid S'_2 \)
2. If \(g_{i1}, g_{i2} \) are functions in \([D_{1t} \to D_{1tA}]\), then \((R_1 \parallel R_2)_{g_1 \cap g_2} \subseteq (R_1 \parallel R_2)_{g_1 \cap g_2} \)
3. If \(g_{i1}, g_{i2} \) are onto, then \(R_{i1 \parallel R_2} \subseteq (R_{i1 \parallel R_2})_{g_1 \cap g_2} \)

Proof: We use the same notations as in the proof of the preceding proposition.

1. We show that

\(\text{(1)} \) \(R_i^{-1} \circ g_i \subseteq g_i \circ R_i^{-1}, i \in \{1, 2\} \)

\(\text{(2)} \) \((g_1 \cap g_2) \circ (R_i \parallel R_2)^{-1} \subseteq (R_i \parallel R_2)^{-1} \circ (g_1 \cap g_2) \).

As \(R_1 \parallel R_2 = R_1 \cup I_{D_{1A}} \cup R_2 \cup I_{D_{1t}} \) and analogously for \(R'_1 \parallel R'_2 \), (***) can be proved by the proof of two inclusions, one concerning \(R_1 \) and the other \(R_2 \). We show the inclusion concerning \(R_1 \).

\[
\forall \langle d'_1, d'_2, d'_3 \rangle \in (d_1, d_1, d_2) \land (d_1, d_2, d_2) \land (d_1, d_2, d_4, d_4, d_4) \land (d_1, d_2, d_4, d_4, d_4) \land (d_1, d_2, d_4, d_4, d_4) \land (d_1, d_2, d_4, d_4, d_4)
\]

This can be obtained from the first part of (1) (see its expression in the preceding proof item (2)) by adding all the underlined parts. Thus, in order to deduce (2) (from 1) we have to prove that whenever \(g_2 ((d_2, d_4, d_4, d_4)) \) then also \(g_2 ((d'_2, d'_4, d'_4, d'_4)) \); this is satisfied if in the relation \(g_2 \) the values of \(D_{2tA} \) depend only on \(D_{2t} \) and not on \(D_c \). Notice that this condition is also necessary if we have no more information concerning \(R_i \).

2. Similar as in the preceding case we can decompose the inclusion into two parts. We show,

\[
\forall d_1, d_2 , d_3 \in \mathbb{N} \quad \exists (d_1, d_2, d_3) \land (d_1, d_2, d_3)
\]

whereas

\[
\forall d_1, d_2 , d_3 \in \mathbb{N} \quad \exists (d_1, d_2, d_3) \land (d_1, d_2, d_3)
\]
where the underlining indicates the differences between both expressions. In order to obtain $X_2 \subseteq X_1$ it is sufficient to show that by adding the constraint $d_{2A} = d'_{2A}$ in X_2 we do not obtain less. This is guaranteed by the condition that g_2 is a function, i.e. that for any d_2 there exists a unique d_{2A} such that $g_2((d_2,d_{2A}))$.

3. In order to obtain (3), i.e., $X_1 \subseteq X_2$ we need the conditions

 for each d_1,d_2,d_{2A} $\exists d_2 \cdot g_2((d,d_2),(d_A,d_{2A}))$ and whenever $g_2((d,d_2),(d_A,d_{2A}))$ then also $g_2((d',d_2),(d'_A,d_{2A}))$ as in the preceding case.

 This is satisfied if in the relation g_2 the values of D_{2A} depend only on D_{2I} and not on D_c and if g_2 is onto.

\[\square \]

Proposition 3.3 Let be given transition relations $R_1 \in \mathcal{R}(D_i,D_i)$, $R'_1 \in \mathcal{R}(D_{iA},D_{iA})$ and abstraction relations $g_1 \in \mathcal{R}(D_i,D_{iA})$ total on D_i, such that $g_1 \cap g_2$ is total on $D_i \cup D_2$ and such that g_1 can be put into the form $g_1 = g_{i1} \cap g_{i2}$, where $g_{i1} \in \mathcal{R}(D_i,D_{iA})$ and $g_{i2} \in \mathcal{R}(D_i,D_{iA})$, which means that the abstract local variables depend only on concrete local variables, whereas abstract common variables may depend on the values of any concrete variables. Then,

1. If g_1 can be considered as functions in $[D_i \times D_{iA} \to D_{iA}]$ then,

 $\: S_1 \: g_1$-simulates S'_1, $i = 1, 2 \: \implies \: S_1 \{A\} S_2 \: g_1 \cap g_2$-simulates $S_1 \{A\} S'_2$

2. If g_{i1}, g_{i2} are functions in $[D_i \to D_{iA}]$, then $(R_1 \{A\} R_2) g_{i1} \cap g_{i2} \subseteq R_1 \{A\} R_2 g_{i2}$

3. If g_1 can be considered as functions in $[D_i \times D_{iA} \to D_c]$ and if g_{i1}, g_{i2} are onto, then

 $\: R_{i1} \{A\} R_{i2} \subseteq (R_1 \{A\} R_2) g_{i1} \cap g_{i2}$

Proof: The fact that $R_1 \parallel R_2$ can be expressed by using only \ominus and \parallel as given in Lemma 2.4 and that the condition of both of the preceding propositions are satisfied is enough to prove the proposition. \square

The following proposition illustrates, how the results above can be used to show in a very simple manner well-known results.

Proposition 3.4 Let $R_1 \in \mathcal{R}(D_1,D_1), R_2 \in \mathcal{R}(D_2,D_2)$ be transition relations.

1. $R_1 \ominus R_2 \ominus g$-simulates R_1 for some g such that $\forall X \subseteq D_1, \text{pre}[g][\text{pre}[g^{-1}](X)] = X$

2. $R_1 \ominus g$-simulates $R_1 \parallel R_2$ for some g such that $\forall X \subseteq D_1, \text{pre}[g][\text{pre}[g^{-1}](X)] = X$

Proof: The required abstraction relations are

- $g_1 = \{(d,d') \mid d \in D_i \cup D_2 \text{ and } d' \in D_i \text{ and } \pi_{D_i}(d) = d' \} \in \mathcal{R}(D_i \cup D_2,D_i)$ in case (1)
- and $g_2 = \{(d',d) \mid d' \in D_i \text{ and } d \in D_{2} \text{ and } \pi_{D_i}(d) = d' \} \in \mathcal{R}(D_i,D_i \cup D_2)$ in case (2)

Notice that g_1 is a function but g_2 is not. \square

By using the results given in [BBLS92], Proposition 3.4 allows to deduce that formulas of $\square L_\mu$ (cf. Section 5) are preserved from an asynchronous product to its components, and from each component process to the synchronous product.

Now, we obtain from the preceding propositions and the fact that $R \parallel R = R$ for any transition relation and any parallel operator, the results of [GL91] as a particular case for the operator \ominus.

8
4 Example

In this section we illustrate the propositions 3.2 and 3.3 with an example of a mobile moving on a grid.

The motion of a mobile on a grid is controlled by a controller so as to visit cyclically the points $CDACDA$, ... Initially the mobile is within the rectangle defined by the points (A, B, C, D) (see Figure 1). Its motion results of two independent motors.

![Figure 1: Mobile](image)

The motor M_X makes the mobile move horizontally and M_Y vertically, the controller $Ctrl$ gives orders to both motors.

We describe processes with a set of guarded commands of the following form:

$$(\text{label}) \text{ guard} \rightarrow \text{ command}$$

where the label identifies the guarded command and can be used for synchronization, the guard is a boolean condition which authorizes or not the execution of the command.

The motor M_X is defined on the variables:
- dir_X: a three-valued variable denoting the movement direction (Left, Right or Stop);
- X: a real number which denotes the position of the mobile on the horizontal axis.
- δ_X is a random input and is a positive real number.

Its transition relation is given by:

$$M_X: \begin{align*}
\text{(right)} \quad (\text{dir}_X = R) \land (X + \delta_X \leq H) & \rightarrow X := X + \delta_X \\
\text{(left)} \quad (\text{dir}_X = L) \land (X - \delta_X \geq 0) & \rightarrow X := X - \delta_X \\
(A) \quad \text{true} & \rightarrow \text{dir}_X := R \\
(C) \quad \text{true} & \rightarrow \text{dir}_X := L \\
(D) \quad \text{true} & \rightarrow \text{dir}_X := S
\end{align*}$$

The motor M_Y is defined analogously.

$$M_Y: \begin{align*}
\text{(up)} \quad (\text{dir}_Y = U) \land (Y + \delta_Y \leq V) & \rightarrow Y := Y + \delta_Y \\
\text{(down)} \quad (\text{dir}_Y = D) \land (Y - \delta_Y \geq 0) & \rightarrow Y := Y - \delta_Y \\
(A) \quad \text{true} & \rightarrow \text{dir}_Y := U \\
(C) \quad \text{true} & \rightarrow \text{dir}_Y := S \\
(D) \quad \text{true} & \rightarrow \text{dir}_Y := D
\end{align*}$$
The controller is defined on four variables:
- X, Y denote the current position of the mobile,
- X_C, Y_C are the coordinates of the previous visited control point.

\[
\begin{align*}
\text{Ctrl:} & \quad (A) \quad (X_C = 0) \land (Y_C = V) \land (Y = 0) \quad \rightarrow \quad Y_C := 0 \\
& \quad (C) \quad (X_C = 0) \land (Y_C = 0) \land (X = H) \land (Y = V) \quad \rightarrow \quad (X_C := H) \land (Y_C := V) \\
& \quad (D) \quad (X_C = H) \land (Y_C = V) \land (X = 0) \quad \rightarrow \quad X_C := 0
\end{align*}
\]

The whole program is defined by $(M_X \ || \ M_Y) \ [[(A, A), (C, C), (D, D)]] \ \text{Ctrl}$.

This system has an infinite number of states as the mobile can be in any position within the rectangle defined by the points A, B, C and D.

In order to verify that the mobile visits cyclically the points A, C and D, if it is correctly initialized, the only information we need is whether each coordinate X (respectively Y) is equal to 0, is between 0 and H (respectively V) or is equal to H (respectively V).

We propose the following abstraction relations consisting in replacing the coordinates X and Y by three-valued variables $x \in \{h_0, h_1, h_2\}$ and $y \in \{v_0, v_1, v_2\}$ and replacing in the controller the coordinates of the control point X_C and Y_C by a three-valued variable $P_{cp} \in \{A, C, D\}$ recording the previous visited control point.

\[
\begin{align*}
\varrho_X & : (\text{dir}_X, X) \varrho_X (\text{dir}_X, x) \text{ iff } \\
& (x = h_0 \land X = 0) \lor (x = h_1 \land 0 < X < H) \lor (x = h_2 \land X = H) \\
\varrho_Y & : (\text{dir}_Y, Y) \varrho_Y (\text{dir}_Y, y) \text{ iff } \\
& (y = v_0 \land Y = 0) \lor (y = v_1 \land 0 < Y < V) \lor (y = v_2 \land Y = V) \\
\varrho_{ctrl} & : (X_C, Y_C, X, Y) \varrho_{ctrl} (P_{cp}, x, y) \text{ iff } \\
& [(x = h_0 \land X = 0) \lor (x = h_1 \land 0 < X < H) \lor (x = h_2 \land X = H)] \land \\
& [(y = v_0 \land Y = 0) \lor (y = v_1 \land 0 < Y < V) \lor (y = v_2 \land Y = V)] \land \\
& [(P_{cp} = A \land X_C = 0 \land Y_C = 0) \lor (P_{cp} = C \land X_C = H \land Y_C = V) \lor (P_{cp} = D \land X_C = 0 \land Y_C = V)]
\end{align*}
\]

Note that the domains of M_X and M_Y are independent and so are the respective abstractions. We compute the following abstractions for the motors and the controller:

\[
\begin{align*}
(M_X)_{\varrho_X} & : \text{(right)} \quad (\text{dir}_X = R) \land (x = h_0) \quad \rightarrow \quad x := h_1 \\
& \quad \text{(right)} \quad (\text{dir}_X = R) \land (x = h_1) \quad \rightarrow \quad x := h_1 \text{ or } x := h_2 \\
& \quad \text{(left)} \quad (\text{dir}_X = L) \land (x = h_2) \quad \rightarrow \quad x := h_1 \\
& \quad \text{(left)} \quad (\text{dir}_X = L) \land (x = h_1) \quad \rightarrow \quad x := h_0 \text{ or } x := h_1 \\
& \quad (A) \quad \text{true} \quad \rightarrow \quad \text{dir}_X := R \\
& \quad (C) \quad \text{true} \quad \rightarrow \quad \text{dir}_X := L \\
& \quad (D) \quad \text{true} \quad \rightarrow \quad \text{dir}_X := S
\end{align*}
\]

We obtain an analogous abstract program for M_Y.

\[
\begin{align*}
(Ctrl)_{\varrho_{ctrl}} & : \quad (A) \quad (P_{cp} = D) \land (y_0 = v_0) \quad \rightarrow \quad P_{cp} := A \\
& \quad (C) \quad (P_{cp} = A) \land (x = h_2) \land (y = v_2) \quad \rightarrow \quad P_{cp} := C \\
& \quad (D) \quad (P_{cp} = C) \land (x_0 = h_0) \quad \rightarrow \quad P_{cp} := D
\end{align*}
\]

From propositions 3.2 and 3.3 and the fact that $\varrho_X \cap \varrho_Y \cap \varrho_{ctrl} = \varrho_{ctrl}$ we have that

\[
P_A : ((M_X)_{\varrho_X} \ || \ (M_Y)_{\varrho_Y}) \ [[(A, A), (C, C), (D, D)]] \ \text{Ctrl}_{\varrho_{ctrl}} \text{ is an } \varrho_{ctrl}\text{-abstraction of } P.
\]
5 Preservation of properties

It is interesting to characterize the “global” properties preserved by the abstraction relation \(\varrho = \varrho_1 \cap \varrho_2 \) on the compositions of abstract programs defined previously.

From the results given in [BBLS92] we have the following result on preservation of properties of \(\Box L_{\mu} \), which is the fragment of the \(\mu \)-calculus of [Koz83], consisting of the formulas without occurrences of negations and using only universal quantification on paths. \(\Box L_{\mu} \) is strictly more expressive than linear time \(\mu \)-calculus, and therefore contains all regular safety properties.

For a transition relation \(R \), the meaning of formulas are subsets of the domain \(D \) of \(R \), where the meaning of atomic predicates in \(P \) is given by an interpretation function \(I : P \rightarrow 2^D \).

We say \(R \) satisfies \(f \) or \(R \models f \) if the meaning of \(f \) depending on the transition relation \(R \) and interpretation function \(I \) is equal to \(D \).

In order to verify a property \(f \) of \(\Box L_{\mu} \) on a program \(P \) on \(D \) with interpretation functions of atomic predicates \(I : P \rightarrow 2^D \) respectively \(I_A : P \rightarrow 2^{D_A} \), we can proceed as follows: find an abstraction relation \(\varrho \) and then,

\begin{enumerate}
\item Verify \(\varrho \models \text{pre}[\varrho^{-1}] |_{P} f \) \\
\item Verify \(\varrho \models I_A \).
\end{enumerate}

We know from [BBLS92] that in case (1), we have \(\varrho \models \text{pre}[\varrho^{-1}] |_{P} f \) implies \(R \models \text{pre}[\varrho^{-1}] |_{P} f \).

Thus, in order to obtain the initially required result, \(R \models f \)
we need for any predicate symbol \(p \) occurring in \(f \)
\[I(p) \subseteq \text{pre}[\varrho] \circ \text{pre}[\varrho^{-1}] \circ I \ (p) \quad (\ast) \]
As the opposite inclusion is always true, \((\ast) \) equivalent to
\[\text{pre}[\varrho] \circ \text{pre}[\varrho^{-1}] \circ I \ (p) = I(p). \]

Analogously, in case (2) \(\varrho \models I_A \) implies \(R \models \text{pre}[\varrho^{-1}] |_{P} f. \)

As before, in order to be sure, that \(f \) is the same property on both interpretations, we need to know that all predicates \(p \) occurring in \(f \),
\[\text{pre}[\varrho^{-1}] \circ \text{pre}[\varrho] \circ I_A \ (p) = I_A \ (p), \]
i.e. \(I_A(p) \) is in the image of \(\varrho \) on which \(\text{pre}[\varrho] \) defines an isomorphism from \(\text{image}(\varrho) \) onto \(\text{image}(\varrho^{-1}) \).

Therefore, we already know which type of formulas we are allowed to verify on abstract programs. Here, we are interested in characterizing the set of predicates (considered as subsets of the domain \(D \), respectively \(D' \)) of the composed concrete program that can be used in these formulas, such that \(f \) is preserved in the way explained above.

Definition 5.1 (Preservation of predicates)

Let be \(D, D_A \) domains, \(I : P \rightarrow 2^D \) respectively \(I_A : P \rightarrow 2^{D_A} \) interpretation functions of atomic predicates and \(\varrho \) an abstraction relation in \(R(D, D_A) \). Then we say for a predicate \(p \) that it is preserved by \(\varrho \) iff
\[\text{pre}[\varrho] \circ \text{pre}[\varrho^{-1}] \circ I \ (p) = I(p) \text{ respectively } \text{pre}[\varrho^{-1}] \circ \text{pre}[\varrho] \circ I_A \ (p) = I_A \ (p). \]
Notice that this notion of preservation of predicates depends only on the abstraction relation \(\varphi \), and not on the particular program (i.e., transition relation) under study.

In the following proposition, we characterize a set of predicates on domains of programs of the form \(R_1 | R_2 \) that is preserved by relations of the form \(\varphi_1 \cap \varphi_2 \) as in the Propositions 3.1 to 3.3.

Proposition 5.2 Let \(\varphi_i \in \mathcal{R}(D_i, D_{1\times i}) \), \(i = 1, 2 \) be abstraction relations total on \(D_i \) and such that \(\varphi_1 \cap \varphi_2 \) is total on \(D_1 \cup D_2 \). Let \(\varphi \) be a subset of \(D_1 \cup D_2 \) (interpretation of some atomic predicate) that can be put into the form \(\bigcup_{i \in J} p_i^1 \cap p_i^2 \) where \(p_i^1 \subseteq D_1 \) and \(p_i^2 \subseteq D_2 \) and \(J \) finite; let \(p_A \) be a subset of \(D_{1_A} \cup D_{2_A} \) that can be put into the form \(\bigcup_{i \in J'} p_A^1 \cap p_A^2 \) where \(p_A^1 \subseteq D_{1_A} \) and \(p_A^2 \subseteq D_{2_A} \) and \(J' \) finite. Then,

- If all the \(p_i^j \) are preserved by \(\varphi_j \) (for \(i \in J \) and \(j = 1, 2 \)), \(\varphi \) is preserved by \(\varphi_1 \cap \varphi_2 \).
- If all the \(p_A^j \) are preserved by \(\varphi_j \) (for \(i \in J' \) and \(j = 1, 2 \)), \(p_A \) is preserved by \(\varphi_1 \cap \varphi_2 \).

Proof: \(\text{pre}_\varphi (\text{pre}_\varphi^{-1}) (\bigcup_{i \in J} p_i) = \bigcup_{i \in J} \text{pre}_\varphi (\text{pre}_\varphi^{-1}) (\text{pre}_\varphi^{-1} (p_i)) \) and \(\forall i \in J \text{pre}_\varphi(p_i) = \text{pre}_\varphi^{-1} (\text{pre}_\varphi^{-1} (p_i)) \) and \(\forall i \in J \text{pre}_\varphi^{-1} (\text{pre}_\varphi^{-1} (p_i)) = p_i \cap p_i^2 \). \(\square \)

Comment: Notice that not only sets of this form may be preserved by \(\varphi_1 \cap \varphi_2 \).

However, in the case that \(\varphi_1 \cap \varphi_2 \) is a product of independent relations, i.e., \(\varphi_1 \cap \varphi_2 = \varphi_1 \times \varphi \times \varphi_2 \), as it has been required in propositions 3.2 and 3.3, \(\text{pre}_\varphi (\varphi_1 \cap \varphi_2) = \text{pre}_\varphi (\text{pre}_\varphi^{-1} (\varphi_1)) \times \text{pre}_\varphi (\text{pre}_\varphi^{-1} (\varphi_2)) \) is of the form \(\text{pre}_\varphi (\varphi_1) \times \text{pre}_\varphi (\varphi_2) \times \text{pre}_\varphi^{-1} (\varphi_1) \times \text{pre}_\varphi^{-1} (\varphi_2) \). Then, only sets \(p \) which can be put into the form

\[
\bigcup_{i \in J} p_i^1 \cap p_i^2 \cap p_i^2
\]

where \(p_i^1 \subseteq D_1 \), \(p_i^2 \subseteq D_2 \), and \(p_i^2 \subseteq D_2 \) (using the same convention concerning the structure of \(D_1 \cup D_2 \) as before), are preserved by \(\varphi_1 \cap \varphi_2 \) if all the \(p_i^1 \) are preserved by \(\varphi_1 \), all the \(p_i^2 \) are preserved by \(\varphi \) and all the \(p_i^3 \) are preserved by \(\varphi_2 \). That means instead of dealing with relations in \(\mathcal{R}(D_1 \cup D_2, D_{1\times A} \cup D_{2\times A}) \) we deal only with relations on subdomains.

6 Example continued

From the results given in [BBL92] we have that for any formula \(f \) in \(\mathcal{L} \mu \) and any interpretation function \(I \) of atomic predicates on the abstract domain,

\[
P_A \models \tau \text{ implies } P \models \text{pre}_\varphi^{-1} \tau \text{ for } f
\]

The following CTL formula expresses the fact that the mobile, if it is correctly initialized and does effectively change control points, visits the control points \(A, C \) and \(D \) cyclically. This formula can be translated into a \(\mathcal{L} \mu \) formula.

\[
f = \text{(PCp = A)} \implies \neg (PCp = D) \text{ until (PCp = C)} \land
\]

\[
(PCp = C) \implies \neg (PCp = A) \text{ until (PCp = D)} \land
\]

\[
(PCp = D) \implies \neg (PCp = C) \text{ until (PCp = A)}
\]

In order to be sure that the formula is preserved, we have to verify that predicates that appear in the formula are preserved. The predicates involved in the formula appear only in \(\varphi_{C \text{trc}} \), we verify:

\[
\text{pre} [\varphi_{C \text{trc}}^{-1} (\text{pre}[\varphi_{C \text{trc}}] (I (PCp = A)))) = I (PCp = A)
\]

This equality is obvious, and so are the equalities for the other predicates.
7 Discussion

We have studied property preserving abstractions of composed programs for a general notion of parallel composition. The results are close to those given in [Kur89] in the linear framework and are extensions of those given in [GL91].

A key idea is the parametrization of simulations by a relation g which allows the computation of an abstract program (an idea which has been extensively used in the domain of abstract interpretation, cf. e.g. in [CC77]) and is good means to express composition of simulations.

The presented results are exploited in a tool which is currently being implemented. Its inputs are expressions using parallel and abstraction operators on boolean guarded command programs. The evaluation of such an expression results in guarded command program. Moreover, our tool verifies symbolically any μ-calculus formula on programs and allows to know whether basic predicates are preserved, in sense of definition 5.1, by the applied abstractions.

Programs are represented by sets of relations instead of just a relation. Internally, each guarded command is implemented by a BDD ("Binary Decision Diagrams" [Bry86]) which is an efficient representation of boolean expressions. We never compute the BDD corresponding to the global transition relation as

- for the operator $[]$, we need the transition relations of each guarded command.
- the space needed for representation in memory of a set of relations is likely to be much smaller than that needed to represent the global transition relation [HDDY92].

The tool will be connected to the Caesar tool [GS90a], which translates Lotos programs into Petri nets. For an important subclass of Lotos programs, these Petri nets can easily be translated into parallel compositions of boolean guarded command programs, which will allow to test the tool for important examples.

All the results obtained here are also valid if one represents programs by sets of functions and this should allow to obtain still smaller representations of programs as shown in [Fil91]. However, in case of functional representation, the abstract program cannot in all cases be computed as easily as R_g for a program R and a relation g. Experimentation is still necessary to compare the efficiencies of the two approaches.

Acknowledgements

We thank Saddek Bensalem and Joseph Sifakis for many helpful discussions and judicious remarks.

References

