Program verification using abstraction compositionally*

Susanne Graf and Claire Loiseaux
IMAG, BP 53X, F-38041 Grenoble
e-mail : {graf loiseaux}@imag.fr

April 28, 1993

to appear in FASE (TAPSOFT) 93

Abstract

We study property preserving transformations for reactive systems. A key idea is the use of o-
simulations which are simulations parametrized by a relation p, relating the domains of two systems.
We particularly address the problem of property preserving abstractions of composed programs. For
a very general notion of parallel composition, we give the conditions under which simulation is a
precongruence for parallel composition and we study which kind of global properties are preserved by
these abstractions.

1 Introduction

The investigation of property preserving abstractions of reactive systems has been the object of intensive
research during the last years. However, the existing theoretical results are very fragmented. They
strongly depend on the choice of the specification formalism and the underlying semantics.

Some results are given in the framework of linear time semantics as e.g., in [AL88,LT88b,Kur89]
where the underlying semantics of as well programs as properties are languages traces. The notions of
abstractions proposed are based on the use of structure homomorphisms.

In the framework of process algebras, the problem of combination of abstraction and composition is the
problem of defining property preserving equivalence relations or preorders which are congruences, respec-
tively precongruences for parallel composition and abstraction. This problem has been studied, for equiv-

alences e.g., in [HM85,BK85,GS86,GW89,GS90b] and for preorders in [LT88a,Wal88,CS90,5G90,GLI1].

The results presented here are based on those given in [BBLS92], where a general framework for prop-
erty preserving abstractions is given. Program models are transition relations and abstractions are given
by o-simulations, which are parameterized by a relation g between the domains of both systems. Thus,
we do not restrict ourselves to abstractions defined by functions from the concrete to the abstract domain

as cf. in [Kur89,CGL91].

In [BBLS92] the problem of compositional abstractions is not taken up at all. Here, we extend the
results on property preservation to composed abstract programs, obtained by alternating steps of ab-
straction and composition. For a general notion of parallel composition (expressed on program models),
we give conditions under which composition of abstract programs preserves properties of fragments of

*This work was partially supported by ESPRIT Basic Research Actions “SPEC” and “REACT”

branching-time p-calculus.

Our program models are transition relations on some domain D and are represented symbolically. The
validity of the given results does not depend on the symbolic representation, but their usability (com-
putation of abstract programs) does. Program models may be composed by means of three composition
operators, namely a synchronous, an asynchronous and a mixed one. With these three operators we can
express most of the existing composition operators, for instance those of CSP [Hoa84], Lotos [ISO89],

Unity [CM88], of S/R-models [KK86] and of I/O automata [LT88b].

The results presented in the paper are the following: for programs R; and R}, abstraction relations g;
from the domains of R; to the domains of R}, we give conditions under which

1. R; g;-simulates R; implies Ry | Ry (01N o2)-simulates R} | R where | is one of the three parallel
operators.

This result allows us, using the results of [BBLS92], to deduce that for any property f of the fragment
OL, of the p-calculus (defined in Section 5) such that all atomic predicates of f are preserved by g
(see Definition 5.1), then

R | R, satisfies f implies Ry | R satisfies f.

2. If (R;),, are reasonable p;-abstractions of R; then, (Ri),, | (R2),, is a reasonable (g1 N g2)-
abstraction of Ry | Ry,

where R, stands for the abstract program computed from R by means of the abstraction relation p.

The conditions depend on the considered parallel operator |; but for all parallel operators studied
here, it is not necessary that the processes are defined on independent domains. However, in order to
have (2) for the asynchronous and also for the mixed parallel operator, the abstraction g1 N g2 must be
decomposable so as the relation on the common domain is independent of the relations on the domains
proper to each of the processes.

The paper is organized as follows. In the following section, we define the parallel operators. In
Section 3, we present the results concerning composition and abstraction, which are illustrated by a small
example in Section 4. In Section 5, we study which kind of properties are preserved by the abstractions
defined in Section 3 and we illustrate these results in Section 6.

2 Parallel composition and abstraction operators

First, we introduce some definitions and notations concerning intersections and unions of sets on different
underlying domains.

Domains are as usual sets of valuations of program variables. We suppose a universal set of global
program variables V. Any domain is the set of valuations of some subset of program variables V' C V,
denoted Dy. Thus, e.g., for V = {z,y}, Dy = D, x D,,.

Notation 2.1 (Independency of domains, projection functions)

e For any V,W the domains Dy and Dyw are called independent iff VN W = 0, that means they are
defined on separate variable sets.

e For any V,W, we denote by R(Dv,Dw), the set of binary relations from Dy to Dw.
o For V, W such that V.C W, we denote by my the projection function in [Dw — Dy].

Now we can define intersections and unions of sets on different domains Dy and Dy as operators on
Dyviw.

Definition 2.2 (Intersection and union on different domains)
Let Dy, Dv,, Dw,Dw,,i = 1,2 be domains, X C Dy, Y C Dw. Then we define,

e XN YI{ZEDVUW | 7Tv(Z) € X and ﬂw(z) EY}
e XU YI{ZEDVUu/ | Fv(z) € X or 7Tvv(2) EY}

Comment: The notion of U and N defined here are compatible with the usual notions, in the sense that
for XY C Dy, XNY (respectively X U Y') results in the same subset of Dy using the here defined or
the usual definition of N (respectively U) and that they obey the same laws as the usual operators.

In order to simplify the notations, given domains D = Dy and D' = Dyy, we use the somewhat abusive
notations DU D' instead of Dyyw and also D — D' instead of Dy _w if it is clear from the context.
Consider binary relations R; € R(Dv,, Dw,). Then, we define relations
Ry N Ry € R(Dy,uvy, Dwyuw,) by

e R N Ry = {(Z,ZI) | z € DVlLJVg and 2 € DVV1UW2 and (ﬂ'Vl(Z),ﬂ'Wl(Zl)) € Ry
and (wv,(2),7w,(z")) € Rs }

We suppose that programs are represented by binary relations (transition relations) on some domain.
This is a very general form of programs. We do not consider initial states since they are not necessary to
obtain the results and it makes the representation of programs much simpler. In terms of TLA [Lam91],
we consider programs consisting only of the invariant part.

Definition 2.3 (Parallel compositions)

Let be domains D1, Dy and programs given by transition relations Ry € R(D1,D1) and
Ry € R(DQ,Dz).

Then, we define the transition relations of the composed processes in R(D1 U Dy, D1 U Dy) by

e synchronous composition :

Ri®@Ry = Ry N Ry

e asynchronous composition :
R ||Rs = BRyNIdp, p, URyN Idp, p,
where for any domain D, Idp s the identity relation in RelDD.

e mized composition :
Consider transition relations R; of the form Ry = Uie] Ry; and Ry = UjeJ Ryj. Letbe ACIxJ,
indicating which commands have to be executed synchronously, Ay = {i|37.({,j) € A} and
Ay = {j|Fi.(4,j) € A}. Then,

Ri[A] Ry = Uy jea (Biin Roj) U Uy, (R1iN Idp,—p,) U Ujgu, (B2; N Idp,-p,)

Comments :

e In synchronous composition, in each step both programs execute exactly one action possible in this
state, such that the changes on the common variables are consistent. This operator corresponds
exactly to intersection applied on programs described by TLA formulas; it is also very similar to
program composition of S/R models [KK86].

If the domains of the component processes are independent, this operator is exactly the one intro-
duced in [GLI1]; since they use also the same preorder, their results are comparable to ours in the
sense that they consider a logic, subset of ours, and the particular case of independent domains.

e In the asynchronous composition, in each step one of the programs executes one of the currently
enabled transitions and the other idles. This operator results in the “interleaving” of the component
processes if they are defined on independent domains; if not, the execution of a transition of one of
the processes may change the enabling conditions of the other one.

This operator is exactly the union operator of Unity [CM88].

e Finally, in the mixed composition operator, some of the actions must be executed synchronously,
whereas the others are executed asynchronously. This operator is not exactly the one in CSP [Hoa84]
or LOTOS [ISO89], where all processes have distinct variable sets and communicate by exchanging
values; however the here defined operator allows to simulate these operators.

The first two operators need imperatively models with shared memory between processes in order
to allow communication, whereas the third one allows also communication based only on action names
without shared memory. Nevertheless, in practice, processes composed by the third operator share often
at least some variables which are written by one of them and read by the other (this allows to simulate
the Lotos operator []).

The mixed composition operator is the most general one as it allows to express the other ones as follows:
I| is equal to [@] and @ is equal to [I x J]. We prefer however to keep these operators because they are
interesting to be considered as subcases.

Lemma 2.4 Let Ry = |
Definition 2.8. Then,
e Ri||Ry = UieI(Rli N Idpy) U UiEJ(IdDV—W N R2j)
* Ri® Ry = U jyerxs(Bri A Ryj)

o Ri[A] By = (lliijea (Bri@ Raj)) I (Diea, Bii) | (Djn, Baj)
where we use the obvious n-ary extension of | .

e Ry || Ry = Ry [0] Ry
o Ri @Ry = R, |[IX]]le

ier Ry;, and Ry = UjeJ Ryj, be transition relations and A C I x J as in

The definition of g-simulation is the same as in [BBLS92] and defines our notion of preorder on
programs. First, we need to introduce the “predicate transformers” pre and pre.

Definition 2.5 Given a relation ¢ € R(D,D’), we define the functions pre[g], pre[g] € [27" — 27] by,

e VX CD .pre[p(X)={x e D |Ja’' € X . o(x,2")} defines the inverse image of X by g.
e pielo] is the dual of pre|g], i.e.,
VX C D' . pie[o)(X) =pre[o](X)={z € D |Va' € D' . p(x,2') = 2’ € X}

Definition 2.6 (g-simulation)

Let R € R(D,D) and R, € R(Dy,D,) be transition relations, and let ¢ be an abstraction relation in
R(D,D,). Then

R o-simulates R, iff pre[o~!] opre[R]opre[p] C pre[R4]

Notice that “there exists g such that g-simulates” defines a preorder on programs which is the same
as the one defined in [GL91], and which is also the standard simulation preorder [Mil71]. If there exists
o such that R g-simulates R,, we say also that R simulates R, or R, is an abstraction of R.

Definition 2.7 (Abstraction operator)

Let be given a program by a transition relation R = |J; R; € R(D,D). For any abstraction relation
0 € R(D,D,) we define an operator , yielding an abstract program R, € R(Dy, D,), defined by the
transition relation,

RQ=9710R0g=U 0 'oR;00
i

The following property justifies our motivation for computing abstract programs R, from R and p:
For a given abstraction relation ¢ we want to compute an abstract program R, with a reasonable cost
and reasonably close to R, such that a maximum of properties that are satisfied on R are also satisfied
on R, In general the least abstract program R, such that R g-simulates R, does not exist (since
pre[o~] o pre[R] o pre[o] does not necessarily distribute over U and it is therefore not of the form pre[R,]
for some relation Ry).
However, R, is still reasonable in the sense that for any transition relation R,, such that
R p-simulates R, and R, C R, and for any property f of the p-calculus such that R satisfies f, we have
R, satisfies f iff R, satisfies f.

Eventuellement mettre resultat FM93ZZ This is expressed by the following proposition:

JRa. Ro-StmuleRs, RACR,
Vf€ Lu, RaF=,f <:>R9|=1Af
on the concrete and abstract domains respectively.

Proposition 2.8 where I and I4 = post[p|ol are the interpretation functions

Property 2.9 Let R be a transition relation on D, ¢ € R(D, D,) an abstraction relation total on D (i.e.
prelo] C pre[o]). Then

o R p-simulates the abstract transition relation R, which defines a reasonable abstraction of R with
respect to g.

o If even prelo] = prelo], t.e., 0 is a total function from D into Do, R, defines the least abstraction
of R with respect to o.

3 Abstraction of composed programs

When dealing with complex programs, it is interesting to construct abstractions as far as possible before
composition. This allows to compute abstractions on smaller transition relations (and domains), and to
compute the composition on the so obtained smaller abstract programs. Here we show in which cases
one obtains an abstraction of the original composed program by proceeding this way, and furthermore, in
which cases this can be done without losing too much with respect to the abstraction obtained proceeding
the other way round.

We give conditions under which simulation is monotonic with respect to the different composition
operators |, i.e.,

(R; simulates R]) and (R: simulates R))
Ry | Rz simulates R} | R,

holds. We show also which kind of atomic predicates of the composed program are preserved.

Let Ry € R(D1,D;) and Ry € R(D3, D) be transition relations and ¢y € R(D;1,D14), 02 €
R(Ds, Dy 4) abstraction relations. For any composition operator | of Definition 2.3 we have to find an
abstraction relation ¢ € R(D1U D2, D1 4U D5 4) allowing to compute (R1),, | (R2),, instead of (R | Rz2),.

We show that for all operators of Definition 2.3, R; g;-simulates R} implies R; | Rz (91N g2)-simulates
R’ | R} under some conditions on the abstraction relations g;.

Furthermore, we give for the particular case that R; = R;,, conditions under which the transition relations
of these two abstractions of R; | Rz are related, i. e. we give conditions for

R, | Rz, C (Ri|R2)oine, and (Ri|R2)gne, C Bi,, |Re,-

Throughout the section we consider transition relations defined on domains D; and D;. In order to
simplify the notations, we suppose without loss of generality, that the domain
D1 U Dy is of the form D = Dy; x D, x Dy,
where D;; are the domains defined on local variables of S;, whereas D, is the domain defined on their
common variables, i.e. we have, D1 = Dq; x D. and Dy = D, x Ds;.
We consider also abstract domains D4 and D4, and we suppose that the abstract domain

Dy 4 U D34 is analogously of the form D4 = Dy X Doa X Doyj4.
Any of the subdomains of D, respectively D4 may be empty (but we suppose that none of
Dy,D3, D14, D54 is empty, as we have not defined transition systems on the empty domain).

Proposition 3.1 Let be given transition relations R; € R(D;,D;), R, € R(D;a,D;4) and abstraction
relations o; € R(D;, D;4) total on D;, such that g1 N g3 is total on D1 U Dy. Then,

1. If ¢; can be considered as functions in [D; X Djja — D] then,
R; gi-simulates R}, i =1,2 implies R; ® Ry (01N g2)-simulates R} @ RY
2. (B @ R2)pne, € R1, @ Ry,

3. If p; can be considered as functions in [D;a X Dy — D.] then,
le ® R292 = (Rl ®R2)91092

Notice that from (2) one deduces that (R; ® Ry) g1 N g2-simulates R; o ® Rzgz; and it is in general
much easier to compute ngl ® sz than to compute (R1 @ R2) o100,

Proof:
In order to simplify the notations, we denote elements of D;; by d;,d.,..., elements of D. by d,d’,...
and analougously elements of D;;4 by d; 4, dgA,... and elements of D. by d 4, df4,.... For elements of these

forms we will not mention explicitely their domain.

1. In order to show (1) we use the fact that R g-simulates R’ if R0 9 C go R~!. We show that,

(*) Rl op; CoioR;™Y, i €{1,2} implies
(**) (RN Ry)~"o (01N g2) C (01N g2) o (RN Ry~

(*) can be expressed as:

V(dy, d')WV (d1a,da).(I(d1,d).01((d1,d),(d14,d4)) and R1((dy1,d),(d},d")) implies
Hd) 4, dly)-01((dy, d'), (d] 4, dy)) and Ry ((dra,da), (d] 4, dy)))

and

V(d',d5)V(da,daa).(I(dz,dy).g2((dx,d3), (da,d24)) and Re((dx,dz),(d’,d})) implies
Hda'ly, dy4).02((d', dy), (da'y, dy 1)) and Ry((da,dza), (daly, dyy))).

It is quite easy to see that if we choose the same d’ and d4 in part 1 and 2 of (*), and if we can
choose d = dx, then totality of g1 N g2 is sufficient to be able to choose d’A = dx 4 such that both
o1((dy,d"), (d} 4,dy)) and g2((d',db), (d'y,d5 4)). In order to be able to choose a d’y = dx 4 such that
also Ry ((d14,da), (d} 4,d)) and Ry((da,daa), (dy,d,), it is sufficient that g; can be considered
as functions in [D; x D4 — D4, i.e. that the d4, respectively dz 4 which can be chosen is unique
(and therefore the same). This implies (**). This is also necessary if no more information on the
transition relations R; is available.

2. (R1 @ Ra)g,ng, = (01N 02) "0 (RN Ry)o(o1 N 02) =X As 01N g2 C gs and Ry N Ry C Ry, we
have X C (gl_l oRy;001)N (gz_l o0 Ryj002) = Rig @ Rap,.

3. In order to prove (3) we have to show the inverse inclusion of (2). We have,
Rug, @ Ry, = {((d1asdasdo), (€ 4 dlysd) |
3(dr,)3}, d').01((d1,), (d1a,d.a)) and Ba((dy,), (dy, d')) and g1 ((d5,d'), (d) 5,)
and

Adz,ds), (d2’,dy).02((dx,ds), (da,dr4)) and Ry((dz,ds),(dz’,dy)) and o2((d2’, db), (d'y, dy 4)}

The expression for (R1 @ Ry)yn,, is obtained from this one by choosing d = dz and d' = da'.
This allows us to deduce easily the inclusion (2). In order to have the inverse inclusion, we must be

sure that choosing d = dz and d’ = dz’ we do not obtain less than without this constraint. This is
guaranteed by the condition that g; can be considered as functions in [D;4 x D;; — D.], i.e. that
the d, d’ respectively da, da’ that can be chosen are unique (and therefore the same).

Proposition 3.2 Let be given transition relations R; € R(D;,D;), R € R(D;a,D;4) and abstraction
relations 0; € R(Di,DiA) total on D;, such that o1 N g2 s total on Dy U Do and such that o; can be
put into the form o; = 0y N i, where o € R(Dj;, Dyja) and 0;c € R(D;, Dica), which means that the
abstract local variables depend only on concrete local variables, whereas abstract common variables may
depend on the values of any concrete variables. Then,

1. S; gi-simulates S}, i=1,2 dmplies S1|S2 (01 N 02)-simulates S} || S

2. If o1, 021 are functions in [Dy — Dj4], then
(Rill R2)oires © By, |l B2y,

3. If 011, 021 are onto, then
Ry, | Rz, C(RillR2)oin o

e2 —

Proof:
We use the same notations as in the proof of the preceding proposition.

1. We show that
(*) Ri ™' op; CoioR;™Y, i €{1,2} implies
() (o1 N o2) o (R | R2)™" C (RYIRy) "o (01N o2).

As Ri||R:s = R1U Idp,, U RyU Idp,, and analougously for R} || R}, (***) can be proved by the
proof of two inclusions, one concerning R; and the other R;. We show the inclusion concerning R;.

(01N g2) o (R7TU Idp,,) C (R7™'U Idp,,,) o (01N g2) can be expressed as
V(dl1~dl7£) V(dlAsdA';d2_A) - [a(dlvdvd_2) . gl((dlvd)v(dlAvdA)) and g?((dvdz)v(dA-;dZA)) and
Ry((d1,d),(d},d")) and dy = d} implies

Ad 4, Ay, dyy) - 01((dr, d'), (d 4, dy)) and go((d', dy), (dy, d54)) and
Bi((dia,da), (dy 4, dy)) and dya = d; 4 |-

This can be obtained from the first part of (*) (see its expression in the preceding proof item (2))
by adding all the underlined parts. Thus, in order to deduce (***) from (*) we have to prove that
whenever g2((d,ds),(d4,dz4)) then also g2((d'dy), (d'y,d2.4)); this is satisfied if in the relation g2
the values of Ds;4 depend only on D-; and not on D.. Notice that this condition is also necessary
if we have no more information concerning R;.

2. Similar as in the preceding case we can decompose the inclusion into two parts. We show,

(017' o Ri001)N Idp,,, C (01N 02) o (RN Idp,,)o (01N 02).

We have,

Xi=(a17"oRioo)N Idp,, ={((dia,da,d2a),((d)4,dy,dy,)) | I(di,d)3(d],d') .
01 (d1,d), (dy 1,.4)) and B (01,), (@) and (252)- (0} 1o@,)) and dpa = .1}
whereas

Xo= (01N g2)" o (RN Idp,)o (01N 02) = {((dia,da,doa), ((d) 4, dy,d54)) |
H(dladadl)a(dqadlaﬁ) . Ql((dlﬂd)a(dlAadA)) and Q2((d7 dz)ﬁ(dAad2A)) and

Ri((d1,d), (dy,d")) and o1((dy, d'), (d] 4, d'y)) and g2((d', d3), (d4,d5 1)) and dp = dj}

where the underlining indicates the differences between both expressions. In order to obtain X, C X;
it is sufficient to show that by adding the constraint dy4 = d/,, in X2 we do not obtain less. This
is guaranteed by the condition that gy; is a function, i.e. that for any d, there exists a unique dy4
such that gg;(da, d2 A).

3. In order to obtain (3), i.e., X1 C X5 we need the conditions

for each d,d4,dss 3ds . 92((d,d2),(da,d24)) and
whenever g3((d,dz2),(da,d24)) then also g2((d'd2),(d’y,d24)) as in the preceding case.

This is satisfied if in the relation g2 the values of Dy;4 depend only on Dj; and not on D, and if gy
is onto.

Proposition 3.3 Let be given transition relations R; € R(D;,D;), R; € R(D;a,D;4) and abstraction
relations g; € R(D;, D;4) total on D;, such that g1 N o is total on Dy U Dy and such that g; can be
put into the form p; = 0 N gic, where g € R(Dj1, Dija) and 0;c € R(D;, Dica), which means that the
abstract local variables depend only on concrete local variables, whereas abstract common variables may
depend on the values of any concrete variables. Then,

1. If ¢; can be considered as functions in [D; X D;ja — D] then,
Si vi-simulates Si, i =1,2 implies S1[A]S2 (01 N 02)-simulates ST [A] S
2. If 011, 021 are functions in [Dy — Dji4], then (Ry [A] R2)o1ne, C Ry, [A] Ry,
3. If g; can be considered as functions in [D;a X D;y — D.| and if 011, 021 are onto, then

Ry, [A] Ry, C (Bi[A] R2)eine

ez —

Proof: The fact that R, [| R: can be expressed by using only ® and || as given in Lemma 2.4 and that
the condition of both of the preceding propositions are satisfied is enough to prove the proposition. O

The following proposition illustrates, how the results above can be used to show in a very simple
manner well-known results.

Proposition 3.4 Let Ry € R(D1,D1), Ry € R(D2, D3) be transition relations.

1. Ry ® Ry o-simulates Ry for some ¢ such that VX C D;. pre[o](pre[o~ (X)) = X
2. Ry p-simulates Ry || Ry for some o such that VX C Dy. pre[p](pre[o™'](X)) =X

Proof: The required abstraction relations are
e op7={(d,d")|d€ DU Dy and d' € Dy and wp,(d)=d'} € R(D1U D4, D,) in case (1)
e and 92 = {(d',d) | d € Dy and d € Dw and wp,(d) =d'} € R(D1,D1 U D,) in case (2)
Notice that g; is a function but gy is not. O
By using the results given in [BBLS92|, Proposition 3.4 allows to deduce that formulas of OL,, (cf.

Section 5) are preserved from an asynchronous product to its components, and from each component
process to the synchronous product.

Now, we obtain from the preceding propositions and the fact that R| R = R for any transition relation
and any parallel operator, the results of [GL91] as a particular case for the operator ®.

4 Example

In this section we illustrate the propositions 3.2 and 3.3 with an example of a mobile moving on a grid.

The motion of a mobile on a grid is controlled by a controller so as to visit cyclically the points
CDACDA.... Initially the mobile is within the rectangle defined by the points (A, B,C, D) (see Figure
1). Its motion results of two independent motors.

Figure 1: Mobile

The motor Mx makes the mobile move horizontally and My vertically, the controller C'trl gives orders
to both motors.
We describe processes with a set of guarded commands of the following form:

(label) guard — command

where the label identifies the guarded command and can be used for synchronization, the guard is a
boolean condition which authorizes or not the execution of the command.

The motor Mx is defined on the variables:
- dirx: a three-valued variable denoting the movement direction (Left, Right or Stop);
- X: a real number which denotes the position of the mobile on the horizontal axe.
- dx is a random input and is a positive real number.

Its transition relation is given by:

Mx: (right) (dirx =R)A(X+6x <H) — X:=X+6x
(left) (diry = L)A(X —6x >0) — X:i=X—oy
(A) true — dirx =R
(C) true — dirx =1L
(D) true — dirx =8

The motor My is defined analogously.

My: (up) (diry =U)AY +6y <V) — Y =Y 46y
(down) (diry =D)A(Y =6y >0) — Y:=Y -6y
(A) true — diry :=U
(C) true — diry ;=8
(D) true — diry:=D

The controller is defined on four variables:
- X, Y denote the current position of the mobile,
- X¢,Yo are the coordinates of the previous visited control point.

Ctrl: (A) (Xe=0)AYec=V)A(Y =0) - Yo:=0
(C) (‘Yc=0)/\(YC=0)A(.X=H)/\(Y=V) — (Xc :=H)/\(YC :=V)
(D) Xe=H)AYc=V)A(X=0) - Xc:=0

The whole program is defined by (Mx || My) |[(4,A4), (C,C),(D,D)]| Ctrl.

This system has an infinite number of states as the mobile can be in any position within the rectan-
gle defined by the points A, B, C' and D.

In order to verify that the mobile visits cyclically the points A, C' and D, if it is correctly initialized,
the only information we need is whether each coordinate X (respectively V') is equal to 0, is between 0
an H (respectively V') or is equal to H (respectively V).

We propose the following abstraction relations consisting in replacing the coordinates X and Y by
three-valued variables € {ho, h1,hy} and y € {vg,v1,v2} and replacing in the controller the coordinates
of the control point X¢ and Y by a three-valued variable Pep € {A, C, D} recording the previous visited
control point.

ox: (di?")ﬁX) X(dirx,)lff
”L‘—hg/\X—O) (r:hl/\0<X<H)V(x=h2/\X=H)

(
ov: (diry,Y)oy(diry,y) iff
(y=vwAY=0)V(y=un A0<KY <V)V(y=v AY =V)

octrl: (_Xc,YC,_X—,Y),QCW](PCP,I',y) iff
(t=hAX =0 V(=M AKX <H)V(zx=hy AX = H)]A
(y=voAY =0)V(y=v1 AOKY <V)V(y=v2AY =V)]A
[(Pep=AANXc=0AYec=0)V(Pep=CAXec=HANYc=V)V(Pep=DAXc=0AYc=V)]

Note that the domains of Mx and My are independent and so are the respective abstractions. We
compute the following abstractions for the motors and the controller:

(Mx)ox: (right) (dirx =R)A(z=ho) — x:=h
(right) (dirx = R)A(x=h1) — az:=hjorz:=hy
(left) (dirx =L)A(z=hy) — z:=Mh
(left) (dirx =LYA(x=h1) — ax:=hgorz:=mh
(A) true — dirx :=R
(C) true — dirx =1L
(D) true — dirx =8
We obtain an analogous abstract program for My .
(Ctrl)oe,: (A) (Pep=D)A(yo =) — Pcp:=A
(C) (Pep=A)AN(z=h))AN(y=v3) — Pep:=C
(D) (Pcp=C)A(xg=ho) — Pep:=D

From propositions 3.2 and 3.3 and the fact that ox N oy N 9cert = 0041 We have that
Py (Mx)ox || (My)oy,) (A A),(C,C).(D,D)]| Ctrl,,,,, is an gcyr-abstraction of P.

10

5 Preservation of properties

It is interesting to characterize the “global” properties preserved by the abstraction relation g1 N g2 on
the compositions of abstract programs defined previously.

From the results given in [BBLS92] we have the following result on preservation of properties of OL,,,
which is the fragment of the y-calculus of [Koz83], consisting of the formulas without occurrences of nega-
tions and using only universal quantification on paths. OL, is strictly more expressive than linear time
p-calculus, and therefore contains all regular safety properties.

For a transition relation R, the meaning of formulas are subsets of the domain D of R, where the
meaning of atomic predicates in P is given by an interpretation function I : P — 2P,

We say R satisfies f or R |=r f if the meaning of f depending on the transition relation R and inter-
pretation function I is equal to D.

In order to verify a property f of OL, on a program R on D with interpretation functions of atomic
predicates I : P — 2P respectively I4 : P — 2P4, we can proceed as follows: find an abstraction relation
¢ and then,

(1) Verify RQ |=p,ne[971]o] f
or

(2) Verify R, =1, f.
We know from [BBLS92] that in case (1), we have R, }=p,.c[o-1]or f implies

R 'zpre[g]opre[gfl]ol f

Thus, in order to obtain the initially required result, R = f
we need for any predicate symbol p occurring in f

I(p) C prefolopre[o~ "o I (p) (*)

As the opposite inclusion is always true, (*) equivalent to

pre[o] opre[o oI (p) = I(p).

Analogously, in case (2) R, |51, f implies R =01, f-
As before, in order to be sure, that f is the same property on both interpretations, we need to know
that all predicates p occurring in f,

pre[o™"opre[o] o I (p) = La(p),

i.e. I4(p) is in the image of o on which pre[p] defines an isomorphism from image(g) onto image(g™?)
[Ore44].

Therefore, we already know which type of formulas we are allowed to verify on abstract programs.
Here, we are interested in characterizing the set of predicates (considered as subsets of the domain D,
respectively D’) of the composed concrete program that can be used in these formulas, such that f is
preserved in the way explained above.

Definition 5.1 (Preservation of predicates)

Let be D, D4 domains, I : P — 20 respectively I4 : P — 2P4 interpretation functions of atomic
predicates and o an abstraction relation in R(D,D). Then we say for a predicate p that it is preserved
by o iff . _)

prefo]oprefo™ | o1 (p) = I(p) respectively pre[o™] opre[o] o Ls (p) = La(p).

11

Notice that this notion of preservation of predicates depends only on the abstraction relation g, and
not on the particular program (i.e. transition relation) under study.

In the following proposition, we characterize a set of predicates on domains of programs of the form
R | Ry that is preserved by relations of the form g1 N gy as in the Propositions 3.1 to 3.3.

Proposition 5.2 Let 9; € R(D;, D;4), i = 1,2 be abstraction relations total on D; and such that 910 gy
is total on D1 U Dy. Let p be a subset of D1 U Dy (interpretation of some atomic predicate) that can be
put into the form |, pi 0 p? where p} C Dy and p? C Dy and J finite; let p4 be a subset of D1aU D
that can be put into the form Uier' p}u N pi“- where p}M C D4 and pi“- C Dyy and J' finite. Then,

o If all the pf-. are preserved by g; (fori€J and j =1,2), p is preserved by o1 N 0.
o If all the pf;h. are preserved by o; (fori€J' and j =1,2), pa is preserved by o1 N 0.

Proof: p're[g](pre.[g’l](ui pi)) = U; prelo](prelo'](pi)) and Vie J
prefe;)(prelo; '1(p})) = pi,j = 1,2 implies
prefer N a](prefoy N e2](pi N p7)) = prefodl(preloy '1(pi)) N prefoa](prelo, '1(pF)) = pi N pF. B

Comment: Notice that not only sets of this form may be preserved by g; N g5.

However, in the case that g; N g2 is a product of independent relations, i.e., g1 N g2 = g11 X 0 X 022,
as it has been required in propositions 3.2 and 3.3, pre[gy N g2] o pre[o;* N 02] is of the form (prefg;1] o
prefon,']) x (pre[o] o prefo]) x (preloss] o prefoyy).
Then, only sets p which can be put into the form

U »inpinp
ieJ

where p} C Dy, pf € D, and p? C Dy (using the same convention concerning the structure of Dy U Do
as before). are preserved by g1 N go iff all the p} are preserved by gi1, all the p? are preserved by ¢ and
all the p% are preserved by g22. That means instead of dealing with relations in R(D; U Dy, D14 U Day)
we deal only with relations on subdomains.

6 Example continued

From the results given in [BBLS92] we have that for any formula f in OLy and any interpretation function
I of atomic predicates on the abstract domain,

P4 |1 f implies P =pciglor f

The following CTL formula expresses the fact that the mobile, if it is correctly initialized and does
effectively change control points, visits the control points A, C' and D cyclically. This formula can be
translated into a OLyu formula.
f = (Pcp=A)implies ~(Pcp = D) until (Pcp=C) A
(Pcp = C') implies =(Pcp = A) until (Pcp = D) A
(Pcp = D) implies =(Pcp = C') until (Pcp = A)
In order to be sure that the formula is preserved, we have to verify that predicates that appear in the
formula are preserved. The predicates involved in the formula appear only in gc¢r;, We verify:

prelogy(prelocen)(I(Pep = A))) = I(Pep = A)

This equality is obvious, and so are the equalities for the other predicates.

12

7 Discussion

We have studied property preserving abstractions of composed programs for a general notion of parallel
composition. The results are close to those given in [Kur89] in the linear framework and are extensions
of those given in [GL91].

A key idea is the parametrization of simulations by a relation g which allows the computation of an
abstract program (an idea which has been extensively used in the domain of abstract interpretation, cf.
e.g. in [CC77]) and is good means to express composition of simulations.

The presented results are exploited in a tool which is currently being implemented. Its inputs are expres-
sions using parallel and abstraction operators on boolean guarded command programs. The evaluation
of such an expression results in guarded command program. Moreover, our tool verifies symbolically any
p-calculus formula on programs and allows to know whether basic predicates are preserved, in sense of
definition 5.1, by the applied abstractions.

Programs are represented by sets of relations instead of just a relation. Internally, each guarded command
is implemented by a BDD (“Binary Decision Diagrams” [Bry86]) which is an efficient representation of
boolean expressions. We never compute the BDD corresponding to the global transition relation as

e for the operator [|, we need the transition relations of each guarded command.

e the space needed for representation in memory of a set of relations is likely to be much smaller than
that needed to represent the global transition relation [HDDY92].

The tool will be connected to the Caesar tool [GS90a], which translates Lotos programs into Petri
nets. For an important subclass of Lotos programs, these Petri nets can easily be translated into parallel
compositions of boolean guarded command programs, which will allow to test the tool for important
examples.

All the results obtained here are also valid if one represents programs by sets of functions and this
should allow to obtain still smaller representations of programs as shown in [Fil91]. However, in case
of functional representation, the abstract program cannot in all cases be computed as easily as R, for
a program R and a relation g. Experimentation is still necessary to compare the efficiencies of the two
approaches.

Acknowledgements

We thank Saddek Bensalem and Joseph Sifakis for many helpful discussions and judicious remarks.

References

[AL8S] M. Abadi and L. Lamport. The ezxistence of refinement mappings. Technical Report SRC-29,
DEC Research Center, 1988.

[BBLS92] A. Bouajjani, S. Bensalem, C. Loiseaux, and J. Sifakis. Property preserving simulations. In
Workshop on Computer-Aided Verification (CAV), Montréal, To appear in LNCS, 1992.

[BK8&5] J. A. Bergstra and J.W. Klop. Algebra of communicating processes with abstraction. T'CS,
37 (1), 1985.

[Bry86] R. E. Bryant. Graph based algorithms for boolean function manipulation. IEEE Trans. on
Computation, 35 (8), 1986.

[CCTT] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In 4th POPL, January 1977.

13

[CGLY1]

[CMSS§]
[CS90]

[Fil91]

[GL91]

[GS86]

[GS90a]

[GS90b]

[GWS9]

[HDDY92]

[HMS85]

[Hoa84]
[ISO89]

[KK86]

[Koz83]

[Kur89]

[Lam91]

[LT88a]

[LT88h)]

E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. In Symposium
on Principles of Programming Languages (POPL 91), ACM, October 1991.

K. M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley, Massachusetts, 1988.

R. Cleaveland and B. Steffen. When is “partial” adequate? a logic-based proof technique
using partial specifications. In LICS, 1990.

T. Filkorn. Functional extension of symbolic model checking. In Workshop on Computer-

Aided Verification 91, Aalborg (Denmark), LNCS Vol. 575, June 1991.

O. Grumberg and E. Long. Compositionnal model checking and modular verification. In
J.C.M. Baeten and J.F. Groote, editors, Concur’91, pages 250-265, LNCS 527, Springer-
Verlag, 1991.

S. Graf and J. Sifakis. A logic for the specification and proof of regular controllable processes
of CCS. Acta Informatica, 23, 1986.

Hubert Garavel and Joseph Sifakis. Compilation and verification of Lotos specifications. In L.
Logrippo, R. L. Probert, and H. Ural, editors, Proceedings of the 10th International Symposium
on Protocol Specification, Testing and Verification (Ottawa), IFIP, North Holland, Amsterdam,
June 1990.

S. Graf and B. Steffen. Compositional minimisation of finite state processes. In Workshop on
Computer-Aided Verification, Rutgers, LNCS 531, June 1990.

R.J. Van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation se-
mantics (extended abstract). CS-R 8911, Centrum voor Wiskunde en Informatica, Amsterdam,
1989.

A.J. Hu, D.L. Dill, A.]J. Drexler, and C.H. Yang. Higher-level specification and verification
with bdds. In 4th Workshop on Computer-Aided Verification (CAV92), Moniréal, To appear
in LNCS, Springer Verlag, June 1992.

M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal of
the Association for Computing Machinery, 32:137-161, 1985.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International, 1984.

ISO. IS ISO/0SI 8807 - LOTOS: a formal description technique based on the temporal order-
ing of observational behaviour. International Standard, ISO, 1989.

J. Katzenelson and B. Kurshan. S/R: A Language for Specifying Protocols and other Coordi-
nating Processes. In 5th Ann. Int’l Phoeniz Conf. Comput. Commun., pages 286-292, IEEE,
1986.

D. Kozen. Results on the propositional p-calculus. In Theoretical Computer Science, North-
Holland, 1983.

R.P. Kurshan. Analysis of discrete event coordination. In REX Workshop on Stepwise Re-
finement of Distributed Systems, Mook, LNCS 430, Springer Verlag, 1989.

L. Lamport. The Temporal Logic of Actions. Technical Report 79, DEC, Systems Research
Center, 1991.

K. G. Larsen and B. Thomsen. Compositional proofs by partial specification of processes. In
LICS 88, 1988.

N.A. Lynch and M.R. Tuttle. An introduction to Input/Ouput Automata. MIT/LCS/TM 373,
MIT, Cambridge, Massachussetts, November 1988.

14

[Mil71] R. Milner. An algebraic definition of simulation between programs. In Proc. Second Int. Joint

Conf. on Artificial Intelligence, pages 481-489, BCS, 1971.
[Oredd] O. Ore. Galois connexions. Trans. Amer. Math. Soc, 55:493-513, February 1944.
[SGI0] G. Shurek and O. Grumberg. The Modular Framework of Computer-aided Verification: Mo-

tivation, Solutions and Evaluation Criteria. In Conference on Automatic Verification (CAV),

Rutgers, NJ, LNCS 531, Springer Verlag, 1990.

[Wal88] D. J. Walker. Bisimulation and Divergence in CCS. In 8th Symposium on Logic in Computer
Science (LICS 88), IEEE, 1988.

15

