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Abstract. We apply model checking of knowledge properties to the de-
sign of distributed controllers that enforce global constraints on concur-
rent systems. The problem of synthesizing a distributed controller is,
in general, undecidable, and the local knowledge of the processes may
not directly suffice to control them to achieve the global constraint. We
calculate when processes can decide, autonomously, to take or block an
action so that the global constraint will not be violated. When the sep-
arate processes cannot make this decision alone, it may be possible to
temporarily coordinate several processes in order to achieve sufficient
knowledge jointly and make combined decisions. Since the overhead in-
duced by such coordinations is important, we strive to minimize their
number, again using model checking . We show how this framework is
applied to the design of controllers that guarantee a priority policy among
transitions.

1 Introduction

Consider a concurrent system, where some global safety constraint, say of pri-
oritizing transitions, needs to be imposed. A completely global coordinator can
control this system and allow any of the maximal priority actions to progress
in each state. However, the situation at hand is that of a distributed control [7,
12]; controllers, one per process or set of processes, may restrict the execution of
some of the transitions if their occurrence may violate the imposed constraint.
Due to the distributed nature of the system, each controller has a limited view
of the entire system. Each controller may keep some limited amount of memory
that is updated according to the history it can observe.

The knowledge of a process at any particular local state includes the proper-
ties that are common to all reachable (global) states containing it. There are sev-
eral definitions for knowledge, depending on how much of the local history may
be encoded in the local state. Knowledge was suggested as a tool for constructing
a controller in [6, 1]. There, controlling a distributed system was achieved by first
precalculating the knowledge of a process. Based on its precalculated knowledge,
reflecting all the possible current situations of the other processes, a controller
for a process may decide at runtime whether an action of the controlled process
can be executed without violating the imposed constraint. Sometimes, however,



the process knowledge is not sufficient. Then, the joint knowledge of several pro-
cesses (sometimes called distributed knowledge) may be monitored using fixed
controllers for sets of processes. Unfortunately, this approach causes the loss of
actual concurrency among the processes that are jointly monitored.

Instead of permanent synchronizations via fixed process groups, we suggest
in this paper a method for constructing distributed controllers that synchronize
processes temporarily. We use model-checking techniques to precalculate a mini-
mal set of synchronization points, where joint knowledge can be achieved during
short coordination phases. An additional goal is synchronizing a minimal number
of processes as rarely as possible. After each synchronization, the participating
processes can again progress independently until a further synchronization is
called for.

In [6], knowledge-controllability (termed Kripke observability) is studied as
a basis for constructing a distributed controller. There, if a transition is enabled
by the controlled system but must be blocked according to the additional con-
straint, then at least one process knows that fact and is thus able to prevent its
execution. This approach requires sufficient knowledge to allow any enabled tran-
sition that preserves the imposed constraint. The construction in [1] is different:
it requires that at least one process knows that the occurrence of some enabled
transition preserves the correctness of the imposed constraint, hence supporting
its execution. This approach preserves the correctness of the controller even when
knowledge about other such transitions is limited, at the expense of restricting
the choice of transitions.

The approach suggested here extends the knowledge-based approach of [1].
We use a coordinator algorithm, such as the α-core [5], which achieves temporary
multiprocess coordinations using asynchronous message passing. Such coordina-
tions can be used to achieve a precalculated joint knowledge, i.e., knowledge
common to several processes. Such interactions are still expensive as they incur
additional overhead. Therefore, an important part of our task is to minimize the
number of interactions and the number of processes involved in such interactions.

2 Preliminaries and Related Work

Definition 1 (Distributed Transition systems). A distributed transition
system A is a fivetuple 〈P, V, S, ι, T 〉:

– P is a finite set of processes.
– V is a finite set of variables, each ranging over some finite domain. A process
p ∈ P can access and change variables in Vp. Thus, V = ∪p∈PVp. We do
not require the sets Vp to be disjoint.

– S is the set of global states. Each state assigns a value to each variable in
V according to its domain.

– ι ∈ S is the initial state.
– T is a finite set of transitions. A transition τ ∈ T consists of an enabling

condition enτ , which is a quantifier-free first order predicate, and a state
transformation fτ . The transitions Tp ⊆ T are associated with process p.
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Thus, T = ∪p∈PTp. A transition τ may belong to multiple processes Pτ =
{p|τ ∈ Tp}. Both enabling condition and transformation are over the vari-
ables ∪p∈PτVp.

Definition 2. A local state s|p of a process p ∈ P is the restriction of a global
state s to the variables in Vp. Similarly, the joint local state s|P of a set of
processes P ⊆ P is the restriction of a global state to the variables in ∪p∈PVp.

For a set of states S of a transition system, we denote the set of local states of
process p by S|p, and, respectively, the set of joint local states for set of processes
P ∈ P by S|P . A transition τ is enabled in a state s when s |= enτ (i.e., s satisfies
enτ ). If τ is enabled in s and τ is executed, a new state s′ = fτ (s) is reached.
We denote this by s τ−→ s′.

Definition 3. An execution of a distributed system A is a maximal sequence
s0 s1 s2 . . . such that s0 = ι, and for each i ≥ 0, si

τi−→ si+1 for some τi. A global
state is called reachable if it appears in some execution sequence.

Definition 4. Given a system A, a set of processes P ⊆ P knows in a state
s some property ϕ over V , if s′ |= ϕ for each reachable global state s′ with
s′|P = s|P . We denote this by s |= KPϕ .

When P is a singleton, we often write p for the set {p} as in Kpϕ. It is easy to
see that if s |= KPϕ and s|P = s′|P then also s′ |= KPϕ.

Definition 5. Comment: S: don’t we have to say a controller for ψ ? and
then that such a controller is correct if it ensures that each controlled
execution satisfies ψ?

Moreover, we say somewhere that we don’t consider uncontrollable
transitions, and here they are. This is confusing for the definition of
controlled executions

A finite state distributed disjunctive controller [7, 12] for a system A =
〈P, V, S, ι, T 〉 is a set of automata Cp = (Lp, lp, T

o
p , T

c
p ,→p, Ep), one per pro-

cess p in P, where:

– Lp is the set of states of Cp, i.e., its finite memory.
– lp ∈ Lp is the initial state of CP .
– T o

p is the set of transitions observable by process p, satisfying Tp ⊆ T o
p ⊆ T .

This means that p is aware of the execution of transitions from T o
p and

thereupon the controller Cp can change its states.
– T c

p is the set of controllable transitions, where T c
p ⊆ Tp. We require consis-

tency between processes regarding controllability: if τ is involved with several
processes, then it is either controllable by all of them or by none of them.

– →p: Lp × Tp 7→ Lp is the transition function of Cp.
– Ep : S|p×Lp 7→ 2T c

p is the support function, which in each local state returns
the set of transitions of process p that Cp supports, i.e., allows to proceed.
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A controller is designed to impose some constraint ψ on a given system A, while
not to introduce any new deadlocks.

Definition 6. A controlled execution of a distributed system A with controllers
Cp for p ∈ P is defined over a set of controlled states G ⊆ S ×Πp∈PLp. Each
controlled state g ∈ G contains some global state s ∈ S, and a state ρp ∈ Lp for
each controller Cp. An execution g0 g1 g2 . . . is a maximal sequence of controlled
states, satisfying that g0 is the controlled state containing the initial states ι of
A and lp for each Cp. Furthermore, for each adjacent pair of controlled states gi

and gi+1 there exists a transition τ such that the following holds:

1. s τ−→ s′ — where s ∈ S is the state component of the controlled state gi and
s′ ∈ S the one of gi+1.

2. τ ∈ Tp \ T c
p is non controllable Comment: S: ?!, or

τ ∈ T c
p and (s|p, ρp) |= enτ for at least one process p, where s|p is the local

state of p in gi, and ρp the state of Cp in gi; that is, at least one local
controller supports τ (which should mean that τ preserves ψ)

3. For the states ρi and ρi+1 of controller Cp of gi and gi+1, respectively, if
τ ∈ T o

p , then ρi
τ−→p ρi+1. Otherwise, ρi = ρi+1. That is, Cp changes its

internal state when an observable transition occurs.

We denote by Ac the transformation of A that includes its controllers. The goal
of a controller is a set of pairs ψ ⊆ S × T such that for each transition s

τ−→ s′

(as in bullet 1. above) it holds that (s, τ) ∈ ψ.

Note that the goal of the controller is to satisfy an invariant that is not just
over the states (of the original system A), but may also include the immediate
transition out of that state.

The definition of a controller allows the use of some finite memory that is
updated with the execution of observable transitions. This can be useful, e.g., in
constructing a controller based on knowledge with perfect recall [11]. However,
for a controller based on simple knowledge, as in Definition 4, there is no need
to exercise this capability, and Lp can thus consist of a single state. As in [1], we
fix as a running example a particular property that we want to synthesize: that
of enforcing some priority policy on the distributed system.

Definition 7 (Priority policy). A priority policy Pr = (T,�) for a system
A is defined as a partial order relation � on the set of transitions T .

Among the transitions enabled in state s, we can identify those with maximal
priority, i.e., enabled transitions such that for any other transition τ ′ enabled
in s, either τ ′ � τ or τ and τ ′ are incomparable. Let maxτ be a predicate that
holds in a state s, i.e., s |= maxτ , when the transition τ has a maximal priority
among the transitions enabled in s.

Definition 8. A prioritized execution of a system A according to a given pri-
ority policy Pr satisfies, in addition to the conditions of Definition 3, that when
si

τi−→ si+1, then also si |= maxτi .
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The goal is then to construct a distributed controller for A such that, when
running A together with its controller, only correctly prioritized executions oc-
cur. We assume that all the transitions are controllable. Comment: S: can’t we
say that this is possible without loss of generality as long we don’t
forbid non observable non determinsism in A ?

Definition 9. Each local state s|p of process p satisfies one of the following
properties kp

i based on the knowledge of P at that state.

– kp
1 =

∨
τ∈Tp

Kpmaxτ : process p can identify a transition τ such that it
knows that τ is enabled with maximal priority.

– kp
2 = ¬kp

1 ∧Kp

∨
q 6=p k

q
1: process p does not know whether it has a transition

with maximal priority, but in all the global states s′ with s′|p = s|p some
other process q is in a local state where kq

1 holds. This allows p to remain
inactive without risk of introducing a deadlock.

– kp
3 = ¬kp

1 ∧ ¬k
p
2 : p does not know whether or not there is an enabled

transition with maximal priority.

kp
1 can be extended to sets of processes: kP

1 =
∨

τ∈∪p∈P Tp
KP maxτ .

When the constraint ψ to be imposed by the controller is different from the
priority policy, the formula kp

1 needs to be changed accordingly; instead of maxτ ,
it must reflect the property that executing τ does not invalidate ψ. If ψ is a state
property, then maxτ can be replaced by the state predicate wpτ (ψ) (for “weakest
precondition”), which reflects the state property that holds when τ is enabled
and ψ holds after its execution.

The construction in [1] checks whether
∨

p∈P k
p
1 holds in all reachable states

of the original system that are not deadlock (or termination). If so, it is sufficient
that each process supports a transition when it knows that it is maximal in order
to enforce the additional constraint ψ (in that case, priority) without introducing
any additional deadlock. When this check fails to hold, it was suggested to
monitor and control several processes together, or to use the more expensive
knowledge of perfect recall (or to use both).

3 A Synchronization-Based Approach

In this paper, we suggest a new solution to the distributed control problem,
which consists of synthesizing distributed controllers that allow processes to
temporarily synchronize in order to obtain joint knowledge in those (local) states
in which it is needed. The synchronization is achieved by using an algorithm
like α-core [5]. This algorithm allows processes to notify, using asynchronous
message passing, a set of coordinators about their wish to be involved in a joint
action; the coordinators may accept or decline the requested action. We treat the
synchronizations provided by the α-core, or any similar algorithm, as transitions
that are joint between several participating processes. At a lower level, such
synchronizations are achieved using asynchronous message passing. We assume

5



that the correctness of such an algorithm guarantees the atomic-like behavior of
such coordinations, allowing us to reason at this level of abstraction.

A joint local state s|P satisfying kP
1 indicates that the set of processes P know

how to act in this state by selecting some transition with maximal priority. Our
construction calculates using model checking for knowledge properties, which
synchronizations are actually needed.

The essential condition for the construction of a synchronizing controller
is the following: in a completely synchronous implementation, which monitors
global states, given a non deadlock reachable global state (i.e., a state that has at
least one enabled transition), at least one enabled transition must preserve the
property ψ that we want to enforce. It follows from the fact that for the set of
processes P, it holds that s |= KPψ exactly when s |= ψ. The essential condition
is a sufficient condition for obtaining a synchronizing global controller; however,
it is not a necessary condition: it is possible that by imposing some control, some
of the global states of the original system where the above property does not
hold, would not be reached anyway.

An exact check for the existence of a global (completely synchronized) con-
troller can be based on game theory. Accordingly, one may present the problem
as implementing a strategy for the following two player game. One player, the
environment, can always choose between the enabled uncontrollable Comment:
S: !? transitions, while the other player can choose between the enabled con-
trollable ones. The goal of the controller is that the safety property ψ is satisfied
by the jointly selected execution. This can be solved using algorithms based on
safety games [9].

Our algorithm proceeds in three steps: a first step calculates the local states
and joint local states (synchronizations) providing sufficient knowledge to guar-
antee that in every global state at least one process supports some transition.
We refer to this set of (joint) local states as the knowledge table ∆ for A.

The second step defines, with the help of the knowledge table, a distributed
controller in the form of a distributed transition system which can then be imple-
mented in a protocol by introducing a set of coordinators realizing the required
synchronizations in ∆. In a third step, we propose to obtain a more efficient
controller by minimizing the set of coordinations.

3.1 A set of synchronizations providing sufficient knowledge

In this first step we calculate the required knowledge table ∆. The construction
of ∆ is performed iteratively, starting with local states, then pairs of local states,
triples etc. At each stage of the construction, ∆ contains a set of (joint) local
states s|P satisfying kP

1 .

Definition 10. A set of (joint) local states ∆ is an invariant of a system if each
non-deadlock state of the system contains at least one (joint) local state from ∆.

The first iteration includes in ∆, for all p ∈ P, the singleton local states
satisfying kp

1 , i.e. states in which progress of p is guaranteed. For each such local
state s|p we associate the actual transition τ that makes kp

1 hold.
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If ∆ is not an invariant, we first calculate for each local state not satisfying
kp
1 whether it satisfies kp

2 . Let Up be the set of local states of process p satisfying
¬(kp

1 ∨ k
p
2). Now, in a second iteration, we add to ∆ pairs (sp, sq) ∈ Up × Uq for

p 6= q if there exists a reachable state s such that s|p = sp and s|q = sq, and
if sp, sq satisfy k

{p,q}
1 . Again, we associate with that entry of the table ∆ the

actual transition τ that witnesses the satisfaction of k{p,q}
1 for that entry. The

second iteration terminates as soon as ∆ is an invariant or if all such pairs of
local states have been classified. In a third iteration, we consider triples of local
states from Up × Uq × Ur such that no subtuple is in ∆, and so forth.

3.2 A distributed controller imposing the global property

In the second step of the algorithm, we transform the system A into a controlled
transition system Ac allowing only prioritized execution. We implement Ac using
a set of coordinators realizing the required synchronization of ∆ by an algorithm
such as the α-core.

We want to achieve the joint local knowledge promised by the precalculation
of ∆ using synchronizations amongst the processes involved. Our construction
guarantees that each time the transition associated with a tuple (s|p1 . . . s|pk

)
from ∆ is executed from a state that includes these local components, the prop-
erty ψ we want to impose is preserved. We transform the system A such that
only transitions associated with entries in ∆ can be executed.

If a transition τ is associated with a singleton element s|p in ∆, then the con-
troller for p, at the local state s|p, will support τ . Otherwise, τ is associated with
a tuple of local states in ∆; when reaching any of these local states, the corre-
sponding processes p1 . . . pk try to achieve a synchronization, which consequently
allows τ to execute. This is done according to the protocol of the synchroniza-
tion algorithm that is used. Upon reaching the synchronization, the associated
transition τ is then supported by any of its participating processes. Formally, for
each transition τ associated with a tuple of local states (s|p1 . . . s|pk

), we execute
a transition, enabled exactly at the joint local state with the above components,
and performing the original transformation of τ .

3.3 Minimizing the number of coordinators

It is wasteful to include a coordination for each joint local state involving at least
two processes in ∆. We now show how to minimize the number of coordinators
for pairs of the form (s|p, r|q) in ∆. The general version of this method for
larger tuples is analogous. We denote by ∆p,q the set of pairs of ∆ containing
components from processes p and q.

A naive implementation may use a coordination for every pair in ∆. Never-
theless, the large number of messages needed to implement coordination by an
algorithm like α-core suggests that we minimize the number of coordinations.
A completely opposite extreme would be to use a unique coordination between
processes p and q. Accordingly, when process p identifies that it may have a
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q-partner in ∆p,q, then coordination starts. When coordination succeeds, the
joint event checks whether the local states of p and q actually appear in ∆p,q.
If they do, it provides the appropriate behavior; otherwise, the coordination is
abandoned. In this way, many (expensive) coordinations may be made just to
be abandoned, not even guaranteeing eventual progress.

Consider now a set of pairs Γ ⊆ ∆p,q such that if (s, r), (s′, r′) ∈ Γ , then
(s, r′), (s′, r) ∈ Γ (s and s′ do not have to be disjoint, and neither do r and
r′). This means that Γ is a complete bipartite subgraph of ∆p,q. We certainly
can generate one coordination for all the pairs in Γ , and, upon success of the
coordination, the precalculated table ∆p,q will be consulted about which tran-
sition to allow, depending on the components s|p and s|q. Thus, according to
this strategy, a sufficient number of interactions is formed by finding a covering
partition Γ1, . . . , Γm of complete bipartite subgraphs of ∆p,q. That is, each pair
(s|p, r|q) ∈ ∆p,q must be in some set Γi. However, the minimization problem for
such a partition turns out to be in NP-Complete.

Property 1. [4] Given a bipartite graph G = (N,E) and a positive integer
K ≤ |E|, finding whether there exists a set of subsets N1, . . . Nk for k ≤ K of
complete bipartite subgraphs of G such that each edge (u, v) is in some Ni is in
NP-Complete.

We use the following notation: when Γ is a set of pairs of local states, one
from p and one from q, we denote by Γ |p and by Γ |q the p and the q components
in these pairs, respectively. We apply the following heuristics to calculate a (not
necessarily minimal) set of complete bipartite subsets Γi ⊆ ∆p,q covering ∆p,q.
We start with a first partition Γ 0

1 , . . . , Γ
0
m0

, and refine it until we obtain a fixpoint
Γ k

1 , . . . , Γ
k
mk

. We decide to start with process p if |∆p,q|p| < |∆p,q|q|, i.e., the
number of elements paired up in ∆p,q is smaller for p than for q. Otherwise, we
symmetrically start with q. Let the elements of ∆p,q|p be x1, . . . xm0 , and Γ 0

i be
the pairs in ∆p,q containing xi. Now, we repeatedly alternate between the q side
and the p side the following step: we check for each two sets Γ l

i and Γ l
j whether

Γ l
i |q = Γ l

j |q. If it is the case, we combine them into a single set Γ l
i ∪ Γ l

j (on even
steps, we replace q with p). This is done as long as we can unify new subsets in
this way. The whole process is performed in time cubic in the size of ∆p,q.

Figure 1 shows the result for an example. The left-hand side represents the
coordinators induced by ∆p,q and the right-side the minimal set of coordinators.
Each Γi contains a single state of q. And indeed, if we start the procedure with
q, the initial partition is already the solution.

4 The Difference between Distributed Controllers and
Knowledge-based Controllers

We now show some connections between the classical controller synthesis prob-
lem (see, e.g., [7]) and knowledge-based control. In particular, we show that the
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r1

r2
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s1
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Fig. 1. Minimizing the number of coordinators

problem of synthesizing Comment: S: distributed? controllers for enforcing a
priority policy is undecidable.

The knowledge approach to control in [6] requires that there is sufficient
knowledge to allow any transition of the controlled system that does not violate
the enforced property ψ. In [1], which we extend here, this requirement is relaxed;
the knowledge must suffice to execute at least one enabled transition not violating
ψ when such a transition exists. In the more general case of distributed controller
design, one may want to block some enabled transitions even if their execution
does not immediately violate the enforced property. This is required to prevent
the transformed system from reaching deadlocked states, where the controlled
system originally had a way to progress (thus, introducing new deadlocks).

  

α

δ

β

a

b

γ c

Fig. 2. A system that cannot be controlled

Consider a concurrent system, as in Figure 2, with two processes πl (left) and
πr (right), each one of them having initially a nondeterministic choice. Comment:
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this example is perhaps a bit confusing: we want to show that it might
be impossible to know whether such a distributed controller exists or
not. But in this example, we just emphasize that (a) it may be hard
find one when it exists, and (b) there is not necessarily a unique least
restrictive solution. The proof is however correct because it uses the
argument that one cannot always decide whether non observable non
determinsim exists in the system or not — which means that A is not
finite The priorities in this system are δ � b� β. Each process can observe only
its own transitions. In the initial state, all four enabled transitions α, γ, a, c are
unordered by priorities, and thus are all maximal. If α is fired and subsequently
a (or vice versa), we reach a global state where process πr does not have any
enabled transition with maximal priority. Process πl does, and it can execute β.
Thereafter, since δ � b, process πl cannot execute δ and must wait for process πr

to execute b. Now, with its limited observability, πl cannot distinguish between
the situation before or after b was executed by πr. Thus πl lacks the capability,
and the corresponding knowledge, of deciding whether to execute δ.

When a controller may block transitions even when their execution does not
immediately lead to violation of the property to be preserved, the situation can
be recovered. In the example above, we may choose either to block α in favor of γ,
or to block a in favor of c. Blocking both α and a is not necessary. This example
also shows that there is no unique maximal solution to the control problem that
blocks the smallest number of transitions. Note that an alternative solution to
blocking α or a can be achieved using a temporary interaction between the
processes, as shown earlier in this paper.

It was shown in [10, 8] that the problem of synthesizing a distributed con-
troller is, in general, undecidable. We show here that even when restricting the
synthesis problem to priority policies, the problem remains undecidable. The
proof for that appears is given below. Notice that when we have the flexibility
of allowing additional coordination, as done in this paper, the problem, in the
limit, becomes a sequential control problem, which is decidable.

Theorem 1. Constructing a distributed controller that enforces a priority pol-
icy, is undecidable. Furthermore, this holds even in the case where all the tran-
sitions are controllable by the processes that include them.

Proof. Following [10], the proof is by reduction from the post correspondence
problem (PCP). In PCP, there is a finite set of pairs {(l1, r1), . . . , (ln, rn)}, where
the components li, ri are words over a common alphabet Σ, and one needs to de-
cide whether one can concatenate separately a left word from the left components
and a right word from the right components according to a mutual nonempty
sequence of indexes i1i2 . . . ik, such that li1 li2 . . . lik

= ri1ri2 . . . rik
.

Now, let i ∈ {1..n}, l̂i be the word lii, i.e., the ith left component concatenated
with the index i. Similarly, let r̂i be rii. We consider two regular languages:
L = (l̂1 + l̂2 + . . .+ l̂k)+ and R = (r̂1 + r̂2 + . . .+ r̂k)+. Now suppose the process
πp executes according to the regular expression l.L.x.a.b+ r.R.x.c.d. Assume for
the moment that choice between l and r is uncontrollable. Suppose also that
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πp coordinates (through shared transitions) the alphabet letters from Σ with
a process πq1 , and the indexes letters from Σ with another process πq2 . After
observing x from πp, then πq1 and πq2 are allowed to interact with each other.
Specifically, πq2 sends πq1 the sequences of indexes it has observed. Suppose
that now πq1 has a nondeterministic choice between two transitions: α or β. The
priorities are set as b� α� a and d� β � c. All other pairs of transitions are
unordered according to �. If πq1 selects α and r was executed, or πq1 selects β
and l was executed, then there is no problem, as α is unordered with respect to
c and d, and also β is unordered with respect to a and b, respectively. Otherwise,
there is no way to control the system so that it executes the sequence a.α.b or
c.β.d allowed by the priorities.

When there is no solution to the induced PCP problem, there is a controller
for the priority policy problem: sending the sequence of executed indexes from πq1

to πq2 allows to match the sequence of words and indexes and check whether it is
a left word or a right word exclusively. When the answer to the PCP problem is
positive, then some left and right words are identical and with the same indexes.
Process πq1 cannot make a decision: given the information that πq1 observed
and later received from πq2 is the same in both cases for the mutual left and
right word. Thus, it cannot anticipate whether c.d or a.b will happen and cannot
control the choice between α and β accordingly. This means that deciding the
existence of a controller for this system would solve the corresponding PCP
problem. It is thus undecidable.

The proof was done so far assuming that transitions l and r are uncontrol-
lable. We would like to remove this assumption. To do that, we can implement
that choice by a shared communication with two concurrent processes, πsl

pro-
viding l and πsr providing r. After L we will allow the communication r, and
after R we will allow the communication l. Thus, both communications must be
consumed. Furthermore, the system terminates only by a single communication
of πql

with the process that sends l and of πqr with the process that sends r.
Thus, if our contoller had decided to block either l or r, then a deadlock would
eventually occur.

Note that in this proof we do not ensure a finite memory controller, even
when one exists. Indeed a finite controller may not exist. To see this, assume a
PCP problem with one word {(a, aa)}. To check whether we have observed a
left or a right word, we may just compare the number of a’s that p has observed
with the number of indexes that q has observed.

5 Implementation and Experimental Results

We have implemented a prototype for experimenting with this approach. In our
tool, we use Petri nets to represent distributed transition systems.

This tool first builds the set of reachable states and the corresponding local
knowledge of each process. Then, it checks whether local knowledge is sufficient
to ensure correct distributed execution of the system under study. Let U-states
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be global states in which all corresponding local states satisfy ¬(kp
1 ∨ k

p
2). In

fact, since ¬kp
1 holds for each process p implies that kp

2 also holds. The existence
of a U state means that ∆ is not an invariant without adding some tuples for
synchronization. We allow simulating the system while counting the number of
synchronizations and U-states encountered during execution according to dif-
ferent strategies as a measurement to the amount of additional synchronization
required.

The example that we used in our experiments is a variant of the dining
philosophers where philosophers may arbitrarily take first either the fork that is
on their left or right. In addition, a philosopher may hand over a fork to one of
his neighbors when his second fork is not available and the neighbor is looking
for a second fork as well. Such an exchange (labeled ex ) is a way to avoid the
well-known deadlocks when all philosophers take first the fork on the same side.
This example is partially represented by the Petri net of Figure 5.

In our example, places (concerning philosopher β) are defined as follows:

– fork i: the i-th fork is on the table or not.
– 0forkβ (resp. 2forksβ): philosopher β has no fork (resp. 2 forks) in his hands.
– 1fork l

β (resp. 1fork r
β): philosopher β holds his left (resp. right) fork.

Transitions (concerning philosopher β) play the following role:

– getkl
β (resp. getkr

β ), k = 1, 2: philosopher β takes the fork on his left (resp.
on his right). This is his k-th fork.

– eat and returnβ : philosopher β eats and puts both forks back on the table.
– exα,β : philosopher α gives his right fork to philosopher β.
– exβ,α: philosopher β gives his left fork to philosopher α .

Processes correspond to philosophers. The transitions defining a process β have
a β in their name, including the four exchange transitions exα,β , exβ,α, exβ,γ and
exγ,β . In Figure 5, transitions related only to philosopher β are drawn with full
lines. Transitions in dashed lines are shared between β and one of his neighbors
(α on the left, γ on the right).

Not controlling such exchanges at all allows non progress cycles. To avoid
them we add priorities which allow exchange actions only when a “blocking
situation” has been reached within some degree of locality.

First variant. We use a priority rule stating that an exchange between philoso-
phers α and β has lower priority than α or β taking a fork. This leads to the
following priorities for each α and β such that α is βs left neighbor:

– exα,β � get2l
α : if α can pick up a left fork, he won’t give his right fork to β.

– exβ,α � get2r
β : symmetrically if β can pick up a right fork.

In this variant, local knowledge is sufficient. Indeed, when a philosopher α
and both his neighbors are blocked in a state where they all have a left (resp.
a right) fork, then philosopher α has enough knowledge to support an exchange
with his left (resp. right) neighbor. For any number of philosophers, there is no
U-state. Thus, no extra synchronization is needed.
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Fig. 3. A partial representation of the dining philosophers (philosopher β)

Second variant. Now, to further reduce the number of exchanges, one may decide
that philosopher β may give his left fork to his left neighbor α only if (1) α is
blocked (2) β is blocked and (3) βs right neighbor γ is also blocked (similarly
for exchanges of right forks). This translates into adding the following priorities:

– exα,β � get2l
δ , eat and returnδ (with δ the left neighbor of philosopher α)

– exβ,α � get2r
γ , eat and returnγ (with γ the right neighbor of philosopher β)

Local knowledge alone cannot ensure here correct distributed execution. How-
ever, binary synchronizations are sufficient in this example to ensure that the
system is always able to move on, and this for any number of philosophers.

In Table 1, we show results for the second variant with 6, 8 and 10 philoso-
phers. There are two U-states which correspond to the situation where all philoso-
phers hold their left fork, or they all hold their right fork. For computing the
number of synchronizations, we used each time 100 runs of a length of 10,000
steps (i.e. transitions). Note that the number of exchange transitions is identical
to the number of synchronizations.

philosophers 6 8 10

reachable states 729 6561 59049

synchronizations 354 285 237

U-states encountered 253 149 100

Table 1. Results for 100 executions of 10,000 steps for the second variant
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At the current stage, the minimization of the set of coordinators has not been
implemented (we use one coordinator per synchronization pair in ∆) and our
tool handles only joint local states consisting of two states.

6 Conclusion

Imposing a global constraint upon a distributed system by imposing blocking
transitions is, in general, undecidable, as can be seen in control theory [10]. One
practical approach for this problem was to use model checking of knowledge prop-
erties [1]. If we allow additional synchronization, the problem becomes decidable:
at the limit, everything becomes synchronized, although this, of course, is highly
undesirable. The method presented there provided a (disjunctive) controller. The
problem with that approach is that in many cases the local knowledge of the
separate processes does not suffice. A suggested remedy was to monitor several
processes together, achieving this way an increased level of knowledge.

In the current work we look at the situation where we are allowed to coordi-
nate between several processes, but only temporarily. First, we calculate whether
the constraint we want to impose is feasible, when all processes are combined
together. If this is the case, we check if we can control the system based on the
local knowledge of processes or temporary interactions between processes. Of
course, our goal is to minimize the number of interactions, and moreover, the
number of processes involved in each interaction.

As an implementation, one can use a multiparty synchronization algorithm
such as the α-core algorithm [5]. Based on that, we provide an algorithm using
model checking to calculate at which local states synchronizations are needed.
The synchronizing processes, successfully coordinating, are then able to use the
knowledge table calculated by model checking, which dictates to them which
transition can be executed. Some small corrections to the original presentation
of the α-core algorithm appear in [3].

The framework suggested in this paper can be used as a distributed imple-
mentation for the Verimag BIP system [2]. BIP is based on a clear separation
between the behavior of atomic components and the interaction between such
components, which is represented using (potentially hierarchical) connectors.
Priorities offer a mechanism to enforce scheduling policies by filtering the set of
interactions that can be fired. So far, implementing BIP systems in a distributed
setting remained a challenging task.
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5. José Antonio Pérez, Rafael Corchuelo, and Miguel Toro. An order-based algo-

rithm for implementing multiparty synchronization. Concurrency - Practice and
Experience, 16(12):1173–1206, 2004.

6. Karen Rudie and S. Laurie Ricker. Know means no: Incorporating knowledge into
discrete-event control systems. Transactions on Automatic Control, 45(9):1656–
1668, 2000.

7. Karen Rudie and W. Murray Wonham. Think globally, act locally: decentralized
supervisory control. Transactions on Automatic Control, 37(11):1692–1708, 1992.

8. John G. Thistle. Undecidability in descentralized supervision. System and Control
Letters, 54:503–509, 2005.

9. W. Thomas. On the synthesis of strategies in infinite games. In Proc. 12th Annual
Symposium on Theoretical Aspects of Computer Science, pages 1–13. Springer-
Verlag, 1995. LNCS 900.

10. Stavros Tripakis. Undecidable problems of decentralized observation and control
on regular languages. Inf. Process. Lett., 90(1):21–28, 2004.

11. Ron van der Meyden. Common knowledge and update in finite environments. Inf.
Comput., 140(2):115–157, 1998.
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