
Contract-Based Quality-of-Service Assurance in
Dynamic Distributed Systems

Lea Schönberger∗, Susanne Graf†, Selma Saidi∗, Dirk Ziegenbein‡, Arne Hamann‡
∗TU Dortmund University, Dortmund, Germany, {firstname.lastname}@tu-dortmund.de

†VERIMAG, Grenoble, France, susanne.graf@imag.fr
‡ Robert Bosch GmbH, Renningen, Germany, {firstname.lastname}@de.bosch.com

Abstract—To offer an infrastructure for autonomous systems
offloading parts of their functionality, dynamic distributed sys-
tems must be able to satisfy non-functional quality-of-service
(QoS) requirements. However, providing hard QoS guarantees
without complex global verification that are satisfied even under
uncertain conditions is very challenging. In this work, we propose
a contract-based QoS assurance for centralized, hierarchical
systems, which requires local verification only and has the
potential to cope with dynamic changes and uncertainties.

Index Terms—quality of service, autonomous systems, dynamic
distributed systems, contracts, metric interval temporal logic

I. INTRODUCTION

In various fields, a trend has been emerging towards highly
distributed architectures, so called dynamic distributed sys-
tems, e.g., on-demand cloud platforms or road-side units on
smart intersections. Such systems allow autonomous systems,
e.g., (partially) autonomous vehicles or modern driving as-
sistance systems, to offload time-critical and computation-
intensive functionalities for remote execution. These func-
tionalities typically come with a quality of service (QoS)
requirement, which can be either functional, for instance
regarding the computational correctness and quality of the
result, or non-functional, e.g., the satisfaction of an end-to-
end deadline. However, since the non-functional QoS serves
as a basis for the functional QoS of sophisticated applications,
this work aims to provide an assurance of the former, aiming
to provide an infrastructure for autonomy.

In order to guarantee a QoS in terms of time, the sys-
tem’s resource management is crucial. Dynamic distributed
systems are frequently designed in a decentralized way, e.g., as
multi-agent systems, requiring a consensus between different
system components. Recently, a decentralized architecture
and consensus protocol was proposed by [1], a decentralized
monitoring-based approach by [2]. While both approaches [1]
and [2] are only applicable to provide weakly-hard QoS guar-
antees, [3] proposes a centralized, hierarchical architecture,
which uses complex timing analyses to provide hard QoS
guarantees for all applications passing an admission control.

Unlike existing works, we aim at providing hard QoS
guarantees with low verification complexity, preferring a cen-
tralized, hierarchical architecture over a decentralized one.
More precisely, we introduce contracts, i.e., formal agreements
between an application and the system, similar to the concept
of service level agreements in cloud computing (see e.g.

[4], which are based on logic constraints on the behavior of
different system components and are assured automatically by
dynamic reconfiguration.

In the following, we introduce the considered system archi-
tecture in Sec. II and give a short introduction into the logic
used in Sec. III, before we construct a core contract in Sec. IV.
We conclude this work in Sec. V with a discussion about
the benefits of our contract-based QoS assurance approach,
its potential when dealing with uncertainties, and its evolution
under dynamic changes.

II. SYSTEM MODEL

We consider a centralized, hierarchical distributed system
with an admission control and a global notion of time.

A. Architecture

The system is separated into three hierarchical layers with
different responsibilities. On the top-layer, the resource man-
ager is situated, which is in charge of the admission control,
i.e., it decides if an application is accepted for execution
or rejected. For this purpose, it transforms functional re-
quirements of an application into system-specific constraints
that are handed over to the resource agents situated on the
medium-layer. Each resource agent administrates one of mul-
tiple heterogeneous computation and communication resources
located on the base-layer and is responsible for enforcing the
constraints imposed by the resource manager, e.g., by adjusting
the scheduling. Depending on the actual system, the medium-
layer may be implemented on the base-layer.

B. Resources

The system’s base layer consists of a setR of heterogeneous
and independent resources1, each one being of a specific
resource type, e.g., a particular computation platform or trans-
mission technology. On each resource, a specific resource
allocation mechanism suitable for the respective resource type
is assumed to be implemented.

C. Applications

The set of executed applications is not fixed at design time.
Applications can send join requests to the resource manager
in order to be executed and, once their execution is completed,
leave the system again. However, in the following, we restrict

1For the sake of simplicity, we assume resources to be independently
assignable. This is realistic for many distributed systems, where communi-
cation is decoupled from computation via adequately dimensioned buffers.

our considerations to the case that applications stay in the
system rather long-term, such that the rate of change does not
have a direct impact on the processing of join requests.

Each application a = (T , P,Q) consists of a partially
ordered set T of tasks, represented as a directed acyclic
graph (DAG) termed task graph. The partial order specifies
dependencies between tasks, i.e., if for any tasks τ1, τ2, it
holds that τ1 < τ2, then τ2 is dependent on τ1 and requires
the result (e.g., a computation result or a completed data
transmission) of τ1 as an input. Application instances are
assumed to be released periodically, i.e., with an inter-arrival
time P . The high-level QoS requirement Q of an application
is an end-to-end deadline, i.e., a time interval, which is
dimensioned in such a way that further constraints such as an
end-to-end sensitivity margin, i.e., a percentage indicating by
how much the end-to-end deadline may be overshot, etc. have
already been factored in. Moreover, we assume that P can be
shorter than the end-to-end deadline, i.e., multiple instances
of the application may be executed simultaneously.

Each task τ ∈ T is a tuple τ = (C, %, q). C is a set
of time estimates, where each time estimate c refers to the
worst-case execution/transmission time of τ on a particular
resource type, which is eligible for its execution/transmission,
e.g., a specific CPU architecture or communication technology.
These time estimates are assumed to be obtained in advance
applying any method such as, e.g., profiling or benchmarking,
and to be provided by the application designers. Each task is
time-triggered, i.e., it is released according to a release offset
% with respect to the start of the application’s period. The
release offset is not known in advance, but is determined by
the resource manager during the admission control process
and remains unchanged, once an application has been admitted
for execution. This corresponds to the logical execution time
(LET) paradigm [5] for decoupling dependencies between
tasks and implies that, if for two tasks τ1, τ2 it holds that
τ1 < τ2, task τ2 must not start before the execution of
task τ1 has been completed. Along with the release offset,
a local deadline q, i.e., a time interval, termed low-level QoS
constraint, is associated with each task during the admission
control process.

D. Admission Control

In the admission control process, it is evaluated for each
executable application2, which QoS can be guaranteed by the
system. This QoS offer Q̄ is communicated to the application,
which is free to accept or decline it depending on its require-
ments. To derive the QoS offer, three steps are followed, as
illustrated in Fig. 1:

(i) Decomposition: The application’s high-level QoS require-
ment Q is decomposed into per-task low-level QoS

2An application is executable on the system if for each task τ a suitable
resource (of a type for which a time estimate is provided by τ) exists. In this
case, the task graph is mapped to the system, i.e., each task is assigned to
one specific resource. Please note that the DAG as mapped to the system may
differ from the original task graph in terms of parallelism, depending on the
available resources. Due to space limitations, we henceforth assume a correct
mapping of the task graph to be given, so that whenever we speak of T , we
refer to the DAG as mapped to the system.

RM

RA RA RA RA RA RA

τ1 τ2

τ3

τ4

τ5 τ6

Q

q1 q2

q3

q4

q5 q6

Q̄

q̄1 q̄2

q̄3

q̄4

q̄5 q̄6

Q
oS

co
ns

tra
in

ts
,t

im
e

es
tim

at
es

,p
er

io
d

Q
oS

prom
ises,logicaloffsets

1. decomposition

2. local schedulability analysis

3. composition

Fig. 1. A global picture of the admission control process.

constraints by the resource manager using a decom-
position algorithm, which can be chosen according to
global optimization goals. Each low-level QoS constraint
(together with a time estimate c and the period P) is
forwarded to the resource agent maintaining the related
resource. For the rest of this work, we consider an abstract
decomposition function:
Definition 1 (Decomposition Functions). Decomposition
functions are defined as functions dec(T) deriving the
task parameters (q, %) such that the following properties
are satisfied: For each task τi it holds that qi ≥ ci. For
any two tasks τi, τj with τi < τj regarding the partial
order of T , it holds that %i + qi ≤ %j .

(ii) Local Schedulability Analysis: Each resource agent per-
forms a local schedulability analysis3 to determine
whether q can be satisfied. In the course of the analysis,
it derives a low-level QoS promise q̄, which is either
q or the next best latency it can guarantee for the
execution/transmission of τ.

(iii) Composition: Based on all low-level QoS promises, the
resource manager uses a given composition theory to
compute the high-level QoS offer Q̄. The composition
theory is imposed at system design time and therefore
serves as a ground truth, while each implemented decom-
position algorithm must be explicitly designed against
the background of the composition theory in order to
be compatible. In this work, we assume the composition
to be performed by the following abstract composition
function:
Definition 2 (Composition Function). For an application
a, the composition function is defined as comp(T) :=
maxpath(T), where maxpath(T) returns the length

3We make the assumption that for each resource, a suitable schedulability
analysis method is chosen, which delivers correct results.

of the maximum path (in terms of the low-level QoS
promises q̄τ and taking into account the release offsets)
through the task graph or all τ ∈ T .

E. Execution Phase

To keep its low-level QoS promise regarding an application,
each resource agent reserves a so-called budget b on the
resource, i.e., a certain amount of resource service required
to perform the execution or transmission of a task τ within
an upper-bounded response time. This can be, e.g., execution
time on a computation resource and a number of transmission
slots or bandwidth on a communication resource. The budget
is said to be consumed during the execution or transmission
of a task and to be replenished after each period of the task.
Accordingly, it is represented as a real-valued signal, for which
must hold that c ≤ b ≤ q.

III. METRIC INTERVAL TEMPORAL LOGIC

In order to assure that the considered system is able
to provide the offered QoS to an executed application, we
consider the result of a successful admission as a formal
contract engaging both, the application and the system. To
formally express the responsibilities of each contracting party,
we formulate constraints using a Metric Interval Temporal
Logic (MITL), from which monitors can be automatically
derived, similar to [6].

The state of a system can be described by state variables
x1, . . . , xn, whose values evolve over a time domain T.
Accordingly, the state space of the system is defined as
S = S1 × · · · × Sn, where Si is the value domain of variable
xi, which may be discrete, e.g. Boolean, or continuous, e.g.
real-valued. A function s : T → S from the time domain
to the state space represents a behaviour of the system and
it is termed a signal. The value of a signal s at time t, i.e.,
the values of the state variables, is denoted s[t] ∈ S. A sub-
signal of s corresponding to the behavior of xi is represented
by si : T → Si. The set of all possible signals over S is
denoted by S∗. Moreover, a property ϕ defines a set of signals
Lϕ ⊆ S∗, i.e., the set of signals satisfying property ϕ.

The syntax of MITL over a set of predicates is expressed
by the grammar

ϕ := π | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1U[a,b]ϕ2

where π is a predicate, i. e., a Boolean expression over
x1, . . . , xn

4, U is the until operator, and a, b ∈ T. Based on
this grammar, further operators can be derived such as the
eventually operator ♦ and the always operator �.

Definition 3 (Satisfaction Relation). The satisfaction relation
states whether a signal s satisfies a property ϕ at time t. It is
defined as follows:

4Hence, for each v ∈ S, π [v/x1, . . . , xn] (or simply π(v)) evaluates to a
Boolean value.

(s, t) � π ⇔ π(s[t]) = true
(s, t) � ¬ϕ ⇔ (s, t) 2 ϕ

(s, t) � ϕ1 ∨ ϕ2 ⇔ (s, t) � ϕ1 or (s, t) � ϕ2

(s, t) � ϕ1U[a,b]ϕ2 ⇔ ∃t′ ∈ [t+ a, t+ b] s.t. (s, t′) � ϕ2

and ∀t′′ ∈ [t, t′] : (s, t′′) � ϕ1

(s, t) � ♦[a,b]ϕ ⇔ ∃t′ ∈ [t+ a, t+ b] s.t. (s, t′) � ϕ
(s, t) � �[a,b]ϕ ⇔ ∀t′ ∈ [t+ a, t+ b] : (s, t′) � ϕ

where b > a ≥ 0 are time instants defined by events
occurring in the system.

IV. ONLINE VERIFICATION

To assure the QoS guaranteed to an application, it is neces-
sary to conclude a contract between each application admitted
to the system and the resource manager, which is verified
online. Aiming to establish such a contract, we formulate
constraints on the behavior of different system components to
be evaluated at run-time using online monitoring. By means
of the monitors, the admission control process can be verified
and, moreover, sources of potential misbehavior, e.g., faulty
components, can be determined.

A. Admission Control Correctness

In order to verify the correctness of the admission control
process, two constraints must be verified whenever an appli-
cation’s high-level QoS requirement is decomposed. Please
note that these are static constraints with respect to a single
application, which are independent from all other applications.

1) Compatibility: The decomposition algorithm must be
compatible with the composition theory, i.e.,

comp(dec(Q)) ≤ Q. (1)

2) Task Order: The decomposition algorithm must not
violate the given task order, i.e.,

%2 ≥ %1 + q1 if τ1 < τ2. (2)

B. Execution Correctness

To ensure that the low-level QoS constraints retrieved during
the admission control process are enforced by the resource
agents in the execution phase, a number of local per-resource
constraints must be satisfied5.

Before we formulate the constraints, we state the following
definitions: For any event ε, we denote t(εi) its occurrence
time. For an arbitrary but fixed task τ to be scheduled on
the resource, we consider the events εrel, εstart, εterm, and
εperiod, referring to the release, the start, and the termination
of τ as well as to the recurring start of the period of the
application a. We define two time intervals, namely, the period
interval Iperiod = [t(εperiod), t(εperiod)+P], and the schedul-
ing interval of τ defined by Isched = [t(εrel), t(εrel) + q],
which is the time interval in which τ can be scheduled on the
resource. Moreover, we define the predicates πstart and πrel,
which are meant to hold as of the corresponding event until
the end of the period, as well as the predicates πterm and πstop
in order to distinguish proper and abnormal termination. For
each task τ, we also define the predicate πb = (b ≥ c) with
respect to its budget.

5Due to space limitations, we provide the essential constraints only.

For a task τ, the following constraints on the time points
and order of events as well as on the availability of budget
must be satisfied:

1) No Budget Over-Consumption: We expect the resource
agent to not allow any task to overdraw its budget. That means,
whenever τ has exhausted its allocated budget but has not
terminated, it is expected to be stopped (abnormal termination)
within a short interval of time, i.e.,

�Isched (b = 0 ∧ ¬πterm =⇒ ♦[0,ε]πstop) (3)

for some ε > 0. Please note that this property must hold in
every scheduling interval.

2) Timely Termination with Non-Negative Budget: In every
scheduling interval, τ is expected to terminate (properly)
before its local deadline, i.e., not violating its local QoS
constraint, with non-negative budget. Aiming to distinguish
two possible fault causes in case of violation, i.e., the budget
is exhausted but τ has not terminated, we express this require-
ment by two distinct constraints:

�Isched (b = 0 =⇒ πterm) (4)

♦Isched (b = 0 ∨ πterm) (5)

If constraint 4 is violated, the low-level QoS constraint q
imposed by the resource manager is not suitable, e.g., due
to an unauthorized change of the application requirements.
If, however, constraint 4 holds, but constraint 5 is violated,
the resource agent did not give τ the opportunity to consume
its budget within the scheduling interval, e.g., due to bad
scheduling decisions.

3) Sufficiently Dimensioned Budget: At the beginning of
every scheduling interval, i.e., at the release of task τ, the
reserved budget is required to be at least as large as the task’s
time estimate. Moreover, the budget must not decrease before
τ begins its execution, i.e.,

�Isched πb UIsched πstart. (6)

C. QoS Assurance

The assurance of the high-level QoS of an application
executed on the system relies on the satisfaction of the contract
concluded at its system admission. This contract is a set
of constraints as introduced above and requires all involved
system components as well as the application to fulfill their
responsibilities. De facto, if the admission control is not
correct, the low-level QoS provided by the resource agents
cannot suffice to satisfy the high-level QoS requirement. In
turn, if the execution phase does not operate properly, e.g.,
due to faults or resource unavailability, the low-level QoS
promises cannot be kept. However, if an application did not
reveal realistic characteristics as an input to the admission
control process, e.g., unrealistic time estimates or a wrong
period, the resource agents may be unable to accommodate
unexpected task behavior. We summarize this as follows:

Conjecture 1. If for an application a admitted to the system,
constraints 1 and 2 hold and, moreover, for each task τ

executed on the system constraints 3, 4, 5, and 6 are satisfied,
then the offered high-level QoS Q̄ is provided by the system.

Please note that Conjecture 1 can be extended by additional
constraints. For the verification of each individual constraint,
online monitors synthesized from the MITL formulation can
be used. Since the fine-grained constraint formulation, i.e., the
large number of monitors, allows to localize the cause of an
observed constraint violation very precisely, the system is able
to automatically perform a targeted reconfiguration in order
to sustain the related contract. We will discuss the further
potential of contract-based QoS assurance in the next section.

V. DISCUSSION AND CONCLUSION

Compared to previously mentioned approaches, our pro-
posed contract-based QoS assurance has several advantages.
Most significantly, all contracts in the system are independent
of each other, i.e., no composition of contracts is necessary,
but only a co-existence, which allows to modularly add
and remove contracts and, moreover, reduces the verification
complexity drastically. More precisely, no global verification
is required, since global properties can be verified based on
local properties.

To cope with the dynamicity of the system and thus also
with uncertain conditions, it can be meaningful to introduce
different types of contracts. On the one hand, the quality of
contracts can be gradated: While an expensive contract may
require static reservation on some resources, cheap contracts
could be handled in a best-effort manner. On the other hand,
the period of validity, can be varied, so that, for instance, long-
term and short-term contracts can be distinguished, depending
on the application requirements. In view of potentially chang-
ing application characteristics, e.g., strongly varying execution
times, it may be sensible to combine both contract types and to
adjust the respective parameters over time. Additionally, appli-
cations violating a contract by disrespecting budget constraints
can be enforced to undergo a re-admission process.

Not least, our contract-based QoS assurance is also valid if
the system topology changes, since only local reconfiguration,
but no contract modification is necessary. Thus, it can also
be beneficial in the context of fault-tolerance; discussing this,
however, is beyond the scope of this work.

REFERENCES

[1] L. Prenzel and S. Steinhorst, “Decentralized autonomous architecture for
resilient cyber-physical production systems,” in Design, Automation &
Test in Europe Conference & Exhibition, DATE 2021, Grenoble, France,
February 1-5, 2021. IEEE, 2021, pp. 1300–1303.

[2] J. Peeck, J. Schlatow, and R. Ernst, “Online latency monitoring of time-
sensitive event chains in safety-critical applications,” in IEEE Design
Automation and Test in Europe (DATE), 2021.

[3] V. Millnert, J. Eker, and E. Bini, “End-To-End Deadlines over Dynamic
Topologies,” in 31st Euromicro Conference on Real-Time Systems (ECRTS
2019), ser. Leibniz International Proceedings in Informatics (LIPIcs),
S. Quinton, Ed., vol. 133. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2019, pp. 10:1–10:22.

[4] P. Patel, A. Ranabahu, and A. Sheth, “Service level agreement in cloud
computing,” 2009.

[5] R. Ernst, L. Ahrendts, and K. B. Gemlau, “System level LET: mastering
cause-effect chains in distributed systems,” in IECON 2018 - 44th Annual
Conference of the IEEE Industrial Electronics Society, Washington, DC,
USA, October 21-23, 2018. IEEE, 2018, pp. 4084–4089.

[6] O. Maler, D. Nickovic, and A. Pnueli, Checking Temporal Properties of
Discrete, Timed and Continuous Behaviors. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 475–505.

