
fmsd manuscript No.
(will be inserted by the editor)

Achieving Distributed Control through Model Checking

Susanne Graf · Doron Peled · Sophie Quinton

Received: date / Accepted: date

Abstract We apply model checking of knowledge properties to the design of distributed
controllers that enforce global constraints on concurrent systems. The problem of synthe-
sizing a distributed controller is undecidable in the general case, and local knowledge of
processes may not suffice to control them so as to achieve the global constraint without
introducing deadlocks. We calculate when processes can decide autonomously, whether to
take or block an action so that the global constraint is not violated. When individual pro-
cesses cannot take a decision alone, one may coordinate several processes in order to achieve
stronger, joint knowledge and take joint decisions. A fixed coordination grouping sets of
processes to a single process may severely degrade concurrency; therefore, we propose the
use of temporary coordinations. Since realizing such coordinations on a distributed platform
induces communication overhead, we strive to minimize their number, again using model
checking techniques. We show how this framework is applied to the case of synthesizing a
distributed controller for enforcing a priority order, as inspired by the BIP component frame-
work. Finally, we show that the general undecidability holds even for the particular problem
of enforcing a priority order.

Keywords distributed control · knowledge · model checking · prioritized systems

1 Introduction

Consider a concurrent system, where some global safety constraint, say of prioritizing tran-
sitions, needs to be imposed. In a centralized implementation, a global coordinator can con-
trol this system and allow only maximal priority actions to progress from each state. We are

Susanne Graf
VERIMAG, Centre Équation, 2, avenue de Vignate, 38610 Gières, FRANCE
E-mail: susanne.graf@imag.fr

Doron Peled
Department of Computer Science, Bar Ilan University, Ramat Gan 52900, ISRAEL
E-mail: doron.peled@gmail.com

Sophie Quinton
Institute of Computer and Network Engineering, TU Braunschweig, 38106 Braunschweig, GERMANY
E-mail: quinton@ida.ing.tu-bs.de
This work was undertaken while Sophie Quinton was at VERIMAG.

2 Susanne Graf et al.

however interested in distributed implementations and distributed controllers [14,18]: local
controllers, one per process, may forbid the execution of some transitions if their occurrence
leads to the violation of the imposed constraint. Due to the distributed nature of the system,
each local controller has only a limited view of the system. In the general case, the problem
of synthesizing a distributed controller that imposes some global constraint on a system is
undecidable [17,15].

One can achieve decidability at the expense of reducing concurrency. In the worst case,
no concurrency remains and a completely global controller is built. Even under this flexible
design assumption, the general synthesis problem remains highly intractable. One practical
method for designing controllers is based on checking knowledge properties which the local
controllers may use to take a decision whether to allow or block a transition. In [13,1],
knowledge is used as a tool for constructing a distributed controller. The knowledge of a
process in any particular local state s is a set of properties which hold in all the reachable
(global) states containing s. There are several definitions for knowledge, and what is known
in a local state s depends on this definition and on how much of the local history may be
encoded into the local state.

A conjunctive controller allows a transition to be fired only if all local controllers allow
it. In other words, it is sufficient for a transition to be blocked that one local controller
decides it. This is the approach followed by [13], where knowledge-based controllability
(termed Kripke observability) is studied as a basis for constructing a distributed controller.
A disjunctive controller as in [1] allows a transition to be fired if at least one of the local
controllers supports it. This is the approach that we follow here.

In [1], distributed control is achieved by first calculating for each local state using model-
checking knowledge about the permission to fire transitions without violating the imposed
constraint. Based on that knowledge, which reflects in a given local state all the possible
current situations of the other processes, the local controller of a process decides at runtime
whether a transition of that process can be safely fired. Local knowledge is not always
sufficient to build a distributed controller that guarantees also deadlock-freedom, that is,
a controller which allows at least one transition in any global state in which a transition
preserving the constraint exists. This occurs when none of the individual local states has
sufficient knowledge, and joint knowledge of several processes (sometimes called distributed
knowledge) may be used in that case. In [1] it is proposed to group processes statically and to
use a unique controller for each (fixed) process set, which consequently has stronger local
knowledge. Unfortunately, this approach causes the loss of concurrency among processes
with a common controller.

The approach presented in this article extends the knowledge-based approach of [1]. In-
stead of permanent synchronizations via fixed process groups, we suggest here a method for
constructing distributed controllers that synchronize processes temporarily. We use model-
checking techniques to precalculate a minimal set of synchronizations allowing to achieve
joint knowledge during these short coordination phases. After each synchronization, the
participating processes can again progress independently until a further synchronization is
called for. Temporary multiprocess synchronizations are achieved by a coordination algo-
rithm based on asynchronous message passing, such as the α-core algorithm [12]. Such
synchronizations are expensive as they incur communication overhead. Therefore, an im-
portant goal is keeping the number of such synchronizations and the number of involved
processes minimal.

Organization. This article is organized as follows: Section 2 introduces the required back-
ground notation and theory, including the notions of local state and of knowledge that we

Achieving Distributed Control through Model Checking 3

consider. Section 3 generalizes the construction of [1] for priority constraints to arbitrary
safety constraints. Section 4 presents our method for constructing distributed controllers
by synchronizing processes temporarily, and how we reduce the communication overhead
induced by these additional synchronizations. Section 5 illustrates our method on an exam-
ple and provides some experimental results obtained using a prototype implementation of
our techniques. Section 6 shows some connections between the classical controller synthe-
sis problem and knowledge-based control. In particular, we show that even for the special
case of priority constraints, the distributed control problem is undecidable. This shows the
interest of our approach as a practical solution to this problem.

2 Preliminaries

Before presenting a generalization of the support policy introduced in [1], we need to define
some concepts related to Petri nets, distributed control and knowledge.

Petri nets. We represent distributed systems as (safe) Petri nets, but the method and algo-
rithms developed here can equally apply to other models, e.g., communicating automata or
transition systems, which form the basis of the formalism used in [8].

Definition 1 A Petri net N is a tuple (P, T,E, s0) where

– P is a finite set of places. The set of states (markings) is defined as S = 2P .
– T is a finite set of transitions.
– E ⊆ (P × T) ∪ (T × P) is a bipartite relation between the places and the transitions.
– s0 ⊆ 2P is the initial state (initial marking).

For a transition t ∈ T , we define the set of input places •t as {p ∈ P |(p, t) ∈ E}, and
the set of output places t• as {p ∈ P |(t, p) ∈ E}.

Definition 2 A transition t is enabled in a state s if •t ⊆ s and (t•\•t) ∩ s = ∅. We denote
the fact that t is enabled from s by s[t〉.

This means that we force Petri nets to be safe by not enabling transitions that would lead to
a situation in which some place holds more than one token. A state s is in deadlock if there
is no enabled transition from it.

Definition 3 A transition t can be fired (executed) from state s to state s′, which is denoted
by s[t〉s′, when t is enabled in s. Then, s′ = (s\•t) ∪ t•.

We use the Petri net of Figure 1 as a running example. As usual, transitions are rep-
resented as segments, places as circles, and the relation E as a set of arrows from transi-
tions to places and from places to transitions. The Petri net of Figure 1 has places named
p1, p2, . . . , p8 and transitions a, b, . . . , e. We represent a state s by putting tokens inside the
places of s. In the example of Figure 1, the depicted initial state s0 is {p1, p2}. The tran-
sitions enabled in s0 are a and b. Firing a from s0 means removing the token from p1 and
adding one to p3.

Definition 4 An execution is a maximal (i.e., it cannot be extended) alternating sequence
of states and transitions s0t1s1t2s2 . . . with s0 the initial state of the Petri net, such that for
each state si in the sequence with i > 0, it holds that si−1[ti〉si.

4 Susanne Graf et al.

 p1

p3

p5

p7

p4

p6

p8

p2

a

c

d e

b

Fig. 1 A Petri net with initial state {p1, p2}

We denote the set of executions of a Petri net N by exec(N). The set of prefixes of the
executions in a set X is denoted by pref (X). A state is reachable in N if it appears in
at least one execution of N . We denote the set of reachable states of N by reach(N). The
reachable states of our running example are: {p1, p2}, {p1, p4}, {p2, p3}, {p3, p4}, {p5, p6},
{p5, p8}, {p6, p7} and {p7, p8}.

Constraints. The constraints that we want to enforce in a distributed way are of the form
Ψ ⊆ S × T with respect to a given Petri net N . If (s, t) ∈ Ψ , then transition t may be safely
fired in state s according to Ψ . We denote (N,Ψ) the pair made of a Petri net N and the
constraint Ψ that we want to enforce.

Definition 5 A transition t of N is enabled with respect to Ψ in a state s if s[t〉 and, fur-
thermore, (s, t) ∈ Ψ . An execution of (N,Ψ) is a maximal prefix s0t1s1t2s2t3 . . . of an
execution of N such that for each state si in the sequence, (si, ti+1) ∈ Ψ .

We denote the executions of (N,Ψ) by exec(N,Ψ), and the set of states reachable by these
executions by reach(N,Ψ). Both sets are nonempty as at least the initial state is reachable.
Clearly, reach(N,Ψ) ⊆ reach(N). Furthermore, note thatN may have states in which some
transition is enabled but no transition is enabled with respect to Ψ . That is, restricting N
according to Ψ may introduce deadlocks. Hence exec(N,Ψ) ⊆ pref (exec(N)). The problem
we want to solve is the following:

Given a Petri net with a constraint (N,Ψ), we want to obtain a Petri net N ′ such
that exec(N ′) ⊆ exec(N,Ψ). In particular, this means that the states in reach(N ′)
which are deadlocks of N ′ must also be deadlocks of (N,Ψ).

It is sometimes also desired to avoid that (N,Ψ) introduces deadlocks which are not in N .
This may be achieved by computing a constraint Ψ ′ based on Ψ such that: (1) Ψ ′ ⊆ Ψ and
(2) Ψ ′ blocks only transitions leading to states in which the system cannot progress without
violating Ψ . Thus, (N,Ψ ′) does not introduce deadlocks compared to N . Building Ψ ′ may

Achieving Distributed Control through Model Checking 5

be achieved using game theory [16]. Here, we do not focus on this issue and we consider
that deadlocks introduced by Ψ are not a problem.

We are interested in particular in enforcing priority orders, which do not introduce dead-
locks. Indeed, a priority order� is a partial order relation among the transitions T of N and
thus defines a constraint Ψ in a straightforward manner. Given a priority order�, Ψ is de-
fined by: (s, t) ∈ Ψ if and only if t is enabled in s and has maximal priority among the
transitions enabled in s — that is, there is no other transition r with s[r〉 such that t� r. We
write exec(N,�) and reach(N,�) instead of exec(N,Ψ) and reach(N,Ψ), respectively.
As priority orders do not introduce new deadlocks, we have exec(N,�) ⊆ exec(N).

Let us now consider the Petri net of Figure 1 and the priorities a � b and d � e.
When the priorities are not taken into account, there are four different executions of N ,
namely abcde, bacde, abced and baced (states are abstracted away). However, when taking
the priorities into account, there is only one execution left: baced. Thus, priorities are used
in this context for scheduling purposes.

Distributed setting. A Petri net can be seen as a distributed system, consisting of a set of
concurrently executing and temporarily synchronizing processes. There are several options
for defining the notion of process in Petri nets: we choose to consider transition sets as
processes.

Definition 6 A process π of a Petri net N is a subset of the transitions of N , i.e., π ⊆ T .

We assume a given set of processes ΠN that covers all the transitions of net N . That is,⋃
π∈ΠN π = T . A transition can belong to several processes, e.g., when it models a syn-

chronization between processes. Note that we do not require our processes to be sequential,
i.e., to hold no more than a single token at any time. In this section, all the notions and no-
tations related to processes extend naturally to sets of processes. Thus, we usually provide
definitions directly for sets of processes. Then, when a formula refers to a set of processes
Π , we will often replace writing the singleton process set {π} by writing π instead.

The neighborhood of a process π describes the places of the system that π can observe.
Note that our definition of neighborhood is only one among others, and all our results apply
also to other notions of neighborhood. In particular, it may be more realistic not to consider
output places as part of the neighborhood, or a process may not even see all input places of
its transitions.

Definition 7 The neighborhood ngb(π) of π is the set of places
⋃
t∈π(

•t ∪ t•).
For a set of processes Π , ngb(Π) =

⋃
π∈Π ngb(π).

Definition 8 The local state of a set of processes Π in a state s ∈ S is s|Π = s ∩ nbg(Π).

That is, the local state of a process π in a global state s consists of the restriction of s to the
neighborhood of π. It describes what π can see of s based on its limited view. In particular,
according to this definition, any process π can see whether one of its transitions is enabled.

Definition 9 Define an equivalence on states ≡Π⊆ S × S such that s ≡Π s′ when s|Π =
s′|Π .

Thus, if t ∈ π and s ≡π s′ then s[t〉 if and only if s′[t〉. Figure 2 represents one possible dis-
tribution of our running example. We represent processes by drawing dashed lines between
them. Here, the left process πl consists of transitions a, c and d while the right process πr

6 Susanne Graf et al.

 p1

p3

p5

p7

p4

p6

p8

p2

a

c

d e

b

πl πr

ngb
πl

Fig. 2 A distributed Petri net with two processes πl and πr

consists of transitions b, c and e. The neighborhood of πl contains all the places of the Petri
net except p2 and p8. The local state s0|πl corresponding to the initial state s0 = {p1, p2}
is {p1}. Note that the local state s|πl corresponding to s = {p1, p8} is also {p1}, hence
s0 ≡πl s.

Representing properties. We identify properties with the sets of states in which they hold.
Formally, a property is a Boolean formula in which places in P are used as atomic predicates.
Then, given a state s ∈ S and a place pi ∈ P , we have s |= pi if and only if pi ∈ s. For a
state s, we denote by ϕs the conjunction of the places of s and the negated places that are
not in s. Thus, ϕs is satisfied by state s and by no other state. For the Petri net of Figure 2,
the initial state s is characterized by ϕs = p1 ∧ p2 ∧ ¬p3 ∧ ¬p4 ∧ ¬p5 ∧ ¬p6 ∧ ¬p7 ∧ ¬p8.
A set of states Q ⊆ S can be characterized by a property ϕQ =

∨
s∈Q ϕs or any equivalent

Boolean formula.

Definition 10 A property ϕ is an invariant of a Petri netN if s |= ϕ for each s ∈ reach(N),
i.e., if ϕ holds in every reachable state.

Below, we provide notations for some properties useful for defining the distributed con-
trollers we are aiming at. For any given Petri net, these properties represent sets of states
that can be denoted by a characteristic formula as just explained:

– ϕreach(N): all the reachable states of N .
Similarly, ϕreach(N,Ψ) denotes the reachable states of (N,Ψ).

– ϕen(t): the states in which transition t is enabled.
– ϕΨ(t): the states s in which transition t is enabled and (s, t) ∈ Ψ .

Formally: ϕΨ(t) = ϕen(t) ∧
∨

(s,t)∈Ψ ϕs.

Achieving Distributed Control through Model Checking 7

– ϕΨdf : the reachable states in which at least one transition is enabled w.r.t. Ψ , i.e., the
reachable states which are deadlock-free w.r.t. Ψ .
Formally: ϕΨdf = ϕreach(N,Ψ) ∧

∨
t∈T ϕΨ(t).

– ϕs|π : the states in which the local state of process π is s|π .

We can perform model checking in order to calculate these formulae, and store them in a
compact way, e.g., using BDDs. For Ψ representing priority constraints, we denote ϕΨ(t) by
ϕmax(t): it corresponds to the states in which transition t has a maximal priority among all
the enabled transitions of the system. That is, ϕmax(t) = ϕen(t) ∧

∧
t�r ¬ϕen(r).

Knowledge. Our approach for a local or semi-local decision on firing transitions is based
on the knowledge of processes [6] or of sets of them. Basically, the knowledge of a process
π in a given state s is defined by the set of reachable global states s′ that are equivalent to
s with respect to π, i.e., such that s ≡π s′. For example, in the initial state represented in
Figure 2, the left process πl knows that the current global state is {p1, p2}, because it is the
only reachable state that projects onto local state {p1}. Indeed, neither {p1, p8}, nor {p1}
nor {p1, p2, p8} are reachable. In fact, in this example, both processes always know the exact
global state of the system based on their local state.

Definition 11 Considering a set of processes Π and a property ϕ, we define the property
KΠϕ as the set of global states s such that for each reachable s′ with s ≡Π s′, s′ |= ϕ.
Whenever s |= KΠϕ for some state s, we say that Π knows ϕ in s.

Equivalently, we sometimes write s|Π |= KΠϕ rather than s |= KΠϕ to emphasize that
this knowledge property is calculated based on the local state of Π . We easily obtain that if
s |= Kπϕ and s ≡π s′ then s′ |= Kπϕ. Furthermore, process π knows ϕ in state s exactly
when (ϕreach(N) ∧ ϕs|π) → ϕ is a tautology. Given a Petri net and a property ϕ, one can
perform model checking in order to decide whether s |= Kπϕ for some state s.

3 The Support Policy

In this section, we generalize the support policy introduced in [1] for priorities to any con-
straint Ψ of the form defined in Section 2. This method uses model checking to analyze the
system and identify when a process can decide, based only on its local state, whether some
enabled transition is also enabled with respect to Ψ or whether it should be blocked. The
support policy is based on a support table ∆ which indicates, for each local state of each
process π the transitions which are known to be enabled with respect to Ψ . These transitions
are then supported as they may be fired safely according to Ψ , independently of the actual
state of the other processes. The basic principle of the support policy is the following:

In a state s, a transition t is supported by a process π containing t if and only if π
knows in s (based on its limited view of the system) that (s, t) ∈ Ψ . That is, t is
supported by π if and only if s |= KπϕΨ(t). Furthermore, a transition can be fired
in a state if and only if, in addition to its original enabledness condition, at least one
of the processes containing it, supports it.

The disjunctive nature of the controller resulting from this policy appears in the fact that a
transition needs only one local controller to support it in order to be fired.

8 Susanne Graf et al.

Building the support table. Given a Petri net N and a constraint Ψ , the corresponding sup-
port table ∆ is built as follows: we check for each process π, for each local state s|π cor-
responding to a reachable state s ∈ reach(N) and each (enabled) transition t ∈ π, whether
s|π |= KπϕΨ(t). If it holds, we add to the support table an entry s|π and we associate with it
the transition t. Note that to check that s|π |= KπϕΨ(t), one has to check that s′ |= ϕΨ(t) for
any reachable state s′ such that s′|π = s|π . The construction of the support table is simple
and its size is limited to the sum of the local state spaces in contrast to the global state space,
which might be as large as their product.

The support table ∆ for our running example with priorities is shown in Figure 3. For
readability, we also show the local states in which no transition is supported. ∆ is split into
two parts, one per process. The arrows point to the entries in the table (i.e., the local states)
corresponding to the global state represented on the left. In this state, process πr does not
support any of its transitions as none of them is enabled. On the other hand, process πl
supports a because it knows that the current global state is {p1, p4}, thus also knowing
that b — which has higher priority than a — is not enabled. Note that here one local state
corresponds to exactly one global state, but this is in general not the case (see e.g. Figure 4).

p1

p3

p5

p7

p4

p6

p8

p2

a

c

d e

b

πl πr

ngb
πl

∆πl ∆πr

−→
p1 ∅

p1, p4 {a}
p3 ∅

p3, p4 {c}
p5, p6 ∅
p5 {d}

p6, p7 ∅
p7 ∅

−→
p2 {b}
p4 ∅

p2, p3 {b}
p3, p4 {c}
p5, p6 {e}
p5, p8 ∅
p6 {e}
p8 ∅

Fig. 3 A Petri net with priorities a� b and d� e along with its support table ∆

Distributed control based on a support table. We use the support table∆ to control (restrict)
the executions ofN so as to enforce Ψ . Each process π inΠN is equipped with the entries of
this table for its reachable local states s|π . Before firing a transition in local state s|π , process
π consults the entry for this local state in ∆, and supports only the transitions that appear
in that entry. This can be represented as an extended Petri net N∆, as we explain now. For
simplicity of the transformation, we consider extended Petri nets [7], where processes may
have local variables, and transitions have an enabling condition and a data transformation.

Achieving Distributed Control through Model Checking 9

Definition 12 An extended Petri net has, in addition to the Petri net components, for each
process π ∈ ΠN a finite set of variables Vπ and (1) for each variable v ∈ Vπ , an initial value
v0 (2) for each transition t ∈ T , an enabling condition ent and a transformation predicate
ft on the variables Vt =

⋃
π∈proc(t) Vπ , where proc(t) is the set of processes to which t

belongs. In order to fire t, ent must hold in addition to the usual Petri net enabling condition
on the input and output places of t. When t is executed, in addition to the usual changes to
the tokens, the variables in Vt are updated according to ft.

A Petri net N ′ extends N if N ′ is an extended Petri net obtained from N according to
Definition 12. The comparison between the original Petri netN andN ′ extending it is based
only on places and transitions. That is, we ignore (project out) the additional variables.

Lemma 1 For a Petri net N ′ extending N , exec(N ′) ⊆ pref (exec(N)).

Proof The extended Petri net N ′ can only strengthen the enabling condition of the tran-
sitions of N , thus it can only restrict the set of executions and of reachable states. These
restrictions may result in new deadlocks, not present in N .

We have the following monotonicity property.

Theorem 1 Consider a Petri net N and an extension N ′ of N . Let ϕ be a property and s a
state of N . If s |= Kπϕ in N , then s |= Kπϕ also in N ′.

Proof The extended Petri netN ′ restricts the set of executions, and possibly the set of reach-
able states, of N . Each local state s|π is part of fewer global states, and thus the knowledge
about ϕ in s|π can only increase.

Monotonicity is important to ensure Ψ in N∆. Indeed, the knowledge allowing to en-
force Ψ by the imposed transformation is calculated based on N , but is used to control the
execution of the transitions of N∆. Monotonicity thus ensures the correctness of N∆ with
respect to Ψ .

The extended Petri net N∆ is obtained from N and Ψ by defining the additional condi-
tion ent for an enabled transition t to be fired as:

∨
π∈proc(t)KπϕΨ(t). That is, t can be fired

if is supported by at least one process containing it. The knowledge properties calculated in
∆ are encoded in the variables and updated as transitions are fired. Note that N∆ is indeed a
controlled version of N , as it can only restrict the executions of N . It is distributed, because
one set of variables per process is used to define the additional enabledness conditions. Only
variables of processes involved in a transition t can be used to determine whether t can be
fired or not, and only these variables are updated when t is fired. Finally, it is disjunctive,
because a transition can be fired if at least one process supports it.

Note that defining controllers as extended Petri nets allows the use of some finite mem-
ory that is updated with the execution of observable transitions. This can be useful, e.g.,
when constructing a controller based on knowledge with perfect recall [10]. However, a
controller based on simple knowledge, as in Definition 11, does not need this capability.

Deadlock-freedom. The extended Petri net N∆ obtained from N and Ψ obviously enforces
Ψ , since only supported transitions are fired, and only transitions which are known to be
enabled with respect to Ψ are supported. However, N∆ does not ensure that no deadlock is
added with respect to (N,Ψ). IfN∆ does not introduce any deadlock with respect to (N,Ψ),
we say that it implements (N,Ψ). We now focus on the issue of determining whether an
extended Petri net N∆ implements (N,Ψ) or not.

10 Susanne Graf et al.

Definition 13 We define the following properties kπi for a process π:

– kπ1 =
∨
t∈πKπϕΨ(t): process π has at least one transition t which it knows to be

enabled with respect to Ψ and can thus support.
– kπ2 = ¬kπ1 ∧Kπ

∨
ρ6=π k

ρ
1 : process π cannot support any transition, but in all the global

states s′ with s′|π = s|π some other process ρ is in a local state where kρ1 holds. This
allows π to remain inactive without risk of introducing a deadlock.

– kπ3 = ¬kπ1 ∧ ¬kπ2 : π does not know whether or not there is a supported transition.

kπ1 can be extended to sets of processes: kΠ1 =
∨
t∈TΠ KΠϕΨ(t), where TΠ =

⋃
π∈Π π.

Note that kπ1 ∨ kπ2 ∨ kπ3 ≡ true.

The construction in [1] checks whether
∨
π∈ΠN k

π
1 holds in all reachable states of the

original system which are neither deadlock nor termination states. If so, it is sufficient that
each process supports a transition t when it knows that t does not violate the constraint Ψ
(only priority policies are handled in [1]) in order to enforce Ψ without introducing any
additional deadlock. The next section discusses what to do when this check fails.

4 A Synchronization-Based Approach

It is not possible in general to decide, based only on the local state of a process, whether
some enabled transition is allowed by Ψ . That is, there are cases where the support policy
introduced in the previous section fails in the sense thatN∆ as defined by the support policy
does not implement (N,Ψ), becauseN∆ has more deadlocks than (N,Ψ). Before discussing
existing solutions to this issue and presenting a new one, let us look at an example where
this situation arises.

An example where the support policy fails. Consider a concurrent system as in Figure 4,
with two processes πl (left) and πr (right) with disjoint sets of transitions, each of them
having initially a nondeterministic choice. The priorities in this system are δ � b � β.
Note that each process can observe only its own transitions.

In the initial state, all four enabled transitions α, γ, a, c are maximal as they are not
ordered by priorities. If α is fired and subsequently a (or vice versa), we reach a global state
in which process πr does not have any enabled transition with maximal priority since b� β.
Process πl does, and it can execute β. Thereafter, since δ � b, process πl cannot execute
δ and must wait for process πr to execute b. Now, with its limited observability, in its local
state {p7}, πl cannot distinguish the states {p7, p5}, in which b is enabled and δ not allowed,
and {p7, p8}, in which no other transition is enabled and δ can be fired. Thus in {p7}, πl
does not have sufficient knowledge for executing δ.

This shows that local knowledge of the processes is not always sufficient to construct
a controller. Here, in the initial state, both processes can progress freely, but then reach a
situation where they cannot decide locally on how to progress.

Existing solutions. To handle situations where the support policy fails, two suggestions have
been made:

1. Use knowledge of perfect recall [10,1]. This means that the knowledge is not based
only on the local state, but also on the limited history that each process can observe.
Although the history is not finitely bounded, it is enough to calculate the set of states
where the rest of the system can reside at each point. A subset construction can be used

Achieving Distributed Control through Model Checking 11

p1

p4p3

p7

p9

p2

p5 p6

p8

α

δ

β

a

b

γ c

πl πr

∆πl

−→

p1 {α, γ}
p3 {β}
p4 ∅
p7 ∅
p9 ∅

∆πr

−→
p2 {a, c}
p5 ∅
p6 ∅
p8 ∅

Fig. 4 A Petri net with priorities δ � b� β

to supply for each process an automaton that is updated according to the local history.
This construction is very expensive: the size of this automaton can be exponential in the
number of global states. Furthermore, although in this way we extend our knowledge (by
separating local states according with different histories), this still does not guarantee
that a distributed controller can be found. In particular, knowledge of perfect recall is
useless in the situation of Figure 4.

2. Combine the knowledge of some processes by synchronizing them to form a single
process [1]. Such a combined process may know more than its constituting processes
separately. This approach may however lead to an important loss of concurrency: in the
worst case, all processes must be combined and no concurrency remains.

Adding synchronizations to provide sufficient knowledge. Instead of the fixed synchroniza-
tion between processes suggested in [1], we propose to use temporary synchronizations:
processes coordinate to achieve joint knowledge (i.e., knowledge of a set of processes),
whenever their local knowledge is not sufficient to ensure deadlock-freedom. This does not
reduce the concurrency as much as the previous method, but induces some communication
overhead as the temporary synchronizations are achieved at the coordination level through
additional exchange of messages.

We now propose to calculate the support table ∆ iteratively, by first adding entries cor-
responding to local states of single processes as described in Section 3, then (joint) local
states of pairs of processes, then triples etc. At each stage of the construction, ∆ is identified
with its set of entries, which are (joint) local states s|Π satisfying kΠ1 — that is, local states
in which the joint knowledge of the processes in Π is sufficient to ensure progress. Note
that the joint local state of a set of processes Π can be seen as a tuple consisting of the local
states of the processes in Π .

Definition 14 A set of (joint) local states ∆ is an invariant if for each reachable global state
s that is not a deadlock in (N,Ψ), ∆ contains at least one (joint) local state in s.

The first iteration includes in ∆, for every π ∈ ΠN , the singleton local states satisfying
kπ1 , i.e. states in which progress of π is guaranteed. With each entry corresponding to such

12 Susanne Graf et al.

a local state s|π , we associate the actual transitions t that make kπ1 hold. If after the first
iteration ∆ is invariant, then the method presented in the previous section is sufficient to
build N∆ implementing (N,Ψ). Otherwise, we consider also joint local states.

Definition 15 A synchronization state is a reachable global state s that is a not a deadlock
in (N,Ψ) and such that s 6|= kπ1 for any process π ∈ ΠN .

The existence of a synchronization state means that ∆ is not invariant after the first iteration
described above. We propose adding some joint local states for achieving invariance. That
is, such states will require additional synchronization, hence their name.

Consider a process π ∈ ΠN . We first calculate for each local state of π not satisfying kπ1
whether it satisfies kπ2 . Let Uπ be the set of local states of process π satisfying kπ3 , that is,
satisfying neither kπ1 nor kπ2 . Now, in a second iteration, we add to ∆ pairs (sπ, sρ) ∈ Uπ ×
Uρ for π 6= ρ such that there exists a synchronization state s with s|π = sπ , s|ρ = sρ and
furthermore s |= k

{π,ρ}
1 . Again, we associate with that entry of the table ∆ the transitions

t that witness the satisfaction of k{π,ρ}1 . The second iteration terminates as soon as ∆ is an
invariant or if all such pairs of local states have been classified — that is, added to ∆ or
discarded.

In a third iteration, we consider triples of local states from Uπ × Uρ × Uσ such that no
subtuple is in ∆, and so forth. Eventually, ∆ becomes an invariant, in the worst case when
complete synchronization states are added to ∆: indeed, synchronizing all the processes
ensures that any transition enabled and allowed by Ψ in such a state will be supported. Our
construction guarantees that each time the transition t associated with a tuple (s|π1 . . . s|πk)
from ∆ is executed from a state that includes these local components, t is indeed enabled
with respect to the constraint Ψ .

If we go back to our example, the support table presented in Figure 4 is not an invariant.
It must be enriched with the entries for the joint local states given in Table 1. Note that
in this example, there exist two synchronization states, namely {p5, p7} and {p7, p8}, each
corresponding to one entry in the support table. However, it is not always necessary to have
as many entries in the table as there are synchronization states: if there are more than two
processes in the system, a single synchronization may be sufficient to ensure progress in
several synchronization states. Note also, that in an execution of our example according to
the augmented table ∆, a synchronization may take place only when the system has actually
reached a synchronization state. This again is not the case in general. Indeed, two processes
may decide to synchronize because they both know that a synchronization state may have
been reached, although this is actually not the case.

∆πl, πr

p5, p7 {b}
p7, p8 {δ}

Table 1 Additional entries for the support table of Figure 4 to become an invariant

A distributed controller imposing the global property. We now have to explain how the
joint local knowledge used to enforce the invariance of ∆ is achieved in practice. Indeed,
the method proposed in the previous section for building the extended Petri net N∆ from
N and Ψ does not apply directly. The reason is that joint knowledge cannot be expressed by
disjoint sets of variables. We solve this by adding synchronizations amongst the processes
involved.

Achieving Distributed Control through Model Checking 13

Such synchronizations are achieved by using an algorithm like α-core [12], which al-
lows processes to notify, using asynchronous message passing, a set of coordinators about
their wish to be involved in a joint action. Once a coordinator has been notified by all the
participants in the synchronization it is in charge of, it checks whether conflicting synchro-
nizations are already under way (a process may have notified several coordinators). If this
is not the case, coordination succeeds, and the synchronization can take place. We assume
that the correctness of the algorithm guarantees the atomic-like behavior of the coordination
process, allowing us to reason at a higher level of abstraction where we treat the synchro-
nizations provided by α-core (or any similar algorithm) as transitions that are joint between
several participating processes.

Thus, if a transition t is associated with a singleton element s|π in ∆, then the controller
for π, in local state s|π , supports t. Otherwise, t is associated with a tuple of local states
in ∆; when reaching any of these local states, the corresponding processes π1 . . . πk try
to achieve a synchronization using the coordination algorithm. If coordination succeeds,
and the synchronization takes place, the associated transition t is then supported by all the
participating processes (there may be several such transitions). Formally, for each transition t
associated with a tuple of local states (s|π1 . . . s|πk), we execute a transition enabled exactly
in the global states containing this tuple and performing the original transformation of t.

Minimizing the number of coordinators. It is wasteful to set up one coordination for each
joint local state involving at least two processes in ∆. We now show how to minimize the
number of coordinators for pairs of the form (s|π, r|ρ) in ∆. The general version of this
method for larger tuples is analogous. We denote by ∆π,ρ the set of pairs of ∆ made of a
local state from process π and one from process ρ.

A naive implementation may use a coordination for every pair in ∆. Nevertheless, the
large number of messages needed to implement coordination by an algorithm like α-core
suggests that we minimize their number. The opposite extreme would be to use a unique co-
ordination between every two processes π and ρ. However, as α-core does not offer guarded
coordinations, success of a coordination does not imply in this case that the resulting syn-
chronization will be useful. Thus, many (expensive) useless coordinations may be achieved,
not even guaranteeing eventual progress.

We propose an intermediate solution. Consider now a set of pairs Γ ⊆ ∆π,ρ such that
if (s, r), (s′, r′) ∈ Γ , then also (s, r′), (s′, r) ∈ Γ (s and s′ do not have to be disjoint, and
neither do r and r′). This means that Γ is a complete bipartite subgraph of ∆π,ρ. It is suf-
ficient to generate one coordination for all the pairs in Γ : upon success of the coordination,
the precalculated table∆π,ρ will be consulted about which transition to allow, depending on
s|π and s|ρ. Thus, according to this strategy, a sufficient number of coordinations is formed
by finding a covering partition Γ1, . . . , Γm of complete bipartite subgraphs of ∆π,ρ. That is,
each pair (s|π, r|ρ) ∈ ∆π,ρ must be in some set Γi. However, the minimization problem for
such a partition turns out to be in NP-Complete, as stated in the following theorem.

Property 1 [11] Given a bipartite graphG = (V,E) and a positive integerK ≤ |E|, finding
whether there exists a set of subsets V1, . . . Vk for k ≤ K of complete bipartite subgraphs of
G such that each edge (u, v) is in some Vi is in NP-Complete.

We use the following notation: when Γ is a set of pairs of local states, one of π and
the other of ρ, we denote by Γ |π and by Γ |ρ the π and the ρ components in these pairs,
respectively. We suppose that |∆π,ρ|π| ≤ |∆π,ρ|ρ|, i.e., the number of elements paired up
in ∆π,ρ is smaller for π than for ρ. If this is not the case, one simply has to replace π with ρ

14 Susanne Graf et al.

process πl process πr process πrprocess πl

s3

r1r1

s1

s2

s3

s1

s2

r2 r2

r3r3s4 s4

Fig. 5 Minimizing the number of coordinators

and vice versa in the sequel. We apply the following heuristics to calculate a (not necessarily
minimal) set of complete bipartite subsets Γi ⊆ ∆π,ρ covering ∆π,ρ.

Let the elements of∆π,ρ|π (that is, the π components of the pairs in∆π,ρ) be x1, . . . , xm.
We start with a first partition Γ1, . . . , Γm where Γi is the set of pairs in ∆π,ρ containing xi,
for any i ∈ [1,m]. These sets are obviously complete, and the partition is a covering.

Now, in order to refine this partition, we check for each two sets Γi and Γj whether
Γi|ρ = Γj |ρ. If it is the case, we merge them into a single set Γi ∪ Γj . The resulting set
is complete because it contains a pair (xi, y) if and only if it also contains (xj , y), where
y ∈ ∆π,ρ|ρ. Note that each xi always appears in exactly one subgraph, thus we cannot
repeat the process for π.

Figure 5 shows how this heuristics works for an example. Lines represent pairs of local
states which must be synchronized; blacks dots represent coordinators. The left-hand side of
the figure shows the coordinators induced by ∆π,ρ and the right-hand side the minimal set
of coordinators that is obtained by our heuristics. We start with process πr: each Γi contains
a single state of πr . In this case, the initial partition turns out to be already the solution. Note
that starting with process πl would also result in a solution with three coordinators, because
the coordinators for s3 and s4 can be merged.

5 Implementation and Experimental Results

We have implemented a prototype for experimenting with this approach. This tool first builds
the set of reachable states and the corresponding local knowledge of each process. Then, it
checks whether local knowledge is sufficient to ensure correct distributed execution of the
system under study. We allow simulating the system while counting the number of synchro-
nizations and synchronization states encountered during execution as a measurement of the
amount of additional synchronization required.

One example that we used in our experiments is a variant of the dining philosophers
where philosophers may arbitrarily take first either the fork that is on their left or right,
provided it is on the table. In addition, a philosopher may hand over a fork to one of his
neighbors when his second fork is not available and the neighbor is looking for a second
fork as well. Such an exchange (labeled ex) is a way to avoid the well-known deadlocks
when all philosophers hold one fork in their left (respectively right) hand: our philosophers

Achieving Distributed Control through Model Checking 15

are pragmatic enough to exchange forks when they have nothing better to do. This example
is partially represented by the Petri net of Figure 6.

In our example, places (concerning philosopher β) are defined as follows:

– fork i: the i-th fork is on the table.
– 0forkβ (respectively 2forksβ): philosopher β has no fork (respectively 2 forks) in his

hands.
– 1fork lβ (respectively 1forkrβ): philosopher β holds his left (respectively right) fork.

Transitions (concerning philosopher β) play the following role:

– getklβ (respectively getkrβ), k = 1, 2: philosopher β takes the fork on his left (respectively
on his right). This is his k-th fork.

– eat-and-returnβ : philosopher β eats and puts both forks back on the table.
– exα,β : philosopher α gives his right fork to philosopher β.
– exβ,α: philosopher β gives his left fork to philosopher α .

... ...
fork i+1

fork i

1fork lγ1forkrβ

0forkα
0forkβ 0forkγ

get2lβ
get2rβ

exβ,α

get1lβ get1rβ
1forkrγ

eat-and-returnβ

exβ,γexα,β exγ,β

2forksβ
2forksα 2forksγ

1forkrα1fork lα
1fork lβ

Fig. 6 A partial representation of the dining philosophers (philosopher β)

Processes correspond to philosophers. The transitions defining a process β are those with
a β in their name, including the four exchange transitions exα,β , exβ,α, exβ,γ and exγ,β . In
Figure 6, transitions related only to philosopher β are in blue. Transitions in orange and
green are shared between β and one of his neighbors (respectively α on the left and γ on the
right).

Not controlling exchanges at all allows non-progress cycles, that is, philosophers ex-
changing forks without ever eating. To avoid this, we add priorities which allow exchange
actions only when a blocking situation has been reached within some degree of locality.

16 Susanne Graf et al.

First variant. We use a priority rule stating that an exchange between philosophers α and β
has lower priority than α or β taking a fork. This leads to the following priorities for each α
and β such that α is βs left neighbor:

– exα,β � get2lα : if α can pick up a left fork, he may not give his right fork to β.
– exβ,α � get2rβ : symmetrically if β can pick up a right fork.

In this variant, local knowledge is sufficient. Indeed, when philosopher β and both his
neighbors are blocked in a state where they all have a left (respectively a right) fork, then
philosopher β has enough knowledge to support an exchange with his left (respectively
right) neighbor, because he knows that he has nothing better to do. For any number of
philosophers, there is no synchronization state. Thus, no extra synchronization is needed.

Second variant. Now, to further reduce the number of exchanges, one may decide that
philosopher β may give his left fork to his left neighbor α only if (1) α is blocked (2) β
is blocked and (3) βs right neighbor γ is also blocked (the exchange of right forks is simi-
lar).This translates into adding the following priorities:

– exα,β � get2lδ , eat-and-returnδ (with δ the left neighbor of philosopher α)
– exβ,α � get2rγ , eat-and-returnγ (with γ the right neighbor of philosopher β)

Local knowledge alone cannot ensure here correct distributed execution. However, bi-
nary synchronizations are sufficient in this example to ensure that the system is always able
to move on, for any number of philosophers.

In Table 2, we show results for the second variant with 6, 8 and 10 philosophers. In
all cases, there are two synchronization states which correspond to the situation where all
philosophers hold their left fork, or they all hold their right fork. For computing the number
of synchronizations, we used each time 100 runs of a length of 10,000 steps (i.e. transitions).
Note that the number of exchange transitions is identical to the number of synchronizations.
We provide the average number of synchronizations over 100 executions of 10,000 steps
according to two different strategies:

1. Synchronizations are allowed only when no other transition is supported.
2. Synchronizations and supported transitions have the same probability.

The first strategy (denoted min in Table 2) cannot be distributed and only aims at simulating
how many synchronizations are needed to escape the synchronization states encountered
during execution. The second strategy (denoted average) is implementable in a distributed
setting. As one can see, this strategy increases the number of synchronizations taking place
(because a synchronization can take place as soon as the philosophers involved in it all
believe that a synchronization state may have been reached), but allows reaching synchro-
nization states less often. Thus, the communication overhead induced by synchronizations
which are unnecessary with respect to deadlock-freedom is compensated by the added de-
gree of progress achieved by the system.

6 A Practical Solution to the Distributed Control Problem

We now show some connections between the classical controller synthesis problem (see,
e.g., [14]) and knowledge-based control. We have provided a solution to the synthesis of
distributed controllers, based on adding synchronizations in order to combine the knowledge

Achieving Distributed Control through Model Checking 17

philosophers 6 8 10
strategy min average min average min average

reachable states 729 6561 59049
synchronizations

322
354

229
285

178
237

synchronization states encountered 253 149 100

Table 2 Results for 100 executions of 10,000 steps for the second variant

of individual processes. In this section, we want to put the knowledge-based solution in the
context of the distributed control problem when adding synchronizations is not allowed.

The knowledge approach to control in [13] requires that there is sufficient knowledge to
allow any transition of the controlled system that does not violate the constraint Ψ . In [1],
which we extend here, this requirement is relaxed; the knowledge must suffice to execute at
least one enabled transition not violating Ψ when such a transition exists. In the more gen-
eral case of distributed controller design, one may want to block some enabled transitions
even if their execution does not immediately violate the enforced property. This is required
to prevent the transformed system from later reaching deadlock states, where the controlled
system originally had a way to progress (thus, introducing new deadlocks). When a con-
troller is allowed to block transitions even when their execution does not immediately lead
to violation of the property to be preserved, the situation can be recovered.

Notice that the Petri net of Figure 4, where local knowledge is not sufficient for control-
ling the system, can be easily controlled by blocking transitions, even when they are known
to be maximal: we may choose either to block α in favor of γ, or to block a in favor of
c. Blocking both α and a is not necessary. This illustrates that distributed controllers are
more general than knowledge-based controllers. This example also shows that there is no
unique maximal solution to the control problem that blocks the smallest number of transi-
tions. Note that an alternative solution to blocking α or a can be achieved using a temporary
synchronization between the processes, as shown earlier.

Actually, even if we redefine our knowledge-based controllers to allow them to block
transitions in order to avoid a deadlock later in the execution, they will still be less power-
ful than general distributed controllers. The reason for that is that local (knowledge-based)
controllers lack the ability to agree a priori on transitions which should be taken or not.
Consider a variant of the Petri net of Figure 4, where a situation similar to that between
δ, b and β occurs in the right branch of the processes after γ and c are fired. A distributed
controller can still decide that the left process will go left while the right process will go
right. This is not feasible using knowledge-based controllers.

On the other hand, there is no algorithm that guarantees constructing distributed con-
trollers. It was shown in [17,15] that the problem of synthesizing a distributed controller
is, in general, undecidable. We show here that even when restricting the synthesis problem
to priority policies, the problem remains undecidable. The proof for that is given below.
Notice that when we have the flexibility of allowing additional synchronizations, as pro-
posed in Section 4, the problem, in the limit, becomes a sequential control problem, which
is decidable.

Theorem 2 How to construct a distributed controller that enforces a priority order is an
undecidable problem.

Proof Following [17], the proof is by reduction from the post correspondence problem
(PCP). In PCP, there is a finite set of pairs {(l1, r1), . . . , (ln, rn)}, where the components

18 Susanne Graf et al.

li, ri are words over a common alphabet Σ, and one needs to decide whether one can
concatenate separately a left word from the left components and a right word from the
right components according to a mutual nonempty sequence of indices i1i2 . . . ik, such that
li1 li2 . . . lik = ri1ri2 . . . rik .

Let i ∈ {1..n}, l̂i be the word li i, i.e., the i-th left component concatenated with the
index i. Similarly, let r̂i be ri i. We consider two regular languages: L = (l̂1+ l̂2+. . .+ l̂k)

+

and R = (r̂1 + r̂2 + . . . + r̂k)
+. Now suppose a process πp executes according to the

regular expression l.L.x.a.b+r.R.x.c.d. The choice of πp between l and r is uncontrollable.
Suppose also that πp coordinates (through shared transitions) the alphabet letters from Σ

with a process πq1 , and the indices letters from {1, . . . , n} with another process πq2 . After
that, πq1 and πq2 are allowed to interact with each other. Specifically, πq2 sends πq1 the
sequences of indices it has observed. Suppose that now πq1 has a nondeterministic choice
between two transitions: α or β. The priorities are set as b � α � a and d � β � c. All
other pairs of transitions are unordered according to�. If πq1 selects α and r was executed,
or πq1 selects β and l was executed, then there is no problem, as α is unordered with respect
to c and d, and also β is unordered with respect to a and b, respectively. Otherwise, there is
no way to control the system so that it executes the sequence a.α.b or c.β.d allowed by the
priorities.

We show by contrapositive that if there is a controller, then the answer to the PCP prob-
lem is negative. Suppose the answer to the PCP problem is positive, i.e., some left and right
words are identical and with the same indices. Then process πq1 cannot make a decision:
the information that πq1 observed and later received from πq2 is exactly the same in both
cases for the mutual left and right word. Thus, πq1 cannot anticipate whether c.d or a.b will
happen and cannot make a safe choice between α and β accordingly.

Conversely, if there is no controller, it means that πq1 cannot make a safe choice be-
tween α and β. This can only happen if πq1 and πq2 can observe exactly the same visible
information for both an l and an r choice by πp.

This means that deciding the existence of a controller for this system would solve the
corresponding PCP problem. It is thus undecidable.

Note that in this proof we do not ensure a finite memory controller, even when one exists.
Indeed, a finite controller may not exist. To see this, assume a PCP problem with one word
{(a, aa)}. To check whether we have observed a left or a right word, we may just compare
the number of a’s that πp has observed with the number of indices that πq has observed.

We have shown that even our limited problem (and running example) of controlling a
system according to priorities is already undecidable. This advocates that the construction
of knowledge-based controllers, and furthermore, the use of additional synchronization, is a
practical solution to the distributed control problem.

7 Conclusion and Perspectives

Imposing a global constraint upon a distributed system by blocking transitions is, in gen-
eral, undecidable [17,15]. One practical approach for this problem is to use model checking
of knowledge properties [1], where a precalculation is used to determine when processes
can decide, autonomously, to take or block an action so that the global constraint will not
be violated. If we allow additional synchronizations, the problem becomes decidable: at
the limit, everything becomes synchronized, although this, of course, is highly undesirable.
Since the overhead induced by such synchronizations is important, we strive to minimize

Achieving Distributed Control through Model Checking 19

their number, again using model checking. This framework applies in particular to the de-
sign of controllers that enforce a priority order among transitions.

For achieving a distributed implementation, one can use a multi-party synchronization
algorithm such as the α-core algorithm [12]. Based on that, we presented an algorithm that
uses model checking to calculate when synchronization between local states is needed. The
synchronizing processes, successfully coordinating, are then able to use the support table
calculated by model checking, which dictates to them which transition can be executed.
Some small corrections to the original presentation of the α-core algorithm appear in [9].

Finally, we have proved that the distributed control problem is undecidable even for the
special case of enforcing a priority order, which is the original motivation for this work. This
advocates using knowledge-based controllers enriched with additional synchronizations as
a practical solution to the distributed control problem.

Further work. In [3], we have observed that the knowledge used for constructing a dis-
tributed controller is computed based on the original (uncontrolled) system. Thus, it may be
pessimistic in concluding when transitions can be supported. This has led us to two useful
observations that can remove the need for some of the additional synchronizations used to
control the system:

1. Although the analysis of the knowledge of the system is done with the original system,
it is safe to use only the executions that satisfy the constraint. This results in fewer
executions and fewer reachable states, thus enhancing the knowledge.

2. Blocking transitions (not supporting them) because of lack of knowledge has a propa-
gating effect that can prevent reaching other states. Thus, even when the support policy
may seem to fail without additional synchronization, this may not be the case. Indeed,
analyzing the system when it is restricted according to the support table may be suffi-
cient: the deadlocks corresponding to states where no enabled transition is supported are
in fact unreachable.

We have shown that using these two observations is orthogonal to other tools used to force
knowledge-based control such as using knowledge of perfect recall and adding temporary
or fixed synchronizations between processes. More precisely, the support table is actually
built directly from the set of reachable states in the prioritized executions. Then, if the table
contains empty entries, we check the reachability of the states in which no transition can be
supported before adding synchronization.

Perspectives. There are many interesting ways of refining the approach presented here.
A key question is to find a compromise between progress and communication overhead.
Deadlock-freedom is not sufficient in many contexts. Allowing for more progress implies
adding communication overhead. Thus, we need to define other meaningful criteria to decide
when a synchronization should be added. In particular, this requires to have a better under-
standing of the impact of synchronizations on the number of messages exchanged during
the coordinator process.

Another improvement on our work would be to combine it with abstraction techniques.
Indeed, knowledge of a process, defined as the set of global reachable states consistent with
its local state, is well-suited for being obtained based on an abstraction of the rest of the
system.

Finally, it would be meaningful to integrate this approach into the distributed imple-
mentation of BIP [2] — standing for Behavior, Interaction and Priority —which is currently
under development. So far, only systems without priorities have been implemented [4,5].

20 Susanne Graf et al.

The question of how to implement BIP systems in a distributed setting remains a challeng-
ing task.

References

1. Basu, A., Bensalem, S., Peled, D., Sifakis, J.: Priority scheduling of distributed systems based on model
checking. In: Proceedings of CAV’09, LNCS, vol. 5643, pp. 79–93. Springer (2009)

2. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In: Proceedings
of SEFM’06, pp. 3–12. IEEE Computer Society (2006)

3. Bensalem, S., Bozga, M., Graf, S., Peled, D., Quinton, S.: Methods for knowledge-based controlling of
distributed systems. In: Proceedings of ATVA’10, LNCS, vol. 6252, pp. 52–66. Springer (2010)

4. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: Automated conflict-free distributed
implementation of component-based models. In: Proceedings of SIES’10, pp. 108–117. IEEE Computer
Society (2010)

5. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: From high-level component-based
models to distributed implementations. In: Proceedings of EMSOFT’10, pp. 209–218. ACM (2010)

6. Fagin, R., Halpern, J.Y., Vardi, M.Y., Moses, Y.: Reasoning about knowledge. MIT Press, Cambridge,
MA, USA (1995)

7. Genrich, H.J., Lautenbach, K.: System modelling with high-level petri nets. Theor. Comput. Sci. 13,
109–136 (1981)

8. Graf, S., Peled, D., Quinton, S.: Achieving distributed control through model checking. In: Proceedings
of CAV’10, LNCS, vol. 6174, pp. 396–409. Springer (2010)

9. Katz, G., Peled, D.: Code mutation in verification and automatic code correction. In: Proceedings of
TACAS’10, LNCS, vol. 6015, pp. 435–450. Springer (2010)

10. van der Meyden, R.: Common knowledge and update in finite environment. Information and Computa-
tion 140(2), 115–157 (1998)

11. Orlin, J.B.: Contentment in graph theory: covering graphs with cliques. Indagationes Mathematicae
80(5), 406–424 (1977)

12. Pérez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for implementing multiparty synchro-
nization. Concurrency - Practice and Experience 16(12), 1173–1206 (2004)

13. Rudie, K., Ricker, S.L.: Know means no: Incorporating knowledge into discrete-event control systems.
IEEE Transactions on Automatic Control 45(9), 1656–1668 (2000)

14. Rudie, K., Wonham, W.M.: Think globally, act locally: decentralized supervisory control. IEEE Trans-
actions on Automatic Control 37(11), 1692–1708 (1992)

15. Thistle, J.G.: Undecidability in decentralized supervision. System and Control Letters 54, 503–509
(2005)

16. Thomas, W.: On the synthesis of strategies in infinite games. In: Proceedings of STACS’95, LNCS, vol.
900, pp. 1–13. Springer (1995)

17. Tripakis, S.: Undecidable problems of decentralized observation and control on regular languages. Inf.
Process. Lett. 90(1), 21–28 (2004)

18. Yoo, T.S., Lafortune, S.: A general architecture for decentralized supervisory control of discrete-event
systems. Discrete Event Dynamic Systems 12(3), 335–377 (2002)

	Introduction
	Preliminaries
	The Support Policy
	A Synchronization-Based Approach
	Implementation and Experimental Results
	A Practical Solution to the Distributed Control Problem
	Conclusion and Perspectives

