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Abstract—This paper presents two different approaches for 

verifying the timing properties of the industrial use cases 
proposed as a challenge by WATERS’2015. The system under 
study is an aerial video system which contains two parts, one 
multiprocessor system and one uni-processor multitasking system. 
A timed automata model is constructed for each subsystem with 
the model checker UPPAAL. The symbolic model checking and 
statistical model checking functions of UPPAAL are applied to 
verify timing properties of the models. Both models are modular, 
reusable and extensible, and can act as a general modeling 
framework for analyzing a type of systems. 
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I.  INTRODUCTION 
Real-time systems are widely applied in critical areas such 

as aerospace and aviation. The designers of a real-time system 
have to assure that the system can satisfy its real-time 
requirements before it is deployed. However, to verify such 
systems' timing properties is difficult due to the randomness in 
the behavior of such systems and their operation environment. 
A recent trend is to apply formal methods, especially model 
checking which features full automated tools, to conduct 
timing verification.  

This paper presents our approaches to verifying two types 
of real-time systems through an industrial use case. The 
system under study,  proposed as a challenge by 
WATERS’2015, is an aerial video system which detects and 
tracks a moving object. The system comprises two subsystems: 
one multiprocessor system for video frame processing (called 
Video subsystem in the sequel), and one uni-processor 
multitasking system for tracking and camera control (called 
Tracking subsystem in the sequel). The main aim of the 
verification is to compute the latencies of the subsystems. 

A timed automata model is constructed for each subsystem. 
The symbolic model checking and statistical model checking 
functions of UPPAAL [1, 2] are applied to compute the 
desired values. The model for the Video subsystem captures a 
multiprocessor system which processes a data flow. The 
model for the Tracking subsystem describe a multitasking 
system running on a real-time operating system. Both models 
are modular, reusable and extensible, and can act as a general 
modeling framework for analyzing a type of systems. 

II. CHALLENGE ONE: THE VIDEO SUBSYSTEM 

A. The Video Subsystem  
The Video subsystem, which comprises four tasks T1~T4, 

processes the frame flow produced by a camera and outputs 
the frames to a display. A register and a buffer store the output 
of T2 and T3, respectively. The timing behavior and functions 
of the tasks are summarized in Table 1. The time unit is 
microsecond throughout this section except given otherwise.  

TABLE 1 TASKS IN THE VIDEO SUBSYSTEM 

Question 1: To compute the min/max latency for a given 
frame from the camera output to the display input, for a buffer 
size n = 1or 3.  

Question 2: To compute the minimum time distance 
between two frames produced by the camera that will not 
reach the display, for a buffer size n = 1 or 3.  

B. Model of the Video Subsystem 
The model comprises two parts: system description which 

simulates the system's behavior, and verification solution 
which records the information needed for the verification. The 
system description part, consists of seven automata: 
PeriodGenerator, Camera, T1, T2, T3, Buffer and T4. The 
verification solution part consists of two automata: 
LatencyBuffer and Monitor, where the former tracks the 
frames' latencies and the latter records the lost frames.  

1) Latency Buffer 
A FIFO (First-In-First-Out) buffer, implemented as an 

array flowLatency[] of clock variables, tracks the time passed 
for each frame under treatment. Another array latencyTiming[] 
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tion 
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T2 Frame 
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19,000 
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+/-7 

Register Buffer 8,000 Filter  

T4 40,000 
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Buffer Display 1,000 or 
10,000 

D/A 
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with the same size acts as stopwatches to control the clocks in 
flowLatency[]. A stopwatch is a boolean variable, as the 
derivative of a clock. The effect of setting a stopwatch to 1 (or 
0) is to start (or stop) the corresponding clock. The length of 
the two arrays, denoted by an integer constant WindowSize = 4, 
is set to be the maximum number of frames in the Video 
system at the same time. Whether the value of WindowSize is 
properly set will be confirmed with the verification of the 
model.  

 

Figure 1 LatencyBuffer 

The manipulations of the two arrays are controlled by the 
automaton LatencyBuffer, as shown in Figure 1. On receiving 
a message produce?, indicating that a new frame is produced 
by the camera, the transition from the location Start to 
NewFrame is taken. Meanwhile the variable flowLatencyTail, 
which is the pointer to the tail of flowLatency[] and 
latencyTiming[], moves forward. Now if the tail elements of 
the two arrays are both 0, which means the clock at the tail of 
flowLatency[] is idle, the transition from NewFrame to Start is 
taken, and the clock is started. Consequently, the latest frame 
is associated with the clock at the tail of flowLatency[]. Since 
each frame is assigned with a clock, the frame can be referred 
to by the clock's index in flowLatency[]. 

If the stopwatch at the tail of latencyTiming[] is not 0, it 
means that the corresponding clock is still occupied by a 
frame under processing. In this case, the transition from the 
location NewFrame to OverFlow is taken. The overflow of 
flowLatency[] is probably because it is too short to track all 
frames in the system. 

On receiving a message finish?, indicating that T4 finishes 
its processing of a frame, the self-transition on Start is taken, 
which clears and stops the clock for the frame.  

2) Period Generator  

 
Figure 2 PeriodGen 

The periods of the camera, T3 and T4 are constant 
throughout the infinite running of the system, but their specific 
values are only known to be within their respective ranges. In 
the model, the periods have to be chosen before the system 
runs. The automaton PeriodGen  assigns values to the periods 
camPeriod, T3Period and T4Period within their respective 
ranges.  

3) Camera 

  
Figure 3 Camera 

The automaton Camera is shown in Figure 3. At the 
beginning, a function main() is called to initialize some 
variables used in the model. On the arrival of a period 
camPeriod, Camera sends three synchronization messages 
sequentially: produce! to LatencyBuffer, frameCount! to 
Monitor, and camera! to T1. Note that produce! must be sent 
before camera!, because T1 uses the new frame's index, which 
is obtained when LatencyBuffer assigns a clock to the frame.   

4) T1and T2 
The automaton for task T1, as shown in Figure 4 (A), is 

triggered by a message camera?. Meanwhile, the variable 
T1FrameIndex, which represents the index of the frame under 
T1's processing, is updated to flowLatencyTail. After 28,000, 
T1 finishes and sends a message T1Processed! to the 
automaton T2.  

  
Figure 4 (A) T1   (B) T2 

The behavior of the task T2 is similar to T1. As shown in 
Figure 4 (B), T2 is triggered by a message T1Processed?. 
Then T2FrameIndex, the index of the frame under T2's 
processing, is updated. After a span of time which ranges over 
[17,000, 19,000], T2 finishes processing and sends a message 
T2Processed! to the automaton Register.  Meanwhile, 
registerFrameIndex, a variable representing the content of the 
register is updated.  

5) Task T3 

 
Figure 5 T3 

The task T3 reads the register with a period T3Period. As 
Figure 5 shows, if the register is empty, T3 finishes 
immediately. Otherwise, T3 reads the frame in the register, 
processes it in 8,000, and sends the frame to the buffer, 
modeled by sending a message T3Data2Buffer! to the 
automaton Buffer. Note that the period of T3, 40/3 ms, is not 
equal to 13,333 or 13,334 microseconds. We use a variable 
count to simulate that the period of  three runs of T3 is 40 ms, 
where T3Period has the value of 13,334.   



6) Buffer 
The buffer receives T3's output periodically, and is 

destructively read by T4 with a different period. The FIFO 
buffer is implemented as an array bufferContent[] plus an 
automaton Buffer. bufferContent[] records the frames existing 
in the buffer with their indexes in flowLatency[]. The function 
add() write a new item to the tail of bufferContent[], while 
pull() retrieves its head. The automaton Buffer tells whether a 
incoming frame with index T3FrameIndex can be accepted:  

a) If the incoming frame is new but the buffer is full, the 
frame is discarded.  

b) If the incoming frame is duplicate,  it is ignored. 

c) If the incoming frame is new and the buffer is not full, 
the frame is added into the buffer. 

But what does duplicate mean? The description of the 
buffer 1

(I) A frame with ID N has been to the buffer, no matter 
read or not. 

 in Challenge 1 can be interpreted it in two ways: a 
incoming frame with ID N is regarded as duplicate, if: 

(II) A frame with ID N is in the buffer and not read.  

 
(A) Smart Buffer   (B) Normal Buffer 

Figure 6 Buffer 

The automaton  shown in Figure 6 (A) implements (I), 
where the function duplicate() tells if the incoming frame's 
index is same to the last stored frame. It is called Smart Buffer 
because the buffer maintains a history of the last frame, no 
matter the frame has left the buffer or not. After receiving a 
message T3Data2Buffer? and taking the transition from the 
location Start to Process, the automaton takes one of the three 
transitions from Process to Start, which represents the three 
cases (a)~(c), respectively. In this case, the interval of 
accepting frame N and frame (N+1) is the period of Camera i.e. 
camPeriod, because the duplicate copies of the frame N which 
arrive during this interval are discarded. 

The automaton Normal Buffer shown in Figure 6 (B)  
implements (II), where the function duplicateUnread() tells if 
the incoming frame is same to the last frame existing in the 
buffer. In this case, two copies of a frame can enter the buffer, 
as long as the second copy's arrival time is later than the first 
copy's leaving time. 

7) Task T4 

                                                           
1 "For each frame index value, only one single frame can be stored in the buffer. If 
the buffer has already stored a frame with a given index, any additional received 
frame with the same index is discarded."  

 
Figure 7 T4 

The task T4 reads the buffer with a period T4Period. If the 
buffer is empty, T4 spends 1,000. Otherwise, it spends 10,000 
for processing a frame. As shown in Figure 7, the function 
pullBuffer() destructively reads a frame from the buffer. When 
T4 finishes processing of a frame, the transition from the 
location ProcessFrame to Start is taken, which sends a 
message finish! to the automaton LatencyBuffer. 

8) Monitor 

 
Figure 8 Monitor 

The automaton Monitor shown in Figure 8 records the 
latest frame's ID and the distance between lost frames by 
synchronizing with the automaton Camera and Buffer, 
respectively. The self-transition at the location Start is taken 
when Monitor receives a produce? message sent by Camera. 
Then the variables newFrameID and flowContent[] have their 
values updated to record the frames's ID.  

The rest part of the automaton counts the lost frames. On 
receiving a discard? message, the transition from Start to 
FrameDiscard is taken. The variable discardCount records 
how many copies of a frame are discarded. A frame is lost 
only when its three copies are all discarded. Once a frame is 
found lost, the transition from the location FrameDiscard to 
FrameLost is taken. When the number of lost frames is more 
than one, the variable lostIdDistance records the distance 
between two lost frames.   

C. Verification of Min/Max Latency 
A frame's latency starts from its generation by the camera 

till the finish of T4. The variance in the periods of the camera 
and T4 influences the frame's latency. Since the automaton 
PeriodGen leads to state explosion when verifying the model, 
we only consider typical and extreme cases. To apply 
symbolic model checking for computing min/max latency, 
Monitor is excluded from the model, so that the model 
contains no variables ranging over an infinite domain. 

1) Standard  



When both the camera and T4 have the standard period, 
i.e. camPeriod = 40,000, T4Period = 40,000, the max latency 
can be computed by symbolic model checking with query (1).  

sup: flowLatency[0], flowLatency[1], flowLatency[2], 
flowLatency[3]     (1) 

The min latency cannot be directly computed. In any 
settings, the first frame has the min latency 90 ms, which can 
be confirmed by the simulation with query (2).  

simulate 1 [<=1000000] {flowLatency[0] , flowLatency[1],  
flowLatency[2],  flowLatency[3] }      (2) 

Table 2 Min/max latency in Standard case 

Buffer type Smart  Normal  

Buffer Size 1 or 3 1 or 3 

Latency  Min 90 90 

Max  90 130 

The result is summarized in Table 2. The result can be 
justified by manual analysis: With Smart Buffer, each frame 
can enter the buffer only once. Therefore the latency of each 
frame is 90. However, with Normal Buffer, the first frame 
enters the buffer twice, because its third copy arrives at the 
buffer at 128 ms, which is later than the first copy's retrieval 
time 120 ms. Consequently, the third copy of the 1st frame 
enters T4 again and postpones T4's processing of later frames 
by one period of T4. Note that the buffer's size influences the 
time when the second frame entering the buffer (at 167 ms 
when BufferSize=1; at 141 ms when BufferSize = 3), but does 
not the latency.  

2) Latency Increase  
When the camera has the least period, and T4 has the 

greatest period, i.e. camPeriod = 40,000-4, T4Period = 
40,000+4, after the second frame, later frames' latency 
increases by 8 successively. The max latency can be computed 
by symbolic model checking with query (1). The first frame 
has the min latency 90 ms, which can be confirmed by the 
simulation with query (2). The verification result is 
summarized in TABLE 3.  

TABLE 3 Min/max latency (camPeriod = 40,000-4, T4Period = 40,000+4) 

Buffer type Smart  Normal  

Buffer Size 1 or 3 1 or 3 

Latency  Min 90,016 90,016 

2nd  frame 90,024 130,028 

Max  159,984 159,984 

3) Latency Decrease 
If the camera has the greatest period, and T4 has the least 

period, i.e. camPeriod = 40,000+4, T4Period = 40,000-4, after 
the first frame, the latency of the frames decreases 8 
microseconds by each cycle. The min latency in the case of 
Smart Buffer is obtained through simulation.  

TABLE 4 Min/max latency (camPeriod = 40,000+4, T4Period = 40,000-4) 

Buffer type Smart  Normal  

Buffer Size 1 or 3 1 3 

Latency  1st  89,984 89,984 89,984 

2nd  frame 89,976 129,972 129,972 

Min 77,080 89,984 89,984 

Table 2 summarizes the min/max latency in the case of 
Smart Buffer and Normal Buffer.  

Table 5 Min/max latency in all cases 

Buffer type Smart  Normal  

Buffer Size 1 or 3 1 or 3 

Latency  Min 77,080 89,984 

Max  159,984 159,984 

D. Verification of Lost Frames  
Statistical model checking is applied to compute the 

number of lost frames on the model, which includes the 
Monitor automaton. TABLE 5 summarizes the verification result, 
which shows that the no frame is lost in any case. When using 
a Normal Buffer with size 1, some frames are discarded but 
not lost .  

TABLE 6 COUNTS OF LOST FRAMES AND THEIR DISTANCES  
Buffer 
Type 

Buffer 
Size 

Lost 
Count 

Discard 
Count 

Smart  1 0 0 
3 0 0 

Normal  1 0 1.46 
3 0 0 

III. CHANLLENGE 2: THE TRACKING SYSTEM 

A. The Tracking Subsystem  
The Tracking subsystem is a concurrent multitasking 

system which comprising three tasks: T6, T5 and T7. The 
three tasks are mapped to a CPU together with T2, one of the 
tasks in the Video subsystem. TABLE 6 summarizes the periods/ 
triggers and functions of the four tasks, where the tasks are 
listed by their priorities in a descending order. T2PR and T5TP 
have access to a shared resource. The access to the shared 
resource takes 2ms for each task. 

TABLE 7 TASKS IN THE TRACKING SUBSYSTEM 
Task Period / Trigger Functions  
T2PR 40 +/- 0.01% (ms) Processing 
T6TC 100 (jitter=20) (ms) Tracking control 
T5TP Called by T6 Target position prediction 
T7CC Called by T6  Camera control 

B. Model of the Tracking Subsystem  
 Our approach to the timing verification of the Tracking 

subsystem is inspired by the schedulability analysis approach 
proposed by the UPPAAL team [3]. The model of the 
Tracking subsystem consists of an automaton for the scheduler, 
an automaton for the idle task, and a template for periodic 
tasks.  



1) RTOS 

 
Figure 9 Scheduler 

  

Figure 10 IdleTask 

To exhibit the parallel running of the multiple tasks, the 
model has to describe how the RTOS schedules the tasks. The 
automaton for the CPU scheduler is shown in Figure 10. The 
function main()  assigns initial priorities to all tasks according 
to their IDs. An array taskqueue represents the queue of ready 
tasks. The task queue is manipulated by the functions poll() 
and add(): poll() destructively read the head of the queue, and 
add() adds a task to the queue and sorts the queue by the tasks' 
priorities to a descending order. A variable ctask denotes the 
ID of the current running task. When the task queue is empty, 
an idle task, whose priority is 0 (the lowest) and ID is 0, runs 
on the CPU. The automaton IdleTask is shown in Figure 11.  

At the beginning, the function main() is called. The idle 
task runs before any task getting ready. At some time, a task 
gets ready, joins the ready queue and sends an enqueue! 
message to Scheduler. On receiving a enqueue? message, 
Scheduler takes the transition from the location Running to 
Schedule. If the currently running task's priority is higher than 
the head of the task queue, Scheduler simply takes the 
transition from Schedule back to Running. Otherwise, it takes 
the transition to Preempt. The function add() is called to add 
the preempted task to the ready. The stopwatch runs[ctask] is 
set to 0, which stops the timing of the preempted task's 
execution. ctask is updated by calling the function poll(), 
which retrieves the head of the task queue.  

2) Operations in tasks 
 
 
 
 
 

Figure 11 Data structure of operations 

To display each task's execution, 4 types of commands are 
defined: COMPUTE, LOCK, UNLOCK and END. 
COMPUTE represents all kinds of operations that need to run 
on CPU. LOCK and UNLOCK are used for mutual exclusive 

access of the shared resource. The data structure for specifying 
an operation is defined as a C struct fun_t, as shown in Figure 
12, where delay represents the CPU time of an operation. The 
delay of a LOCK/UNLOCK/END operation is 0.  

The operation flow of a task is an array whose elements 
are instances of the struct fun_t. Then the program of a task 
can be specified as an operation flow using the 4 types of 
operations. Note that as the time an operation spends may vary 
within a given span, a task's operation flow has two versions: 
maximum time and minimum time.  

Since T5TP and T7CC are sequentially invoked by T6TC, 
the three tasks can be combined into one: 

(1) T5TP: it is invoked by a synchronous call of T6TC, so it 
can be embedded into the suspension section of T6TC, 
whatever its priority is.   

(2) T7CC: if its priority is higher than T6TC, its execution is 
inserted before the last COMPUTE operation of T6TC. 
Otherwise, it runs after the last COMPUTE operation 
of T6TC. As T7CC is pure COMPUTE, its priority 
does not influence the timing property of the system. 

 
Figure 12 The operation flows of T2 and T567 

The combination of T5, T6 and T7 is called T567 in the 
sequel. Figure 13 shows the operation flows of T2 and T567. 

3) Periodic tasks 
We built a timed automaton called PeriodicTask, as the 

template of all periodic tasks, to describe the state transitions 
of a periodic task from the viewpoint of the RTOS. The 
parameters of the template PeriodicTask include the task's ID, 
its offset (how far into the cycle the task is released), its period, 
and its operation flow. When the parameters are assigned with 
concrete values, as shown in Figure 14, the template is 
instantiated to a timed automaton for each task.  

 

Figure 13 Instantiation of periodic tasks  

const Flow_t Processing = // (4) Period = 40 ms +/- 0.01% 
{ 
    { LOCK,      0,     0     },      //1. Lock shared resource  
    { COMPUTE,        2000,  2000  }, //2. Write into the resource 
    { UNLOCK,  0,     0     },      //3. Release shared resource 
    { COMPUTE,      15000, 15000 },  //4. Compute for 15 ms 
    FIN, FIN 
}; 
const Flow_t TrackingControl =   
{                     
     { COMPUTE,  4000,   4000  },     //1. TC: Action1      
     { LOCK,          0,      0     },             //2. TP: (2.1) Lock resource 
     { COMPUTE,  2000 ,  2000  },    //   (2.2) Write the resource 
     { UNLOCK,     0,      0     },            //    (2.3) Release resource 
     { COMPUTE,  26000,  34000 },  //  5+10+5+14  //        
      FIN 
}; 

//                         taskid,    flow, 
Task2PR_P1  = PeriodicTask(Task2PrID,   Processing);   
Task6TC_P2 = PeriodicTask(Task6TcID,  TrackingControl);   

typedef struct {    
    funtype_t cmd;       // type of command 
    time_t delay;           // CPU time needed 
} fun_t; 



The template for periodic task is shown in Figure 15. Take 
T567 as an example of periodic task. After initialization, the 
automaton moves to the location Ready. When T567 is 
scheduled, the automaton goes to GotCPU, and then to 
different locations depending on the types of operations in the 
operation flow. Since the first operation in T567 is 
COMPUTE, the automaton takes a transition to Computing, 
and stays at Computing until the specified span of the 
operation is spent. At Computing, a stopwatch expression 
(sub'==runs[id]) imitates preemptive scheduling. When a task 
is preempted, the clock variable sub stops and the Boolean 
variable runs[id] is set to 0, indicating that the task stops 
running. After executing an operation, the automaton goes to 
the location Next, so that the task will execute the next 
operation in the operation flow. Likewise, the remaining 
operations in the operation flow are executed sequentially 
until reaching the end of the program. Then the automaton 
goes to Release, representing the task releasing the CPU, and 
then to Idle. On the arrival of Period+Offset, the automaton 
goes to Ready, then the task joins the task queue again. 

 
Figure 14 Template for periodic tasks 

The function lockCeil() increases the resource owner's 
priority. Similarly, when a task's use of the resource finishes, 
unlockCeil() resets the task's priority to the original. 

C. Verification  
The analysis aims to compute the best-case and worst-case 

end-to-end latencies from activation of T567 to termination of 
T7CC for a jitter value j = 0ms and j = 20ms, respectively, and 
the optimum priority assignment minimizing the worst-case 
latency for a jitter value j = 0ms and j = 20ms. 

Given the query (5), the worst case latency can be 
calculated, the result is shown in TABLE 7. 

E[<=1000000000; 100] (max: WCRT[2]) (1) 

TABLE 8 LATENCY IN DIFFERENT SITUATIONS  
Jitter Best-case  latency Worst-case latency 
0 49 73952 
20 49 73998.2 

Since the worst case execution time (WCET) of T567 is 40, 
T2 will run once or twice during the execution of T567. When 
T567 and T2 arrive at the same time T, WCRT(T567) may 
cover two runs of T2. WCRT(T567) = CET(T2) + 
WCET(T567) + CET(T2) = 57 (ms). The best case response 
time (BCRT) of T567 is not directly computable. BCRT(T567) 
only covers one run of T2. BCRT(T567) = BCET(T567) + 
CET(T2) = 32 + 17 = 49 (ms).  

IV. CONCLUSION 
Providing a precise model of a system (at the right level of 

abstraction) and the use of model-checking is – when feasible 
– an optimal way to get deep insight about the functioning of a 
system. In this case study, we constructed timed automata 
models for two types of real-time systems, i.e. multi-processor 
system and uni-processor multitasking system, and used 
symbolic and statistical model checking of UPPAAL to verify 
their timing properties. With the automated model checking 
tool support, the main effort is building the models. The 
modeling of Video subsystem took 20 man-day. Based on our 
previous work[4], the modeling of Tracking subsystem took 5 
man-days.  

The weakness of this method includes: symbolic model 
checking may lead to state explosion; statistical model 
checking of UPPAAL has a time limit of 1,000,000,000.   
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