
A Model Transformation Tool for Performance Simulation 
of Complex UML Models 

Olivier Constant 
Verimag 

Centre Equation, 2 av de Vignate 
38610 Gières, France 

olivier.constant@imag.fr 

Wei Monin 
France Télécom R&D 

28 chemin du Vieux Chêne 
38243 Meylan, France 

wei.monin@orange-ftgroup.com 

Susanne Graf 
Verimag 

Centre Equation, 2 av de Vignate 
38610 Gières, France 

susanne.graf@imag.fr 
 
 

ABSTRACT 
Telecommunication operators need to continuously deploy 
innovative, functionally complex services that are by nature 
sensitive to performance issues. Performance analysis of complex 
services is a costly activity that suffers from the decoupling 
between design and performance modeling. To help overcome 
this difficulty, we propose a tool that automatically transforms 
UML2 models with complex behavior to performance models for 
a commercial simulator. The tool is extendible to other front-end 
design languages and other back-end performance tools, thanks to 
an intermediate metamodel with clear operational semantics. 

Categories and Subject Descriptors 
D.2.1 [Software Engineering]: Requirements/Specifications – 
elicitation methods, languages, methodologies, tools. 

General Terms 
Performance, Design, Languages. 

Keywords 
Performance simulation, UML, Model transformation. 

1. INTRODUCTION 
The ever growing weight of software in the telecommunication 
industry is illustrated by the strong competition of 
telecommunication operators for the provision of innovative 
services which become increasingly functionally complex. 

These services are by nature sensitive to performance issues for at 
least two reasons. First, they are implemented on top of 
distributed, heterogeneous deployment infrastructures. Processing 
nodes and network links are resources that can represent 
bottlenecks for the overall system’s performance. And second, the 
services are subject to an uncontrolled number of concurrent 
requests from clients. Request arrival patterns, that can be 
arbitrary, have a huge influence on the system’s overall 
performance. 

Performance analysis is thus a key factor to the success of the 
design and development of these systems. Performance analysis 
of complex systems can be achieved by simulation. It consists in 
executing a performance model of the system, generally 
expressed in a specialized language based on Queueing Networks 
or Petri nets. At the early stages of design, performance 
simulation provides end-to-end response time and throughput 
estimations that allow to detect problematic architectural 

decisions [14]. At later stages, it allows to determine an 
acceptable tradeoff between performance and resource cost. 

Nonetheless, performance simulation is rarely applied in real-life 
projects. Building a performance model of a complex system is a 
costly task that requires expertise. Moreover, “functional” design 
modeling and performance modeling differ in terms of 
terminology, languages and tools. When design and performance 
models of the same system are created, there is usually no 
guarantee that they are consistent with each other. 

To reduce the gap between the roles of system designer and 
performance expert, a solution consists in enriching design 
models with performance information before transforming them 
to a performance model. We propose a model transformation tool 
that performs automatic translation from UML2 design models to 
models for a commercial performance simulator, HyPerformix 
Workbench [7]. The main strength of our tool, which is a result of 
the Persiform project [12], is its support for complex behaviors. 

The tool helps reduce the cost of producing a performance model, 
and provides guarantees of consistency between a design model 
and its corresponding performance model. The tool is extendible 
to other front-end design languages and other back-end 
performance tools, thanks to a dedicated intermediate metamodel 
with clear operational semantics. 

This article is structured as follows. The originality of the tool 
regarding related work is stressed in Section 2. How the tool is 
used and what features it supports are presented in Section 3. 
Section 4 gives an overview of the tool’s design principles and 
finally Section 5 describes how the tool was validated against 
case studies. 

2. RELATED WORK 
A number of research works, e.g. surveyed in [2], have 
investigated approaches where early design models are 
transformed into performance analysis models. More recent works 
tend to apply Model-Driven Engineering (MDE) technologies for 
the same purpose [1, 6, 9, 13, 15, 16]. 
Most of these approaches share a common focus on the early 
stages of design and the application of analytical methods rather 
than simulation. The behavioral aspects of models are therefore 
simpler than what simulation allows. In addition, to our 
knowledge, no approach connects to a commercial simulator. The 
quality of the analysis tool, however, is a factor for the 
effectiveness of performance analysis. 



Also, few of these approaches mention the issue of the systematic 
treatment of models and subsequent semantic difficulties. Formal 
semantics is rarely invoked, with the notable exception of [9]. 
Some of the aforementioned works are based on OMG profiles for 
UML, in particular the SPT profile [11]. Future works relying on 
the new MARTE profile [10] are expected. Our tool is also based 
on a UML profile, but it is independent of MARTE or SPT. While  
these OMG profiles provide a generic syntax based on a unified 
domain model, transforming models for simulation requires 
precise operational semantics, which can only be given to a 
restricted, focused syntax. Nonetheless, our profile could 
profitably be based on a subset of MARTE. It is not because 
MARTE was not available early enough for the Persiform project. 

3. TOOL USAGE 
From the user’s perspective, the front-end side of our tool is a 
UML2 profile for the Eclipse-based Rational Software Modeler 
(RSM) design tool. 

This profile pursues two objectives: (1) constrain the system 
designer to use UML in a way that is consistent with the 
methodology, and (2) allow the performance expert to complete 
the UML design model with performance information. This 
information can be edited via the design tool’s GUI. 

The profile focuses on Use Case Diagrams, Deployment 
Diagrams and Activity Diagrams (Figure 1). All other UML 
diagrams are allowed, but they are ignored by the transformation 
tool. 

3.1 Structure Design 
Use Case Diagrams allow the designer to identify the main 
services provided by the system and pinpoint related actors, 
which are classes of clients, in the environment. The performance 
expert may associate request arrival patterns with actors. 

Deployment diagrams are a means to specify the allocation of 
software units (artifacts) onto the system’s deployment 
infrastructure. The performance expert may enhance the 
definition of the infrastructure with resource information. A 
deployment node may be associated with resources such as CPUs, 
memories, network links or semaphores with specific 
characteristics. 

3.2 Behavior Design 
The critical point is the support for behavior. For simulation 
purposes models need to be executable, that is, they must have 
unambiguous operational (behavioral) semantics. To achieve this 
in UML, the syntax of UML behaviors must be restricted to an 
appropriate, consistent subset. This stands even if UML models 
are not executed directly but rather transformed to a simulation 
language. 

A major strength of our tool is its full support for a significant 
subset of UML Activity Diagrams. It leaves the designer with the 
ability to specify models that are behaviorally complex yet 
elegant, while guaranteeing their adequacy to performance 
simulation. This subset is further extended to tackle semantic 
variation points and performance modeling concerns. 

Activities in our profile describe the behavior of use cases, that is 
the overall processing of a client request by the system. An 
activity is a reusable, encapsulated graph of actions and control 

nodes. It may own datatyped variables and in/out parameters. An 
activity may (synchronously) call other activities by means of 
particular actions with parameter passing. 

A control node can be a fork/join, a probabilistic or deterministic 
decision point, an initial node, or a final node of a certain kind. 
An action may compute data, block until some condition becomes 
true, or consume time. The details of actions are specified in C 
code, possibly involving predefined probability distribution 
functions. 

In addition, actions may represent resource consumptions that are 
specified by the performance expert: CPU time consumption, 
memory allocation/release, semaphore take/release, data sending 
through a network link. A resource consumption is associated to a 
software unit, which links to actual resources via the deployment 
relationship. 

 
Figure 1. A simple UML model, consistent with our profile 

3.2.1 Treatment of semantic ambiguities 
The selected UML subset includes a number of semantically 
ambiguous elements. In some cases, it is possible to impose a 
precise semantics because it suits most designers. In other cases, 
we have to give the designer the flexibility to use a default 
semantics or choose an alternative one. 

For this purpose, the profile defines some syntactic extensions for 
advanced designers. These extensions mostly relate to 
concurrency. An activity may have several concurrent 
“executions” due to multiple calls, and executions may in turn 
contain several concurrent “threads” according to fork/join nodes. 
Hence the following choices and extensions: 

− Variables (attributes) of an activity are by default shared by all 
threads of all executions of the activity (they represent the 
system state). The designer may alternatively tag a variable as 
kind “flow”, meaning that every thread has its own copy of the 
variable. This is useful for local data manipulation such as e.g. 
loop iterators. 

− Join nodes are hard to interpret unless they occur in simple 
fork/join patterns in loop-free activities. To cover all usage 
cases, two kinds of synchronization and a notion of causality 
thread have been added to the syntax. 

− To support the joint use of join nodes and flow variables, a 
syntax extension allows the designer to specify the value of 
flow variables of the thread leaving the node (Figure 2). 

− UML defines two kinds of final nodes with different 
semantics. Two additional kinds have been added for a finer 
support of concurrency [3]. 



Figure 2. Specifying a flow variable (flowAtt) in a join node 

This systematic treatment of semantic ambiguities is a 
prerequisite for guaranteeing the transformability of all consistent 
models. 

3.3 Consistency Check and Transformation 
The user can check that a model is syntactically consistent with 
our methodology at any time. Consistency is defined in the profile 
as a set of OCL constraints (rules of static semantics). These 
constraints can be tested against the model from within the design 
tool via its validation facilities. All constraint violations are 
notified. 

A consistent model can be automatically transformed via the 
design tool’s GUI by a transformation based on the ATL model 
transformation engine [8]. The output is a file that can be opened, 
browsed and exploited with the HyPerformix Workbench 
simulator. 

4. TOOL DESIGN 
The tool architecture can be described at two different levels of 
abstraction: concept transformation at a high level, then 
transformation artifacts at a technical level. 

4.1 Architecture: Conceptual Level 
Our tool uses an intermediate metamodel, which is called PF, to 
enhance maintainability and extendibility (Figure 3). The goal of 
PF is to make explicit all executable concepts and to define their 
operational semantics in terms of a formalism with a well-
understood semantics. 

For that purpose, PF is built upon concepts as they exist in two 
well-known frameworks: Petri nets and Queueing Networks. Petri 
nets are appropriate for expressing concurrency and 
synchronization, while QNs represent resource consumptions in a 
high-level manner. In PF, resource consumptions occur when 
certain Petri net transitions are fired. In addition, PF encompasses 
time, data, probabilities and parameterized modules (Figure 4). 

The first step of the transformation process (UML2PF) consists in 
giving UML models a clear operational semantics in terms of a 
PF model. The second step (PF2WB) consists in translating PF 
models into a Workbench model that has an equivalent semantics. 
PF concepts that do not exist per se in Workbench are translated 
to C code. 
Thanks to the clear operational semantics of PF, our tool can be 
extended to other front-end design languages, and to other back-
end performance simulation languages of equivalent expressive 
power. A successful experiment has been carried out in the 
Persiform project with the introduction of annotated Message 
Sequence Charts as another front-end [4, 12]. 

 
Figure 3. Conceptual view of the transformation process 

 
Figure 4. Example of a PF model (arbitrary representation) 

4.2 Architecture: Technical Level 
For the purpose of generating a concrete performance simulation 
file, more is needed than transformation of concepts (Figure 5). 
Two last transformation steps take care of generating: (1) a file 
that conforms to the simulator’s XML format, and (2) a graphical 
layout so that the simulator is able to display a model which is 
readable by the performance expert. The last step makes use of 
the Graphviz tool [5]. 

 
Figure 5. Technical view of the transformation process 

Almost all transformation steps have been implemented in ATL 
[8] in a fully declarative style. This results in high-level, readable 
code whose maintainability and extendibility have already been 
tested with success. 

5. TOOL EVALUATION 
The tool has been experimented on three case studies provided by 
industrial partners of the Persiform project. The first one is a DSL 
registration system. Its non-trivial size (17 Activity Diagrams) 
and complex behavioral patterns allowed testing the tool’s 
robustness. 



The second case study is a military command and information 
system. It enabled us to cover a significant subset of the concepts 
supported by the tool. Performance simulation showed that the 
design of the system as it was initially modeled was 
inappropriate; indeed, the management of user sessions was too 
permissive (Figure 6). 
The third case study, a service integration platform, allowed 
validating the semantics. Since there existed a legacy Workbench 
model of the system built “from scratch”, its simulation results 
were compared to results obtained from a UML model of the 
system via our tool. Both outputs turned out to be equivalent, as 
expected. Of course, additional experiments would increase 
confidence. 

  
Figure 6. A Workbench model produced by the tool and 
corresponding performance results showing an explosion of 
the number of pending CPU consumption requests. 

6. CONCLUSION 
We have presented a tool that is able to transform complex UML 
models of service-oriented systems to exploitable performance 
simulation models. The tool takes advantage of the capabilities of 
performance simulation thanks to a rich intermediate metamodel 
with a clear operational semantics. We have tested that the 
combined use of a modular architecture and high-level model-
driven engineering technologies give the tool an interesting level 
of maintainability and extendibility. 
Current limitations are related to the consistency checking of 
UML models. Although a set of consistency constraints has been 
defined in the profile, it is difficult to define an exhaustive one. 
Also, the tool does not parse and check textual expressions of 
UML models (C conditions and actions on variables). They are 
kept as strings throughout the transformation process and only 
checked and compiled by Workbench. 
Perspectives include the redefinition of the profile with a relevant 
subset of the MARTE profile. This will allow users to access a 
standard syntax for performance information. In terms of 
application domains, the tool is planned to be extended in order to 
be applied on avionic systems. 
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8. APPENDIX A: DEMONSTRATION 
The demonstration will be organized as follows. 

8.1 Introduction (Slides and Demo) 
8.1.1 Context: Service-oriented systems (Slide) 
What are the characteristics of these systems and why 
performance is an issue. 

8.1.2 Existing techniques for performance evaluation 
(Slide) 
Complementary techniques with their own advantages and 
drawbacks: analytical methods, simulation, prototyping. 

8.1.3 Modeling with HyPerformix Workbench 
(Demo) 
Main concerns in performance modeling: resource contention, 
causal flows, time consumption, resource modeling, 
environmental conditions. Tradeoff: realism of the model vs. 
simulation cost. 
Expected outputs and how to use them. 

8.1.4 Relationship Between Design and Performance 
Modeling (Slide) 
Common concerns: causal flows (behaviors), functional delays, 
synchronizations, deployment. 
Differences: 

− Performance-specific concerns (environment, resource 
consumptions, time-based abstractions). 

− Not all levels of abstraction in design models are relevant 
w.r.t. performance modeling. 

8.2 Tool overview (Demo) 
What the tool does. 
How it integrates with Rational Software Modeler on the Eclipse 
platform. 
Its architecture and its design rationale. 

8.3 Case Study: The Military Command and 
Information (MCI) System (Demo) 
8.3.1 Informal presentation of the system 
Who is the client, what are the main functional and non-functional 
requirements. 

8.3.2 Specification: Use Case Diagram 
How and why Use Case Diagrams are used. How the performance 
expert completes the model. 

8.3.3 Specification: Deployment Diagram 
Similar to Use Case Diagram. 

8.3.4 Specification: Activity Diagrams 
Decomposing the behavior into activities. 
Identifying and designing reusable activities. 
Specifying the content of activities. Concepts used: 

− Sub-activity calls with parameter passing. 
− “Shared” and “flow” variables, data computations. 
− Deterministic and probabilistic choices. 
− Forks and loops. 
− Specific final nodes. 
− Delays and resource consumptions: CPU time and memory. 

8.3.5 Tool application, simulation, results 
Transformation of the UML model by our tool. 
Viewing the generated model with Workbench. 
Configuration of the model for simulation experiments. 
Graphical animation. 
Outputs obtained, conclusions on the modeled system. 

8.4 Case Study: Traditional Performance 
Modeling vs. Model Transformation 
Approach (Demo) 
8.4.1 Informal presentation of the IOS-W system 

8.4.2 Comparison between the legacy “from 
scratch” performance model and the “UML-based” 
model 

8.4.3 Checking semantic equivalence 
Comparison of simulation outputs obtained from both models. 

8.4.4 Conclusion 
− Traditional “from scratch” approach: smaller model, clever use 

of the simulator’s modeling concepts, better efficiency. But the 
relationship with the design model is unclear. 

− Model transformation approach using our tool: performance 
model is less elegant but semantically equivalent (same 
simulation results). This approach saves time and reduces 
costs, and guarantees that the performance model is consistent 
with the design model. 

8.5 Advanced Features of the Tool (Demo) 
− Distinguishing causal flows in activities. 
− Weak and strong synchronization in join nodes. 
− Specification of flow variables in join nodes. 
− Combining final nodes in complex model configurations. 
− Using priorities in resources. 
 



APPENDIX B: SCREEN DUMPS 
 

 
8.3.2: Use Case Diagram of the MCI System with our profile’s performance extensions. 

 

 
8.3.4: Activity Diagrams of the MCI System: the HandlePeriodicExtraction sub-activity. 

 



 
8.3.5: Running our tool on the MCI System model via the ATL GUI. 

 

 
8.3.5: Visualizing and animating the generated Workbench model. 

 



 
8.3.5: Measuring CPU load, memory usage and end-to-end response time during the simulation of the MCI System. 

 

 
8.4.2: Deployment Diagram of the IOS-W system with performance extensions. 

 



 
8.4.3: Comparing simulation results of the traditional approach and the approach based on our tool. 

 

 
8.5: Combining final nodes in a UML model and visualizing the execution of the generated Workbench model. 
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