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Abstract The problem of deriving distributed implemen-
tations from global specifications has been extensively stud-
ied for a number of application domains. We explore it here
from the knowledge perspective: A process may decide to
take a local action when it has enough knowledge to do so.
Such knowledge may be acquired by communication through
primitives available on the platform or by static analysis. In
this paper, we want to combine control and distribution, that
is, we need to impose some global control constraint on a
system executed in a distributed fashion. To reach that goal,
we compare two approaches: either build a centralized con-
trolled system, distribute its controller and then implement
this controlled system on a distributed platform; or alterna-
tively, directly enforce the control constraint while imple-
menting the distributed system on the platform. We show
how to achieve a solution following the second approach and
explain why this is a pragmatic and more efficient strategy
than the other, previously proposed one.
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1 Introduction

Building correct distributed systems is a challenge because
they are too complex for global verification. An interesting
solution consists in starting from a centralized specification
of the system under construction, verifying all properties of
interest on this centralized specification—which has a much
lower complexity than verifying the corresponding distrib-
uted system—and finally deriving a distributed solution using
some correct-by-construction approach. In addition, we want
here to control the distributed system so as to guarantee some
global property ¥.

This leaves us with two problems which must be addressed
together:

— Control Given a system S and a global safety constraint
¥ to be enforced, how to implement a controlled system
SY¥ behaving like S but guaranteeing ¥ ? Note that if §
is a global system (or specification), this problem can be
solved easily.

— Distribution Given a system S, how to implement it in
a distributed fashion? This means decomposing S into k
processes 1, . . . , Ty executing on a distributed platform,
either totally agnostic of each other or communicating—
in a limited way—through the communication primitives
provided by the platform.

In this paper, we discuss two strategies for handling con-
trol and distribution jointly. The first strategy [11] con-
sists in solving first the control problem on the centralized
specification, then distributing the obtained controller and
finally distributing the resulting constrained system forget-
ting about the original control problem. We propose here
a second, integrated solution which solves the control and
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distribution problems jointly. We show that this approach
may avoid unnecessary synchronizations while allowing use
of knowledge [9], as in the layered approach.

More specifically, we formulate the problem of achiev-
ing a distributed implementation of a centralized specifica-
tion as a control problem which can trivially be extended to
take into account also the original constraint ¥. We define
a knowledge-based approach to derive a distributed con-
troller achieving that goal. We also discuss how to achieve
the knowledge needed by the controllers of individual locali-
ties by communication and/or statically available knowledge
that may be derived from platform or application domain
induced conditions or obtained by static analysis of the cen-
tralized specification—under the condition that this knowl-
edge is preserved in the distributed context.

One interesting side effect of this work is to make explicit
some underlying assumptions made by previous knowledge-
based work on distributed control. Indeed, the appropriate
notion of what is a correct implementation solving both the
control and the distribution problems depends on the (global)
properties that we want to see preserved. In particular, one
must define the meaning in a distributed setting of a constraint
¥ defined on the centralized specification, or of a property ¢
that it should satisfy; the reason is that the distributed imple-
mentation and the centralized specification are not defined
on the same set of states, and transitions of the distributed
implementation are transitions local to a process (which are
part of a global transition of the original specification).

Finally, another contribution of this paper is that we show
how to prove correctness of a distributed implementation
in a compositional manner by separating the proof into a
framework- and an application-dependent part: (1) We for-
mulate several possible implementation relations < and show
how they can be formulated as a control problem; (2) we pro-
pose a distributed solution to this problem in the form of a
set of knowledge properties and a communication strategy
for achieving the required knowledge that we prove correct
for some implementation relation <. For the proof of any
concrete algorithm—that we do not provide here—it is then
sufficient to (3) prove that it guarantees these knowledge
properties.

We use here safe and elementary Petri nets as a convenient
formalism to represent global system specifications, and local
Petri nets extended with data and transition guards—one per
process—to represent controlled and distributed systems at
an abstract level. Petri nets have concurrency and synchro-
nization as first class citizens, and these are also the important
concepts for our purpose. The applicability of the approach
presented here is, however, in no way restricted to Petri nets.

This paper, which is an extended version of [13], is
structured as follows. In Sect. 2, we give an overview on
approaches that have been proposed to derive distributed
implementations from global (controlled) specifications. In
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Sect. 3, we recall some standard notions and notations for
Petrinets [26,28], and we formulate the centralized controller
synthesis problem in terms of a simple class of extended
Petri nets which allow enforcing a given control invariant.
In Sect. 4, we introduce a notion of distributed Petri net and
define how it relates to global Petri nets. We then formu-
late the distributed implementation problem as a (centralized)
control problem. How to distribute this centralized controller
is shown in Sect. 5, using the notion of knowledge and defin-
ing how communication can be integrated into the formal
framework presented. Finally, in Sect. 6, we put into use all
previous results for solving our initial problem of imposing
control constraints on distributed computations. More specif-
ically, we show the benefits of an integrated approach dealing
with control and distribution jointly.

2 Related work

The problems of deriving a distributed implementation from
a global specification and that of deriving a controller enforc-
ing a global (safety) property have been studied intensively
in the past. Here, we give a short overview of some important
results in these domains, organized around three topics: The
distributed implementation of synchronous languages, the
derivation of protocols from specifications, and distributed
control, with an emphasis on knowledge-based approaches.
Other closely related areas are test and analysis of distributed
implementations which we do not discuss here.

2.1 Distributed implementation of synchronous languages

In synchronous languages [5], global specifications are given
as a set of concurrent interacting components with local data,
similar to what is done in hardware description languages.
However, classical compilers of synchronous languages do
not generate a distributed implementation, but a sequential
one. The need to distribute such a specification stems from
the need to execute it on a distributed platform, where differ-
ent specification level components run on different hardware
units. In this context, the target system is typically a real-time
controller with rather tight synchronization constraints.

In this context, the control flow is driven by (local)
clocks, and the data exchanged between locations are con-
tinuous flows. Most synchronous languages define semanti-
cally Kahn networks [17], that is, deterministic specifications
where each variable is written at most once in each compu-
tation step, and no circular dependencies exist among them.
Therefore, according to [17], achieving a correct distributed
execution is straightforward on a platform with communica-
tion through unbounded FIFO buffers. The Esterel language
[6] allows also fixpoint computations within a step which
imposes additional constraints. The so obtained distributed
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implementations are reliable, but generally uninteresting in
a context imposing (hard) real-time constraints to be met.
Communication and computation time need to be bounded,
such that bounded buffers are sufficient and real-time con-
straints are guaranteed [7].

2.2 Protocol derivation

In the domain of telecommunications, automatic protocol
generation from a global service specification has been a hot
topic in the eighties. An action of a global service specifi-
cation may represent an (oriented) data transfer or a gen-
uine synchronization belonging to more than one physical
location. Besides, specifications often feature some non-
determinism which represents both, abstraction of how deci-
sions are taken as well as some degree of openness of the
design to be resolved at a later stage.

There has been a huge amount of work in the eighties on
specifications given by communicating finite state machines
[8,27,35] or formal specification languages such as LOTOS
[15,18,30,34]. There, joint transitions represent message
passing with a well-identified source and target. All these
approaches are more or less pattern based, where for certain
specification patterns a choice of corresponding implementa-
tion patterns is proposed. As an example, the simplest pattern
transforms an assignment x := y where x and y reside on
different locations into a message exchange, transferring the
value of y to the right location. [18] treats a quite complete
subset of LOTOS and proposes model transformations to be
applied to the abstract syntax tree. The paper [27] is more
conceptual but includes patterns for achieving reliable com-
munication by means of timeouts and retransmissions. This
paper proposes also a parallelization of local activities. Few
papers consider timing constraints to be satisfied [34].

Some works propose methods for Petri nets with data
transfer (through registers). For example, [32] presents an
algorithm for generating, starting from a Petri net, a mes-
sage passing protocol by means of a set of message synthesis
rules. This line of work supposes that (1) the control over
interactions (determining who initiates it) is solved a priori,
derived from the direction of data flow and that (2) conflicts
can always be solved locally. A more general method, deal-
ing also with conflicts and multi-party synchronizations, is
proposed by Bagrodia [1], taken up in [25] for defining the
a-core protocol; note that these protocols are not automati-
cally derived.

Correctness proofs are rarely given. When they exist, they
provide more or less formal arguments establishing that the
protocol guarantees atomicity. An explicit knowledge-based
formulation of the protocol under study and the property to
be proven would allow for simpler proofs, and we hope, also
more efficient protocols.

2.3 Distributed control and its knowledge-based
formulations

The problem of achieving distributed control of a plant with
respect to a global specification is closely related to the distri-
bution problem. Here, for a given set of possible next actions
supported by the plant, the aim is to allow in a distributed
fashion one or more of them to be executed, using a set of
controllers with some partial vision of the global situation.
This requires—as before—to find some enabled actions, and,
when there is more than one, to detect whether there is a con-
flict and to choose among enabled actions if needed. In this
specific context, instead of initiating the local part of a global
action, local controllers provide a judgment on whether or not
they propose an action for execution, and these local judg-
ments are then somehow fused into a global decision (see
e.g., [24,29,31] and [33] for a generalized decision architec-
ture). The problem we address here is slightly different as
we do not suppose the existence of supervisor fusing local
Views.

We are particularly interested in the methods presented
in [16,22,23] where a knowledge-based presentation of the
distributed control problem is proposed for systems, although
without the possibility of actual conflict situations. In [22],
only negative knowledge is used: A local controller knows
that an action a cannot be executed if this is due to its local
protocol, and in order to forbid the execution of a, at least
one local protocol must do so. This means that action a is
allowed when no individual controller knows the contrary. In
[16], the notion of knowledge-based protocol is proposed as
a means for representing protocol specifications abstractly:
The local action a; of P; is enabled if P; knows this fact
in its present state. Obviously, knowledge depends on the
global system and not just on the local state. Constructing
a distributed protocol consists therefore in transforming this
external knowledge into an acquired knowledge which can
be locally exploited. We take up upon this work.

2.4 Solving control problems for subsequent distribution

The previously discussed knowledge-based approach has
been taken up and generalized in [3,4,11,12,20] by sug-
gesting the use of model checking—or more generally, sta-
tic analysis—for calculating knowledge properties of local
states. This is done for global service specifications given in
terms of Petri net-like formalisms. The objective in the above-
cited work is not maximal progress, but preservation of dead-
lock freedom and minimization of need for communication.
A problem is that there may not exist enough knowledge to
take any local decision. In [2], it is suggested to merge local
processes into fewer, larger ones when the existing knowl-
edge cannot avoid deadlock situations, and process fusion
is stopped when in S there is sufficient knowledge to allow
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these larger processes to take local decisions. In [3,11], it
is proposed to enrich the specification with some additional
actions representing temporary synchronizations in order to
preserve more of the initial concurrency. This work relies
on some protocol such as a-core for achieving a distributed
implementation, in particular, for resolving conflicts. In [4],
knowledge computation is used to avoid actual conflicts at
execution time by eliminating them statically.

Our goal here is to apply such knowledge-based approaches
also to the underlying distribution protocol. For example, we
would like to optimize the extension of the a-core protocol
for dealing with priorities defined in [14]. To do so, we aim at
a knowledge-based formulation of this algorithm, such that
a given protocol step is only executed if the knowledge to be
acquired in this step is not yet available. The approach defined
in this paper should provide the basic tools for achieving this
goal, but actually doing it is beyond its scope.

3 Centralized controlled specifications

In this section, we recall some standard definitions and nota-
tions used throughout the paper. We use safe Petri nets
[26,28] to represent centralized specifications and define a
standard global semantics for Petri nets as the set of traces
defined by their possible executions. We also formulate
the centralized controller synthesis problem, and we repre-
sent controlled specifications by means of a simple class of
extended Petri nets.

3.1 Petri nets

Definition 1 A Petri net N is a tuple (P, T, E, so) where:

P is a finite set of places. The set of states (markings) is

defined as S = 2°.

— T is afinite set of transitions.

— E C (P x T)U(T x P) is a bipartite relation between
places and transitions.

— so C 2% is an initial state (initial marking).

For a transition t € T, we define the set of input places °t
as {p € P|(p, t) € E}, and the set of output places t* as
{p € PI(z, p) € E}.

A transition ¢ is called enabled in a state s if ¢ C s and
(#°\*t) N's = . We denote the fact that ¢ is enabled in s by
s(t).

An event, corresponding to the firing of ¢, leads from state
s to state s’, which is denoted by s[¢)s’, when ¢ is enabled in
sand s’ = (s\*) Ut

Throughout the paper, we use the Petri net of Fig. 1 as a
running example. As usual, transitions are represented as
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Fig. 1 A Petri net with initial state {p;, p2, ps}

segments, places as circles, and the relation E as a set of
arrows from transitions to places and from places to tran-
sitions. The Petri net has places named p; and transitions
named a, b, ..., g. We represent a state s by fokens inside
some places of s. In the example, the depicted (initial) state
so is {p1, p2, ps}. The transitions enabled in sy are a and
b. Firing a from sp means removing the token from p; and
adding one to p3.

Note that there cannot be more than one token in any place.
Indeed, a transition ¢ is enabled in a state s only if (after
removing the tokens from the input places of ¢) there is no
token in any of the output places of z. That is, using standard
vocabulary for Petri nets, we consider here Petri nets that are
one-safe by construction. A state s is in deadlock if there is
no enabled transition from it.

Definition 2 Two transitions ¢; and 1, are concurrent if (°t{ U
11°) N (*t2 U1r®) = @. Two transitions ¢; and t, are in conflict
if % N1 # 0.

For example, transitions a and b are concurrent whereas tran-
sitions ¢ and d are in conflict.

As usual, we define event traces as maximal (non-
extendable) sequences of events.

Definition 3 An event trace of a Petri net N is a maximal
sequence of events so[#1)s1-51[#2)s2-. . . where s is the initial
state of N, and any two consecutive events share their final,
respectively, initial state in the obvious manner.

We denote the set of event traces of N by traces(N). A
state is reachable in N if it appears in at least one event
trace of N. The running example has 16 reachable states, for
instance {p3, p7, p11}. We denote the set of reachable states
of N by reach(N).
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3.2 Centralized control and extended Petri nets.

On top of the Petri net specification, we want to enforce some
global (safety) constraint. We consider here only a restricted
type of constraint.

Definition 4 Given a Petrinet N = (P, T, E, sg) with set
of states S, a control invariant ¥ C S x T defines for each
state s the set of transitions allowed in s.

A control invariant ¥ has the potential to forbid the exe-
cution of some events allowed by N. Notice that any enforce-
able safety property can be transformed into a control invari-
ant, possibly after extending the set of states S.

Definition 5 We call a Petri net constrained by a control
invariant ¥ a constrained Petri net which we denote simply
as the pair (N, ¥). An event trace of (N, ¥) is defined as the
maximal prefix so[71)s] - s1[f2)s2 - . . . of an event trace of N
such that for each event s[¢)s’ in the sequence, (s, ) is in ¥.

We denote the set of event traces of (N, ¥) by traces
(N, Y) and its set of reachable states, that is, states that
appear in at least one event trace of (N, ¥), as reach(N, ¥).

One example of such control invariant are priority orders
asin [2,11] used to arbitrate between simultaneously enabled
transitions in N, where we not require the priorities to be
defined among conflicting transitions only.

Example 1 A priority order < is a partial order on the transi-
tions 7' of N. In a state s, transition 7 is said to be maximally
enabled if it is enabled, and there is no transition ¢’ with
higher priority (i.e., such that 7 < ') that is enabled in s.

The control invariant induced by < is Y« = {(s,?) €
S x T |t maximally enabled in s}.

Consider Petrinet N of Fig. 1 and priority order < defined
by {a < b, e K f, f < g}. The state {p2, p3, p5} is in
reach(N) but not in reach(N, W), because in the initial
state, @ may not be fired as long as b is enabled.

Here, we use extended Petri nets [10] to implement con-
strained Petri nets. An extended Petri net is obtained by
extending N with variables and enabling conditions on tran-
sitions, as well as data transformations associated with tran-
sitions.

Definition 6 An extended Petri net N,y consists of

— a Petrinet N = (P, T, E, sg) with states S, called the
underlying Petri net of Ny

— a finite set of variables V with value domain V and given
initial values w;

— for each transition ¢t € T

e an enabling condition en;, i.e., a predicate on V and S
defining in which states and for which values of the vari-
ables in V transition ¢ is allowed. We note (s, v) = en;
when en; holds in s for values v € V;

e anupdate predicate or update function f; associating new
values to variables in V.

An execution of an extended Petri net is a maximal sequence
of the form (sg, =) - t1 - (s1, 71) - 12 - (52, ) ... such that
for all i > 0 we have: si[tiy1)sit1, (si,9) = eny,
and ;41 = f;,,(si, v). The corresponding event trace is
obtained by projecting out variables and representing the
sequence as a sequence of events of N. We denote the set
of event traces of N,y by traces(N,). We call reachable
states of N,y the states that appear in at least one event trace
of N,y and extended reachable states of N, the extended
states that appear in at least one execution of Ny;.

Note that N,,; can only restrict the event traces of its under-
lying Petri net N, not generate new ones. It may, however,
introduce deadlocks, and more generally, affect the progress
properties of N, meaning that the traces of N,y may be just
prefixes of traces of N.

Coming back to the control problem to be solved, we now
show how a Petri net N can be extended to enforce a control
invariant ¥. One of the challenges in the remainder of this
paper is to distribute this controller. But first, we need to
define what a correct implementation of a constrained Petri
net is.

Definition 7 An extended Petri net N,y implements a Petri
net N constrained by W if traces(N,x:) C traces(N, V).

Note that this is just one possible definition of correct imple-
mentation. First, it forces the use of an identical state struc-
ture, which could be easily generalized by defining a homo-
morphism or equivalence relation between states. This defini-
tion also forbids Ny, to introduce new deadlocks compared to
N constrained by ¥ . It does not require any stronger progress,
meaning that the only properties which are guaranteed to be
preserved by this definition are safety and deadlock free-
dom. Quite clearly, other definitions are needed for stronger
preservation guarantees.

Theorem 1 For a Petri net N and a control invariant ¥ on
N, consider the extended Petri net Ny = (N, V, {en;}ier,

{fi}ier) where

— the set of variables is empty (enabling conditions depend
only on the current state of N);

— for each transitiont € T, en; holds in state s € S if and
only if (s,t) € ¥.

@ Springer



S. Graf, S. Quinton

Then, Ny implements N constrained by W, that is, traces
(Ny) C traces(N, ¥).

We say that (V,{en:}ier, {ft}teT) is a controller for
(N, V).

Proof [11] Any event trace of Ny is also an event trace of
(N, V). Indeed, in Ny, for any transition ¢ and any state
s, t can be fired in s if and only if: (1) ¢ is enabled in s,
as defined by N; and (2) en; holds in s, that is, (s, ) € V.
Thus, Ny allows exactly all events of N allowed by ¥. There-
fore, we even have the stronger property that traces(Ny) =
traces(N, ¥), i.e., this controller is the most permissive one
for N enforcing V. U

Note that to enforce a control invariant, as above, a cen-
tralized controller of a Petri net does not require any variable
and is defined using enabling conditions depending only on
the current global state. In Sect. 4, however, for distribut-
ing Petri nets even without data, the local controllers of the
distributed system need to be extended with variables.

4 Distributed specifications

In practice, the systems we consider consist of a set of
processes that are executed in a concurrent fashion and which
may communicate with others using mechanisms provided
by the chosen platform. This is why we now consider dis-
tributed specifications obtained by partitioning a Petri net
into a set of (independent) processes: transitions shared by
processes then correspond in practice to a set of local transi-
tions, and similarly for events.

In this section, we first define distributed Petri nets and
discuss several possible semantics for them. Then, we show
how to formulate the problem of building a correct imple-
mentation of a distributed Petri net by means of a control
invariant to imposed.

4.1 Distributed Petri nets and their semantics

We define a distributed Petri net as a system of sequential
1

processes.
Definition 8 A process m of a Petri net N is a subset of the
places of N (i.e., # € P) such that there is always exactly
one token in . A distributed Petri net is a pair (N, IT) where
N is a Petri net as in Definition 1 and IT a set of processes of
N defining a partition of P.

In the remainder of this section, we assume a distributed
Petri net (/V, IT) as above. A transition ¢ € T is now seen as

1 Alternatively, we could allow processes with more than one token, but
to keep the framework simple, we restrict ourselves to simple sequential
processes.
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Fig. 2 Graphical representation of a distributed Petri net (for ¢ €
{c. d}, t; denotes ;)

a set of local transitions t,, one for each process 7 involved
in ¢. Formally, for each transition r € T, we denote proc(t)
the set of processes which have at least one place in * and
we say that these processes are involved in t. Because we
consider sequential processes, this set is exactly the set of
processes which have at least one place in ¢°, and furthermore,
the processes in proc(t) have exactly one place in * and #°.
As an example, Fig. 2 illustrates a possible distribution of
the Petri net of Fig. 1. To improve readability, we write #; to
denote t,; fort € {c, d}.

At this point, note that a distributed Petri net, as the one of
Fig. 2, trivially defines the following:

— one Petri net per process, where each process 7 represents
a Petri net in isolation with its own places, transitions,
states, event traces and so on, called the local states of 7,
etc.

— one global Petri net denoted N where local transi-
tions are considered as standard Petri net transitions, and
processes are then forgotten. In a distributed setting, this
Petri net can be implemented very easily by consider-
ing all processes as being independent of each other. But
the interaction through shared transitions is missing: The
key to proper distribution of a Petri net is a mechanism
to guarantee a correct implementation of these shared
transitions.

The projections of a global state onto a local state, a global
transition onto a local transition, and a global event trace onto
a local event trace are defined in the obvious manner.

Another point that need to be discussed concerns Petri nets
with cycles or loops. For simplicity of notation, we assume in
the following that transitions (and states) occur at most once
inanevent trace. This is typically obtained by unfolding loops
as illustrated on Fig. 3: A loop transition ¢ is replaced by an
infinite set of transitions representing the first firing of z, its
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Fig. 3 A distributed Petri net
with a loop (left) and its
unfolding (right)

P

second firing, etc. This boils down to encoding in a state the
prefix of the execution that led to it. In a distributed setting,
we only want to encode information about local prefixes in
local states, and therefore, we unfold the local Petri nets
which constitute NI rather than N.

After unfolding, a transition ¢ of the original Petri N now
may correspond to several possible sets of local transitions.
For example, in Fig. 3, b corresponds to {bl, by}, {b2, by}, etc.
and a corresponds to al, az, etc. We call these sets unfolded
transitions of b (and of N by extension). Note that local tran-
sition by of process 3 is part of several unfolded transitions
which 7, cannot locally distinguish. These transitions, how-
ever, are such that at most one of them may occur in any trace.

Notation 1 We denote T" the set of unfolded transitions
of N.

Given a transition t € T", we denote by t; the (unique)
corresponding local transition in m € proc(t). Symmetri-
cally, a local transition t; may correspond to several transi-
tions in T" (but only one in T). We denote T (t;) the set of
such transitions.

From now on, by (N, IT) we refer to an unfolded distrib-
uted Petri net. In addition, when discussing local transitions,
local states, etc. we always refer to the local elements of the
unfolded distributed Petri net. Of course, unfolding results
in Petri nets with an infinite number of states and transitions.
This problem, however, can trivially be solved, also in a dis-
tributed context, by adding appropriate index variables and
index update functions to count (locally) the number of occur-
rences of local transitions—remember that our approach also
applies to extended Petri nets.

As a first step toward distribution, let us now discuss how
to relate global and local event traces, as is state of the art
in concurrency theory. We define concurrent event traces
to describe the behavior of the distributed Petri net based
on local traces and an equivalence relation between local
transitions corresponding to the same (global) transition.

Definition 9 A concurrent event trace for (N, I) is a pair
({ox }xem, =) consisting of:

— a set of local event traces o, and

yz

— an equivalence = on local transitions of different

processes

for which there exists a (global) event trace o of N ensuring
that:

— the local event traces o, are projections of o, and

— two local transitions are equivalent according to = if and
only if they are projections of the same? (global) transi-
tiont € T".

Here, the notion of projection is extended to relate, after
renaming, local transitions, states and traces of the unfolded
Petri net to their original global counterparts in N.

Example 2 Consider again the Petri net N of Fig. 2. One
possible concurrent trace of N is ({a, b-d> - f, d3 - g}, {da =
dz}). To simplify notation, we represent here event traces
using transitions instead of their corresponding events. This
concurrent trace may be obtained as a projection of the global
traceb-a-d- f-g.

Notice that, for each event trace o of N, there exists
exactly one concurrent event trace for (N, IT). We denote
c-traces(N, IT) the set of concurrent event traces of (N, IT).
On the other hand, several (global) event traces may corre-
spond to a given concurrent event trace: In our example, also
the trace b-d - g -a- f yields the presented concurrent trace.
In fact, all global traces which project onto the same local
traces also induce the same relation =. These global traces
are obtained from each other by reordering of concurrent
events and form a class.

Definition 10 The class of a concurrent event trace
({ox}rem, =) is the set of (global) event traces obtained by
merging the local event traces o5, as follows: All events whose
transitions are related by = are merged into a unique event,
and all others are interleaved.

Example 3 Consider the concurrent trace of Example 2. In
the initial state, a, b and d3 are locally enabled, but d3 cannot

2 As already discussed, a (folded) transition of N may appear several
times in o but each occurrence can be mapped to a different t € T so
that a local transition f is part of only one ¢ occurring in o.
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be fired without d, because of =. Thus, any trace ¢ in the
class of this concurrent trace starts either with a or with b.
If o starts with b, state {p1, pa, ps} is reached, where tran-
sitions a, d, and dsz are locally enabled. If d, and d3 are
chosen (together, as they are equivalent), then o continues
with d which corresponds to the joint execution of d> and d3
(remember that it is unique).

Note that the union of all classes of concurrent traces in
c-traces(N, I1) clearly is identical, after renaming, to the
set traces(N) of global traces of N. First, because all global
traces are in the class of their corresponding concurrent trace.
Second, because all traces in the class of a concurrent traces
are indeed traces of N. A class is in fact a trace in the sense
of concurrency theory (see, for example, [19]).

In addition, each class defines a strict partial order on
global (unfolded) transitions which we denote <lomtwen
namely the precedence relation that is common to all traces
of the class. For our example, we have, e.g., that b < d
(which we also write b precedes d) but also b < g, intu-
itively because d acts as a synchronization barrier between
the two transitions.

Concurrent event traces are nice because they describe
exactly the set of (global) event traces of the original Petri net
using only local traces. Unfortunately, synchronizations—
requiring a set of local transitions of different processes to
be executed jointly—as defined by the relation = can in gen-
eral not be implemented as such in a distributed fashion: In a
distributed execution of (N, IT) on a platform which does not
provide any synchronization primitive, equivalent local tran-
sitions are necessarily executed individually, in some order
that an external observer of the execution could observe.
Therefore, we replace the synchronization constraint = by
a looser constraint which only restricts the possible order-
ings of local transitions belonging to different processes. This
is a constraint that can be implemented by adding commu-
nication through the primitives offered by the platform (as
discussed later).

Definition 11 A distributed event trace for (N, I) is a tuple
({ox }rem, <) consisting of:

— asetoflocal event traces o5 corresponding to a concurrent
event trace ({0 }rer, =);

— apartial order relation < defining precedence constraints
between local transitions of different processes in these
local event traces.

To mimic concurrent event traces, we require the existence
of exactly one distributed event trace for each projection
{0 }xem—that is, for each concurrent event trace. The class
of a distributed trace is the set of traces obtained by merging
the local traces so as to preserve the order <. The resulting
traces, however, are not traces of NV, because local transitions
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Fig. 4 In the current state, c; may be fired according to <opseSync and
<noSync but not <fullSync

are not merged into global ones (we need = for this): They
are in fact traces of the (unfolded) net N1

A natural choice of a partial order is derived from the
analogy with concurrent traces: Each distributed trace cor-
responds to a concurrent trace, which also defines a partial
order <o7}=<n_ We denote the corresponding partial order on
local transitions <gsysc because it imposes strong synchro-
nization requirements before and after each set of transitions
defining a transition of N. For example, in Fig. 4, it forbids
¢ to start (by firing c¢; or ¢;) until a and b are completely
terminated.

In practice, <gusyne is frequently loosened (e.g., in
a-core [25]) by eliminating the need for synchronization after
a transition. This is achieved by requiring only that, when-
ever t precedes ' according to <{?7}7< all local transitions
of ¢ that precede a local transition of ¢’ (locally) must be
terminated before any local transition of ¢ may take place.
Some other processes involved in # may not have terminated
t (locally), if they are not involved in ¢’. For example, ¢;
(or ¢p) are allowed to fire in the state depicted in Fig. 4, the
local transition corresponding to b (that precedes ¢) must be
executed in 717, but not in 73, not involved in c. We call this
relation <gosesync- Note that it does not require any buffering
as all local processes involved in a transition ¢t must be ready
to go before one of them may start the execution of 7.

The loosest partial order, <posync, imposing no ordering
constraints at all, is also a possible choice. It allows some
processes to progress even infinitely faster than others, which
could in a distributed implementation require unbounded
buffering (allowing the slower processes to know about the
decisions taken by the faster ones). This is the relation under-
lying Kahn networks [17].

Note that one could also use partial orders imposing
stronger constraints, consisting, for example, in ordering
transitions which are concurrent in N, or in ordering the set
of local transitions composing a given transition of N. To
remain meaningful, such an order should, however, not be
allowed to contradict the order <!?7}=< imposed by the Petri
net. We do not consider such stronger constraints here; we
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define now only notations for the three ordering constraints
discussed above.

Definition 12 Given adistributed Petrinet (V, IT) and acon-
currentevent trace ({0 }rcr1, =) forit, we define three partial
order relations on transitions of (N, IT):

1. <fuusync is the partial order on local transitions derived
from <97}z induced by N.

2. <posync 1s the empty order;

3. <looseSync 100sens <yyjsync: For any local transitions #; and
tj of processes m; and 7; (where i # j), t; <iooseSync tj
if and only if: (1) #; <gusync t; and (2) m; is involved in
the transition of which ¢; is part.?

Note that these three relations are defined for a given concur-
rent trace. We use the same notation to denote the function
which takes a concurrent trace and returns the corresponding
partial order relation <; we then refer to them as ordering
strategies.

For any such ordering strategy, we now define what it
means for an implementation /—which is characterized by
its set of event traces traces(I)—to implement a distributed
Petri net (N, IT).

Definition 13 [ implements (N, IT) according to an ordering
strategy < if foreachtrace o; € traces(I) there exists a prefix
of a distributed trace ({0 } e, <) of (N, IT) such that oy is
an element of the class of this distributed trace.

We do not focus on progress properties in this paper; there-
fore, we allow traces of an implementation to be only prefixes
of global traces rather than complete traces. We do, however,
discuss strategies, e.g., based on communication, to increase
progress in correct implementations—but without formaliz-
ing their progress guarantees.

It is essential to note here that in a correct implementation
I, one may reach global states which are not reachable in
N. For example, even for the strongest relation <gsync, in
a distributed implementation of the Petri net of Fig. 2 state
{p3, ps, p7} is reachable; this state corresponds to an inter-
mediate state reached during the firing of transition c. It is
not reachable in N.

In order to obtain correct implementations of a distrib-
uted Petri net, we want to formulate the constraint that an
implementation / must satisfy to be considered as correct
according to a given ordering strategy, as a (global) control
invariant to be enforced on N'!. Definition 13 requires that
to be acceptable, a trace of / must be in the class of some
distributed trace for (N, IT). This means that (1) its projec-
tion on a set of local traces must be a projection that exists in
(N, IT)—as enforced by Definition 11—and (2) it must obey

3 Remember that there is at most one transition of 7 (¢ j) in a trace.

the order constraint imposed by the implementation relation.
So far, we have discussed condition (2). We now discuss
informally how to break down the first requirement into a set
of constraints. In Sect. 4.2, we formalize these constraints
and prove that they imply (1).

1. Transition correctness, alocal constraint: The local order
of transitions is preserved. This constraint is guaranteed
by any trace generated by the (possibly constrained) exe-
cution of the set of local Petri nets N1

2. Atomicity For every conflict situation in the Petri net, all
processes take the same decision. Together with tran-
sition correctness, atomicity ensures the safety part of
sequential consistency [21] in the case that synchroniza-
tions are considered symmetric, i.e., the implementation
of a global transition as a set of local transitions does not
impose any additional order constraint on them.*

3. Progress We do not require an implementation to exe-

cute complete traces, that is, maximal executions. This
would impose some progress, more precisely, deadlock
freedom as any execution must be able to “run to comple-
tion.” Often stronger such coverage constraints are used,
they express some requirement on how many of the dis-
tributed event traces an implementation should be able to
reproduce.
A property related to progress is fairness which con-
strains the possibility to postpone a local transition before
inserting it in the trace. The ordering relations < sync
and <josesync €Xpress a strong (relative) progress con-
straint on local transitions of the same global transitions
but no constraint on independent parts of (N, IT). We
choose not to discuss progress any further here, but the
approach we follow also applies to them, and our defi-
nitions are general enough to be extendable to progress
constraints.

4.2 Implementation relations as control invariants

For each previously defined implementation relation, we
need methods to build a correct distributed implementation
of a given distributed Petri net. As a starting point, remem-
ber that a distributed Petri net (N, IT) implicitly defines an
unfolded Petri net N where processes execute indepen-
dently of each other without any further constraint, which
guarantees transition correctness—as the order of local tran-
sitions is preserved—but neither atomicity nor any particu-
lar global ordering constraint. Our objective in this section
is to define a control invariant ¥ such that the execution of

4 Note that for transitions that are not symmetric, e.g., because of a
data flow, one may add precedence constraints between local transitions
of the same global transition—but such precedence relations are not
derived from the Petri net.
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N constrained by ¥ defines a correct implementation of
(N, IT) according to <. Such a control invariant must restrict
the enabledness of transitions of N1, i.e., of local transitions,
rather than of (global) transitions of N as in Sect. 3. We post-
pone to Sect. 5 the question of how to enforce an invariant
Y in a distributed manner.

Remember that we consider Petri nets without loops such
that each transition, local or global, may be fired at most once
inatrace. Letus first assume that the predicates defined below
are available for a given event trace o; we show later how
to formally define them. They are all parameterized by some
(global) transition ¢, respectively, its local projections f; .

— done,;_ holds in a state s if and only if the local transition
tr has been fired in o before reaching s.

— done; holds in a state s if and only if done;, holds in s
for all processes p € proc(t), meaning that all processes
involved in ¢ have already fired their corresponding local
transition.

— if selected; holds in a state s, then it remains selected
forever in o and no predicate selected, ever holds for any
transition ¢’ in conflict with ¢ in a trace that goes through s.
We only allow selected transitions to be fired. This does
not guarantee that transition ¢ (all its local transitions) is
fired in any trace that goes through s—but should it be
the case, this guarantees that selected; holds and none of
the transitions with which 7 is in conflict is even partially
executed.

— readyy holds in a state s if and only if #; is locally enabled
in s, and for all 7’ € proc(t), either -/ is locally enabled
in s,/ or done,_, holds in s.

— strong-ready? holds in a state s if and only if ready? holds
in s and for all global transitions ' € T" preceding ¢ in o,
done; holds in s.

Note that these predicates are defined for a given trace: done;
provides information about the past, while selected; gives
guarantees about the future. Later, we define variables encod-
ing the required information in states of an extended Petri net.

We now formally define the constraints on which the
implementation relations of Sect. 4.1 are based, namely
atomicity and the ordering constraints defined by <, as con-
trol invariants. Transition correctness is already guaranteed
by the local processes driving the distributed implementation.

Definition 14 We define the following control invariants.

- lI/<1wSync = {(s:tn') € Sn X TH | N ': dr € T(tn)
selected;}
ctoosesme = (52 17) € ST T |'s =31 € T(ty).

selected; N ready] )
~ Weuse = 1. 1x) € ST TN |5 =31 € T(ty).
selected; A strong-ready? }
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Theorem 2 For an ordering strategy < € {<poSync
<looseSync» <fullSync}, the controlled Petri net NE< imple-
ments (N, IT) according to <.

Proof We show the correspondence between the control
invariants of Definition 14 and the constraints of Defini-
tions 12 and 13.

1. W, s The partial order <,y is empty, and we only
have to show that for every trace of N, 1111’ there exists a
global trace of N that projects onto the same local traces.
Atomicity is guaranteed because (1) only selected tran-
sitions are executed: A local transition must be part of a
selected transition to be allowed (2) the definition of the
selected predicate guarantees that in a same trace, never
any conflicting transitions may be selected jointly. This
in turn guarantees that a trace of N&l is a prefix of a
distributed trace of (N, IT).

2. E[QthW: The partial order <jposesync requires that for

any local transitions #, and ¢/, of distinct processes 7 and
7', if t), <fusyne tz and 7" is involved in the transition
of which ¢, is part in the current prefix of a trace, then
¢/, must be fired before 7.
The predicate ready] guarantees that for all processes 7’
involved in ¢, ¢+ is locally enabled or already executed in
s. As aresult, all local transitions of 7’ preceding #,,» have
been fired. Atomicity is guaranteed by the fact that this
invariant is clearly stronger than ¥ = which implies
atomicity (atomicity being a safety property).

3. lI/</.HUSW: The partial order <gsyne s the partial order
induced by the current prefix so that whenever ¢ pre-
cedes ¢ and m participates in both transitions, then #’
must be completely terminated before any ¢, may be
executed.

The predicate strong-ready] guarantees that for all 7’ €
proc(t), for all local transitions tJ/T, preceding f,/, done,
holds in s. Notice that all transitions preceding z, also
those in which 7’ does not participate, must be com-
pletely terminated before 7, is allowed. It is sufficient that
each process checks for transitions preceding ¢ locally
that they are terminated globally. The reason is that ¢
must be (or have been) locally enabled in all the processes
involved in ¢, so they have terminated all the work to be
done locally before #, in particular the transitions pre-
ceding ¢ in which 7 is not involved. In fact, only the
transition immediately preceding ¢ in  must be checked,
earlier transitions have already been checked for execut-
ing the transition preceding ¢. Again, atomicity is guar-
anteed by the fact that Wyjisy,c is stronger than ¥yosync.

0

What remains to be done, is to formally define the predi-
cates done;, and selected;.
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Definition 15 Define, for each local transition 7, € T and
global transition ¢ € T“, the boolean variables done;, and
selected; initialized and updated as follows.

1. All variables done,, are initially set to F. Variables
selected; are initialized so as to guarantee that the set of
selected transitions contains no pair of conflicting tran-
sitions.

2. For a local transition z, € T, the update predicate
ft, (s, v, 5", 7) is such that:

- (s, ¥) = doney,
— forall ¢/, # t, (s',J) |= done,  if and only if
(s,v) & donet/, ’
— forall?, ¢’ eﬂT“:
—if (s',d) &= selectedy AN t'#t" then (s, )
= —selected,r
— if (s, v) = selected, then (s', ¥) = selectedy

We do not define anywhere in this paper any particular update
function for selected;, only the constraints that such a func-
tion must satisfy. This choice is discussed further in Sect. 5.2.

Theorem 3 The variables defined above guarantee that
whenever they are set to T the corresponding predicates used
in Definition 14 hold.

Proof We only have to prove that the initialization and the
update function have the intended effect.

— We need to show that done;, holds in a state s if and only
if in the current execution prefix the local transition 7,
has been fired before reaching s. As done,, is initially
set to false, becomes true immediately after execution of
tr (only) and then holds forever, the above constraint is
clearly satisfied.

— We also need to show that if selected; holds in a state s,
then (1) it remains selected forever and (2) for any tran-
sition ¢’ in conflict with #, selected, never holds (1) and
(2) are guaranteed by the definition of selected;: Setting
selected; to T is definitive, it is never reset to F; no tran-
sition in conflict with a selected one is ever selected (this
holds initially and is preserved by any update function).
As it is guaranteed by all invariants W~ that only selected
transitions can ever be executed, the selected; predicates
have the intended meaning. 0

5 Knowledge and communication for distributed
implementations

In the previous section, we have shown how to obtain a cor-
rect implementation (according to three possible definitions)
of a distributed Petri net (N, IT) by constraining the Petri net

N obtained by considering the processes in IT as if they
were independent Petri nets (and unfolding them if needed),
using a centralized controller (V, {en,, }, crm, {fi,},, erm)-
Now, our objective is the definition of a distributed controller
achieving the same goal: Instead of a unique controller which
knows the global state—including the control variables—we
need a set of local controllers checking the enabling predi-
cates on their local state.

We use the notion of knowledge [9] to capture the control
problem in a distributed setting. Knowledge is the appropri-
ate concept because in order to control a process with only
local information, it is not sufficient that some (global) condi-
tion is satisfied: The controller has to know that it holds. After
providing some background information on knowledge, we
define an appropriate notion of distributed controller, give a
knowledge-based formulation for the distributed implemen-
tation problem and discuss possible solutions.

5.1 Knowledge

The knowledge of a process 7 in a local state s, of a Petri net
N is the set of reachable states of N which project onto s .
Intuitively, it corresponds to the set of global states in which
the Petri net may be whenever 7 is in s, . We use this concept
to characterize which information in Definition 14 needs to
be distributed.

Definition 16 For a global state s € S and a process 7,
we denote Sk (7T, s) the set of reachable global states s’ €
reach(N) such thats” and s project onto the same local state of
.Sk (m, s) is called the knowledge set (or simply knowledge)
of  in s. We also use (equivalently) the notation Sk (s, ) and
refer to it as the knowledge of 7 in s5.

We also introduce a knowledge modality K to relate prop-
erty satisfaction on local and global states. A process r knows
a property ¢ in a state s, denoted s = K, ¢, if and only if ¢
holds in all states in Sk (7, s). Equivalently, we also use the
notation s, = K.

Clearly, if w knows ¢ in s then s = ¢. Note that of course,
knowledge sets are potentially extremely large and one does
not want to manipulate them directly. We discuss this in the
next sections.

Example 4 In Fig. 2, process w1 knows in its local state pg
that 3 is in local state ps. Indeed, ¢ and d are in conflict so
there is no reachable state in which my is in pe (meaning ¢
has been fired) and 73 is not in ps (which would mean that
d has also been fired).

These definitions extend naturally to extended Petri nets:
the knowledge set Sk (7, s, v) of a process m in an extended
state (s, ») of an extended Petri net N,,; is the set of extended
reachable states of N,y that project onto the same local state
as (s, v).
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We now present a result that is essential to increase (and
later distribute) knowledge in a (possibly extended) Petri
net. Consider two Petri nets N and N, such that N, is
an extended Petri net whose underlying Petri net is N.

Theorem 4 For every safety property ¢, if s =V K¢
then (sy, v) =Net K@ for any valuation v, where =N and
E=Ne denote the satisfaction relation induced by N and Nz,
respectively.

Proof [11] The reason is that N,,; has fewer reachable states
than NV so that the knowledge set of r in (s, v), after projecting
out variables, is included in Sk (s ). This proves the property
for state predicates ¢. The fact that N, has fewer and shorter
traces than N proves knowledge preservation for arbitrary
safety properties. g

This means in particular that knowledge computed on a
Petri net before unfolding is preserved in the extended Petri
net obtained by unfolding. In addition, this result shows that
local knowledge may be increased by constraining a system
with a controller. We exploited this fact in [3] to achieve local
control without communication. Note that this property also
holds if N itself is an extended Petri net.

We now define what it means for a property ¢ to be stable
in a local state. Stability is used for distributed control as for
stable properties knowledge about ¢ in the past guarantees
knowledge of .

Definition 17 A property ¢ is called stable if for every reach-
able state s such that s = ¢, all states reachable from s also
satisfy ¢.

5.2 A knowledge-based distributed controller

We put now everything together and use knowledge for defin-
ing a distributed controller. For clarity, we focus in this sec-
tion on <ypsesyne but all definitions and results can easily be
adapted to the other implementation relations that we have
proposed. Let us first summarize what we have achieved so
far.

Definition 18 Given a distributed Petrinet (N, IT), we know
how to build an extended Petri net Ny _ that implements
(N, TI) according t0 <jppseSync, in the sense of Defini-
tion 13, namely Ny _ = (Pn, T ET 50, V, {en,ﬂ},ﬂeTn,
{ftx }1, erm) such that

— (P, T ET 50) = N"—remember that N and NI
have different places and states only because of unfold-
ing (although sq also is the initial state of N'1) and differ
on their transitions (a transition € T in N corresponds
in N to as many transitions 7, as there are processes
involved in 7, and possibly more in presence of loops) and
their relation E between places and transitions (directly
resulting from the splitting of transitions);
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— all variables are boolean (i.e., V = {T, F}) and initially set
to F (except that some selected; must hold as explained in
Definition 15):

V = {selected;}icT« U {done;, }z,,eT”

— for each transition t; € T

— en,_ holds in state s € S™ for values v € V if and
only if (s, t;) € U< ie.,

looseSync®

(s, v) =3t € T". (selected; N readyy)
Then, expanding the definition of ready? we obtain

(s, v) =3t € T". (selected, A7 € proc(t) .
([tz') Vv done;_,))

— according to Definition 15, the update predicate
J, (s, v, 5", 7) is such that:
o (s',7) = doney,
o forallt/, # ty, (s', /) |= done,  if and only if
(s, v) |= doney !
e forallt,t e HT”:
- if (s', ) k= selectedy nt'#1” then (s/, V) =
—selected
- if (s,v) |= selectedy then (s',d) |=
selected,

(V. {ene, b ern, {fizh, ern) is called the centralized con-
troller of (N, IT).

In this centralized controller, the enabling conditions to
fire a local transition ¢, are global conditions or at least
depend on the local state of several processes (those involved
in transition ¢). In a distributed controller, we want to define
a set of local controllers such that the local controller of &
can decide to fire t,; based on its local state and the local state
of .

Definition 19 Given a distributed Petri net (N, IT), a con-
troller for N1 (enforcing ¥) of the form (V, {en,, }, <rm,
{ftx }1, erm) is said to be distributed if it is such that

1. the set of variables V is partitioned into local variable
sets Vy, one per process;
2. for each transition 7,

— the guard en,, is expressed as a condition en]
depending only on local variables in V,; and the local
state Sy ;

— theupdate f7, is similarly alocal update 7 that mod-
ifies only the corresponding local state and variables.

Note that the local controller of a process 7 cannot directly
evaluate the condition en,, of the centralized controller in
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Definition 18 because this requires global information about
the execution of the Petri net. K,en;_ , however, is a condi-
tion that can be evaluated on the (extended) local states of 7.
Furthermore, we have already seen that s |= Ken,, implies
s |= en;,, meaning we can guarantee5 a correct implementa-
tion of (N, IT) if we replace en;, by K en, . Therefore, we
propose a first version of a distributed controller of (N, IT)
obtained by replacing all variables by their local knowledge
counterparts. To do so, we need additional variables k [;/)
because the condition en,, requires to evaluate also [#;/)
(local enabledness) for other processes 7’ participating in
t. The centralized controller can evaluate this predicate on
the current global state, but a local controller for m must
evaluate this predicate locally.

Theorem 5 Given a distributed Petri net (N, I1), define for
each process € Il:

1. a set of local variables,
V™ = {kyselected, et U lkxltr'), kxdone, ,}; ern

2. as in the centralized case, all variables are initialized
with F except for some predicates ky selected; which are
supposed to be set consistently;

3. for each transition t, € T,

—en] = 3t € T". (kyselected, AN V7' € proc(t).
(kz[t71) Vkydone, ,)), that is, the same expression as
for the centralized controller but using local knowl-
edge variables.
— the update predicate f] (s, v, s', J)—where s, s’ are
local states—is exactly as in the centralized controller
for locally available information.
The new variables are updated as follows:
— kg [tz ) is set to T if t; is locally enabled in s" and
to F otherwise;
— all other variables ky [t;r,) are set to F.

If kyselected; = Kyselected;, then (N, Uren V7,
{ean Yperms {fIZ},ﬁeTn) implements (N, TI) w..t. <jooseSync-

Proof To prove the correctness of this distributed controller
we show that a transition can be fired only if it can also be
fired by the centralized controller. This amounts to proving
that Vt; e T eny = en;, . We do this by proving that
eny = Kren, . In fact, it is sufficient to prove this prop-
erty for individual knowledge variables, which we achieve
by induction using the update predicate.

We do not need any proof for k; selected; as the property
is assumed to hold (see below why we proceed this way).

5 This is true because ¥ is a safety constraint; one may, however, lose
progress.

We now only have to prove that kndonelﬂ, = K, done,”,
and k [t;/) = Kx[ty’). Infact, only variables k,done;_ and
ky [ty ) are ever set to T and they both correspond to properties
which can entirely be determined from the local state of m,
which completes the proof. 0

Like for the centralized controller, the assignment of
the kselected; predicates is left nondeterministic with the
assumption that it guarantees that two processes cannot take
contradictory decisions (by selecting conflicting transitions).
The reason is that some conflict resolution mechanism is
required for achieving this in an actual implementation and
that we want here a specification able to capture all, or at least
a large number of actual implementations without impos-
ing any specific conflict resolution mechanism. One possi-
ble strategy is to statically decide which local process has
the right to choose among a set of conflicting transitions.
Another (dynamic) option is to use an agreement protocol;
there exists a number of them, chosen depending on the plat-
form properties and the needs of the application described
by the Petri net.

Although correct, this first distributed controller is per-
fectly useless because variables representing local proper-
ties of other processes are never set to T; therefore, after
an initial transition, only transitions with a single partici-
pating process can ever be fired. This is why we need to
enhance this controller with communication capabilities. We
suppose that the platform offers processes some means to
exchange information and formalize how communication
can increase the knowledge of processes about properties of
other processes and therefore increase progress of an imple-
mentation of (N, IT). At this point, it becomes clear that
knowledge is an appropriate concept to characterize infor-
mation exchange.

A communication strategy specifies which information
may be communicated between local controllers of processes
and when this can be done. It may require additional variables
in the controllers, but it cannot alter the processes themselves.

Definition 20 A communication strategy com consists of:

— aset of variables Vo partitioned into variable sets VI

associated with processes and a variable set cholr%t asso-
ciated with the platform.

— a communication update predicate f.om such that in an
extended global state (s, ) of the controlled Petri net
Nlpri, two different types of updates are possible:

6 Note that the problem statement as given by the centralized controller
is completely symmetric; in case of circular conflicts—in which the size
of the conflict set may not be reduced by a set of local arbitrations—
some asymmetry must be introduced statically (for example, using pri-
orities) to achieve conflict resolution, or the protocol must rely on some
statistical decision (such as, for example, in Ethernet).
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1. Communication from process 7 to the platform:
Seom (S, v, Teom, 7, T/C()m) where
— only communication variables of the platform
may be updated: # = v and only variables in
cholfg may be updated;
— the new values of the platform communication
variables depend only on local information of
(local state s, controller state z; and commu-
nication state o, ).
2. Communication from the platform to process r:
Seom (8, 7, Yeom ¥/, 7/cgm) where
— only controller and communication variables of
7 may be updated;
— the new values only depend on local information
of  and platform variables.

A communication strategy is correct if it guarantees that
enZ = Kyen;, is preserved, as well as the correctness of all
knowledge variables (i.e., ky ¢ = K @).

Of course, this definition must be adapted to reflect the
exact capabilities of the platform in use. For example, the
minimal communication primitive that may be offered by
virtually any platform, if necessary with the help of some
protocol, is reliable transmission of data with unbounded
transmission delay. This would be formalized by restricting
how communication variables are written and read.

Example 5 Consider a communication strategy where all
processes communicate right after firing a local transition
about their new extended local state, information which the
platform will eventually transmit to all processes needing it.
Again, we also assume that the k,selected; predicates are
handled correctly.

Because the predicates done, , are stable, upon receiving
a message done,_, from process 7', a process 7 is able to
update its own variable k; done,ﬂ, to T. This, however, does
not apply to [t;/) which is not stable. We therefore introduce
an additional variable, called &, aft—entn,, to denote that 7,/
has been enabled in the current execution prefix. This is useful
for our purpose because krafi-en; , is stable and selected; N
aft-en; , = ([t;') V done,_,): In a local state of 7’ in which
[t;/) A selected; holds, only this transition may be fired, and
after that done,”, holds and is stable. This in turn may be used
to establish that ready] or strong-ready] holds.

Note that with a platform offering no more than the
required reliable data transmission with unbounded delay,
this communication strategy is sufficient to guarantee the
progress allowed by the select; predicates.

Another strategy for increasing local knowledge of
processes is to use statically defined knowledge that may
be derived from general system settings, from a priori state
space exploration, from structural information, or by a design
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decision. This does not necessarily avoid the corresponding
communication—because the fact that 7 knows ¢ does not
guarantee that 7’ knows that = knows @, but it may allow 7
to progress faster as 7w does not need to wait for this commu-
nication to happen.

Altogether, we have now defined a nondeterministic spec-
ification of what a distributed controller should guarantee.
Let us summarize now what remains to be done to obtain an
actual distributed controller. One still needs:

1. a strategy for setting the selected; predicates—which
may be statically predefined or obtained by means of
an arbitration protocol;

2. a communication strategy adapted to each given plat-
form;

3. a concrete representation for the required knowledge:
One may use other controller variables than those defined
here as long as they allow encoding the required knowl-
edge.

Additionally, remember that we suppose a potentially infinite
set of variables and transitions that must be distinguished.
We made this choice to simplify the presentations and the
proofs. Of course, any concrete algorithm has only a finite
amount of memory for storing knowledge, and therefore, it
may only distinguish a finite set of (relevant) transitions. How
much information may be relevant at any point of time (and
therefore needs to be stored) depends on the chosen imple-
mentation relation and on how much of the freedom allowed
by this relation one wants to preserve in the implementation.
For example, <syqe forces processes to stay closely syn-
chronized: Each process participates in at most one transition
that has been started but not yet completed. Only information
about such transitions must be available, and only informa-
tion about future decisions is potentially useful. In contrast,
<noSync allows some processes to run arbitrarily faster than
others so that the set of transitions to store is not bounded a

priori by <uoSync-

6 Property preservation for achieving efficient control
and distribution

Our initial problem was to: (1) constrain a specification
N with some control invariant ¥ ; (2) validate it for some
requirement ¢; and (3) implement the constrained Petri net
(N, ¥) on a distributed platform such that the distributed
implementation also satisfies ¥ and ¢.

In [11], as summarized in Sect. 3, we have defined a con-
troller that constructs for a given specification N and a control
property ¥ a Petri net Ny that restricts N to executions satis-
fying ¥. We mention there that a distributed implementation
of the constrained Petri net Ny may be obtained by a layered
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approach using (1) model checking and some well-chosen
additional synchronizations to build Ny and then (2) any
algorithm achieving distribution of a Petri net, for example,
a-core.

On the other hand, Sects. 4 and 5 suggest an alternative
approach. Indeed, we have shown how to express the problem
of executing a global specification N in a distributed manner
as a problem of (1) representing the distribution problem as
a (centralized) control problem and then (2) transforming
a centralized controller into a distributed one. This means
that to solve the original distributed control problem, we end
up with two kinds of control invariants to be distributed:
The original control invariant ¥ and the control invariant
W_ characterizing the implementation relation we want to
guarantee. This suggest the possibility to jointly distribute
their conjunction. This is the integrated approach applied in
[14] in an ad hoc manner. We now discuss and compare these
two approaches to distributed control.

6.1 Distribution and control

To distribute the control invariants ¥ and ¥, ... jointly, as
suggested in the integrated approach, amounts to strengthen-
ing locally the enabling condition enj of Theorem 5 so that
a local state s, must additionally know that ¢, is authorized
by ¥ in s, to allow ¢, to be fired. Note here that “¢,; is autho-
rized by ¥ in s;” does not have a clear meaning because ¥
is defined on global states and global transitions. In contrast,
what we need here is a control invariant that applies to N
rather than N.

Interestingly, the issue of how ¥ extends to N is also
implicitly there in the layered approach. We illustrate this on
priority constraints. Figure 5 shows again our running exam-
ple assuming a priority order {g < d}. In N, this constraint
is trivially enforced as g is enabled only after termination
of d. Therefore, we obtain Ny = N. However, for all the
considered implementation relations, the state {p3, p4, ps}
is reachable. In that state d is partially executed, and both
g and d may be fired. Note that <gsync prevents g from
being fired as the controller of 73 waits for d to finish before
allowing 73 to proceed further. In contrast, <jposesync and
<noSync do not imply such a requirement and allow g to be
fired in this state.

Now, whether this is acceptable or not depends on how
priorities are interpreted in a distributed setting: Does g < d
mean that g should not start when d is enabled? Or that g
should not start while d is enabled or ongoing? Or that it
should not be possible that g is still ongoing when d gets
enabled? Lifting this ambiguity requires to extend the inter-
pretation of ¥—which is defined on N—to N T and we
denote this extended interpretation ¥ 1. Given ¥, one must
prove that the distributed implementation of Ny according

Fig. 5 Distributed Petri net with priority order {g <« d}

to < (as in Theorem 5) guarantees by construction that ¥l
is satisfied on the resulting distributed system.

To summarize, in order to apply this layered verification
strategy—i.e., construct Ny, verify ¢ on Ny, and then, for-
getting ¥ and g, distribute Ny according to <—we must
prove that the distribution algorithm preserves both ¢ and
¥, or more precisely that < preserves ¢!l and ¥, This
may nevertheless seem advantageous compared to the inte-
grated approach, especially in the case where < preserves
@ The reason is that N w has fewer reachable states than N,
and therefore, local states may have more knowledge in Ny
(Theorem 4). In fact, this knowledge may also be used in the
integrated approach, as we discuss in the next sections. This
is a strong argument in favor of the integrated approach over
the layered one, because the former may require less, more
fine-grained communication between processes, through the
primitives available on the platform, than the latter, which
resorts to synchronizations, the only communication mech-
anism available for Petri nets.’

6.2 Preservation of knowledge

Our initial motivation for defining a knowledge-based formu-
lation of the distribution problem was that this would offer
us the possibility to use statically available knowledge calcu-
lated on the Petri net for optimizing a distributed controller.
In particular, we could derive from a generic solution, for
example, the one obtained by using the a-core protocol, a
more efficient distributed solution for any given application,
simply by exploiting statically available knowledge to avoid
sending a message when the destination does not need it, or
to avoid waiting for messages transmitting already available
knowledge.

7 This makes clear that for a different platform and a different high
level specification paradigm, the response could be different. Our aim
here is to propose criteria for choosing the best approach in any given
setting.
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As mentioned earlier, to follow this approach, it must be
guaranteed that the knowledge computed in the centralized
Petri net is preserved in the distributed system. We now
show some preservation results for knowledge properties
contributing to the local enabledness predicates. The key con-
cept for this is stability.

Predicates required for evaluating ¥. As we have seen,
such predicates may not be preserved by distribution,
depending on the choice of < and of the interpretation of
these predicates in a distributed setting. Still, some knowl-
edge may be preserved. For example, consider priority
orders, <gsyne and the following interpretation of W for
our example of Fig. 5: “g has highest priority in s”” means “d
is already completely terminated in s or it is not possible to
reach a state in which d is firable before g is completely ter-
minated.” Then, static knowledge computed on the original
Petri net, namely that d always precedes g, can be combined
with the definition of <ysync to establish that no control is
needed to enforce g < d. If one wants to use a looser imple-
mentation relation, for example, <jooseSync, W€ may use the
mixed approach: In general, synchronization after the execu-
tion of a transition is not required, but the constraint added
to guarantee the priority rule would force synchronization
after d.

Predicates selected,; used to guarantee atomicity. One may
determine statically® that selected, holds in a global state
if there is no transition in conflict with ¢, and therefore no
transition which could be chosen instead of t. In a global
state s offering a choice between several transitions, s may
be extended so as to statically select one of them, or so as
to allow one of the processes to do the selection. Because
selected; is stable in Nllll, knowledge is preserved from
the centralized to the distributed Petri net: If a process
knows selected, in a local state of (N, IT), then it also knows
selected, in the corresponding local state of Ng{.

Predicates contributing to global readiness. These are the
predicates required for synchronizing before and/or after a
transition, e.g., for the implementation relations <gisync and
<looseSync- We express such synchronization constraints by
means of the predicates done,, that hold if process 7 has at
least progressed this far. These are stable predicates: Once
a process knows done;, it knows this forever. Neverthe-
less, these predicates cannot be established from statically
computed knowledge: They require communication to allow
processes to learn about the progress of others. Despite of
this difficulty, static knowledge may be useful for establish-
ing enabledness at the Petri net level: We have already shown
that [#;) is not a stable property, but —[#;) may be stable

8 Note that this does not hold if selected, is also used for guaranteeing
fairness properties.
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Fig. 6 State diagram of the algorithm presented in [14]

(enough) to allow 7 to know —[f;) in some local state, that
is, to exclude ¢ a priori from the set of transitions from which
to select the next step.”

We have explained in Sect. 5.2 that whenever one of
the above-mentioned knowledge predicates is known—either
from an analysis of the global state space or as a conse-
quence of earlier communication—this may be used to avoid
unnecessary additional communication. A consequence of
the preservation results sketched above is the possibility to
derive some knowledge in the distributed implementation
from knowledge in the original (constrained) Petri net. This
is very useful because the state space of Ny is usually much
smaller than the one of the distributed implementation.

6.3 Illustrating example

Let us now discuss the added value of the reasoning presented
in the previous sections on an example. In [14], an algorithm
is presented which builds a distributed implementation of a
prioritized specification for systems with binary synchroniza-
tions. Itis inspired by a-core but differs from it by the fact that
it handles specifications with (global) priorities and imple-
ments a less static conflict resolution. In both algorithms, the
platform is assumed to ensure reliable and order-preserving
transmission of messages. The precise organization of the
protocol of [14] is beyond the scope of this paper, but an
abstract general view of the main steps of the protocol phase
is shown in Fig. 6. This protocol takes place in each local
state of each process, that is, all the states represented in the
diagram correspond to the same place in the centralized Petri
net. The transition in the diagram labeled * corresponds to
the start of the execution of a local transition (which takes
place in the Busy state and leads to a state change in the
Petri net). Other transitions represent sending and receiving
of messages expressing information about local enabledness
of transitions, as well as commitment of a process to a given
transition r—the last step before achieving selected;, unless
the other process rejects ¢.

9 This is the knowledge exploited in [22].
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We can use the results of the previous sections in two
ways here. First, we now have a generic formal support for
proving the correctness of the algorithm under considera-
tion. Indeed, transition correctness, atomicity, and synchro-
nization as defined in Sect. 4.1 are satisfied if and only if a
process 7 may take the transition labeled *, that is, fire locally
a transition 7 of the original Petri net, only when it has the
required knowledge for it. For example, selected; holds in
that case because both processes 7w and 7’ participating in
transition ¢ have committed to it. The protocol obliges 7’ to
wait for the consent of 7, and 7 therefore, knows that 7’
cannot fire any other transition than ¢. In other words, in all
the global states consistent with the local view of 7 in this
local state, selected,; holds.

Second, once formalized the knowledge properties asso-
ciated with each local state, we can use them in combination
with the properties obtained by static analysis of the central-
ized Petri net. That is, for a local state s,; of 7, all states of the
associated communication protocol are enriched with (pre-
served) local knowledge of 7 in s . Based on this, 7 may not
have to wait for all messages to arrive before progressing, as it
now has enough knowledge to fire a transition without them.
In addition, if messages are clearly identified as questions and
answers—as is the case here and often in such protocols—
then 7 may in such case omit some question messages as
it does not need them. However, this forbids the analysis of
knowledge properties to rely on question messages.

The resulting clear separation between the generic proto-
col and its implementation for a given centralized Petri net
seems promising as this approach is scalable (the distributed
system as a whole is never analyzed) and still understand-
able: The centralized Petri net and the protocol are analyzed
separately, then used together in a correct-by-construction
manner by optimizing its performance.

7 Conclusion

In this paper, we discuss two strategies for handling con-
trol and distribution jointly. A layered approach, advocated
in [11], which consists in solving first the original control
problem on the centralized specification, then distributing
the obtained controller and finally distributing the resulting
constrained system agnostic of the original control problem.
We propose here a second, integrated approach which solves
the control and distribution problems jointly. We have shown
that this approach may avoid unnecessary synchronizations
while allowing us to exploit the same knowledge as in the
layered approach.

We have presented the problem of achieving a distrib-
uted execution of a centralized specification as a control
problem, and we have proposed a knowledge-based approach
to derive a specification of a distributed controller achiev-

ing that goal. We have also discussed how to achieve the
knowledge needed by the controllers of individual locali-
ties by communication or by statically available knowledge,
which could be derived from platform or application domain
induced conditions or obtained by a priori static analysis of
the centralized specification—under the condition that this
knowledge is preserved in the distributed context. One inter-
esting side effect of this work is to make explicit some under-
lying assumptions made by previous knowledge-based work
on distributed control.

Note that we only considered abstract specifications with-
out taking into account data-flow and non-functional aspects,
such as timing. We made quite minimal assumptions on the
properties provided by the platform. Extending the approach
to take into account data and data transformation is almost
straightforward: Data are distributed in almost the same way
as demonstrated here for knowledge predicates, and data-
dependent enabling conditions are treated like an additional
constraint imposed on the local enabling conditions. For plat-
forms providing stronger guarantees, for example, bounded
communication delays, it is possible to deduce stronger
knowledge properties from communication actions which in
turn can be used to establish execution time bounds.
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