
A Model Transformation Tool for Performance Simulation
of Complex UML Models

Olivier Constant
Verimag

Centre Equation, 2 av de Vignate
38610 Gières, France

olivier.constant@imag.fr

Wei Monin
France Télécom R&D

28 chemin du Vieux Chêne
38243 Meylan, France

wei.monin@orange-ftgroup.com

Susanne Graf
Verimag

Centre Equation, 2 av de Vignate
38610 Gières, France

susanne.graf@imag.fr

ABSTRACT
Telecommunication operators need to continuously deploy
innovative, functionally complex services that are by nature
sensitive to performance issues. Performance analysis of complex
services is a costly activity that suffers from the decoupling
between design and performance modeling. To help overcome
this difficulty, we propose a tool that automatically transforms
UML2 models with complex behavior to performance models for
a commercial simulator. The tool is extendible to other front-end
design languages and other back-end performance tools, thanks to
an intermediate metamodel with clear operational semantics.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
elicitation methods, languages, methodologies, tools.

General Terms
Performance, Design, Languages.

Keywords
Performance simulation, UML, Model transformation.

1. INTRODUCTION
The ever growing weight of software in the telecommunication
industry is illustrated by the strong competition of
telecommunication operators for the provision of innovative
services which become increasingly functionally complex.

These services are by nature sensitive to performance issues for at
least two reasons. First, they are implemented on top of
distributed, heterogeneous deployment infrastructures. Processing
nodes and network links are resources that can represent
bottlenecks for the overall system’s performance. And second, the
services are subject to an uncontrolled number of concurrent
requests from clients. Request arrival patterns, that can be
arbitrary, have a huge influence on the system’s overall
performance.

Performance analysis is thus a key factor to the success of the
design and development of these systems. Performance analysis
of complex systems can be achieved by simulation. It consists in
executing a performance model of the system, generally
expressed in a specialized language based on Queueing Networks
or Petri nets. At the early stages of design, performance
simulation provides end-to-end response time and throughput
estimations that allow to detect problematic architectural

decisions [14]. At later stages, it allows to determine an
acceptable tradeoff between performance and resource cost.

Nonetheless, performance simulation is rarely applied in real-life
projects. Building a performance model of a complex system is a
costly task that requires expertise. Moreover, “functional” design
modeling and performance modeling differ in terms of
terminology, languages and tools. When design and performance
models of the same system are created, there is usually no
guarantee that they are consistent with each other.

To reduce the gap between the roles of system designer and
performance expert, a solution consists in enriching design
models with performance information before transforming them
to a performance model. We propose a model transformation tool
that performs automatic translation from UML2 design models to
models for a commercial performance simulator, HyPerformix
Workbench [7]. The main strength of our tool, which is a result of
the Persiform project [12], is its support for complex behaviors.

The tool helps reduce the cost of producing a performance model,
and provides guarantees of consistency between a design model
and its corresponding performance model. The tool is extendible
to other front-end design languages and other back-end
performance tools, thanks to a dedicated intermediate metamodel
with clear operational semantics.

This article is structured as follows. The originality of the tool
regarding related work is stressed in Section 2. How the tool is
used and what features it supports are presented in Section 3.
Section 4 gives an overview of the tool’s design principles and
finally Section 5 describes how the tool was validated against
case studies.

2. RELATED WORK
A number of research works, e.g. surveyed in [2], have
investigated approaches where early design models are
transformed into performance analysis models. More recent works
tend to apply Model-Driven Engineering (MDE) technologies for
the same purpose [1, 6, 9, 13, 15, 16].
Most of these approaches share a common focus on the early
stages of design and the application of analytical methods rather
than simulation. The behavioral aspects of models are therefore
simpler than what simulation allows. In addition, to our
knowledge, no approach connects to a commercial simulator. The
quality of the analysis tool, however, is a factor for the
effectiveness of performance analysis.

Also, few of these approaches mention the issue of the systematic
treatment of models and subsequent semantic difficulties. Formal
semantics is rarely invoked, with the notable exception of [9].
Some of the aforementioned works are based on OMG profiles for
UML, in particular the SPT profile [11]. Future works relying on
the new MARTE profile [10] are expected. Our tool is also based
on a UML profile, but it is independent of MARTE or SPT. While
these OMG profiles provide a generic syntax based on a unified
domain model, transforming models for simulation requires
precise operational semantics, which can only be given to a
restricted, focused syntax. Nonetheless, our profile could
profitably be based on a subset of MARTE. It is not because
MARTE was not available early enough for the Persiform project.

3. TOOL USAGE
From the user’s perspective, the front-end side of our tool is a
UML2 profile for the Eclipse-based Rational Software Modeler
(RSM) design tool.

This profile pursues two objectives: (1) constrain the system
designer to use UML in a way that is consistent with the
methodology, and (2) allow the performance expert to complete
the UML design model with performance information. This
information can be edited via the design tool’s GUI.

The profile focuses on Use Case Diagrams, Deployment
Diagrams and Activity Diagrams (Figure 1). All other UML
diagrams are allowed, but they are ignored by the transformation
tool.

3.1 Structure Design
Use Case Diagrams allow the designer to identify the main
services provided by the system and pinpoint related actors,
which are classes of clients, in the environment. The performance
expert may associate request arrival patterns with actors.

Deployment diagrams are a means to specify the allocation of
software units (artifacts) onto the system’s deployment
infrastructure. The performance expert may enhance the
definition of the infrastructure with resource information. A
deployment node may be associated with resources such as CPUs,
memories, network links or semaphores with specific
characteristics.

3.2 Behavior Design
The critical point is the support for behavior. For simulation
purposes models need to be executable, that is, they must have
unambiguous operational (behavioral) semantics. To achieve this
in UML, the syntax of UML behaviors must be restricted to an
appropriate, consistent subset. This stands even if UML models
are not executed directly but rather transformed to a simulation
language.

A major strength of our tool is its full support for a significant
subset of UML Activity Diagrams. It leaves the designer with the
ability to specify models that are behaviorally complex yet
elegant, while guaranteeing their adequacy to performance
simulation. This subset is further extended to tackle semantic
variation points and performance modeling concerns.

Activities in our profile describe the behavior of use cases, that is
the overall processing of a client request by the system. An
activity is a reusable, encapsulated graph of actions and control

nodes. It may own datatyped variables and in/out parameters. An
activity may (synchronously) call other activities by means of
particular actions with parameter passing.

A control node can be a fork/join, a probabilistic or deterministic
decision point, an initial node, or a final node of a certain kind.
An action may compute data, block until some condition becomes
true, or consume time. The details of actions are specified in C
code, possibly involving predefined probability distribution
functions.

In addition, actions may represent resource consumptions that are
specified by the performance expert: CPU time consumption,
memory allocation/release, semaphore take/release, data sending
through a network link. A resource consumption is associated to a
software unit, which links to actual resources via the deployment
relationship.

Figure 1. A simple UML model, consistent with our profile

3.2.1 Treatment of semantic ambiguities
The selected UML subset includes a number of semantically
ambiguous elements. In some cases, it is possible to impose a
precise semantics because it suits most designers. In other cases,
we have to give the designer the flexibility to use a default
semantics or choose an alternative one.

For this purpose, the profile defines some syntactic extensions for
advanced designers. These extensions mostly relate to
concurrency. An activity may have several concurrent
“executions” due to multiple calls, and executions may in turn
contain several concurrent “threads” according to fork/join nodes.
Hence the following choices and extensions:

− Variables (attributes) of an activity are by default shared by all
threads of all executions of the activity (they represent the
system state). The designer may alternatively tag a variable as
kind “flow”, meaning that every thread has its own copy of the
variable. This is useful for local data manipulation such as e.g.
loop iterators.

− Join nodes are hard to interpret unless they occur in simple
fork/join patterns in loop-free activities. To cover all usage
cases, two kinds of synchronization and a notion of causality
thread have been added to the syntax.

− To support the joint use of join nodes and flow variables, a
syntax extension allows the designer to specify the value of
flow variables of the thread leaving the node (Figure 2).

− UML defines two kinds of final nodes with different
semantics. Two additional kinds have been added for a finer
support of concurrency [3].

Figure 2. Specifying a flow variable (flowAtt) in a join node

This systematic treatment of semantic ambiguities is a
prerequisite for guaranteeing the transformability of all consistent
models.

3.3 Consistency Check and Transformation
The user can check that a model is syntactically consistent with
our methodology at any time. Consistency is defined in the profile
as a set of OCL constraints (rules of static semantics). These
constraints can be tested against the model from within the design
tool via its validation facilities. All constraint violations are
notified.

A consistent model can be automatically transformed via the
design tool’s GUI by a transformation based on the ATL model
transformation engine [8]. The output is a file that can be opened,
browsed and exploited with the HyPerformix Workbench
simulator.

4. TOOL DESIGN
The tool architecture can be described at two different levels of
abstraction: concept transformation at a high level, then
transformation artifacts at a technical level.

4.1 Architecture: Conceptual Level
Our tool uses an intermediate metamodel, which is called PF, to
enhance maintainability and extendibility (Figure 3). The goal of
PF is to make explicit all executable concepts and to define their
operational semantics in terms of a formalism with a well-
understood semantics.

For that purpose, PF is built upon concepts as they exist in two
well-known frameworks: Petri nets and Queueing Networks. Petri
nets are appropriate for expressing concurrency and
synchronization, while QNs represent resource consumptions in a
high-level manner. In PF, resource consumptions occur when
certain Petri net transitions are fired. In addition, PF encompasses
time, data, probabilities and parameterized modules (Figure 4).

The first step of the transformation process (UML2PF) consists in
giving UML models a clear operational semantics in terms of a
PF model. The second step (PF2WB) consists in translating PF
models into a Workbench model that has an equivalent semantics.
PF concepts that do not exist per se in Workbench are translated
to C code.
Thanks to the clear operational semantics of PF, our tool can be
extended to other front-end design languages, and to other back-
end performance simulation languages of equivalent expressive
power. A successful experiment has been carried out in the
Persiform project with the introduction of annotated Message
Sequence Charts as another front-end [4, 12].

Figure 3. Conceptual view of the transformation process

Figure 4. Example of a PF model (arbitrary representation)

4.2 Architecture: Technical Level
For the purpose of generating a concrete performance simulation
file, more is needed than transformation of concepts (Figure 5).
Two last transformation steps take care of generating: (1) a file
that conforms to the simulator’s XML format, and (2) a graphical
layout so that the simulator is able to display a model which is
readable by the performance expert. The last step makes use of
the Graphviz tool [5].

Figure 5. Technical view of the transformation process

Almost all transformation steps have been implemented in ATL
[8] in a fully declarative style. This results in high-level, readable
code whose maintainability and extendibility have already been
tested with success.

5. TOOL EVALUATION
The tool has been experimented on three case studies provided by
industrial partners of the Persiform project. The first one is a DSL
registration system. Its non-trivial size (17 Activity Diagrams)
and complex behavioral patterns allowed testing the tool’s
robustness.

The second case study is a military command and information
system. It enabled us to cover a significant subset of the concepts
supported by the tool. Performance simulation showed that the
design of the system as it was initially modeled was
inappropriate; indeed, the management of user sessions was too
permissive (Figure 6).
The third case study, a service integration platform, allowed
validating the semantics. Since there existed a legacy Workbench
model of the system built “from scratch”, its simulation results
were compared to results obtained from a UML model of the
system via our tool. Both outputs turned out to be equivalent, as
expected. Of course, additional experiments would increase
confidence.

Figure 6. A Workbench model produced by the tool and
corresponding performance results showing an explosion of
the number of pending CPU consumption requests.

6. CONCLUSION
We have presented a tool that is able to transform complex UML
models of service-oriented systems to exploitable performance
simulation models. The tool takes advantage of the capabilities of
performance simulation thanks to a rich intermediate metamodel
with a clear operational semantics. We have tested that the
combined use of a modular architecture and high-level model-
driven engineering technologies give the tool an interesting level
of maintainability and extendibility.
Current limitations are related to the consistency checking of
UML models. Although a set of consistency constraints has been
defined in the profile, it is difficult to define an exhaustive one.
Also, the tool does not parse and check textual expressions of
UML models (C conditions and actions on variables). They are
kept as strings throughout the transformation process and only
checked and compiled by Workbench.
Perspectives include the redefinition of the profile with a relevant
subset of the MARTE profile. This will allow users to access a
standard syntax for performance information. In terms of
application domains, the tool is planned to be extended in order to
be applied on avionic systems.

7. REFERENCES
[1] D’Ambroglio, A. 2005 A Model Transformation Framework

for the Automated Building of Performance Models from

UML Models. Proc. 5th ACM Workshop on Software and
Performance (Palma, Illes Balears, Spain, July 12 - 14,
2005).

[2] Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M. 2004
Model-based performance prediction in software
development: a survey. IEEE Trans. on Software Eng.,
vol.30 (5), May 2004, pp. 295-310.

[3] Bozga, M., Combes, P., Graf, S., Monin, W., Moteau, N.
2006 Qualification d’architectures fonctionnelles. Proc.
NOTERE Conf. (Toulouse, France, June 2006).

[4] Constant, O., Hélouët, L., Jard, C. 2006 Traduction des
Diagrammes d’Activités et des Message Sequence Charts
vers le formalisme intermédiaire des Réseaux de Petri
Colorés Stochastiques. Persiform Deliverable D3.1.

[5] Graphviz web page. http://www.graphviz.org
[6] Grassi, V., Mirandola, R., Sabetta, A. 2007 A model-driven

approach to performability analysis of dynamically
reconfigurable component-based systems. Proc. 6th ACM
Workshop on Software and Performance (Buenos Aires,
Argentina, February 5-8, 2007).

[7] HyPerformix web page. http://www.hyperformix.com
[8] Jouault, F., Kurtev, I. 2005 Transforming Models with ATL.

Proc. Model Transformations in Practice Workshop at
MoDELS (Montego Bay, Jamaica, 2005).

[9] Lopez-Grao, J.P., Merseguer, J., Campos, J. 2004 From
UML Activity Diagrams to Stochastic Petri Nets:
Application to Software Performance Engineering. Proc. 4th
ACM Workshop on Software and Performance.

[10] Object Management Group. 2007 A UML Profile for
MARTE (Modeling and Analysis of Real-Time and
Embedded systems), Beta 1. Document ptc/07-08-04.

[11] Object Management Group. 2005 UML Profile for
Schedulability, Performance, and Time Specification v.1.1.
Document formal/05-01-02.

[12] Persiform: French RNRT national project.
http://www-persiform.imag.fr/

[13] Petriu, D.C., Woodside, C.M., Petriu, D.B., Xu, J., Israr, T.,
Georg, G., France, R., Bieman, J., Houmb, S.H., Jürjens, J.
2007 Performance Analysis of Security Aspects in UML
Models. Proc. 6th ACM Workshop on Software and
Performance (Buenos Aires, Argentina, February 5-8, 2007).

[14] Smith, C.U., Williams, L. 2001 Performance Solutions: A
Practical Guide to Creating Responsive, Scalable Software.
Addison-Wesley.

[15] Woodside, M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T.,
Merseguer, J. 2005 Performance by unified model analysis
(PUMA). Proc. 5th ACM Workshop on Software and
Performance (Palma, Illes Balears, Spain, July 12-14, 2005).

[16] Zhu, L., Liu, Y., Bui, N.B., Gorton, I. 2007 Revel8or: Model
Driven Capacity Planning Tool Suite. Proc. 29th Intl.
Conference on Software Engineering (Minneapolis, USA,
May 20-26, 2007).

http://www.graphviz.org/
http://www.hyperformix.com/
http://www-persiform.imag.fr/

8. APPENDIX A: DEMONSTRATION
The demonstration will be organized as follows.

8.1 Introduction (Slides and Demo)
8.1.1 Context: Service-oriented systems (Slide)
What are the characteristics of these systems and why
performance is an issue.

8.1.2 Existing techniques for performance evaluation
(Slide)
Complementary techniques with their own advantages and
drawbacks: analytical methods, simulation, prototyping.

8.1.3 Modeling with HyPerformix Workbench
(Demo)
Main concerns in performance modeling: resource contention,
causal flows, time consumption, resource modeling,
environmental conditions. Tradeoff: realism of the model vs.
simulation cost.
Expected outputs and how to use them.

8.1.4 Relationship Between Design and Performance
Modeling (Slide)
Common concerns: causal flows (behaviors), functional delays,
synchronizations, deployment.
Differences:

− Performance-specific concerns (environment, resource
consumptions, time-based abstractions).

− Not all levels of abstraction in design models are relevant
w.r.t. performance modeling.

8.2 Tool overview (Demo)
What the tool does.
How it integrates with Rational Software Modeler on the Eclipse
platform.
Its architecture and its design rationale.

8.3 Case Study: The Military Command and
Information (MCI) System (Demo)
8.3.1 Informal presentation of the system
Who is the client, what are the main functional and non-functional
requirements.

8.3.2 Specification: Use Case Diagram
How and why Use Case Diagrams are used. How the performance
expert completes the model.

8.3.3 Specification: Deployment Diagram
Similar to Use Case Diagram.

8.3.4 Specification: Activity Diagrams
Decomposing the behavior into activities.
Identifying and designing reusable activities.
Specifying the content of activities. Concepts used:

− Sub-activity calls with parameter passing.
− “Shared” and “flow” variables, data computations.
− Deterministic and probabilistic choices.
− Forks and loops.
− Specific final nodes.
− Delays and resource consumptions: CPU time and memory.

8.3.5 Tool application, simulation, results
Transformation of the UML model by our tool.
Viewing the generated model with Workbench.
Configuration of the model for simulation experiments.
Graphical animation.
Outputs obtained, conclusions on the modeled system.

8.4 Case Study: Traditional Performance
Modeling vs. Model Transformation
Approach (Demo)
8.4.1 Informal presentation of the IOS-W system

8.4.2 Comparison between the legacy “from
scratch” performance model and the “UML-based”
model

8.4.3 Checking semantic equivalence
Comparison of simulation outputs obtained from both models.

8.4.4 Conclusion
− Traditional “from scratch” approach: smaller model, clever use

of the simulator’s modeling concepts, better efficiency. But the
relationship with the design model is unclear.

− Model transformation approach using our tool: performance
model is less elegant but semantically equivalent (same
simulation results). This approach saves time and reduces
costs, and guarantees that the performance model is consistent
with the design model.

8.5 Advanced Features of the Tool (Demo)
− Distinguishing causal flows in activities.
− Weak and strong synchronization in join nodes.
− Specification of flow variables in join nodes.
− Combining final nodes in complex model configurations.
− Using priorities in resources.

APPENDIX B: SCREEN DUMPS

8.3.2: Use Case Diagram of the MCI System with our profile’s performance extensions.

8.3.4: Activity Diagrams of the MCI System: the HandlePeriodicExtraction sub-activity.

8.3.5: Running our tool on the MCI System model via the ATL GUI.

8.3.5: Visualizing and animating the generated Workbench model.

8.3.5: Measuring CPU load, memory usage and end-to-end response time during the simulation of the MCI System.

8.4.2: Deployment Diagram of the IOS-W system with performance extensions.

8.4.3: Comparing simulation results of the traditional approach and the approach based on our tool.

8.5: Combining final nodes in a UML model and visualizing the execution of the generated Workbench model.

	1. INTRODUCTION
	2. RELATED WORK
	3. TOOL USAGE
	3.1 Structure Design
	3.2 Behavior Design
	3.2.1 Treatment of semantic ambiguities

	3.3 Consistency Check and Transformation
	4. TOOL DESIGN
	4.1 Architecture: Conceptual Level
	4.2 Architecture: Technical Level

	5. TOOL EVALUATION
	6. CONCLUSION
	7. REFERENCES
	1.
	8. APPENDIX A: DEMONSTRATION
	8.1 Introduction (Slides and Demo)
	8.1.1 Context: Service-oriented systems (Slide)
	8.1.2 Existing techniques for performance evaluation (Slide)
	8.1.3 Modeling with HyPerformix Workbench (Demo)
	8.1.4 Relationship Between Design and Performance Modeling (Slide)

	8.2 Tool overview (Demo)
	8.3 Case Study: The Military Command and Information (MCI) System (Demo)
	8.3.1 Informal presentation of the system
	8.3.2 Specification: Use Case Diagram
	8.3.3 Specification: Deployment Diagram
	8.3.4 Specification: Activity Diagrams
	8.3.5 Tool application, simulation, results

	8.4 Case Study: Traditional Performance Modeling vs. Model Transformation Approach (Demo)
	8.4.1 Informal presentation of the IOS-W system
	8.4.2 Comparison between the legacy “from scratch” performance model and the “UML-based” model
	8.4.3 Checking semantic equivalence
	8.4.4 Conclusion

	8.5 Advanced Features of the Tool (Demo)

	APPENDIX B: SCREEN DUMPS

