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Abstract

We study in a first part of this paper safety and liveness properties for any given program semantics. We give
a topological definition of these properties using a safety preorder. Then, we consider the case of branching
time semantics where a program is modeled by a set of infinite computation trees modulo bisimulation.
We propose and study a safety preorder for this semantics based on simulation and dealing with silent
actions. We focus on regular safety properties and characterize them by both tree-automata and formulas
of a branching time logic. We show that verifying safety properties on trees reduces to simulation testing.

1 Introduction

The properties of parallel systems may be classified according to the type of behaviors they describe. Several
classes of properties are distinguished such as safety, liveness, fairness, termination or recurrence properties.
Such a classification allows structuring a program specification into several components; each of these
components may be expressed in an appropriate formalism and verified using a specific verification method.
A classification into safety and liveness properties was first proposed by Lamport in [Lam77]. There, these
classes were intuitively defined by :

e a safety property asserts that something bad never happens,
e a liveness property asserts that something good eventually happens.

These classes have been widely studied for linear time semantics where a program is modeled by a set
of infinite sequences of states (also called computation sequences). Several formal definitions of safety and
liveness have been proposed in this case, e.g., in [Lam85], [Sis85], [AS87], [AL8S], [MP89]. One of them (see
for example [MP89] or [AL88]) defines safety (resp. liveness) properties as the closed (resp. dense) sets in the
Cantor topology on the set of infinite sequences of states. An interesting problem is to know how an arbitrary
property can be expressed in terms of safety and liveness properties. Using the topological definition given
above, Alpern and Schneider show that any w-regular property is the intersection of a safety and a liveness
property [AS87]. This means that, in this case, it is always possible to decompose a program specification
into a safety and a liveness part and deal with each of them separately. However, it has been shown that for
more expressive classes, e.g., as w-context-free properties, this can not be done in general [CLR9].

Characterizations of w-regular safety and liveness properties have been given in different program spec-
ification formalisms : automata on infinite sequences and fragments of propositional linear time temporal
logics [Sis85], [LPZ85], [AS87]. It has also been shown that the proof methods associated with safety and
liveness are different. The verification of a safety property is based on an invariant argument whereas the
verification of a liveness property is based on a well-foundedness argument [MP84].

In this paper we study safety and liveness properties for branching time semantics where a program is
modeled by a set of infinite computation trees modulo a bisimulation equivalence.

First, we study the problem of defining formally the classes of safety and liveness properties for such
semantics. For this purpose, we generalize the topological approach used for the linear time semantics. We
argue that defining safety and liveness properties on trees reduces to finding a preorder on trees such that,
in the topology induced by this preorder, the safety properties are the closed sets and the liveness properties
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are the dense sets. We give some minimal requirements on such a preorder and it turns out that a suitable
preorder is the simulation relation [Mil71].

Furthermore, we are interested in properties not sensitive to abstraction, that means that two equivalent
programs (verifying the same properties) remain equivalent after abstraction. Therefore, we combine the
simulation preorder with an abstraction criterion allowing to abstract away from all the silent actions, i.e.,
actions which are considered irrelevant. We call safety preorder the resulting preorder and safety equivalence
the equivalence induced by it. We show that the safety equivalence is weaker than branching bisimulation
[GWR9] and observational equivalence [Mil80]. We also show that the safety preorder is a precongruence for
the standard constructors of parallel programs and give a complete axiomatization for it on regular trees, i.e.,
trees which are unfoldings of finite-state labeled transition systems.

We consider as properties regular sets of trees, i.e., sets definable by finite-state (Rabin) tree-automata
(RTA for short) [Rab69], [Rab72]. We recall that the class of RTA definable sets contains all the classes of
sets definable by either Biichi, Muller or Streett tree-automata [B62], [Mul63], [Rab69], [Rab70], [Str82]. It
has been shown also that RTA are more expressive than all the commonly used specification formalisms for
finite-state parallel programs [VW86], [Wol89] and that they are expressively equivalent to the branching time
propositional p-calculus [Koz83], [Niw88]. We show that in the class of RTA definable sets we have also the
nice fact that any property is the intersection of a safety and a liveness property.

In practice, it is often sufficient to consider only safety properties. For example, most of service properties
of communication protocols are safety properties. Especially, due to the use of nondeterministic choice for
scheduling, most of liveness properties fail to be valid. In order the liveness properties to be verified, a concrete
finite scheduler has to be modeled and time constraints are introduced. This gives a less abstract specification
but it allows to replace some liveness by bounded eventualities which are safety properties.

We focus on the class of regular safety properties on infinite trees and consider the problem of their
characterization by both tree-automata and formulas of a branching time logic.

First, we define a kind of tree-automata which we call safety-recognizers (SR for short) and show that they
define exactly closed regular sets of trees. Then, we define a branching time logic called BSL (Branching Time
Safety Logic) which is a fragment of the p-calculus. We show that it is adequate for the safety equivalence and
that it is expressively equivalent to the class of SR definable sets of trees. We give also a complete deductive
system for this logic. In particular, we establish that any branching time safety property can be expressed by
a graph modulo simulation. This allows to reduce the problem of verifying a safety property to a simulation
problem between regular trees.

The remainder of this paper is organized as follows. In section 2, we introduce a semantical characterization
of safety and liveness properties for any given program semantics using a safety preorder on the computations.
In section 3, we propose a safety preorder for bisimulation based branching time semantics and study its
features. In section 4, we consider the class of RTA-definable properties and give a characterization of safety
properties by tree-automata. In section 5, we give a logical characterization of these properties. Finally, we
discuss in the conclusion the choice of an appropriate safety preorder.

For lack of space, standard proofs are omitted and will be given in the full paper.

2 Safety and Liveness Properties

In this section, we study the notions of safety and liveness properties for any program semantics. We propose
a general definition of these classes and show some general results concerning them.

Let us first fix the framework in which we carry out this study. We denote by P a term algebra used to
describe programs. A program semantics is usually defined by a congruence relation on P. In fact, in order
to define a congruence on P, we often consider a congruence on a class M of program models and establish
a homomorphism u from P to M. Examples of classes of program models are labeled transition systems and
event structures [Win83]. In order to define a congruence on M, we introduce the notion of computations
generated by a model. Let C be the set of computations generated by the elements of M. First, we consider an
equivalence relation ~ on C which we generalize to 2° by considering that for any sets of computations C; and
Cy, Cy ~ Cy if and only if Va1 € Cy. Jazg € Cy. 21 ~ x5 and conversely). Then, we define a homomorphism
x from M to 2¢ associating with any model a set of computations closed under ~ and such that ~ is a
congruence on x(u(P)).

For example, if program models are labeled transition systems (LTS for short), we can consider as com-
putations either sequences or trees. This gives rise respectively to linear and branching time semantics.



In linear time semantics, the set of computation sequences of a LTS may be defined as the set of its
maximal paths and an equivalence on sequences may be simply equality. In this case, two programs are
equivalent if and only if their models have the same sets of maximal paths. This equivalence is usually called
mazimal trace equivalence. More interesting equivalences can be chosen. For example, in order to deal with
abstraction, one can consider the stuttering trace equivalence: two sequences are equivalent if and only if one
of them can be obtained from the other by removing or adding finite repetitions. However, it is well known
that maximal trace equivalences are not congruences for the restriction operator [Mil80].

In branching time semantics, the set of computations of a LTS is the set of trees obtained by unfolding it,
starting from its initial states. In this case, any operation on models is defined as a generalization on sets of an
operation on trees. Thus, a branching time semantics can be defined by a congruence on computation trees.
Several such congruences have been defined, most of them based on bisimulation by incorporating abstraction
criteria [Mil80], [GW89].

For a given program semantics, a property is a union of congruence classes of programs. Thus, congruent
programs verify the same properties. In fact, if the semantics is defined as described above, we can define a
property as a union of equivalence classes of computations; a program 7 satisfies a property P if and only if
all the computations generated by its model belong to the property, i.e., x(u(7)) C P.

Having fixed what is a property for a given semantics, we are interested now in defining safety and liveness
properties. Formal definitions of safety and liveness properties have been given for linear time semantics
[Lam85], [Sis85], [AS87], [AL88], [MP89]. Omne of them (see for example [MP89]) defines safety properties
as closed sets and liveness properties as dense sets in the Cantor topology on the set of finite or infinite
computation sequences. We propose here a general topological definition of safety and liveness properties
based on a preorder on computations. To this end, we need the following preliminary definitions.

First we consider a preorder defined as the limit of a decreasing family of preorders. We consider also the
equivalences induced by these preorders.

Definition 2.1 (limil preorder) Let U be a set and consider {<y},. v @ family of decreasing preorders on
U. Consider also the family of the induced equivalences {gk}keﬂ\f such that 2, = < N >, for any k € IN.

We take < = ﬂ <L and &2 = ﬂ .
keIN keIN

Then, we define the notion of «-closure.

Definition 2.2 (<-closure) A subset S of U is <-closed if and only if Ve € S.¥2' e U. 2’ < z = 2’ € 5.
The < -closure of a subset S of U is the smallest <€ -closed superset of S inlU.

Now, we define the notions of limit and limit-closure.

Definition 2.3 (limit) Let S = {a;},. v be a subsel of U and x € U. The set S converges to z if and only if
Vk.35.Vi>j o S
We say that x is a limit of S.

~

Notice that if a set S converges to # and z’ then necessarily x = a’. Thus, the limit of a set is unique up
to =.

Definition 2.4 (closure by limit) A subset of U is limit-closed if and only if it contains all the limits of its
subsets. The limit-closure of a subset S of U is the smallest limit-closed superset of S inU.

Now, we define a notion of closure which is both <«-closure and limit-closure. We show then that it allows
to define a topology on U.

Definition 2.5 (closed and open sets) A subset of U is closed if and only if it is <-closed and limit-closed.
As usually, an open set is the complement of a closed set.

~

Notice that any closed and any open set is closed under the equivalence =,

Proposition 2.1 (Topology induced by <)
The set of closed sels defines a topology on U, which we denote by Z(U, <K).



Proof: It can be shown that the empty set and the full set are closed sets, the intersection of closed sets is
a closed set and the finite union of closed sets is a closed set. We give here only the proof of the last fact, i.e.,
that the union of two closed sets is a closed set. Let S and S5 be two closed sets. It is obvious that 57 U 93
is €-closed. We show that S7 U S5 is limit-closed. We consider a set X = {xi}ie]N C 51U S, which converges
to @ and show that z is in §; U Sy. Let Y = {g;}, .y = X N Sy and Z = {z}, .y = X N S2. We have to
consider two cases:

e Y is finite and Z is finite,
We have then X is finite, thus, since X has a limit, X converges to an 2’ € X C 57 U S3. Since S U Sy

~J

is closed under 2 (57 and 53 are closed under &) and z = 2/, we have z € 57 U 55.

e Y is infinite or Z is infinite,
We have Vk. 35. Vi > j. o; =, . For a given k, let j be such that Vi > j. z; &, . Without loss of
generality, consider that Y is infinite. We have then {z;};>; N Y # 0 and thus, 35". Vi > j'. y; =} 2. We
conclude that Y converges to z and since 57 is closed, we have z € 5.

a
We recall the notions of topological closure and denseness.

Definition 2.6 (Topological closure) For a given topology on a set U, the closure of a set S, which we denote
by S, is the smallest closed set containing S. A set S is dense if and only if S = U.

Now, we can give the definition of safety and liveness properties with respect to a limit preorder < on C
defined as in definition 2.1.

Definition 2.7 (Safety and Liveness) Let ~ be the equivalence on C defining a program semantics and < a
limit preorder on C such that ~ C <. A property is a safely (resp. liveness) property (with respect to C and
&) if and only if it is a closed (resp. dense) set in the topology I(C,<).

We denote by (C, <) (resp. A(C, <)) the class of safety (resp. liveness) properties.

To capture the intuitive definition of safety and liveness, the preorder < has to express a notion like ”is
a restriction of” or ”is less defined than”. For instance, for linear time semantics, where i/ is the set of finite
or infinite sequences on an alphabet X, a suitable preorder is defined by considering the following family of
preorders :

.<<0: UXU,

o Vi € IN.Voy,09 € U.
01 K41 09 if and only if (Va € ¥. 01 = a.0] = (03 = a.0y and o] <}, 7).

It is easy to see from the definition above that ¥(C, <) is closed under intersection and finite union, that
A(C, <) is closed under union but not under intersection and that neither ¥(C, <) nor A(C, <) are closed
under complementation. Furthermore, the empty set is a safety property and the only property which is both
a safety and a liveness is the set C (C is not empty).

It is also easy to deduce from this definition that < is exactly the preorder induced by safety properties
on computations. This derives from the fact that a safety property is by definition <-closed.

Proposition 2.2 Vay,25 € C. 1 € 2 if and only if V5 € X(C,<). 22 € 5 =21 € 5. 0

Let = be the equivalence induced by the preorder <, i.e., 2 = < N >. It is straightforward to deduce from
the proposition above that 2 coincides with the equivalence induced by the safety properties on computations.

It is more interesting to verify if this proposition remains true when we consider models instead of com-
putations. It is straightforward to show the left to right direction using the proposition above. Thus, two
-equivalent models verify the same safety properties. However, the other direction is not true in gen-
eral. To see this, let for example my and my be two models such that x(mq) = x(m2). By definition
of the topological closure, we have x(m;) C S if and only if x(m3) C S for any safety property S, but

x(m1) < x(my) only if x(mg) is limit-closed. In general, we have the following proposition.

Proposition 2.3 (Adequacy)



o Vmy,mg € M. x(m1) < x(ma) tmplies VS € X(C,<). x(m2) C S = x(m1) C S

e Ymy,my € M. (x(mz) is limil-closed and VS € X(C,<). (x(mz) C S = x(mq) C S5)) implies
x(ma) < x(ma).

Notice that in particular, when y associates with any model a limit-closed set of computations, 2 is exactly
the equivalence induced by safety properties on program models. For example, the set of maximal paths of a
LTS is limit-closed. However, if we introduce some notion of fairness in the models, for example by considering
as program models Biichi-like automata, the set of computations associated with a model (the language of
the automaton) is clearly not limit-closed in general.

The proposition above shows that the semantics we need when we are interested by just safety properties
can be defined by =. For this reason, we give to < the name of safety preorder and to = the name of
safety equivalence. However, in order to be able to define a semantics based on 2, we require that = induces
a congruence on x(u(P)), or equivalently, that < induces a precongruence on this class. Notice that for
branching time semantics this means simply that < has to be a precongruence.

Now, having defined safety and liveness properties, an interesting question is how an arbitrary property
can be expressed in terms of safety and liveness. For example, in the linear time semantics case, Alpern and
Schneider have shown in [AS87] that in the class of w-regular properties, any property is the intersection of a
safety and a liveness property. So, let us see how this result can be stated in our general frame. We define
first the notion of sl-separability.

Definition 2.8 (sl-separability) A property is sl-separable if and only if it is the intersection of a safety and
a liveness property. We say that a class of properties is sl-separable if and only if all ils properties are sl-
separable.

Thus, a property is sl-separable means that it can be split into a safety and a liveness part and each of
these parts can be dealt with separately. In general, for any class of properties it is interesting to know if
it is sl-separable or at least to find its largest sl-separable subset. A sufficient condition for sl-separability is
expressed by the following proposition.

Proposition 2.4 Any class of properties which is closed under union, complementation and topological clo-
sure is sl-separable.

Proof: The proof is analogous to the one given in [AS87]. Take a semantics where C is the set of compu-
tations and let £ be a class of properties for this semantics satisfying the hypothesis of the proposition. For
any property P in &, consider the sets S = P and L = (C — P)U P. These sets are clearly in £. Furthermore,
it is easy to see that they are respectively closed and dense and that P = SN L. O

In particular, for linear time semantics the class of properties corresponding to w-regular languages is
sl-separable since it satisfies the condition of the proposition above. However, the class of w-context-free
languages is not closed under complementation [CG77] and thus, the proposition above does not apply. In
fact, it has been shown that this class is not sl-separable and some finest sufficient conditions for sl-separability
of w-context-free languages are given in [CLKY].

In the sequel, we focus on bisimulation based branching time semantics. We have seen in this section
that a safety preorder for such a semantics has to be a precongruence preserving bisimulation and allowing
to capture the intuitive definition of safety and liveness properties. We claim that such a preorder is the
simulation preorder combined with an abstraction criterion. We propose in the following section a safety
preorder which preserves the observational congruence and the branching bisimulation.

3 Safety Preorder on Computation Trees

In this section, we define the safety preorder on computation trees and study its features. Throughout this
paper we are only interested in regular computation trees which are unfoldings of finite LTSs. We define first
an algebra of such computation trees.



3.1 Syntax

Let A be a finite vocabulary and 7 a symbol not belonging to A. We call the elements of A wisible actions, T
silent action and we take A, = AU {7}. Let = a set of variables. The language L(A;,=) of terms is given by
the following grammar, where z € = and o € A;:

tu=Nil|z|a:t|t+t|txt|reca.t

We use > and [] respectively for finite summation and finite product. The notion of bound and free occurrence
of variables are as in the first order predicate calculus, by considering rec as a quantifier. A term is closed if
there is no variable occurring free in it. Let & = (2o, - - -, ¢,,) denote either a tuple or the set of its components.
We use (&) to stand for the term ¢ with free variables 7.

A free occurrence of a z in ¢ is guarded if it occurs within some subterm a : ¢ of t where a € A, otherwise
it is unguarded. If a term ¢ contains an unguarded occurrence of z, we write ¢t > z. A term rec z. t is guarded
if is « guarded in ¢. A term ¢ is guarded if every subterm rec z. ¢’ of ¢ is guarded.

Let 7(A,,Z) the sublanguage of the guarded and closed terms. Terms of 7(A, =) represent computation
trees, where Nil is the empty tree, 4+ is the non-deterministic choice operator, X is the synchronous product
operator and rec is the recursion operator.

We denote by L(A,Z) (resp.7(A,=)) the sublanguage of £L(A,,Z) (resp. 7(A,,Z)) of terms without any

occurrence of 7.

3.2 Operational semantics

We give an operational semantics [Plo81] for the terms of £(A;,Z) by defining a set of binary relations
2C L(A;,E)xL(A,, =), for any a € A, as the least relations satisfying the following rules, where ¢,;,7,7; €
L(A;,Z),a € Aand a € A;:

prefix a:t -1

=7 ly — 1
choice ! al 2 a2

lh+ty—m lh+ity — 1y

=5ty == 1 L= ty — 1
product 1 1;2 2 1 - 1 2 T 2

11 X lg — 11 X Ty 11 X tg — 11 X 19 11 X tg — 11 X 19

. tlrec x. t/x] = r

recursion

o
recx.t ——r

Let us recall that a LTS is a quadruple (Q, A+, p, Qo) where @ is a set of states, p C Q@ X A, X @ is a
labeled transition relation and (Jg C () is the set of initial states.

With a term ¢ € 7(A;, E), we associate the LTS Sy = (7(A4;,E), A+, {L}aeAT’ {t}).
3.3 Safety preorder
We define a safety preorder on computation trees as a simulation with an abstraction criterion. We recall the

definition of a simulation.

Notation Let A C A% and let t,7 € L(A,,E). We write ¢ 2. rif and only if:
Fug -ty €N Ty, ety € LA, E) E =2 1y 225ty -1 it g1 - lpoy ~25 1.

Definition 3.1 Let Il be a family of disjoint languages of finite words on A,. For each R C E(AT,E)2, we
define :
WH(R) = {(tlth) € ‘C(ATvE)2 |
VA elIl. Vry. (1 2 r = Jra. (L2 2, ro and (r1,72) € R)) and
> X = 1y I>X}



We define inductively a family of preorders {CT}}, . v by = L(A;,2)* and Yk > 0. Cii=Yn(C)). The

simulation preorder for 1 is defined by C! = ﬂ EE. Consider also the equivalence relations =~ = CII
k=0

o0
N ;E for any k > 0. The simulation equivalence for II is defined by ~" = m zg
k=0

Different simulation preorders can be defined. The choice of a class II (i.e., a partial partition of A¥)
corresponds to the choice of an abstraction criterion on the actions [Bou85]. The strong simulation preorder is
defined by IT = {{a} | @ € A.}. Of course, in this case there is no abstraction since 7-actions play no special
role. However, we would like to ahstract away from all the 7-actions. Interesting criteria for this purpose
can be defined by considering either the class A = {7*a |a € A} or Q@ = {7%ar* |a € A} or A’ = AU{7*} or
Q' = QU {r*}. However, contrary to the case of bisimulations, we can show that the simulation preorders
Ca, %, EA' and EQ' are the same using the following lemma.

Lemma 3.1 VI € {A,Q, A/, Q'}. Vi, ¢ € L(A:,Z). t=—t' = ¢ C" 1. O

Proposition 3.1 CA2 =C% =2 =Cc%. O

Henceforth, we denote by C (resp. &) the preorder cA (resp. the equivalence zA) called safety preorder

(resp. safety equivalence). Now, we study some properties of C. First, we can show that it is a precongruence
on the term language L£(A;,Z). First, we show that all the operators of the algebra are monotonic with
respect to C. We need some intermediate lemmas.

Lemma 3.2 Vk € IN. Vt, 1,85 € L(A7,Z). 51 T 53 = U[s1/a] Ty {[s2/x]

Proof: (Induction on k € IN). Suppose that Vi,si,s5 € L(A;,Z). 81 T sy = t[s1/x] Cp {[sz/z] and
s1 Cpy1 s2. If t[sl/w]‘r—*%t’ then either {2%7 and ¢/ = rlsi/z], or t >a A 511*—037‘1 and t' = rq, or 1% and
t > and 511*—a>7"1 and ' = r[sy/z] x ry.

In the first case, t[52/x]1*—a>7“[52/:v] and r[sy/z] Cy r[s2/2] by induction hypothesis.

In the second case, since sy Cpyq sg, d7o. 521*—%7“2 A 11 Cg ra.

In the last case, since sq Criq S, I7s. 521*—a>r2 A 1y Cp rg. Thus, t[52/x]7—*a>r[32/:v] X r9. By induction
hypothesis, r[sy/z] X 1y Tk 7[s2/z] X 7o and r[sy/z] T r[sy/2z] and thus, r[s;/z] X ry T 7[s2/z] X r1. Then
by transitivity, r[s1/z] X r1 Cg r[s2/z] X ra.

Thus, in all cases 3¢” such that t[SQ/ac]i*—a>t” AN ELt. O

Similarly, we can prove the following lemma.

Lemma 3.3 Vk € IN. Vs, 1,12 € L(A,2). t1 Tk ty = t1[s/x] Ty ta[s/z] O
Corollary 3.1 Yk € IN. Vsq1,s9,t1,82 € L(A7,E). 81 g s2 A 11 T to = t1[s1/a] Tk ta]s2/x]. O

Proposition 3.2 (precongruence)
C is a precongruence and =~ is a congruence on L(A;,=). O

Proof: We have to prove Vk € IN. V¢, 11,1, € L(A;,Z) and Ya € A;, if {1 T 1o, then

a:lty Cp a:iy
tr+1t B t+1
1 x1 Cp t9x1
recx.t1 Crp recx. ity
We give only the proof of the last property by induction on k£ € IN. Notice that, by definition of the operational

semantics of the terms, for any terms ¢, € L(A,,Z), rec . t—>¢ if and only if

t[rec x.t/x]=>t'. Suppose that ¢; Ty 19 = rec x. 11 Ty rec x. ty and t; Cpyq to.



(1) First, we show that t1[rec @. t1/x] Cry1 t1[rec @. t2/x]:
If ¢y[rec . tl/x]l*—a>t’, then necessarily 74 lgt’l with ¢’ = t{[rec «. t;/«]. Then,
t1[rec z. tg/:v]i*—%t’l[rec z.1y/x]. Now, we have t; Cryq t2. Thus, by induction hypothesis,
rec .1y T, rec z. lo. By the lemma 3.2, t{[rec z. 11 /2] Cy t|[rec z. 15/ 2].
Thus, we have ty[rec z. {1 /2] Cgqq t1[rec z. 12/ ].

(ii) By lemma 3.3, we have
t1[rec . t3/z] Cryq to[rec x. t3/x]. Then, by transitivity of Cryq, we have
t1[rec x. 11 /x] Cryq to[rec . to/z].

O

The term language £(A;, E) can be extended by adding the asynchronous parallel operator, the restriction
operator and the relabeling operator [Mil80], [Win83], [BK85]. We can shown that C is still a precongruence.

Proposition 3.3 C is a precongruence for the asynchronous parallel, restriction and relabeling operators. O

Let us compare now the safety equivalence with some other equivalences. We denote by ~y strong bisimu-
lation [Par81], ~, observational equivalence [Mil80], [Mil89], ~; branching bisimulation [GW89], [GV90] and
~ut weak maximal trace equivalence, i.e., for any two terms ¢ et ¢/, t ~,,; ¢’ if and only if WT(t) = WT(t'),

where for any term ¢, WT(t) is the set of sequences of visible actions aj.a3 - - - such that there exists a maximal
derivation t——t; —- th Tty 22, thlstg -

Proposition 3.4 ~j C ~pp C vy C & C vy O

3.4 A Deductive System for the Safety Preorder

We present a sound and complete axiomatization of the safety preorder on £(A4,,=). Let < be the relation
defined by the deductive system below where we omit the usual rules stating that < is a precongruence and
the rules for change of bound variables. An equation ¢ = ¢’ stand for two inequations ¢ < ¢’ and ' < {.

The Deductive system Azy : For ¢,t1,42,13 € L(A;,Z) and a,b € A and « € =, we have:
(I) Nil <t

i
K

(ti +12) + 13 =11 + (12 + t3)

(51)

(S2) th+ila=1+1
(55) t4+t=t

(54) t+ Nil =1

(t1 X t2) Xtz = t1 X (13 x t3)

t Xty =1y X 1

txXt=1

t x Nil = Nil

a:ty xa:ty=a:(t xty)

a:ty xb:ty=Nilifa#b

ty X (tg +13) = (11 x t3) + (¢ X t3)

TN TN TN N N N N
SIS IR
N S N N N S S

(1) 71:t=t

(R1)  recz.t=t[recz.t/z]
(R2) 11 2 o[ty /x] = 11 <X recx. iy provided z guarded in 1,
(R3) lo[t1/x] 2 14 = recx. iy < 11 provided x guarded in 1,

(Ry) recx.(zxt+1)=recx.t

We write b4y, 11 < 3, (resp . Fag, 11 = t2) when ¢3 < 13 (resp. {1 = t3) can be proved by the deductive
system Azq. We use simply the symbol I if there is no ambiguity about the considered deductive system.



Theorem 1 (Soundness) If =11 <ty then t; C ta. Also, if 11 =1y then t; = t;. O

The completeness proof follows the completeness proof given by Milner in [Mil89] for observational
congruence. The differences are first, that we are dealing with a simulation instead of a bisimulation, and
second, that we consider in addition to the operators he considers the x-operator (synchronous product) and
show that it can be eliminated even occurring in a recursion. This is due essentially to its idempotence (axiom
Pg). .

We recall briefly the notations and the terminology introduced in [Mil89]. Let X = (Xo,---,X,) and
W = (Wo, -+, Wy,) be disjoint sets of variables. Let H= (Ho,- -, Hy) be terms with free variables in XUw.
A system of equalions S = (E X W Ep) is a set of formal equations E:X=H. We call X the formal
variables of F and say that E thb free variables in W. Ey : Xo = Hy is the leading equation and Xg is the
distinguished variable. We say that E: X = H is standard if each H; takes the form

S ai X+ (] Wikt X D aikm = X7)
J k { m

where the Wi are elements of W and all actions are in A. As in [MilR9], we say that t provably satisfies
E : X = H if and only if there are terms i = (o, - - -,1,) such that { = &y and + i = H[i/X]. We take = as
the syntactic identity. The following propositions are used for the proof of the completeness.

Proposition 3.5 (T-elimination) For any term t in L(A,,Z) there exists a term t' in L(A,Z) i.e., withoul
T-actions, such that -t =1'. O

Proposition 3.6 For every term t in L(A;,=), there exists a guarded term t' in L(A,Z) such that -1 =1.
O

The propositions above say that every term of £(A;,Z) is provable equivalent to a guarded term without
T-actions. This is due to axioms 7 and Ry.

Proposition 3.7 (Equational characterization) Every guarded term t € L(A,Z) with free variables in W

-

provably salisfies a standard equation set F : X = H with free variables in W. O

Proposition 3.8 Lett € L(A,Z) provably satisfy S and U € L(A, E) provably satisfy S', where both S and S’
are standard sets of equations, and let t C t'. Then there is a standard set of equations . : X = H, constructed
from S and S', provably satisfied by t and such that 3" = (1, ---, 1) with ' =1, and HY'/X] L', O

Proposition 3.9 (Unique solution of equations) If S is a equation set E:X =H with free variables in W,
then there is a term t € L(A,Z) which provably satisfies S. Moreover, if there are terms ' = (1, ---,t!) (with
free variables in W ) such that - H[t'/X] <t then Ft < t}. O

From this proposition, it can be deduced that the solution of any equation set is unique up to =.
Theorem 2 (Completeness) For any terms t and U’ if t Ct', then bt < t'.

Proof: With any guarded terms ¢, € L£(A;,=), such that ¢t C #/, we associate two guarded terms u,u’ €
L(A, _) such that F ¢ = w and + ¢ = o/ by propositions 3.5 and 3.6. Then, we associate respectively w1th U
and ' a standard equation set E:X=Hand E': X' = H' by proposition 3.7. There is a standard equation

set E": X" = H", by proposition 3.8, such that 34 = (ug, -+, u,) and v’ = (ug, -, uy,), with ug = u and

n

up=u',and F 4 = H”[u/X”] and + H”[u’/)&”] < u'. Finally, by proposition 3.9 and unicity of the solution
for an equation set, we have F u < «'. O

4 Automata Based Characterization of Safety Properties

We consider as program specifications regular sets of computation trees modulo strong bisimulation. This
corresponds to bisimulation closed RTA-definable sets [Rab69], [Rab72].

We study the closure of this class under topological closure in the topology induced by C. We show the
sl-separability of this class and give a characterization of regular safety properties in terms of automata.



Notice that we consider here only computation trees without 7-actions since they can always be eliminated
(see proposition 3.5). For technical reasons, we represent computation trees by Kripke trees (KT) where the
labels are on the states and not on the transitions. It is straightforward to transform a KT into a computation
tree and conversely. Therefore, we give a definition of Rabin tree-automata which is not exactly standard: we
consider automata recognizing bisimulation closed sets of KT with possibly finite paths and with non bounded
but finite branching degree.

Definition 4.1 (Kripke tree) A Kripke tree is a tuple K = (Q, A, qo, —,7) where Q) is a countable sel of
states, qq is the initial state, —C Q X @ is a transilion relation without cycles such that | {¢' € Q | ¢ —
¢} |<wand T: Q — A is a labeling function of @ by A.

Definition 4.2 (Rabin tree-automaton)

A Rabin tree-automaton is a tuple R = (A, W, wq, p, Q, F) where W is a finite set of states, wq is the initial
state and p C W x A x 2% is a “branching” transition relation, Q is a finile sel of pairs (L;,U;) € 2W 5 2W
and FF C W is a sel of final states.

A Kripke tree K = (Q, A, qo, —, ) is accepted by R if and only if I\ : Q — W such that;

(1) AMgo) = wo
(2) Vg € Q. (Mq), (@), {A(q1), -, A(qa)}) € p where {q1,,¢n} ={¢' € Q| ¢ — ¢'}.

(3-1) For any o an infinite path in K starting in qo, there exists (L,U) € Q such that Inf(Mo))NL # 0 and
Inf(Mo))NU =10,

(3-2) For any o = qy---qy a finite path in K, X(¢,) € F,
where A(qo.q1-++) = Mqo) Maq1) -+ and Inf(wg.wy---)={weW |Vie IN.3j > i w; = w}.

Despite the fact that our definition is quite different from the standard one, the class of sets definable by
our Rabin tree-automata is closed under union, intersection and complementation [Rab69], [Rab72], [Sao86].

We introduce now automata which we call Safely Recognizers (SR for short) and show that they define
exactly regular safety properties with respect to C.

Definition 4.3 (Safety recognizer)
A safety recognizer is a tuple S = (A, W, wq, p) where W is a finite set of states, wq is the inilial state and
p CWxAx2W . A Kripke tree K = (Q, A, qo,—,7) is accepled by S if and only if IN : Q — W such that:

(1) Algo) = wo

(2) Vge Q.IT CW.(Aq),7(q),T)€ p and {\(¢1), -+, Mgn)} C T
where {¢1,---¢.} ={¢' € @[ ¢ — ¢'}.

Proposition 4.1 Any SR-definable set is RTA-definable.

Proof: Let S = (A, W, wq,p) be a SR. An equivalent RTA is (A, W, wq, p/, Q, F) where Q = {(W,})}, F =W
and p’ is the smallest relation p verifying:
Yw e W.Va € A. (w,a,T)ep = VI'CT. (w,a,I")€p’. O

Proposition 4.2 Any SR-definable set is closed. O
Proposition 4.3 The closure of a RTA-definable set is SR-definable.

Proof: Let P be the set defined by the RTA R = (A, W, wq, p, 2, F'). Consider the SR obtained from R in

the following manner:

1 Remove from R all the states that accept the empty language (the emptiness problem of a RTA is decidable
[Rab72], [HR72]). Let W' be the remaining states and p’ the transition relation modified accordingly :
a transition (w, a,I') is removed if there exists a state in T' which is not in W’. The resulting automaton
R = (A, W' wo,p', U, F'), where Q" and F’ are the projections of Q and F' on W', defines also the set
P.



2 Take 5 = (A, W' wo, p’).

We show that any tree defined by S is in P, i.e., for any tree ¢ defined by S, we have ¢ C ¢/ where ¢/ is the
limit of a set of trees in P. Let ¢ be a tree defined by S with a labeling A (see definition 4.3). For any & > 0,
we denote by t; the full subtree of ¢ of depth k. Each node, and in particular each leaf, of #; is labeled with
A by a state in W’ which accepts a tree in R’ by definition. Thus, we can prolong {; to a tree ¢} in P (each
node of ¢ is prolonged in the same way in all the trees ¢} for k£ > 0). It easy to verify that the obtained set of
trees #j in P converges to a tree ¢’ such that ¢ C #'.

Conversely, since S defines a closed set containing P, and P is the smallest closed set containing P, §
defines P. O

From propositions 4.2 and 4.3 we obtain the following theorem on SR’s expressiveness.

Theorem 3 (expressiveness)
The class of SR-definable sets is exaclly the class or regular safety properties with respect to €. O

Finally, we give the theorem which states the sl-separability of the class of regular properties on compu-
tation trees.

Theorem 4 (sl-separability)
The class of RTA-definable properties is sl-separable.

Proof: By propositions 4.3 and 4.1, the class of RTA-definable sets is closed under topological closure.
Furthermore, it is closed under union and complementation. Thus, it is sl-separable by proposition 2.4. O

5 The Branching Time Safety Logic BSL

In this section, we give a branching time logic defining exactly the class of safety properties with respect to
C.

5.1 Syntax
A formula of U( A, Z) is either F or defined by the following grammar:
¢u=Nil |T|z|B:0|oBd|d N |V ¢|ve. ¢
where 2 € E,B C A. We denote by F(A4,ZE) the closed and guarded formulas, where the notions of free
variable, closed formula and guardedness are the same as the ones defined in section 3.1 for terms.
5.2 Semantics

The semantics of U(A,Z) is defined by associating with any formula ¢ a set of terms [[¢]](3) € 97 (A7, E)
for a valuation § for the variables occurring free in ¢, where a valuation is a tuple § = (sg,-- -, s,) of closed
formulas different from F:

[e(5) = () [[&)]x(5)
keIN

where [[¢]]o(3) = T(A,,Z) and for any & > 0, [¢]](5) is inductively defined by
o [[Nil]] () = {t € T(A;,Z) | I(t) = 0} where I(t) = {a € A| "t 2% 11}

o [[F]J,(5) =1

o [[T]],(5

{te T(A,,Z)|Vae AV € T(A,Z). t 251 = (' € [[¢]],_y(5) and a € B)}



(1 A G2l (5) = [[61]]4(5) N [[@2]]x(5)
o [[¢1 V 62]](5) = [[1]]x(5) U [[$2]](3)
o [[vz. 9]lu(3) = [[dlva. &/]]](5)-

[[f1 @ Gall,(5) = {t € T(A;,E) | 3t € [[¢n]l,(5). Il € [[@all(5)- £ ~p by + 12}

Notice that for any formula ¢ different from ¥, Nil € [[¢]]x(35).

Now, we define an implication relation between formulas in the following manner

: for any two formulas

¢ and v, we say that ¢ implies ¢ if and only if [[¢]](8) C [[¢]](5) for any valuation §.

5.3 A Deductive System for BSL

We give a sound and complete axiomatization for the implication relation on guarded formulas. Analogous to
section 3.4, we define a relation < by the deductive system below where we omit the rules stating that < is a
precongruence and the rules for change of bound variables and the propositional calculus rules. An equation
¢ = ¢' stands for two implications ¢ < ¢’ and ¢’ < ¢.

The Deductive System Az, : For ¢, ¢1,¢3, ¢3 guarded formulas of U(A,Z) and B,B;,B; C A and

x € Z, we have:

(Iy)  Nil < ¢ provided ¢ different from F

(I,) F =< Nil

(51)

(S52) 1D d2=0d2 D
(93) o¢do=¢

(S4) ¢ P Nil = ¢

(95) ¢@T=T

(S¢) T=A:T

B (P2 AN ¢3) = (P1 B P2) A

051@ P2 V ¢3)= (1B P2) V

(By)  ve. ¢ = dlva. ¢/a]
(R2) p=2U(p)=> P <var.
(R3) prP(P)=> pr-va.

We write Faz, ¢1 < ¢a, (resp. Faz, &1

(01 B P2) D Pz = d1 D (2 B ¢3)

)
)
)
) (B ¢1) (B:¢a)=DB:(¢1 V ¢2)
)
)
)

o1 A (P2 @ ¢3) = (d1 A ¢2) B

(B1:6¢1) A (By:¢2)=(B1NBy):(¢1 A ¢2)
(B1 05) ( 1¢)=(B1UBz): ¢

(61 @ ¢3)
(61 B ¢3)
(61 A ¢3)

= ¢2) when ¢y < ¢ (resp. ¢1 < ¢ and ¢y < ¢1) can be proved

by the deductive system Azy. We use simply the symbol F when there is no ambiguity on the concerned

deductive system.

Theorem 5 (Soundness) If - ¢1 < ¢y then ¢y implies ¢o. O

We can prove the completeness of the deductive system by following the steps of the completeness proof
of theorem 2 by replacing the proposition 3.7 by the following;:



Proposition 5.1 (Equational characterization) For each guarded formula ¢ € U( A, E) different from F, there
exists an equation set ¥ : X = H such that:

- ¢ = H[$/X]
- the leading equation is of the form \/[EB a;; * X; + @(H Wik X EB @ik © X1)],
; ] k { m

t J

- each other equation is of the form @aij X+ @(H Wik % @aikm : X1).
; P m

J

Proof: By structural induction, in the same way as in the proof of proposition 3.7. Notice that the disjunction
operator may only appear in the leading equation due to the axiom Ty. O

Theorem 6 (Completeness)
Let be ¢, ¢ be guarded formulas in U(A,E). If ¢ implies ¢' thent ¢ < ¢'. O

5.4 Adequacy and Expressiveness

We show that BSL characterizes exactly safety properties with respect to C and thus, that it is adequate
for safety equivalence, i.e., any formula of BSL represents a union of =-classes. Furthermore, we show that
any formula of BSL different from F has a largest model (LTS) with respect to C satisfying it. Thus, any
safety property can be represented by a LTS up to simulation and verifying any safety property reduces to
simulation testing.

First, we consider a subclass of (A, =) isomorphic to £( A, Z). Formulas of this class are called in standard
form.

Definition 5.1 A formula is called in standard form if it is different from F, it does not contain any dis-
junction operator and as prefixing operators only singleton sets are used.

As a corollary of proposition 5.1, we have the following lemma.

Lemma 5.1 Any guarded formula of U(A, =) different from F is equivalent to a disjunction of formulas in
standard form. O

We establish now the link between guarded terms of £( A4, ) and guarded formulas of (A4, E) in standard
form.

Definition 5.2 Let U be the function from guarded terms of L(A,E) to guarded formulas of U(A, =), defined
inductively by :

- Wy = Nil.
-V, =z
- \Ila:t = {a} : \Ilt .

- Vg, = Wiy @ Vs,
- \Iltlxtg = \Iltl /\ \IJtQ.

- Urec ot = va. ¥y

Proposition 5.2 (i) Let be ¢ € F(A,Z) in standard form. Then there exists a guarded term t such that
U, =¢

(i1) Let t1,ty be guarded terms of L(A,Z). Faz, t1 <ty & Fan, Uy Uy,
Proof:

(i) Since to any operator on formulas in standard form corresponds an operator on terms.



(ii) Since the image by ¥ of the deductive system Az is a subset of the deductive system Awxs.

O
Proposition 5.3 Vi € T(A,Z). V' e T(A,,2). U € [[V4]] < ' Ct. O

We recall that a finite-state program model (LTS) can be represented by a finite set of terms corresponding
to the computation trees which are obtained by unfolding the model starting in its initial states. A model
satisfies a formula ¢ if and only if all its terms are in [[¢]]. We show that for any guarded and closed BSL
formula different from F, the set of models satisfying it has a largest element with respect to the preorder C
extended to sets of terms.

Proposition 5.4 (largest model satisfying a formula) .
Voe F(AE). ¢ #F. 3y, 13 € T(A,Z). V€ T(A,2). t € [[¢]] & Fell,n].t T

Proof: By lemma 5.1 and propositions 5.2(i) and 5.3. O

Theorem 7 (ezpressiveness)

A set is BSL-definable if and only if it is SR-definable.

Proof:
(if direction) : We associate with any SR S = (A, W, wq, p) the equation set:

{Xy, = \/ a: P Xy, |weWl

(w7a7{w17"'7wn})6p =1

We can prove by induction on the number of equations that for any such equation set there exists a BSL
formula satisfying it.

(ounly if direction) : By proposition 5.4, for any BSL formula there exists a largest model satisfying it, say
{tL,---, g} Any term in this model represents a regular computation tree which can be transformed to a
KT (see definition 4.1). This KT, since it is regular, is the unfolding of a finite-state structure which can be
viewed as a SR and a finite union of SR’s is a SR. O

The theorem above says that BSL characterizes exactly the class of regular safety properties. Thus, by
proposition 5.4, any safety property is definable by a LTS up to simulation. Furthermore, by proposition 2.2,
BSL is adequate for safety equivalence.

Corollary 5.1 (adequacy for safety equivalence)
Vi1, t € T(A+,2). ty =ty if and only if Vo € F(A,E). 1 € [[¢]] & 12 €[[¢]]. O

Notice that the adequacy of BSL for the safety equivalence remains true when we consider finite models
(LTS) instead of computation trees (see proposition 2.3).

6 Conclusion

We have proposed a safety preorder for branching time semantics based on simulation and studied the class of
safety properties it defines. It turned out that this class coincides with the intuitive notion of safety properties.

The preorder we have chosen is not sensitive to deadlock, i.e., reachability of a state in which no visible
action can be performed. Indeed, a tree with a finite path may be equivalent to a tree without finite paths.
Thus, if the specifications require a system to be deadlock free, this has to be verified separately.

A deadlock sensitive simulation is completed simulation [vG90], where a deadlock state does not simulate
any non deadlock state. However, it is easy to see that this relation is not a precongruence for the restriction
operator and therefore also for parallel operators incorporating restriction as e.g., the synchronous product.

A deadlock sensitive safety preorder which is a precongruence for the operators we consider in this paper
can be based on ready simulation [vG90] with abstraction, where two related states have the same visible
initial actions.

The abstraction criterion we have chosen (the visible transitions are of the form 7*a¢ where a is a visible
action) has several advantages in the contex of simulation:



o It allows to define a safety equivalence weaker than observational equivalence,

o [t is very interesting in practice. It allows to eliminate all 7-transitions. Furthermore, this can be done
locally during the generation of a program model. In fact, the algorithm is analogous to the one for the
elimination of e-transitions on finite-state automata.

Minimization and comparison up to safety equivalence are implemented in Aldébaran [Fer89], a tool for the
verification of communicating systems represented by LTS’s. Aldébaran has been used to compare efficiently
protocols with their specifications up to safety equivalence; e.g. the results of the verification of a reliable
atomic multicast protocol in the Application Layer can be found in [FM90].
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