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Abstract

Model-based design methodologies are increasingly finding acceptance in the development of
electronics systems thanks to their flexibility and the availability of tools for analysis and imple-
mentation. In this landscape, meta-modeling has emerged as an essential method to organize
theories and methods for the development of coordinated representations that are more suitable
than standard models for the heterogeneous environment in which modern embedded systems
operate. We review the role that meta-models have played and are playing in several research
projects across Europe. In particular, we discuss language design techniques and language pro-
filing in the context of numerous industrial applications that emphasize safety in heterogeneous
specifications. Then we describe in more details the modeling principles and the infrastructure
underlying the SPEEDS European project, and highlight the way meta-modeling techniques
have helped its implementation and applications.
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1 Introduction

Abstraction and refinement techniques are the cornerstone of design methodologies. Abstraction is
the fundamental device by which designers extract the essential features of a complex problem, there-
fore reducing the complexity of its representation and manipulation, and increasing productivity.
This process has been shaped during the past decades by the emergence of conceptual representa-
tions and languages that are progressively more detached from the implementation of the system,
by neglecting those details that are relevant only in the context of specific realizations. The converse
process of refinement fills out those details, with tools that are able to evaluate design alternatives
through simulations and analysis, and, when possible, with synthesis and compilation techniques.
In most cases, the refinement step proceeds by mapping, decomposing and subsequently assembling
the system from elementary parts, or components, that encapsulate a logical unit of behavior.

The adoption of component-based methodologies has, in fact, paved the way to the development
of the model-based approach to design (e.g., see [TG06]). This shift was marked by an increased
use of concurrency, which more naturally maps on the structure of modern distributed embedded
systems, over the traditional software paradigm of sequential execution. Concurrency, however,
increases complexity, since the number of interactions that must be considered tends to grow more
than linearly with the number of components, and sometimes significantly so. This has led to the
proliferation of a host of component models, whose primary purpose is to constrain the kind of
interaction patterns available to designers, in order to simplify the analysis or achieve a certain
degree of expressiveness.

Designers use component models because they are convenient ways to represent a design, and
because they can choose the abstraction that best matches the characteristics of the system under
development. Convergence of technologies into the same application area, however, results in het-
erogeneous specifications that use several models simultaneously for the system description. The
same degree of heterogeneity can be observed when the description of the system is partitioned into
separate orthogonal aspects, or view-points. In this case, the fragmentation is at the component
level, and must be resolved by resorting to appropriate combination techniques that account for the
interdependencies of the specifications [RBB+09].

It is in this context that researchers have taken a step back and began to study and operate on the
models themselves, to understand their relationships and to put an order to an otherwise informal
collection of methods and tools. To achieve this, the very same modeling techniques that had proven
so successful in design were employed to construct models of models, or meta-models, which have
quickly been embraced by such methodologies as the Model Driven Architecture (MDA) [Sel, Sch06]
and Platform-Based Design (PBD) [SV02].

In this paper we review the role that models and meta-models have played and are playing in
several research projects across Europe. In the first part, Section 2, we discuss language design
techniques and their use in several industrial applications. In the second part, Section 3, we describe
in more details the modeling principles and the infrastructure underlying the SPEEDS European
project, and highlight the way meta-modeling techniques have helped its implementation and appli-
cations.

2 Language design strategies in meta-modeling frameworks

Embedded systems development is being challenged to provide global solutions for reconciling
three conflicting concerns: enrichment/refinement of system functionalities, reduction of time-to-
market and production costs, and compliance with non-functional requirements [TG06]. In or-
der to fulfil these objectives, both academic and industrial communities have been promoting for
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more than a decade design approaches and methodologies relying on Model-Based Engineering
(MBE) [Sel, Sch06]. MBE raises different concerns related to problems such as, for instance, model
transformations, model repository or also specific modeling languages. Meta-modeling techniques
are at the basis of most research efforts in the state of the art in these different areas. A meta-model
is the result of capturing concepts and rules of a specific modeling language via more or less for-
mal means [Esp07]. In this context, one says that a model conforms to a meta-model if the model
respects the set of modeling rules defined in the meta-model (“just like a well-formed program con-
forms to the grammar of the programming language in which it is written” [Esp07]). The example
shown in Figure 1 illustrates this. At the top, we show the graphical definition of the meta-model of
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Figure 1: Definition/usage of a language for interface specification in a MDE fashion

a simple modeling language for interfaces with operations. An interface is a named element, which
can have a number of associated operations. These, in turn, may take typed parameters with a
specified direction, and may return a typed value. Designers are not concerned with the meta-model
definition, and instead use graphical tools to represent their specification of an interface, as shown in
the bottom left of the figure. At the repository level, the specification is represented as a particular
instantiation of objects derived from the above class diagram, as shown in the bottom right, in a
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way that conforms to the meta-model definition.
There are two main strategies for the usage of meta-modeling techniques for the design of do-

main specific languages (DSL), i.e., the “heavyweight” and the “lightweight” approaches. Section 2.1
below provides a description of these two variants, with a particular focus on the lightweight us-
age. Then, we report on industrial feedback that highlights the benefits and the challenges of
the lightweight approach (Section 2.2). This feedback come from projects in which the LISE lab-
oratory [LIS] is (or has been) involved and they concern multiple application domains. Finally,
Section 2.2.3 provides some future perspectives.

2.1 Heavyweight vs. Lightweight DSL design

Figure 2 gives an overview of the heavyweight and lightweight approach for defining specific domain
languages, and their impact on underlying tool architectures. The figure shows the steps and the
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Figure 2: Heavyweight and lightweight usages of meta-modeling techniques

models involved in the creation of languages and tools corresponding to some concept of interest.
The heavyweight variant, outlined in the left-hand side of Figure 2, implies creating a new meta-

model fully dedicated to each modeling language under study (such as our interface specification
language shown in Figure 1). This leads to the definition of a domain specific language (DSL) that
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is optimally suited to the problem at hand [ESCG08]. Since every discipline has its own specific
language, the main drawback of this approach is how “to interface the various parts of the design
so that integrated systems can be verified, tested, or simply unambiguously understood” [ESCG08].
Therefore, besides the difficulties underlying the creation of a meta-model for each targeted DSL,
this approach requires a lot of effort to obtain an integrated and consistent tool chain, as illustrated
on the bottom-left part of Figure 2.

The lightweight variant, outlined in the right-hand side of Figure 2, relies on the extension of
an existing meta-model. This meta-model typically captures the modeling concepts and rules of
a more general-purpose modeling language, such as the well-accepted Unified Modeling Language
(UML) [OMGe]. In the context of UML, this mechanism of lightweight extension is called a UML
profile. Each extension of an element from the UML meta-model is formally captured by a concept
called stereotype. Each stereotype definition can be associated with properties and/or modeling con-
straints which make sense for the domain targeted by the profile. Stereotypes are then manipulated
at the modeling level as annotations on model elements. General-purpose UML elements of this
model may be thus associated with a domain-specific semantics and/or notation, which is explicitly
part of the underlying model repository. Technically, this means that various (semi-)automatic tools
are able to access the information captured by the profile (e.g., for code generation, verification or
domain-specific analysis). The SysML (for system modeling) [OMGc] and MARTE (for real-time
embedded design and analysis) [GS08, OMGd] profiles are OMG standards [OMGa] defined as a
lightweight extension (i.e., profile) of UML2.

The most difficult part when defining a lightweight extensions is to determine what are the
most suitable elements of the meta-model that must be extended (i.e., the meta-classes for which
stereotypes must be defined). This is not necessarily an easy task, and typically requires a deep
knowledge of the meta-model to be extended. However, once the profile has been defined, this
approach allows one to specialize a general-purpose tool (such as Papyrus or RSA [Pap, Rat]) at
low cost. General-purpose tools support domain-specific aspects in the sense that stereotypes are
made available at the modeling level in the form of annotations. In addition, tools usually support
a stronger form of integration with the possibility to define optional “plug-ins”, as illustrated in the
bottom-right side of Figure 2.

Another advantage of this approach has to do with the fact that real-world models are typically
multi-domain (see description of the ATESST project in Section 2.2.2). There is therefore a strong
demand from industry for the capability to capture cross-domain concerns in the same model. As
multiple profiles can be applied to a given model, integration and combination of DSLs is easier than
in the case of heavyweight approaches, where a dedicated meta-model and modeling environment
are defined for each DSL and where a potentially complex interoperability tool may be required to
ensure consistency and interaction between the different “views” of the model. For example, in the
Papyrus UML modeler [Pap] developed at the LISE laboratory [LIS], a designer can automatically
import and apply several profiles in a given model and, hence, add information concerning multiple
domains on pre-existing model elements.

2.2 Profiles as DSL and industrial feedback

The embedded system industry has already strongly endorsed the lightweight extension mechanism
by triggering, supporting and contributing to the development of two important profiles for their
application domain: the SysML and MARTE profiles.

• The SysML (System Modeling Language) profile has been motivated by the need to provide
modeling support that is not only limited to software centric development of systems. Instead,
SysML also addresses a wider understanding of system architectures and interactions with their
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environment, whether they are later realized through software or not. At the modeling level,
two main aspects have been integrated: links with reference requirement documentation and
the capability to describe coarse grain architectures supporting both discrete (e.g., messages,
data, material, etc.) and continuous (e.g., energy, etc.) interactions. All other aspects (such as
behavioral descriptions) are assumed to reuse largely existing UML constructs and semantics.

• The MARTE (Modeling and Analysis of Real Time Embedded systems) profile is designed to
provide abstract views to support development of RTES (Real-Time Embedded Systems) as
well as unify the various existing approaches through a common language, built by all the
actors of the RTES community. The scope of MARTE is to cover all activities of RTES
development that require specific constructs or references, not by replacing existing efficient
solutions, but by mapping them to a reference and global meta-model. MARTE is structured
as a set of sub-profiles that support design, analysis, the expression of timing characteristics,
and the description of the execution model, the platform and the platform API model libraries.

Several industrial European projects have adopted the lightweight strategy. Such projects focus
on real-time embedded systems, with special attention to the railway, automotive and aerospace
application domains. Generally, the feedback from industry encourages us to pursue the direction
of lightweight extensions. In the rest of this section, we will discuss two typical use cases: one for
safety related systems development and one for the automotive domain.

2.2.1 A profile for Safety Analysis

Safety requirements play a crucial role in the railways, automotive and aerospace domains. In many
cases, safety requirements have profound implications on the architecture of a system. As a result,
the scientific community attempts to integrate safety requirements in the software development
as early as possible. However, in the last decades, the requirements for safety and for real-time
embedded system development have been accompanied by the use of heterogeneous methodologies
and tools. In addition, and to complicate the integration effort, safety teams and system development
teams are not the same. In the face of this rhapsodic scenario, two directions seem to be possible.
The first is driven by tool integration, where each team develops its own model with its own tool.
The issue is then how to proceed with the integration of the results or of the tools themselves.
One advantage of this lies in the use of existing tools, that are tailored to the specific application
they support. However, the late and often problematic integration implies that the changes in the
architecture needed to take safety requirements into account force designers to redesign parts of the
system well after the end of the specification phase. This creates long redesign cycles that adversely
affect productivity and, in certain cases, correctness.

A different approach relies on the lightweight extension presented above. The IMOFIS industrial
European project, which started in the middle of 2008, fits in this context [IMO]. The objective of
this project is to define a development environment for safety-critical applications. The idea is to
define a Conceptual Data Model (the top part of Figure 2) for safety in strict collaboration with,
in this case, the safety team of railway and automotive industries. Concepts in this data model are
drawn from an ontology given by the safety teams. Examples of concepts are that of a “hazard”, an
“accident”, a “safety barrier” and so on. The language development then proceeds by first creating
a profile starting from the Conceptual Data Model. This profile is then integrated with other pre-
existing profiles, such as SysML and MARTE, in order to import their expressive capabilities. At
the modeling level, designers specify information on model elements via a graphical interface.

On top of the language design technique described above, IMOFIS exploits a new conception of
a profile, first introduced by S. Cook and then discussed in various papers [Sel04, And07]. A profile
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is defined by a “family of related languages”. In order to tailor a DSL to a given point of view (i.e.,
safety analysis, temporal analysis, and so on), the strategy of the IMOFIS project is to keep only
suitable subsets of each pre-existing profile. This approach potentially reduces the possible semantic
and syntactical conflicts between profiles. (See the discussion in Section 2.2.3). Such a strategy
is in fact implicitly already adopted by different industrial European projects, e.g., MeMVaTEx,
ATESST and Lambda [MeM, ATE, Lam].

2.2.2 An experience of specialization for the automotive domain

With the introduction of the AUTOSAR standard [Aut], many of the main actors in the automotive
domain have stressed the need for solutions to support, in a way that is “as standard as possible”,
the first steps of the description of automotive application/function. To this end, the ATESST
STREP - FP6 project [ATE] was launched to provide an architecture description language for the
automotive domain. Thanks to UML profile mechanisms, it was possible, within two years and with
a limited amount of resources, to both implement the language (EAST-ADL 2) upon an existing
tool and align it with the AUTOSAR standard. With respect to UML, the EAST-ADL 2 profile
brings the following innovations:

• the introduction of domain related vocabulary and concepts with a focus on function descrip-
tion (in place of software component) using communication events and mechanisms dedicated
to the domain;

• the support of a layered development process that distinguishes among the levels dedicated to
the vehicle, the analysis, the design, the implementation and the operation level that corre-
sponds to the AUTOSAR execution infrastructure.

This language is currently being extended to support the description of non-functional properties (in-
cluding safety, timing aspects and product line/variant definition) in new projects such as ATESST
2 STREP - FP7 and EDONA of System@tic Paris Région cluster [ATE, EDO]. Following the same
strategy as in IMOFIS, the new language is defined by importing capabilities from existing meta-
models and profiles. For instance, UML 2 is used for all the basic concepts, SysML for requirements
and functional blocks with communication ports and MARTE for the timing aspect, platform allo-
cation and refined communication ports. Finally, a UML profile for AUTOSAR, provided by the
AUTOSAR consortium, is used to describe the target architecture of the applications.

Similar work based on profile composition has been done for the sole purpose of requirement
modeling and traceability in the ANR MeMVaTEx project [MeM, ABB+08]. MeMVaTEx combines
three profiles: MARTE for temporal analysis, SysML for requirements and EAST-ADL for the
description of the architecture.

2.2.3 A common need for formal execution descriptions into profile definition

Projects such as IMOFIS and ATESST emphasize the importance of combining multiple profiles.
For example, one may want to benefit from the SysML mechanisms for requirement specification,
as well as MARTE annotations and concepts for timing analysis or execution resource management.
However, the fact that a DSL defined as a profile usually targets a particular application domain
does not imply that multiple profiles will necessarily address orthogonal concerns. Concepts and
rules defined in these profiles may therefore overlap, potentially raising consistency issues when they
are combined in a given model.
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For example, SysML and MARTE define their own sets of concepts and modeling rules for
component-oriented design, with their own informal descriptions of execution and interaction se-
mantics associated with SysML blocks or MARTE components. More in general, the problem is
not just the composition of profiles from a structural standpoint. As described in Section 2.1, tools
like Papyrus already provide support for that. Instead, it concerns the ability to integrate execu-
tion or behavioral semantic descriptions into profile definitions. The formalism used to describe the
encapsulated semantics should be standard, in order to ease the process of combining the execution
semantics of multiple profiles. One step in this direction can be seen in the definition of the new
OMG standard on the executable semantics of a foundational UML subset [OMGb] (which defines
operational semantics for a UML subset called fUML) and in preliminary results on the possibility
to encapsulate operational semantics descriptions into stereotype definitions using UML [CMTG07].

We conclude by recalling the aforementioned lightweight approach. In the European scenario,
the lightweight approach is one answer to the problems that arise from the continuing integra-
tion in one system of various functionalities of increasing complexity. In this context, integration
and combination of various UML profiles will play a crucial role in the near future and different
large industrial European research projects already require such mechanisms and advances on this
topic [ATE, IMO, Int, Lam, MeM, EDO, Gen, CES, com].

One of the main challenges with combining several UML profiles is to ensure the consistency of
the resulting modeling language. Lagarde et al. [LET+08] underline that this research topic requires
both new software engineering methods to design good profiles, but also specific tools for checking
profiles consistency, or for supporting user defined compatibility and composition rules.

3 Meta-modeling in SPEEDS

In this section we give an overview and perspective on the application of modeling and meta-
modeling techniques in the context of the SPEEDS European project [spe]. SPEEDS is a concerted
effort to define the new generation of end-to-end methodologies, processes and supporting tools
for safety-critical embedded system design. One of the technical pillars of the SPEEDS approach
is the definition of a semantic-based modeling method that supports the construction of complex
embedded systems by composing heterogeneous subsystems, and that enables the sound integration
of existing and new tools. At the basis of this approach is the definition of a “heterogeneous rich-
component” model (HRC), able to represent functional as well as architectural abstractions, such
as timing, safety and other non-functional performance metrics. These different viewpoints can be
developed separately in the model, and then integrated and evaluated together in order to derive
the most efficient component-based implementation of the system [BCP09, BCF+08].

In the following, we will first discuss the methodological requirements for SPEEDS, the basic
principles behind the design of the HRC model and its underlying semantics. We then illustrate
applications in the area of heterogeneous simulation and safety analysis.

3.1 Methodological Requirements for SPEEDS

The SPEEDS methodological requirements are the drivers behind the choices made for the design
of the HRC model, which is targeted to the domain of embedded and reactive systems. The first
characteristic to be considered, as discussed in the introduction and earlier in the paper, is that
concurrent development of systems occurs by different teams that, besides the functionality, focus
on different aspects or view-points, such as safety or reliability, timing (e.g., in Time-Triggered
development [Kop98]), memory management to ensure segregation of subsystems, and energy. Each
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of these aspects requires specific frameworks and tools for their analysis and design. Yet, they are
not totally independent but rather interact, in ways that are sometimes non-obvious. In HRC, these
different aspects are expressed in the same model, which is specialized to the different cases by
ignoring the non-essential features. This approach is justified by the interchange nature of HRC,
which is used as an integration model in the SPEEDS infrastructure. In all cases, in fact, the
underlying composition semantics is the same, which makes the integration of the aspects easier.

Even under the same interaction model, particular attention must be placed on developing the
right operators for composition. This is especially true with view-points and the requirements that
they express. Early requirement capture today still relies, for the most part, on organized textual
descriptions, with little formal support, if any. Moving ahead can be achieved by formalizing the
notation used for individual requirements, by relying, for example, on so-called semi-formal lan-
guages [Bur97] or on graphical scenario languages [DH01, IT99]. Similarly, HRC can be used as an
underlying formal description for system requirements. No matter what model is used, the key point
is that several requirements may be attached to the same component. This changes the nature of
the interaction, which is not between parallel components exchanging data, but rather between in-
terrelated specifications which jointly contribute to component specification. Consequently, different
operators are needed when composing view-points and components.

Similar problems arise during system integration. One important prerequisite of the SPEEDS
methodology is that designers should be able to develop subsystems in isolation, and then integrate
them correctly. This is achieved in HRC by including, as part of the component specification,
the needed information regarding the possible contexts of use. This way, one can establish the
responsibilities of suppliers and integrators, by explicitly expressing the assumptions under which a
component is supposed to be used. This separation between the assumption and the specification,
or promise, of the component, which is implemented in the form of design contracts, is, in fact, one
of the distinguishing features of the HRC model.

3.2 SPEEDS principles

Since a number of years, several efforts have been undertaken to interconnect design and analysis
tools via a common semantic level format. Of particular interest in our context are the WOOD-
DES [Conb] and OMEGA [Cona] projects. In these projects, the chosen user level design notation
was a UML profile for real-time component systems with a well-defined operational semantics. This
was then expressed in terms of a simpler formalism, based on communicating extended state ma-
chines, enriched with timing constraints, which can be easily imported into different verification and
analysis tools. In OMEGA in particular, an explicit effort was made to preserve as much of the
original structuring concepts as useful for obtaining efficient analysis. Nevertheless, the translation
process required the addition of extra components and/or the enrichment of both the interfaces and
the behavior of existing components. This lead to the well-known problem that users were unable
to interpret the analysis results, despite the significant effort dedicated to provide this feedback in
terms of the original user concepts, whenever possible.

Also in the SPEEDS framework, shown in Figure 3, the integration of a set of modeling and
analysis tools is based on the use of a common intermediate format, HRC, defined in the form of a
meta-model. However, several original ideas have been integrated in the SPEEDS HRC meta-model.
For instance, SPEEDS allows several modeling tools to contribute to the global model of a given
system and to use the component-code generated by some modeling tool as their own behavior
through the so-called hosted simulation (see Section 3.5). In addition, HRC has two distinguishing
features with respect to previous semantic level tool exchange formalisms. It provides additional
structuring constructs with respect to the user level modeling languages of the user tools, and it is
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Figure 3: Tool integration via the SPEEDS bus and meta-model

defined in a layered manner, corresponding to different usages.
HRC supports an expressive representation that rests on a semantically well-founded formalism

used to describe the abstract behaviors of components or the environment of systems of very dif-
ferent nature — software systems, but also physical subsystems or models of human behaviors, etc.
Such behaviors are described in a form usable by a wide range of analysis tools, as compositions
of extended automata describing constraints on the discrete and continuous behavior. For these
reasons, on top of traditional static component interfaces that only define the interaction points of
components, richer information is exposed to designers, in the form of a set of contracts. Associated
to a component, contracts abstract constraints on the component and its environment behaviors in
the form of assumption-promise pairs. The interpretation is that in an environment fulfilling the
constraint defined by the assumption, the component offers a behavior that satisfies the constraint
expressed by the promise. The information in contracts can be used for analysis before any sort of
model of the components exists, and then used throughout the design cycle for verifying or test-
ing the correctness of abstract models or actual implementations. The meta-model definition of
contracts in HRC is shown in Figure 4.

The HRC meta-model consists of three levels of increasing abstraction, as shown in Figure 5.
Level L1 defines the concepts that are handled by most analysis tools and has been designed for
efficient analysis. Different composition modes (asynchronous and synchronous) are expressed here
by means of a rich set of connectors for which there exist well founded theoretical results [BS07]
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Figure 4: SPEEDS meta model: components have contracts

that can be exploited for making compositional verification efficient. Level L1 is built on top of
level L0, which provides the basic semantic notions of the meta-model. All L1 concepts can be
mapped to this semantic layer, although the translation may in certain cases introduce a degree
of syntactic or behavior explosion. For this reason, several analysis tools work at layer L1. The
synchronous L0-layer has been introduced to provide the underlying interaction mechanism based on
synchronous models [BCE+03] and is the exchange model for those analysis tools that are tailored
towards the verification of synchronous descriptions. Above L1, level L2 is used as a bridge to user
level concepts. This way, notions that are specific to certain domains need not be directly expressed
in terms of L0 or L1 descriptions. Instead, they are mapped to some intermediate concept — often
a generalization of the original — that avoids losing the original structure. These L2 concepts are
then defined as mappings to the lower layers. Therefore, each L1 or L0 enabled tool can handle
any user level validation problem with some efficiency, but may also choose to handle some of them
more efficiently by implementing specific methods tailored towards the L2 layer.

3.3 Comparison with other standards

A relevant question is how the HRC model relates to other standards, and why a standalone meta-
model was defined rather than a profile. The standards which we had considered as potential
alternatives are the SysML and the MARTE profiles (see Section 2.2). Initially, we intended to
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adapt SysML to our needs, since it embodies a general modeling approach that is familiar to most
users, and already in use by some of them. Its main shortcomings, however, are the absence of
certain structuring concepts, such as rich interfaces, contracts and connectors, and our stringent
requirements in terms of underlying semantics. SysML, in fact, has no precisely defined semantics,
but it specifies that the interaction between components should be asynchronous. As an intermediate
representation, and to support tools like SCADE or Simulink, our model had to support some means
of expressing a synchronous execution model. MARTE, on the other hand, does allow specifying
requirements in a generalized synchronous fashion, but it cannot easily be used to represent SCADE
models structurally, other than by using some keyword to tag a component as “synchronous”. In
addition, the approach to requirement expression is radically different: while HRC provides a simple
and expressive formalism for constraints, MARTE introduces a number of predefined attributes for
expressing standard non-functional constraints. These are useful, but each tool has to separately
provide their meaning. The layered definition of HRC, on the other hand, allows introducing these
concepts by giving them a meaning in terms of the lower levels. Thus, tools that can interface to
the HRC model would automatically inherit the definition of the high level concepts.

The choice of defining a standalone meta-model has several motivations. SysML is already
a profile for UML and contains a tremendous amount of features which were not required and
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not simple to just eliminate. We also deemed that it was not convenient to have the important
concepts, in particular rich components, contracts and the rich set of L1 connectors, as stereotypes.
Another motivation was to keep a certain independence from the evolution of a standard as many
transformations from and to a variety of other formats depend on the HRC meta-model. Also, as
HRC is only an intermediate representation used in tools, and the user sees models only either in
terms of some modeling tool or in terms of some analysis or code generation tools, there is no strong
need for HRC graphical editors, which diminished the pressure for aligning with UML.

3.4 SPEEDS Mathematical Model

An HRC model is the result of the interplay of several different elements. Rich components are
characterized by contracts, which, in turn, are expressed as pairs of assumptions and promises. In
this section, we provide an intuitive understanding of their relationships, illustrating the concepts
using a notation based on set theory. More details can be found in [BCP07, BFM+08].

A component M (typically an implementation of a rich component) consists of a set of ports
and variables (in the following, for simplicity, we will refer only to ports) and of a set of behaviors
which assign a history of “values” to ports. Behaviors can be represented in various ways, such as
(hybrid) automata or as the set of corresponding sequences of values or events. Here, we consider a
component as the set of its possible runs. Components can be more or less specific. We say that a
component M refines a component E whenever they are defined over the same set of ports and all
the behaviors of M are also behaviors of E, i.e., when M ⊆ E.

We represent properties of components, or assertions, as the set components that satisfy it.
Exploiting refinement, an assertion E is equal to its largest satisfying component. A contract C for
a rich component is a pair (A,G) of assertions, where A corresponds to the assumption, and G to
the promise. Assertion A and its refinements are the acceptable contexts (or environments) under
which the rich component might be used; conversely, G represents the possible behaviors of the rich
component under those contexts. A component satisfies a contract whenever it satisfies its promise,
subject to the assumption. This relation of refinement under context can be formally expressed by
checking if the composition of a component with the assumptions refines the composition between
the promises and the assumptions. Formally, M ∩ A ⊆ G ∩ A. We write M |= C when M satisfies
a contract C.

Substitutability, or dominance, is the key concept of our contract theory. We say that contract
C dominates contract C ′ whenever the components that satisfy C also satisfy C ′ under the same
or an extended set of contexts. In other words, C can be substituted for C ′ so that dominance
corresponds to a notion of refinement for contracts. Intuitively, dominance is ensured by relaxing
assumptions and contextually reinforcing the promises. Formally, we say that C = (A,G) dominates
C ′ = (A′, G′), written C � C ′, if and only if A ⊇ A′ and G ⊆ G′.

The semantics of composition of different view-points for the same component corresponds to an
operation of conjunction of contracts, obtained as the greatest lower bound of the order induced by
contract dominance. For contracts C1 = (A1, G1) and C2 = (A2, G2), conjunction is obtained by
extending the assumptions to all acceptable contexts, and restricting the promises to the guaranteed
behaviors. Formally,

C1 u C2 = (A1 ∪A2, G1 ∩G2).

Parallel composition of contracts is also needed to formalize the combination of rich components. The
parallel composition of two contract must first guarantee the promises of both contracts. Second, the
environment should satisfy both assumptions, except that part of the assumptions of a component
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is discharged by the promise of the other component. This concurrent strengthening and weakening
of assumptions can be represented as

C1‖C2 = (A,G) where
{

A = (A1 ∩A2) ∪ ¬(G1 ∩G2),
G = (G1 ∩G2)

The availability of different composition operators makes it possible to develop flexible system inte-
gration flows that focus alternatively on composition of components and of view-points, or combi-
nations of the two.

3.5 Hosted simulation

A common way to validate system models is by using simulation. This approach is however prob-
lematic when the system consists of components designed in different tools. The SPEEDS project
takes a hosted simulation approach to resolve this challenge: the HRC components are exported to
a standard format, and then imported to the composed system that can be simulated by a single
simulation tool.

This approach has several advantages compared to the standard co-simulation approach. First,
only one simulation tool is needed, where all animated views are available. In addition, there is
no overhead associated with the use of a message bus and with the coordination between different
simulators. Finally, one can simulate the interaction with an HRC component exported from a
design tool that has no simulation capabilities. The main drawback of this approach is that one
can monitor the interactions between the components only, but has no visibility on the internals of
every component.

Hosted simulation works by exporting an executable model of a component from a modeling
tool, wrapped inside an adapter that implements the hosted simulation API and protocol. The API
includes functions dedicated to setting and reading values on ports, executing a computation step,
and advancing the computation time. The protocol determines the sequence of operations that must
be performed for a correct model evaluation, and coordinates the interaction between the different
components.

The hosted simulation protocol proceeds through iterations that are substantially composed of
two nested cycles that compute a fixed point. The inner cycle is a computation phase in which
components are executed in an arbitrary order to determine the value on ports which are initially
undefined. During this phase, components do not update their internal state and do not exchange
data. Instead, they iteratively recompute their output based on the additional available input. When
the system is stable, the components update their state and exchanged data in the commit phase.
In addition, they provide a time stamp corresponding to the availability of their next event, which
is used to compute the time advance of the simulation. The outer cycle simply iterates these two
phases to make the simulation progress until termination.

Hosted simulation works transparently through the SPEEDS infrastructure by taking advantage
of the common HRC meta-model. The HRC component being exchanged between the tools has two
parts. The first is a description of the component based on HRC, and contains the interfaces and
abstractions describing the component in terms of the meta-model. The second is an implementation
generated by the tool that exported the component, either as a set of source files or as a compiled
DLL accompanied with header files.

3.6 Functional safety concepts

Functional safety can be expressed in HRC by specifying safety goals by contracts. We assume we
have identified the safety goal for the system, and we need to derive functional safety requirements
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for the subsystems. The allocation of functional safety requirements to subsystems is done by
associating the corresponding contracts with the subcomponents of the system. By using contracts,
we ensure that for each subcomponent the safety requirements are structured into a promise for
the safety function provided by the component and an assumption describing the context in which
the function is (safely) provided. This context is either determined by the system environment
or by other components. Thus, either the context should already be contained in the safety goal,
or it should by traceable to (promises of) other components. In fact, in many situations, only the
environment and the other components together ensure that the assumptions underlying a particular
safety function of a component hold. Thus, there usually exists a non-trivial dependency structure
between the individual contracts of the components on one side and between these and the contracts
of the system on the other side.

The requirement decomposition can be validated by a dominance check: if the check succeeds,
the requirement decomposition complies with the original safety goal. If it fails, counter-examples
are produced that satisfy all allocated requirements, and do not (fully) satisfy the safety goal defined
for the system. These counter-examples pinpoint flaws in the safety concept and provide effective
guidance on how to re-define or adapt the safety concept.

To illustrate this, we consider the ISO CD 26262 which allows exploiting redundancy in a process
called ASIL Decomposition. The first step to validate a simple redundancy concept is to identify
the function to be implemented redundantly. The typical corresponding contract is

CSys = (〈context〉, y = f(x)),

where 〈context〉 is some assertion about the behavior of the environment Sys operates in, and f is the
function to be implemented. The underlying black box view is given in Figure 6.a as a SysML block
diagram. A typical redundant implementation refines this black box view as shown in Figure 6.b.
There are three redundant components H1, H2 and H3 (each implementing the function f), and a

a) Blackbox view b) Redundant implementation

Figure 6: Blackbox view and redundant implementation
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majority voter Vote that checks for agreement of two output values. For these we have contracts

CH1 = (〈context〉, y1 = f(x)),
CH2 = (〈context〉, y2 = f(x)),
CH3 = (〈context〉, y3 = f(x)),

CVote = (true, (y = y1 ∧ y1 = y2) ∨ (y = y2 ∧ y2 = y3) ∨ (y = y3 ∧ y3 = y1)).

Three dominance checks yield that

CHi ‖ CHj ≤ CSys i, j ∈ {1, 2, 3}, i 6= j.

This demonstrates that contracts of only two components are required to ensure that the system
contract holds.

4 Conclusions

Model-based design methodologies are increasingly finding acceptance in the development of elec-
tronics systems, thanks to their flexibility and the availability of tools for their analysis and im-
plementation. Meta-modeling techniques have consequently emerged to organize the landscape of
models and provide theories and methods for the development of coordinated representations that
are more suitable for the heterogeneous environment in which modern embedded systems operate.
In this paper we have provided an overview of several efforts which are ongoing in Europe in the
area of modeling and meta-modeling, with an emphasis on language design, applications and tools.

A number of new initiatives and funded projects show that much much work is still needed,
both from a tool support and from a fundamental understanding point of view. Of particular
interest are the studies that extend the heterogeneous model integration from the structural to the
semantics point of view [CMTG07, com] while ensuring consistency. The application of compositional
techniques across domains, together with joint performance evaluation and design will be the building
blocks for new methodologies able to address and solve the design problems in the emerging area of
Cyber Physical Systems.
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