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Abstract. In this paper, we use knowledge-based control theory to mon-
itor global properties in a distributed system: we control the system so
as to enforce that if a given global property is violated, at least one pro-
cess knows this fact — and therefore may report it. Our approach uses
knowledge properties which are precalculated based on model checking.
As local knowledge is not always sufficient to monitor a global property
in a concurrent system, we allow adding temporary synchronizations be-
tween two or more processes to achieve sufficient knowledge. As such
synchronizations are expensive, we aim at minimizing their number us-
ing the knowledge analysis.

1 Introduction

The goal of this paper is to transform a distributed system such that it can
detect and report violations of invariants. Such properties can be described by
a predicate ψ on global states in distributed systems, which may express for
example that the overall power in the system is below a certain threshold. When
a violation is detected, some activity to adjust the situation may be triggered.
There is no global observer that can decide whether a global state violating
the given property ψ has been reached. On the other hand, the processes may
not have locally enough information to decide this and thus need sometimes to
communicate with each other to obtain more information.

Our solution for controlling a system to detect global failure is based on
precalculating knowledge properties of the distributed system [5, 12]. We first
calculate in which local states a process has enough information to identify that
ψ is violated: in each reachable global state in which ψ becomes false, at least one
process must detect this situation. This process may then react, e.g. by informing
the other processes or by launching some repair action. Furthermore, we do not
want false alarms. Because of the way the execution of the program is distributed
among the processes, and the limited information available in each process, there
can be states where firing a transition t would lead to a state in which no process
knows (alone) whether ψ has been violated. In that case, additional knowledge
is necessary to fire t. We achieve this by adding synchronizations that allow
temporarily combining the knowledge of a set of processes. To realize the syn-
chronizations needed to achieve conditions for executing transitions while the



property Ψ is monitorable, as precalculated using the knowledge analysis, we
employ at runtime a synchronization algorithm such as α-core [14]. Such an al-
gorithm allows processes to temporarily coordinate by means of the execution of
a synchronization. Of course, the goal is to minimize both the number of addi-
tional synchronizations and the number of participants in each synchronization.
The reason is that we want to reduce the communication overhead.

This work is related to the knowledge based control method of [2, 7]. There,
knowledge obtained by model checking is used to control the system in order to
enforce some property, which may be a state invariant ψ. Here, we want to control
the system to enforce that there is always at least one process with knowledge
to detect a violation of such a property as soon as it happens. Controlling the
system to avoid property violation is a different task from controlling the system
to detect it. In some cases, controlling for avoidance may lead to restricting the
system behavior much more severely than controlling for detection. Note also
that for an application such as runtime verification, prevention is not needed
while detection is required (e.g., it is acceptable that the temperature raises
above its maximal expected level, but whenever this happens, some specific
intervention is required).

Monitoring is a simpler task than controlling as it is nonblocking. Attempting
to enforce a property ψ may result in being blocked in a state where any con-
tinuation will violate ψ. This may require strengthening ψ in order not to reach
such states, through an expensive global state search, which may consequently
imply a severe reduction in nondeterministic choice. On the other hand, moni-
toring is nonblocking: from the global state, one knows exactly how to continue
and whether the monitored property holds or not; at worst, this may lead to a
synchronization between processes.

As an alternative to monitoring one may use snapshot algorithms such as
those of Chandy and Lamport [4] or Apt and Francez [1]. However, snapshot
algorithms only report about some sampled global states. If the property ψ is
not stable – that is, if ψ ⇒ �ψ is not guaranteed – then the fact that ψ has
been true at some global state may go undetected.

2 Preliminaries

We represent distributed systems as Petri nets, but the method and algorithms
developed here can equally apply to other models, e.g., communicating automata
or transition systems.

Definition 1. A Petri net N is a tuple (P, T,E, s0) where:

– P is a finite set of places. The set of states (markings) is defined as S = 2P .
– T is a finite set of transitions.
– E ⊆ (P × T ) ∪ (T × P ) is a bipartite relation between the places and the

transitions.
– s0 ⊆ 2P is the initial state (initial marking).
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For a transition t ∈ T , we define the set of input places •t as {p ∈ P |(p, t) ∈
E}, and the set of output places t• as {p ∈ P |(t, p) ∈ E}.

Definition 2. A transition t is enabled in a state s if •t ⊆ s and (t•\•t)∩s = ∅.
We denote the fact that t is enabled from s by s[t〉.

A state s is in deadlock if there is no enabled transition from it.

Definition 3. The execution (firing) of a transition t leads from state s to state
s′, which is denoted by s[t〉s′, when t is enabled in s and s′ = (s\•t) ∪ t•.

We use the Petri net of Figure 1 as a running example. As usual, transitions
are represented as segments, places as circles, and the relation E as a set of
arrows from transitions to places and from places to transitions. The Petri net of
Figure 1 has places named p1, p2, . . . , p8 and transitions a, b, . . . , e. We represent
a state s by putting tokens inside the places of s. In the example of Figure 1,
the depicted initial state s0 is {p1, p4}. The transitions enabled in s0 are a and
b. Firing a from s0 means removing the token from p1 and adding one to p3.
Note that in our case there cannot be more than one token in any place. Indeed,
according to Definition 2, a transition t is enabled in a state s only if (after
removing the tokens from the input places of t) there is no token in any of the
output places of t. That is, using usual vocabulary for Petri nets, our Petri nets
are safe by construction.
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Fig. 1. A Petri net with initial state {p1, p2}

Definition 4. An execution is a maximal (i.e., it cannot be extended) alternat-
ing sequence of states and transitions s0t1s1t2s2 . . . with s0 the initial state of
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the Petri net, such that for each state si in the sequence with i > 0, it holds that
si−1[ti〉si.

We denote the set of executions of a Petri net N by exec(N). The set of prefixes
of the executions in a set X is denoted by pref (X). A state is reachable in N if
it appears in at least one execution of N . We denote the set of reachable states
of N by reach(N). The reachable states of our running example are: {p1, p2},
{p1, p4}, {p2, p3}, {p3, p4}, {p5, p6}, {p5, p8}, {p6, p7} and {p7, p8}.

A Petri net can be seen as a distributed system, consisting of a set of con-
currently executing and temporarily synchronizing processes. There are several
options for defining the notion of process in Petri nets: we choose to consider
transition sets as processes.

Definition 5. A process π of a Petri net N is a subset of the transitions of N ,
i.e., π ⊆ T .

We assume a given set of processes ΠN that covers all the transitions of N , i.e.,⋃
π∈ΠN

π = T . A transition can belong to several processes, e.g., when it models
a synchronization between processes. The set of processes to which t belongs is
denoted proc(t). Note that we do not require our processes to be sequential, i.e.,
to hold no more than a single token at any time.

In this section, all the notions and notations related to processes extend
naturally to sets of processes. Thus, we usually provide definitions directly for
sets of processes. Then, when a formula refers to a set of processes Π, we will
often replace writing the singleton process set {π} by writing π instead.

The neighborhood of a process π describes the places of the system whose
state π can observe. Note that our definition of neighborhood is only one among
others, and all our results apply also to other notions of neighborhood.

Definition 6. The neighborhood ngb(π) of a process π is the set of places⋃
t∈π(•t ∪ t•). For a set of processes Π, ngb(Π) =

⋃
π∈Π ngb(π).

Definition 7. The local state of a set of processes Π in a (global) state s ∈ S is
defined as s|Π = s∩ ngb(Π). A local state sΠ of Π is part of a global state s ∈ S
if and only if s|Π = sΠ.

That is, the local state of a process π in a global state s consists of the restriction
of s to the neighborhood of π. It describes what π can see of s based on its limited
view. In particular, according to this definition, any process π can see whether
one of its transitions is enabled. The local state of a set of processes Π containing
more than one process is called a joint local state.

Definition 8. Define an equivalence on states ≡Π⊆ S × S such that s ≡Π s′

when s|Π = s′|Π.

Thus, if t ∈
⋃
π∈Π π and s ≡Π s′ then s[t〉 if and only if s′[t〉.

Figure 2 represents one possible distribution of our running example. We rep-
resent processes by drawing dashed lines between them. Here, the left process πl
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Fig. 2. A distributed Petri net with two processes πl and πr

consists of transitions a, c and d while the right process πr consists of transitions
b, c and e. The neighborhood of πl contains all the places of the Petri net except
p2 and p8. The local state s0|πl

corresponding to the initial state s0 = {p1, p2}
is {p1}. Note that the local state s|πl

corresponding to s = {p1, p8} is also {p1},
hence s0 ≡πl

s.

We identify properties with the sets of states in which they hold. Formally,
a state property is a Boolean formula in which places in P are used as atomic
predicates. Then, given a state s ∈ S and a place pi ∈ P , we have s |= pi if and
only if pi ∈ s. For a state s, we denote by ϕs the conjunction of the places that
are in s and the negated places that are not in s. Thus, ϕs is satisfied by state s
and by no other state. A set of states Q ⊆ S can be characterized by a property
ϕQ =

∨
s∈Q ϕs or any equivalent Boolean formula. For the Petri net of Figure 2,

the initial state s is characterized by ϕs = p1∧p2∧¬p3∧¬p4∧¬p5∧¬p6∧¬p7∧¬p8.

Our approach for achieving a local or semi-local decision on which transitions
may be fired is based on the knowledge of processes [5] or sets of processes.
Basically, the (joint) knowledge of a set of processes Π in a given state s is
defined by the set of reachable global states s′ that are equivalent to s with
respect to Π, i.e., such that s ≡Π s′. For example, in the initial state represented
in Figure 2, the left process πl knows that the current global state is {p1, p2},
because it is the only reachable state that projects onto local state {p1}. Indeed,
neither {p1, p8}, nor {p1} nor {p1, p2, p8} are reachable.
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Definition 9. Given a set of processes Π and a property ϕ, we define the prop-
erty KΠϕ as the set of global states s such that for each reachable s′ with s ≡Π s′,
s′ |= ϕ. Whenever s |= KΠϕ for some state s, we say that Π (jointly) knows ϕ
in s.

We easily obtain that if s |= KΠϕ and s ≡Π s′, then s′ |= KΠϕ. Hence we
can write s|Π |= KΠϕ rather than s |= KΠϕ to emphasize that this knowledge
property is calculated based on the local state of Π. Given a Petri net and a
property ϕ, one can perform model checking in order to decide whether s |= KΠϕ
for some state s. The knowledge of a set of processes Π in a given local state s|Π
is the set of properties ϕ such that s|Π |= KΠϕ. If Π contains more than one
process, we call it joint knowledge.

Note that when a process π needs to know and distinguish whether η or µ
holds, we write Kπη ∨Kπµ. When we do not need to distinguish between these
cases but only need to know whether at least one of them holds, we use the
weaker Kπ(η ∨ µ).

3 Knowledge Properties for Monitoring

Our goal is to control the system, i.e., restrict its possible choice of firing tran-
sitions, in order to enforce that if a given property ψ becomes false, at least
one process knows it. This should interfere minimally with the execution of the
system in order to monitor when ψ is violated. To detect the occurrence of a
failure, we need the following notion of a “weakest precondition”:

Definition 10. For a given property ϕ, wpt(ϕ) is the property such that for any
state s, s |= wpt(ϕ) if and only if s[t〉 and s′ |= ϕ where s[t〉s′.

Remember that in a Petri net, there is exactly one state s′ such that s[t〉s′ for a
given state s and transition t.

We take into account, with an increasing degree of complication:

– Whether it is allowed to report the same violation of ψ multiple times.
– Whether there exists one or several types of property violation. That is, ¬ψ

may be of the form ϕ1 ∨ ϕ2 ∨ . . . ∨ ϕn, where each ϕi represents a certain
kind of failure to satisfy ψ. Then, whenever ψ is violated, we may need to
identify and report which failure occurred.

– Whether a single transition may cause several failures to occur at the same
time (and each one of them needs to be identified).

First, we assume that ψ consists of only one type of failure, and furthermore,
that there is no harm in reporting it several times; it is the responsibility of the
recovery algorithm to take care of resolving the situation and ignore duplicate
reports. For a transition t ∈ T and a set of processes Π ⊆ proc(t), we define a
property δ(Π, t) as follows: if t is fired and ψ is falsified by the execution of t, Π
will jointly know it. Formally:

δ1(Π, t) = KΠwpt(¬ψ) ∨KΠ(¬ψ ∨ wpt(ψ))
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In other words, δ1(Π, t) holds if and only if the processes in Π either jointly know
that after firing t property ψ will be violated; or they know that firing t cannot
make ψ become false: either it is already false or it will be true after firing t.
Note that the knowledge operators separate the case where ¬ψ will hold in the
next state from the other two cases. There is no need to distinguish between
the latter two cases, hence we could use the weaker requirement, where both of
them appear inside a single knowledge operator KΠ(¬ψ ∨ wpt(ψ)).

Now, suppose that we should not report that ψ is violated again, when it
was already violated before the execution of t, and therefore has already been
or will be reported. This requires strengthening the knowledge:

δ2(Π, t) = KΠ(ψ ∧ wpt(¬ψ)) ∨KΠ(¬ψ ∨ wpt(ψ))

For the case where failure of ψ means one out of several failures ϕ1, . . . , ϕn,
but firing one transition cannot cause more than only one particular failure, we
need to consider stronger knowledge:

δ3(Π, t) =
∨
i≤n

KΠ(¬ϕi ∧ wpt(ϕi)) ∨
∧
i≤n

KΠ(ϕi ∨ wpt(¬ϕi))

Finally, if one single transition may cause multiple failures, we need even
stronger knowledge:

δ4(Π, t) =
∧
i≤n

(KΠ(¬ϕi ∧ wpt(ϕi)) ∨KΠ(ϕi ∨ wpt(¬ϕi)))

Note that in δj(Π, t), for 1 ≤ j ≤ 4, the left disjunct, when holding, is
responsible for identifying the occurrence of the failure, and also for j ∈ {3, 4},
identifying its type. In the following, δ(Π, t) stands for δj(Π, t), where 1 ≤ j ≤ 4.

Definition 11. A knowledgeable step for a set of processes Π ⊆ ΠN is a pair
(s|Π, t) such that s|Π |= δ(Π, t) and there is at least one process π ∈ Π with t ∈ π.

We require that t be part of at least one process in Π because there must be one
process to initiate the transition at the coordination level handled by the α-core
algorithm, as explained in Section 5.

Note that for any transition t, (s|ΠN
, t) is a knowledgeable step. This means

that if all processes synchronize at every step, a violation of Ψ can always be
detected as soon as it happens. Of course, the additional synchronizations re-
quired to achieve joint knowledge induce some communication overhead, which
we have to minimize. We explain how we do this in the next section.

4 Building the Knowledge Table

We use model checking to identify knowledgeable steps following a method sim-
ilar to [7]. The basic principle of our monitoring policy is the following: a transi-
tion t may be fired in a state s if and only if, in addition to its original enabledness
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condition, (s|π, t) is a knowledgeable step for at least one process π containing
t. However, there may be some state in which no individual process has enough
knowledge to take a knowledgeable step. In that case, we consider knowledgeable
steps for pairs of processes, then triples etc. until we can prove that no deadlock
is introduced by the monitoring policy.

The monitoring policy is based on a knowledge table ∆ which indicates, for a
process or a set of processes Π in a given reachable (joint) local state s|Π, whether
there exists a knowledgeable step (s|Π, t), and then which transition t may thus
be safely fired. When building such a table, two issues must be considered: first,
the monitoring policy should not introduce deadlocks with respect to the original
Petri net N . This means that we have to check that for every reachable non-
deadlock global state of N , there is at least one corresponding knowledgeable
step in ∆. Second, achieving joint knowledge requires additional synchronization,
which induces some communication overhead, as will be explained in the next
section. Therefore we must add as few knowledgeable steps involving several
processes as possible.

Definition 12. For a given Petri net N , a knowledge table ∆ is a set of knowl-
edgeable steps. We denote by S∆ the set of (joint) local states which are part of
at least one knowledgeable step in ∆.

To avoid introduce new deadlocks, we require that the table ∆ contains
enough joint local states to cover all reachable global states. This is done by
requiring the following invariant.

Definition 13. A knowledge table ∆ is an invariant1 if for each reachable non-
deadlock state s of N , there is at least one (joint) local state in S∆ that is part
of s.

Given a Petri net N and a property ψ, the corresponding knowledge table ∆
is built iteratively as follows:

The first iteration includes in ∆, for every process π ∈ ΠN , all knowledgeable
steps (s|π, t) where s|π is a reachable local state of π, i.e., it is part of some
reachable global state of N . If ∆ is an invariant after the first iteration, then
taking only knowledgeable steps appearing in ∆ does not introduce deadlocks.
If ∆ is not an invariant, we proceed to a second iteration. Let U be the set of
reachable non-deadlock global states s of N for which there is no (joint) local
state in S∆ that is part of s.

In a second iteration, we add to ∆ knowledgeable steps (s|{π,ρ}, t) such that
s|{π,ρ} is part of some global state in U . For a given local state s|{π,ρ}, all
corresponding knowledgeable steps are added together to the knowledge table.
The second iteration terminates as soon as ∆ becomes an invariant or if all
knowledgeable steps for pairs of processes have been added to the table.

1 As shown in [3], it is in fact sufficient to consider the non-deadlock states of N that
are reachable in the system controlled according to ∆, namely the extended Petri
net N∆ as will be defined formally in the next section. This optimization will be
used in Section 6.
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If ∆ is still not an invariant, then we perform further iterations where we
consider knowledgeable steps for triples of processes, and so forth. Eventually, ∆
becomes an invariant, in the worst case by adding knowledgeable steps involving
all processes.

5 Monitoring using a Knowledge Table

As in [7], we use the knowledge table ∆ to control (restrict) the executions of
N so as to allow only knowledgeable steps. Formally, this can be represented
as an extended Petri net [6, 8] N∆ where processes may have local variables,
and transitions have an enabling condition and a data transformation. We also
explain how this extended Petri net is implemented in a distributed manner.

Definition 14. An extended Petri net N ′ consists of (1) a Petri net N (2)
a finite set of variables V with given initial values and (3) for each transition
t ∈ T , an enabling condition ent and a transformation predicate ft on variables
in V . In order to fire t, ent must hold in addition to the usual Petri net enabling
condition on the input and output places of t. When t is executed, in addition to
the usual changes to the tokens, the variables in V are updated according to ft.

A Petri net N ′ extends N if N ′ is an extended Petri net obtained from N
according to Definition 14. The comparison between the original Petri net N
and N ′ extending it is based only on places and transitions. That is, we project
out the additional variables.

Lemma 1. For a given Petri net N and an extension N ′ of N , we have:
exec(N ′) ⊆ pref (exec(N)).

Proof. The extended Petri net N ′ strengthens the enabling conditions, thus it
can only restrict the executions. However, these restrictions may result in new
deadlocks. �

Furthermore, we have the following monotonicity property.

Theorem 1. Let N be a Petri net and N ′ an extension of N according to Def-
inition 14 and ϕ a state predicate for N . If s |= Kπϕ in N , then s |= Kπϕ also
in N ′.

Proof. The extended Petri net N ′ restricts the set of executions, and possibly
the set of reachable states, of N . Each local state s|π is part of fewer global
states, and thus the knowledge in s|π can only increase. �

These two results show that the additional variables used to extend a Petri
net N define a controller for N .

Definition 15. Given a Petri net N and a property Ψ , from which a knowledge
table ∆ has been precalculated, the extended Petri net N∆ is obtained as follows:
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– Encode in a set of Boolean variables enΠ
t for Π ⊆ ΠN and t ∈ T the knowl-

edge properties calculated in ∆ such that enΠ
t is true if and only if (s|Π, t) is

a knowledgeable step, where s|Π is the current local state of Π.
– Encode in each ft the update of variables as t is fired and local states modified.
– Define each ent as

∨
Π⊆ΠN

enΠ
t . That is, t can be fired if at least one set of

processes knows that it is part of a knowledgeable step.

In practice, we obtain joint knowledge by adding synchronizations amongst the
processes involved. Such synchronizations are achieved by using an algorithm
like α-core [14], which allows processes to notify, using asynchronous message
passing, a set of coordinators about their wish to be involved in a joint action.
This is encoded into the extended Petri net. Once a coordinator has been no-
tified by all the participants in the synchronization it is in charge of, it checks
whether some conflicting synchronization is already under way (a process may
have notified several coordinators but may not be part of several synchroniza-
tions at the same time). If this is not the case, the synchronization takes place.
The correctness of the algorithm guarantees the atomic-like behavior of the co-
ordination process, allowing us to reason at a higher level of abstraction where
we treat the synchronizations provided by α-core (or any similar algorithm) as
transitions that are joint between several participating processes.

Thus, each process π of N is equipped with a local table ∆π containing
the knowledgeable steps (s|π, t) that appear in the knowledge table ∆ and the
knowledgeable steps (s|Π, t) such that π ∈ Π. Before firing a transition in a given
local state s|π, process π consults its local table ∆π. It ∆π contains a knowledge-
able step (s|π, t), then π notifies α-core about its wish to initiate t, so that the
coordinator algorithm will handle potential conflicts with other knowledgeable
steps. If ∆π contains a knowledgeable step (s|Π, t) such that s|π is part of s|Π,
then π notifies α-core about its wish to achieve joint knowledge through synchro-
nization with the other processes in Π. If the synchronization takes place, then
any process in Π and containing t may initiate it. The processes in Π remain
synchronized until t has been fired or disabled by some other knowledgeable
step.

6 Implementation and Experimental Results

In this section we apply our approach to a concrete example that we have im-
plemented in a modified version of the prototype presented in [7]. We have im-
plemented properties δ1 to δ3 as defined in Section 3. Property δ4 is not relevant
here because a single transition may never cause multiple failures. The prototype
implementation computes the knowledge table ∆ based on the local knowledge
of processes, as described in Section 4.

The example presented here is a Petri net representing the following scenario:
trains enter and exit a train station such as the one represented in Figure 3 (trains
that are outside the train station are not represented), evolving between track
segments (numbered from 1 to 12). A track segment can accept at most one

10



train at a time, therefore there must be some mechanism to detect and resolve
conflicts amongst trains trying to access the same track segment. Trains enter
and exit the station on the left, i.e. entry segments are tracks 1 to 4. After
entering the station, a train moves from left to right until it reaches one of the
platforms (tracks 9 to 12); then it starts moving from right to left until it exits
the station on one of the entry segment. A train leaving the station on a given
track segment may reenter the station only on this segment.

We monitor a property Ψ which we call absence of partial gridlock. A partial
gridlock is a situation where some trains are blocking each other at a given
intersection. These trains cannot follow their normal schedule and must inform
a supervisor process which will initiate some specific repair action, e.g. requesting
some trains to backtrack. For each intersection where n track segments meet,
a partial gridlock is reached when there is one train on each of these segments
that is moving toward the intersection. A global state satisfies Ψ if and only if
it does not contain any partial gridlock.
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Fig. 3. Train station TS1

Transitions describe how trains can enter, exit and move within the station.
Processes correspond to track segments. That is, the process associated with a
segment σ, denoted πσ, consists of all the transitions involving σ (a train arriving
on σ or leaving it). In particular, this means that transitions corresponding to a
train moving from one segment σ1 to another segment σ2 belong to πσ1

and πσ2

while transitions representing a train entering or exiting the train station belong
to exactly one process namely the entry segment on which the train is entering
or leaving. Furthermore, according to the definition of neighborhood, a process
πσ knows if there is a train on segment σ and also on the neighbors of σ, i.e.,
the track segments from which a train may reach σ.

Example 1. Let us first focus on train station TS 1 of Figure 3. A train entering
on segment 1 can progress to segment 5 and then segment 7 or 8. From there,
it can reach either platform 9 or 10, or platform 11 or 12, respectively. Then,
it moves from right to left, until it exits the train station through one of the
segments 1 to 4.
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Two patterns of partial gridlocks are represented in Figure 4. All possible
partial gridlocks of train station TS 1 can be represented by a set of similar
patterns. If we consider 6 trains, there are 820,368 reachable global states in this
example, of which 11,830 contain a partial gridlock and 48 are global deadlock
states.

(a) (b)

Fig. 4. Two possible partial gridlocks, i.e., violations of Ψ

Interestingly, no additional synchronization is needed to enforce that only
knowledgeable steps are taken in this example, independently of the choice of
the knowledge property δi. The reason for this is twofold. First, partial gridlock
(a) of Figure 4 is always detected by the track segment on the right, which knows
that there is a train on all three segments. Second, partial gridlock (b) of Figure 4
is not reachable, as we explain below which implies that the knowledge table is
an invariant as explained in Footnote 1. Hence no additional synchronization is
needed. Intuitively, partial gridlock (b) is not reachable for the following reason:
whenever train station TS 1 reaches a global state similar to that represented in
Figure 3, segment 8 cannot be entered by the train on segment 12. Indeed, this
move is a knowledgeable step neither for process π12 nor for process π8, since
none of them knows whether this move would introduce a partial gridlock or not.
Remember that π8 does not know whether there is a train or not on segment
7. However, moves from the trains on segments 5 and 6 to 8 are knowledgeable
steps for π8, as π8 knows they do not introduce any partial gridlock.

system controlled according to δ1 δ2 δ3 uncontrolled

nb of states actually reachable 820,096 820,026 820,096 820,368

nb of transitions inhibited 46 99 46 NR (none)

nb of transitions supported 6,856 7,656 6,913 NR (all)

nb of steps to first partial gridlock 117 454 121 56

Table 1. Results for 1000 executions of 10,000 steps

Table 1 presents some results about the influence of our monitoring policy on
the behavior of the system. The notation NR indicates that some information
is irrelevant for the uncontrolled system. A first conclusion is that the behavior
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of the system is not dramatically affected by the monitoring policy: whatever
the knowledge property δj used to define the monitoring policy, very few global
states become unreachable compared to the uncontrolled system. Also, the ratio
of supported transitions to inhibited transitions is around 150:1 for δ1 and δ3,
and 75:1 for δ2. Finally, the fact that a partial gridlock is reached on average
after 56 steps in the uncontrolled system shows that monitoring the system does
not drive it into states in which the property under study Ψ is violated.

Furthermore, note that δ1 and δ3 yield similar results in contrast with δ2.
This is due to the fact that every process knows exactly whether it is creating a
given partial gridlock, but it does not always know whether it is creating the first
partial gridlock in the system. As a result, the ratio of transitions inhibited —
that is, transitions enabled but not part of a knowledgeable step — is higher when
the system is monitored according to δ2 than when it is monitored according to
δ1 and δ3.

Example 2. Figure 5 shows another train station TS 2 and a global reachable
non-deadlock state in which there is no knowledgeable step for a single process.
As a result, an additional synchronization must be added.
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Fig. 5. Train station TS2

Our experiments on train station TS 2 consider 7 trains. There are 1,173,822
reachable global states in the corresponding Petri net, among which 9,302 con-
tain a partial gridlock. Besides, there are 27 global deadlock states. However,
there is only one global reachable non-deadlock state for which there is no cor-
responding knowledgeable step for a process alone. This state, which we denote
sdl , is represented in Figure 5. A synchronization between processes π3 and π6

is sufficient to ensure that no deadlock is introduced by the monitoring policy,
as there are three transitions t such that (sdl , t) is a knowledgeable step for
{π3, π6}.
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We have also performed some experiments to evaluate the number of synchro-
nizations added by the monitoring policy as well as the number of transitions
inhibited at runtime. All δj yield similar results, so we present them together.
Interestingly, the number of synchronizations due to the monitoring policy is
very low and although the only progress property that we preserve is deadlock-
freedom, few transitions are inhibited in this example. Besides, only 1,972 global
states are not actually reachable in the controlled system. Thus, in this exam-
ple, controlling the system in order to preserve the knowledge about absence of
partial gridlock hardly induces any communication overhead and does not alter
significantly the behavior of the global system.

system controlled according to δj for j ∈ {1, 2, 3}
nb of states actually reachable 1,171,850

nb of synchronizations 0.01

nb of transitions inhibited 62

nb of transitions supported 18,456

Table 2. Results for 100 executions of 10,000 steps

Note that it is sufficient here to add one temporary synchronization be-
tween two processes in order to detect that a partial gridlock occurred, whereas
knowledge about absence of a partial gridlock would require an almost global
synchronization. Besides, controlling the system in order to enforce absence of
partial gridlocks (instead of monitoring it) would require that processes avoid
states in which every possible move leads (inevitably) to a partial gridlock. That
is, it requires look-ahead.

7 Conclusion

In this paper, we have proposed an alternative approach to distributed run-
time monitoring that guarantees by a combination of monitoring and control
(property enforcement) that (1) the fact that some property ψ becomes false
is always detected instantaneously when the corresponding transition is fired,
and (2) there are no “false alarms”, that is whenever ψ is detected, it does hold
at least in the state reached at that instant. In other words, we use control as
introduced in [2, 7, 3] to enforce a strong form of local monitorability of ψ, rather
than to enforce ψ itself.

We use synchronizations amongst a set of processes — which are realized
by a coordinator algorithm such as α-core — in order to reliably detect that:
either (1) ψ will be false after the transition or (2) the transition does not change
the status of ψ. We use model checking to calculate whether (joint) local states
have the required knowledge to fire a given transition. We control the system by
allowing only such knowledgeable steps and we add as many synchronizations as
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necessary to enforce absence of global deadlocks which do not already appear in
the original system.

We have applied this approach to a nontrivial example, showing the inter-
est of enforcing some knowledge about the property instead of the property
itself. Future work now includes enforcing other progress criteria than deadlock-
freedom.
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