
Timing Verification of an Aerial Video Tracking
System Using UPPAAL

Lijun Shan
College of Computer Science,

Northwestern Polytechnical University,
Xi'an, China

 lijunshancn@yahoo.com

Susanne Graf
Verimag/CNRS,

2 avenue de Vignate,
38610 Gières, France
susanne.graf@imag.fr

Abstract—This paper presents two different approaches for

verifying the timing properties of the industrial use cases
proposed as a challenge by WATERS’2015. The system under
study is an aerial video system which contains two parts, one
multiprocessor system and one uni-processor multitasking system.
A timed automata model is constructed for each subsystem with
the model checker UPPAAL. The symbolic model checking and
statistical model checking functions of UPPAAL are applied to
verify timing properties of the models. Both models are modular,
reusable and extensible, and can act as a general modeling
framework for analyzing a type of systems.

Keywords—Real-time systems; verification; model checking

I. INTRODUCTION
Real-time systems are widely applied in critical areas such

as aerospace and aviation. The designers of a real-time system
have to assure that the system can satisfy its real-time
requirements before it is deployed. However, to verify such
systems' timing properties is difficult due to the randomness in
the behavior of such systems and their operation environment.
A recent trend is to apply formal methods, especially model
checking which features full automated tools, to conduct
timing verification.

This paper presents our approaches to verifying two types
of real-time systems through an industrial use case. The
system under study, proposed as a challenge by
WATERS’2015, is an aerial video system which detects and
tracks a moving object. The system comprises two subsystems:
one multiprocessor system for video frame processing (called
Video subsystem in the sequel), and one uni-processor
multitasking system for tracking and camera control (called
Tracking subsystem in the sequel). The main aim of the
verification is to compute the latencies of the subsystems.

A timed automata model is constructed for each subsystem.
The symbolic model checking and statistical model checking
functions of UPPAAL [1, 2] are applied to compute the
desired values. The model for the Video subsystem captures a
multiprocessor system which processes a data flow. The
model for the Tracking subsystem describe a multitasking
system running on a real-time operating system. Both models
are modular, reusable and extensible, and can act as a general
modeling framework for analyzing a type of systems.

II. CHALLENGE ONE: THE VIDEO SUBSYSTEM

A. The Video Subsystem
The Video subsystem, which comprises four tasks T1~T4,

processes the frame flow produced by a camera and outputs
the frames to a display. A register and a buffer store the output
of T2 and T3, respectively. The timing behavior and functions
of the tasks are summarized in Table 1. The time unit is
microsecond throughout this section except given otherwise.

TABLE 1 TASKS IN THE VIDEO SUBSYSTEM

Question 1: To compute the min/max latency for a given
frame from the camera output to the display input, for a buffer
size n = 1or 3.

Question 2: To compute the minimum time distance
between two frames produced by the camera that will not
reach the display, for a buffer size n = 1 or 3.

B. Model of the Video Subsystem
The model comprises two parts: system description which

simulates the system's behavior, and verification solution
which records the information needed for the verification. The
system description part, consists of seven automata:
PeriodGenerator, Camera, T1, T2, T3, Buffer and T4. The
verification solution part consists of two automata:
LatencyBuffer and Monitor, where the former tracks the
frames' latencies and the latter records the lost frames.

1) Latency Buffer
A FIFO (First-In-First-Out) buffer, implemented as an

array flowLatency[] of clock variables, tracks the time passed
for each frame under treatment. Another array latencyTiming[]

Task Period /
Trigger

Input
resource

Out.
dest.

Exec.
time

Func-
tion

T1 Frame
arrival

Camera T2 28,000 Pre-
process

T2 Frame
arrival

T1 Register 17,000 ~
19,000

Process

T3 13,333
+/-7

Register Buffer 8,000 Filter

T4 40,000
+/- 4

Buffer Display 1,000 or
10,000

D/A
convert

with the same size acts as stopwatches to control the clocks in
flowLatency[]. A stopwatch is a boolean variable, as the
derivative of a clock. The effect of setting a stopwatch to 1 (or
0) is to start (or stop) the corresponding clock. The length of
the two arrays, denoted by an integer constant WindowSize = 4,
is set to be the maximum number of frames in the Video
system at the same time. Whether the value of WindowSize is
properly set will be confirmed with the verification of the
model.

Figure 1 LatencyBuffer

The manipulations of the two arrays are controlled by the
automaton LatencyBuffer, as shown in Figure 1. On receiving
a message produce?, indicating that a new frame is produced
by the camera, the transition from the location Start to
NewFrame is taken. Meanwhile the variable flowLatencyTail,
which is the pointer to the tail of flowLatency[] and
latencyTiming[], moves forward. Now if the tail elements of
the two arrays are both 0, which means the clock at the tail of
flowLatency[] is idle, the transition from NewFrame to Start is
taken, and the clock is started. Consequently, the latest frame
is associated with the clock at the tail of flowLatency[]. Since
each frame is assigned with a clock, the frame can be referred
to by the clock's index in flowLatency[].

If the stopwatch at the tail of latencyTiming[] is not 0, it
means that the corresponding clock is still occupied by a
frame under processing. In this case, the transition from the
location NewFrame to OverFlow is taken. The overflow of
flowLatency[] is probably because it is too short to track all
frames in the system.

On receiving a message finish?, indicating that T4 finishes
its processing of a frame, the self-transition on Start is taken,
which clears and stops the clock for the frame.

2) Period Generator

Figure 2 PeriodGen

The periods of the camera, T3 and T4 are constant
throughout the infinite running of the system, but their specific
values are only known to be within their respective ranges. In
the model, the periods have to be chosen before the system
runs. The automaton PeriodGen assigns values to the periods
camPeriod, T3Period and T4Period within their respective
ranges.

3) Camera

Figure 3 Camera

The automaton Camera is shown in Figure 3. At the
beginning, a function main() is called to initialize some
variables used in the model. On the arrival of a period
camPeriod, Camera sends three synchronization messages
sequentially: produce! to LatencyBuffer, frameCount! to
Monitor, and camera! to T1. Note that produce! must be sent
before camera!, because T1 uses the new frame's index, which
is obtained when LatencyBuffer assigns a clock to the frame.

4) T1and T2
The automaton for task T1, as shown in Figure 4 (A), is

triggered by a message camera?. Meanwhile, the variable
T1FrameIndex, which represents the index of the frame under
T1's processing, is updated to flowLatencyTail. After 28,000,
T1 finishes and sends a message T1Processed! to the
automaton T2.

Figure 4 (A) T1 (B) T2

The behavior of the task T2 is similar to T1. As shown in
Figure 4 (B), T2 is triggered by a message T1Processed?.
Then T2FrameIndex, the index of the frame under T2's
processing, is updated. After a span of time which ranges over
[17,000, 19,000], T2 finishes processing and sends a message
T2Processed! to the automaton Register. Meanwhile,
registerFrameIndex, a variable representing the content of the
register is updated.

5) Task T3

Figure 5 T3

The task T3 reads the register with a period T3Period. As
Figure 5 shows, if the register is empty, T3 finishes
immediately. Otherwise, T3 reads the frame in the register,
processes it in 8,000, and sends the frame to the buffer,
modeled by sending a message T3Data2Buffer! to the
automaton Buffer. Note that the period of T3, 40/3 ms, is not
equal to 13,333 or 13,334 microseconds. We use a variable
count to simulate that the period of three runs of T3 is 40 ms,
where T3Period has the value of 13,334.

6) Buffer
The buffer receives T3's output periodically, and is

destructively read by T4 with a different period. The FIFO
buffer is implemented as an array bufferContent[] plus an
automaton Buffer. bufferContent[] records the frames existing
in the buffer with their indexes in flowLatency[]. The function
add() write a new item to the tail of bufferContent[], while
pull() retrieves its head. The automaton Buffer tells whether a
incoming frame with index T3FrameIndex can be accepted:

a) If the incoming frame is new but the buffer is full, the
frame is discarded.

b) If the incoming frame is duplicate, it is ignored.

c) If the incoming frame is new and the buffer is not full,
the frame is added into the buffer.

But what does duplicate mean? The description of the
buffer 1

(I) A frame with ID N has been to the buffer, no matter
read or not.

 in Challenge 1 can be interpreted it in two ways: a
incoming frame with ID N is regarded as duplicate, if:

(II) A frame with ID N is in the buffer and not read.

(A) Smart Buffer (B) Normal Buffer

Figure 6 Buffer

The automaton shown in Figure 6 (A) implements (I),
where the function duplicate() tells if the incoming frame's
index is same to the last stored frame. It is called Smart Buffer
because the buffer maintains a history of the last frame, no
matter the frame has left the buffer or not. After receiving a
message T3Data2Buffer? and taking the transition from the
location Start to Process, the automaton takes one of the three
transitions from Process to Start, which represents the three
cases (a)~(c), respectively. In this case, the interval of
accepting frame N and frame (N+1) is the period of Camera i.e.
camPeriod, because the duplicate copies of the frame N which
arrive during this interval are discarded.

The automaton Normal Buffer shown in Figure 6 (B)
implements (II), where the function duplicateUnread() tells if
the incoming frame is same to the last frame existing in the
buffer. In this case, two copies of a frame can enter the buffer,
as long as the second copy's arrival time is later than the first
copy's leaving time.

7) Task T4

1 "For each frame index value, only one single frame can be stored in the buffer. If
the buffer has already stored a frame with a given index, any additional received
frame with the same index is discarded."

Figure 7 T4

The task T4 reads the buffer with a period T4Period. If the
buffer is empty, T4 spends 1,000. Otherwise, it spends 10,000
for processing a frame. As shown in Figure 7, the function
pullBuffer() destructively reads a frame from the buffer. When
T4 finishes processing of a frame, the transition from the
location ProcessFrame to Start is taken, which sends a
message finish! to the automaton LatencyBuffer.

8) Monitor

Figure 8 Monitor

The automaton Monitor shown in Figure 8 records the
latest frame's ID and the distance between lost frames by
synchronizing with the automaton Camera and Buffer,
respectively. The self-transition at the location Start is taken
when Monitor receives a produce? message sent by Camera.
Then the variables newFrameID and flowContent[] have their
values updated to record the frames's ID.

The rest part of the automaton counts the lost frames. On
receiving a discard? message, the transition from Start to
FrameDiscard is taken. The variable discardCount records
how many copies of a frame are discarded. A frame is lost
only when its three copies are all discarded. Once a frame is
found lost, the transition from the location FrameDiscard to
FrameLost is taken. When the number of lost frames is more
than one, the variable lostIdDistance records the distance
between two lost frames.

C. Verification of Min/Max Latency
A frame's latency starts from its generation by the camera

till the finish of T4. The variance in the periods of the camera
and T4 influences the frame's latency. Since the automaton
PeriodGen leads to state explosion when verifying the model,
we only consider typical and extreme cases. To apply
symbolic model checking for computing min/max latency,
Monitor is excluded from the model, so that the model
contains no variables ranging over an infinite domain.

1) Standard

When both the camera and T4 have the standard period,
i.e. camPeriod = 40,000, T4Period = 40,000, the max latency
can be computed by symbolic model checking with query (1).

sup: flowLatency[0], flowLatency[1], flowLatency[2],
flowLatency[3] (1)

The min latency cannot be directly computed. In any
settings, the first frame has the min latency 90 ms, which can
be confirmed by the simulation with query (2).

simulate 1 [<=1000000] {flowLatency[0] , flowLatency[1],
flowLatency[2], flowLatency[3] } (2)

Table 2 Min/max latency in Standard case

Buffer type Smart Normal

Buffer Size 1 or 3 1 or 3

Latency Min 90 90

Max 90 130

The result is summarized in Table 2. The result can be
justified by manual analysis: With Smart Buffer, each frame
can enter the buffer only once. Therefore the latency of each
frame is 90. However, with Normal Buffer, the first frame
enters the buffer twice, because its third copy arrives at the
buffer at 128 ms, which is later than the first copy's retrieval
time 120 ms. Consequently, the third copy of the 1st frame
enters T4 again and postpones T4's processing of later frames
by one period of T4. Note that the buffer's size influences the
time when the second frame entering the buffer (at 167 ms
when BufferSize=1; at 141 ms when BufferSize = 3), but does
not the latency.

2) Latency Increase
When the camera has the least period, and T4 has the

greatest period, i.e. camPeriod = 40,000-4, T4Period =
40,000+4, after the second frame, later frames' latency
increases by 8 successively. The max latency can be computed
by symbolic model checking with query (1). The first frame
has the min latency 90 ms, which can be confirmed by the
simulation with query (2). The verification result is
summarized in TABLE 3.

TABLE 3 Min/max latency (camPeriod = 40,000-4, T4Period = 40,000+4)

Buffer type Smart Normal

Buffer Size 1 or 3 1 or 3

Latency Min 90,016 90,016

2nd frame 90,024 130,028

Max 159,984 159,984

3) Latency Decrease
If the camera has the greatest period, and T4 has the least

period, i.e. camPeriod = 40,000+4, T4Period = 40,000-4, after
the first frame, the latency of the frames decreases 8
microseconds by each cycle. The min latency in the case of
Smart Buffer is obtained through simulation.

TABLE 4 Min/max latency (camPeriod = 40,000+4, T4Period = 40,000-4)

Buffer type Smart Normal

Buffer Size 1 or 3 1 3

Latency 1st 89,984 89,984 89,984

2nd frame 89,976 129,972 129,972

Min 77,080 89,984 89,984

Table 2 summarizes the min/max latency in the case of
Smart Buffer and Normal Buffer.

Table 5 Min/max latency in all cases

Buffer type Smart Normal

Buffer Size 1 or 3 1 or 3

Latency Min 77,080 89,984

Max 159,984 159,984

D. Verification of Lost Frames
Statistical model checking is applied to compute the

number of lost frames on the model, which includes the
Monitor automaton. TABLE 5 summarizes the verification result,
which shows that the no frame is lost in any case. When using
a Normal Buffer with size 1, some frames are discarded but
not lost .

TABLE 6 COUNTS OF LOST FRAMES AND THEIR DISTANCES
Buffer
Type

Buffer
Size

Lost
Count

Discard
Count

Smart 1 0 0
3 0 0

Normal 1 0 1.46
3 0 0

III. CHANLLENGE 2: THE TRACKING SYSTEM

A. The Tracking Subsystem
The Tracking subsystem is a concurrent multitasking

system which comprising three tasks: T6, T5 and T7. The
three tasks are mapped to a CPU together with T2, one of the
tasks in the Video subsystem. TABLE 6 summarizes the periods/
triggers and functions of the four tasks, where the tasks are
listed by their priorities in a descending order. T2PR and T5TP
have access to a shared resource. The access to the shared
resource takes 2ms for each task.

TABLE 7 TASKS IN THE TRACKING SUBSYSTEM
Task Period / Trigger Functions
T2PR 40 +/- 0.01% (ms) Processing
T6TC 100 (jitter=20) (ms) Tracking control
T5TP Called by T6 Target position prediction
T7CC Called by T6 Camera control

B. Model of the Tracking Subsystem
 Our approach to the timing verification of the Tracking

subsystem is inspired by the schedulability analysis approach
proposed by the UPPAAL team [3]. The model of the
Tracking subsystem consists of an automaton for the scheduler,
an automaton for the idle task, and a template for periodic
tasks.

1) RTOS

Figure 9 Scheduler

Figure 10 IdleTask

To exhibit the parallel running of the multiple tasks, the
model has to describe how the RTOS schedules the tasks. The
automaton for the CPU scheduler is shown in Figure 10. The
function main() assigns initial priorities to all tasks according
to their IDs. An array taskqueue represents the queue of ready
tasks. The task queue is manipulated by the functions poll()
and add(): poll() destructively read the head of the queue, and
add() adds a task to the queue and sorts the queue by the tasks'
priorities to a descending order. A variable ctask denotes the
ID of the current running task. When the task queue is empty,
an idle task, whose priority is 0 (the lowest) and ID is 0, runs
on the CPU. The automaton IdleTask is shown in Figure 11.

At the beginning, the function main() is called. The idle
task runs before any task getting ready. At some time, a task
gets ready, joins the ready queue and sends an enqueue!
message to Scheduler. On receiving a enqueue? message,
Scheduler takes the transition from the location Running to
Schedule. If the currently running task's priority is higher than
the head of the task queue, Scheduler simply takes the
transition from Schedule back to Running. Otherwise, it takes
the transition to Preempt. The function add() is called to add
the preempted task to the ready. The stopwatch runs[ctask] is
set to 0, which stops the timing of the preempted task's
execution. ctask is updated by calling the function poll(),
which retrieves the head of the task queue.

2) Operations in tasks

Figure 11 Data structure of operations

To display each task's execution, 4 types of commands are
defined: COMPUTE, LOCK, UNLOCK and END.
COMPUTE represents all kinds of operations that need to run
on CPU. LOCK and UNLOCK are used for mutual exclusive

access of the shared resource. The data structure for specifying
an operation is defined as a C struct fun_t, as shown in Figure
12, where delay represents the CPU time of an operation. The
delay of a LOCK/UNLOCK/END operation is 0.

The operation flow of a task is an array whose elements
are instances of the struct fun_t. Then the program of a task
can be specified as an operation flow using the 4 types of
operations. Note that as the time an operation spends may vary
within a given span, a task's operation flow has two versions:
maximum time and minimum time.

Since T5TP and T7CC are sequentially invoked by T6TC,
the three tasks can be combined into one:

(1) T5TP: it is invoked by a synchronous call of T6TC, so it
can be embedded into the suspension section of T6TC,
whatever its priority is.

(2) T7CC: if its priority is higher than T6TC, its execution is
inserted before the last COMPUTE operation of T6TC.
Otherwise, it runs after the last COMPUTE operation
of T6TC. As T7CC is pure COMPUTE, its priority
does not influence the timing property of the system.

Figure 12 The operation flows of T2 and T567

The combination of T5, T6 and T7 is called T567 in the
sequel. Figure 13 shows the operation flows of T2 and T567.

3) Periodic tasks
We built a timed automaton called PeriodicTask, as the

template of all periodic tasks, to describe the state transitions
of a periodic task from the viewpoint of the RTOS. The
parameters of the template PeriodicTask include the task's ID,
its offset (how far into the cycle the task is released), its period,
and its operation flow. When the parameters are assigned with
concrete values, as shown in Figure 14, the template is
instantiated to a timed automaton for each task.

Figure 13 Instantiation of periodic tasks

const Flow_t Processing = // (4) Period = 40 ms +/- 0.01%
{
 { LOCK, 0, 0 }, //1. Lock shared resource
 { COMPUTE, 2000, 2000 }, //2. Write into the resource
 { UNLOCK, 0, 0 }, //3. Release shared resource
 { COMPUTE, 15000, 15000 }, //4. Compute for 15 ms
 FIN, FIN
};
const Flow_t TrackingControl =
{
 { COMPUTE, 4000, 4000 }, //1. TC: Action1
 { LOCK, 0, 0 }, //2. TP: (2.1) Lock resource
 { COMPUTE, 2000 , 2000 }, // (2.2) Write the resource
 { UNLOCK, 0, 0 }, // (2.3) Release resource
 { COMPUTE, 26000, 34000 }, // 5+10+5+14 //
 FIN
};

// taskid, flow,
Task2PR_P1 = PeriodicTask(Task2PrID, Processing);
Task6TC_P2 = PeriodicTask(Task6TcID, TrackingControl);

typedef struct {
 funtype_t cmd; // type of command
 time_t delay; // CPU time needed
} fun_t;

The template for periodic task is shown in Figure 15. Take
T567 as an example of periodic task. After initialization, the
automaton moves to the location Ready. When T567 is
scheduled, the automaton goes to GotCPU, and then to
different locations depending on the types of operations in the
operation flow. Since the first operation in T567 is
COMPUTE, the automaton takes a transition to Computing,
and stays at Computing until the specified span of the
operation is spent. At Computing, a stopwatch expression
(sub'==runs[id]) imitates preemptive scheduling. When a task
is preempted, the clock variable sub stops and the Boolean
variable runs[id] is set to 0, indicating that the task stops
running. After executing an operation, the automaton goes to
the location Next, so that the task will execute the next
operation in the operation flow. Likewise, the remaining
operations in the operation flow are executed sequentially
until reaching the end of the program. Then the automaton
goes to Release, representing the task releasing the CPU, and
then to Idle. On the arrival of Period+Offset, the automaton
goes to Ready, then the task joins the task queue again.

Figure 14 Template for periodic tasks

The function lockCeil() increases the resource owner's
priority. Similarly, when a task's use of the resource finishes,
unlockCeil() resets the task's priority to the original.

C. Verification
The analysis aims to compute the best-case and worst-case

end-to-end latencies from activation of T567 to termination of
T7CC for a jitter value j = 0ms and j = 20ms, respectively, and
the optimum priority assignment minimizing the worst-case
latency for a jitter value j = 0ms and j = 20ms.

Given the query (5), the worst case latency can be
calculated, the result is shown in TABLE 7.

E[<=1000000000; 100] (max: WCRT[2]) (1)

TABLE 8 LATENCY IN DIFFERENT SITUATIONS
Jitter Best-case latency Worst-case latency
0 49 73952
20 49 73998.2

Since the worst case execution time (WCET) of T567 is 40,
T2 will run once or twice during the execution of T567. When
T567 and T2 arrive at the same time T, WCRT(T567) may
cover two runs of T2. WCRT(T567) = CET(T2) +
WCET(T567) + CET(T2) = 57 (ms). The best case response
time (BCRT) of T567 is not directly computable. BCRT(T567)
only covers one run of T2. BCRT(T567) = BCET(T567) +
CET(T2) = 32 + 17 = 49 (ms).

IV. CONCLUSION
Providing a precise model of a system (at the right level of

abstraction) and the use of model-checking is – when feasible
– an optimal way to get deep insight about the functioning of a
system. In this case study, we constructed timed automata
models for two types of real-time systems, i.e. multi-processor
system and uni-processor multitasking system, and used
symbolic and statistical model checking of UPPAAL to verify
their timing properties. With the automated model checking
tool support, the main effort is building the models. The
modeling of Video subsystem took 20 man-day. Based on our
previous work[4], the modeling of Tracking subsystem took 5
man-days.

The weakness of this method includes: symbolic model
checking may lead to state explosion; statistical model
checking of UPPAAL has a time limit of 1,000,000,000.

REFERENCES
1. Behrmann, G., et al. UPPAAL 4.0. in Third

International Conference on Quantitative Evaluation
of Systems (QEST 2006). 2006. IEEE.

2. Bulychev, P., et al., Checking and distributing
statistical model checking, in NASA Formal Methods.
2012, Springer. p. 449-463.

3. David, A., et al., Schedulability of Herschel revisited
using statistical model checking. International
Journal on Software Tools for Technology Transfer,
2014: p. 1-13.

4. Shan, L., et al., Formal Verification of Lunar Rover
Control Software Using UPPAAL, in 19th
International Symposium on Formal Methods (FM
2014), LNCS 8442, P.P. C. Jones, and J. Sun, Editor
2014, Springer International Publishing Switzerland:
Singapore. p. 718--732.

	I. Introduction
	II. Challenge one: the Video subsystem
	A. The Video Subsystem
	B. Model of the Video Subsystem
	1) Latency Buffer
	2) Period Generator
	3) Camera
	4) T1and T2
	5) Task T3
	6) Buffer
	7) Task T4
	8) Monitor

	C. Verification of Min/Max Latency
	1) Standard
	2) Latency Increase
	3) Latency Decrease

	D. Verification of Lost Frames

	III. Chanllenge 2: The Tracking System
	A. The Tracking Subsystem
	B. Model of the Tracking Subsystem
	1) RTOS
	2) Operations in tasks
	3) Periodic tasks

	C. Verification

	IV. Conclusion
	References

