
August 9, 2022 CAV – Haifa page 1

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

MIMOS a Framework for Design and Update
of Real-Time Embedded Systems

Susanne Graf
Verimag - Grenoble University &

Uppsala

Wang Yi, Bengt Jonsson, Philipp
Rümmer, Morteza Mohaqeqi …

Uppsala University

August 9, 2022 CAV – Haifa page 2

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

MIMOS a Framework for Design and Update
of Real-Time Embedded Systems

Susanne Graf
Verimag - Grenoble University &

Uppsala

Wang Yi, Bengt Jonsson, Philipp
Rümmer, Morteza Mohaqeqi …

Uppsala University

August 9, 2022 CAV – Haifa page 3

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

Model-Based Design of Real-Time Systems

Function
Architecture

Software
Architecture
(task layer)

Hardware
Architecture

Physical
Architecture

Functional
Modelling & Verificati

T4 T5

T1
T2

T3

Mapping

CPU2 CPU3CPU1

Phy2Phy1

Scheduling

f1 f2

f5f4

f3

f7f6

August 9, 2022 CAV – Haifa page 4

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

Model-based Update
Update in this picture ?

T4 T5
T1 T2

T3

CPU2 CPU3CPU1

Phy2Phy1

f1 f2

f5f4

f3

f7f6

Function update:
change/upgrade functions, add
new functions, eliminate,
reconnect …

Approach: contract-based

Design challenge:
• composability
• Support for impact

analysis
• independence of time

and function

f1’
f10

f11 f12 f13

August 9, 2022 CAV – Haifa page 5

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

Model-based Update
Update in this picture ?

T4 T5
T1 T2

T3

CPU2 CPU3CPU1

Phy2Phy1

f1 f2

f5f4

f3

f7f6

“Software” update:

Can we guarantee that
• small changes at function layer

lead to small changes at
software layer ?

• Small increase of workload
leads to small resource usage
increase

• Efficient deployment of updates
(container based)

• ….

f1’
f10

f11 f12 f13

Challenge: Resource-Efficiency
– Keeping track of workload and available resources
– Dynamic scheduling and schedulability analysis
– Architecture challenges: multicores, distributed …

August 9, 2022 CAV – Haifa page 7

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

OUTLINE

1. Motivations: on Design and Update of Real-time systems

2. System Design in MIMOS
 Requirements on the design language
 Our design language

3. A Type system for MIMOS
 Boundedness as type correctness

4. Contracts for MIMOS
 Some reflections on property specification and verification at the

function layer

August 9, 2022 CAV – Haifa page 8

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

Function Design

f1 f2

f5f4

f3

f7f6

f7f6F1: periode p1
e2e deadline

F2: periode p2

F3: periode p3

d1

d3

d2

Functions: Streams (& Memory) Streams
Hierarchically defined

Requirements:
• Determinism is fundamental
• Separation of Concern: Abstraction

– Independence of timing and functionality
• Updatability/Composability

– Avoidance of interference & Resilience
– Asynchronous Communication (non-blocking)

August 9, 2022 CAV – Haifa page 9

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

Current Approaches

Function Design and Verification:
Synchronous (Scade, Lustre, Synchronous Data-Flow, …)

Advantages:
• Deterministic
• Time and function reasonably independent
• (Mostly) easy to design
• Easy to simulate and verify

Software level: “Virtually Synchronous” : semantic preserving
mapping to a task set run asynchronously on OS / middleware
• TTA (Timed Triggered Architecture) – single rate [HK&al 90ies]
• PALS (Physically Asynchronous Logically Synchronous) [JM&al 09]
• Recent LF (Lingua Franca) Reactor Model [EL&al 2019]

August 9, 2022 CAV – Haifa page 10

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

Why do we need something different ?

There are problems: synchronous is
- Very good for single rate (computation within period,

communication between periods)
- Can be adapted to multi-rate (some loss of simplicity)
- Problematic for deadline > period … can be done but delay

changes function …

s0 s1 s2 …

e0 e1 e2 …

r0 r1 r2 …

f(rk,sk) = F(ek) … ?
F f

δ=2p
Period p

δ=3p
No !
f(rk,sk+1)

Insert a delay
simplicity
delay independence

August 9, 2022 CAV – Haifa page 11

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

Kahn Process Networks (KPN)
Paper: “The semantics of a simple language for parallel
programming”, Gilles Kahn, 1974

Semantics of KPN: stream transformation as a fix point

Operational model for KPN

f1 f2

f5f4

f3

f7f6

C
C
V

C
C
V

C
C
V

C
C
V

C
C
V

C
C
V C

C
V

C
C
VC

C
V

C
C
V

C
C
V

C
C
V

C
C
V

C
C
V

C
C
V

C
C
V

A network of processes
• Communicating through (potentially unbounded) FIFO buffers
• Read (and compute a step): when all required data is in the FIFOs

(blocking, similar to PetriNets)
• Write: non-blocking (asynchronous)

August 9, 2022 CAV – Haifa page 12

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

Properties of KPN

• Determinism: a KPN defines a function from input streams to
output streams
– independent of the execution orders/scheduling
– Independent of computation/communication delays

• Boundedness of FIFOs ? undecidable in the general case
(expressiveness)

 MIMOS: Typed KPN will make it “tractable”

Observation: a synchronous program is a KPN with (very)
strict constraints on execution order which guarantees: when
a node is executed, FIFOs contain exactly the input to be
read (no need for FIFOs)

August 9, 2022 CAV – Haifa page 13

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

Timed KPN

KPN extended with timing constraints [YMG-Coordination-22]
• Nodes : real-time tasks with a period and a deadline (or possibly

other recurring task release strategy).
• Execution rule:

– Read input at release times (if present)
– Write output at deadline (or relaxed “upto” deadline)

• Extensions (optimizations and resilience):
– Registers : keep only the most recent value of a FIFO (synchronous)
– “timed read” (efficient implementation of “sporadic” tasks, resilience)

Theorem: TKPN are deterministic functions from timed input to
timed output streams

Observation: in many cases, no need for time stamps

August 9, 2022 CAV – Haifa page 14

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

Back to our small example

KPN solve the problem (by waiting for input)

Initial elements in buffers: e.g. in s: shorten (minimal) delay from
x to o – by using “older” values of s (synchronous solution)

 Tradeoff between delay and precision

s0 s1 s2 …

r0 r1 r2 …

ok =f(rk,sk) … ?
F f

δ=2p(Period p)

δ=3p yes !

x0 x1 x2 …

y0 y1 y2 …

Deterministic: function does not depend on the actual delays

August 9, 2022 CAV – Haifa page 15

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

Model-based Design with MIMOS

.

Typed KPN
&
contracts

Timed KPN
Node=RT task

Mapping

Scheduling

Run-Time

August 9, 2022 CAV – Haifa page 16

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

OUTLINE

1. Motivations: on Design and Update of Real-time systems

2. System Design in MIMOS
 Requirements on our design languages
 The design language and semantics

3. A Type system for MIMOS
 Boundedness and deadlock freedom by type correctness

4. Contracts for MIMOS
 Some reflections on property specification and verification at the

function layer

August 9, 2022 CAV – Haifa page 17

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

A type system for KPN

Why a type system ?

Remember: general form of a KPN “step function”:
Any program whose effect is (a) to read a finite number
of elements from the FIFOs and (b) to write at most a
finite number elements to its output and terminates

Problem:
How man elements does the program read and write ?
Does it terminate ?

To be able to give guarantees:
we must impose restrictions on such programs

August 9, 2022 CAV – Haifa page 18

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

A type system for KPN

Types:
• Basic Type (BT): Bool, Natural, Real, Int, Tuple/Product, List ...
• (bounded) Segment (Sgt): BTk, BT≤k

• Interface Type (IT): tuple(Sgt)
• Step function (ft): IT IT the function to be implemented
• Node function (FT): ftω = ITω ITω

F:(A1,A2,A3)ωBω

A1

A2

A3

BA node: a typed function

Abstract Types:
• Abstract Segment (ASgt): k (≤k)
• Abstract Interface (AIT): tuple(ASgt)
• Abstract step function (Aft): AIT AIT

August 9, 2022 CAV – Haifa page 19

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

Bounded Memory Property

The FIFO associated with C is bounded if:
#produced tokens = #consumed tokens (on the long run)

ASgt ASgt’A Connector C from node N to N’

If we know the periods of N and N’: pN, pN’
Then, the FIFO associated with C is bounded iff:

ASgt / pN = ASgt / pN’

That is : production rate = consumption rate

Fact: A KPN is bounded if all its connectors are bounded

k k’

August 9, 2022 CAV – Haifa page 20

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

Examples

.

Bounded KPN

1/10 = 1/101/5 = 2/10

not Bounded KPN

2/5 > 2/10

August 9, 2022 CAV – Haifa page 21

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

Examples

Do we need the periods ?

A live and bounded cycle:
all have the same period
(no node can consume
more than its predecessor
produces)

A deadlock cycle: for any
period assignments
different 0, the cycle asks
to consume more than it
produces

August 9, 2022 CAV – Haifa page 22

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

A more interesting setup
Idea: “Close” the system with an abstract interface representing the
input rates for some period p:
 We can calculate the “effective periods” of all nodes (if a solution

exist).

p=5

Interface type

Fact: we can efficiently
compute the interface type of
any composition

4

2 1

1

August 9, 2022 CAV – Haifa page 23

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

Can we go further ?

Fact: this “simple case” covers the “clock correctness”
analysis of synchronous programs (Lustre)

≤k ≤kConsider Connector C of type

A deterministic protocol allows dynamically adapting
read-write strategies without impacting other
components/connections

August 9, 2022 CAV – Haifa page 24

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

Facts and lessons learned

Fact: A type correct KPN is bounded memory and deadlock free.
… and if the execution time of all the programs implementing the
step functions can be bounded, the e2e-delay of all system
functions is also be bounded

Important
lesson

General form of the step function

3. Write strategy (deterministic)

2. Local computation

1. Read strategy (deterministic)

Type

Any other abstraction of read/write strategies can be used for
type analysis … as long as it can be handled by some tool

August 9, 2022 CAV – Haifa page 25

©
 2

02
2

Su
sa

nn
e

G
ra

f
--

C
U

ST
O

M
ER

 a
nd

 U
PD

AT
E

pr
oj

ec
ts

OUTLINE

1. Motivations: on Design and Update of Real-time systems

2. System Design in MIMOS
 Requirements on our design languages
 The design language and semantics

3. A Type system for MIMOS
 Boundedness and deadlock freedom by type correctness

4. Contracts for MIMOS
 Some reflections on property specification and verification at the

function layer

	MIMOS a Framework for Design and Update � of Real-Time Embedded Systems�
	MIMOS a Framework for Design and Update � of Real-Time Embedded Systems�
	Model-Based Design of Real-Time Systems
	Model-based Update
	Model-based Update
	OUTLINE
	Function Design
	Current Approaches
	Why do we need something different ?
	Kahn Process Networks (KPN)
	Properties of KPN
	Timed KPN
	Back to our small example
	Model-based Design with MIMOS
	OUTLINE
	A type system for KPN
	A type system for KPN
	Bounded Memory Property
	Examples
	Examples
	A more interesting setup
	Can we go further ?
	Facts and lessons learned
	OUTLINE

