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FOREWORD

Delta-4 is a 5-nation, 13-partner project that has been investigating the achievement of
dependability in open distributed systems, including real-time systems.

This book describes the design and validation of the distributed fault-tolerant architecture
developed within this project. The key features of the Delta-4 architecture are: (a) a distributed
object-oriented application support environment; (b) built-in support for user-transparent fault-
tolerance; (c) use of multicast or group communication protocols; and (d) use of standard off-
the-shelf processors and standard local area network technology with minimum specialized
hardware.

The book is organized as follows:

The first 3 chapters give an overview of the architecture's objectives and of the architecture
itself, and compare the proposed solutions with other approaches.

Chapters 4 to 12 give a more detailed insight into the Delta-4 architectural concepts. Chapters
4 and 5 are devoted to providing a firm set of general concepts and terminology regarding
dependable and real-time computing. Chapter 6 is centred on fault-tolerance techniques based
on distribution. The description of the architecture itself commences with a description of the
Delta-4 application support environment (Deltase) in chapter 7. Two variants of the
architecture — the Delta-4 Open System Architecture (OSA) and the Delta-4 Extra Performance
Architecture (XPA) — are described respectively in chapters 8 and 9. Both variants of the
architecture have a common underlying basis for dependable multicasting, i.e., an atomic
multicast protocol and fail-silent hardware; these are described respectively in chapters 10 and
11. The important topic of input to, and output from, the fault-tolerant Delta-4 architecture is
tackled in chapter 12.

Chapters 13 and 14 describe the work that has been carried out in the fields of security, by
intrusion-tolerance, and the tolerance of software design faults by diversified design.

Finally, chapter 15 gives an extensive overview of the validation activities carried out on
various sub-systems of the architecture.

Several annexes that detail particular points are included together with a glossary of
abbreviations that are used throughout the book.
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Chapter 15
Validation

Users of the Delta-4 architecture must be able to have a justified confidence in its dependability.
Consequently, such an architecture must undergo extensive validation both from the verification
and evaluation viewpoints.

Verification is that part of the validation activity aimed at removal of design and
implementation faults. Verification in Delta-4 is carried out at two levels;

» verification of the design of the communication protocols to discover and remove
design faults,

» verification of the implementation by means of injection of hardware faults to verify
the effectiveness of the architecture’s self-checking and fault-tolerance mechanisms.
Dependability evaluation is that part of the global activity of validation that pertains to fault-
forecasting, i.e., the estimation of the presence, the creation and the consequence of faults.
Dependability evaluation is also carried out at two levels:

+ evaluation of dependability measures of Delta-4 architecture configurations taking
into account the nature of the different elements (e.g., fail-silent or fail-uncontrolled
hosts, replication domain of the different components, replication techniques,
reconfiguration possibilities, repair policies, ...)

* evaluation of software reliability through the application of reliability growth
models.
The aim of each validation activity and the main results are summarised in the next section,
Then, sections 14.2 - 14.5 provide further details on each activity.

15.1. Overview

Section 15.2 is devoted to protocol verification. The need to assure reliable communication
among distributed sites has led to the design of specific protocols for the Delta-4 architecture,
such as the Atomic Multicast protocol (AMp, cf. chapter 10) and the Inter Replica protocol
(IRp, cf. section 8.1). To improve the quality of these protocols, formal methods have been
used for their specification and verification.

The specifications of a protocol consist of the formal description of the distributed
algorithm, the formalization of the assumptions about its execution environment and the formal
definition of properties characterizing the service it should deliver. Formal specifications are
useful on their own, since they force the specifier to formally explicit crucial features of the
protocols. Furthermore, the verification of their consistency allows detection of possible errors
early in the software development. We are concerned with formal verification, that means:




372 15. Validation

Given some description of an algorithm and given a description of its
“service specifications”, verify formally that the described algorithm
delivers the specified service.

Verification is carried out by model checking techniques using the Xesar verification
toolbox. This toolbox was developed to evaluate properties — given by formulas of temporal
logic — on a model obtained from a program describing the algorithm to be verified
(embedded in its execution environment). These methods have important advantages for
discovering design faults since they are based on a complete search of the graph of all possible
behaviours of the system to be verified.

The AMp and IRp families of protocols have been specified and verified. Inconsistencies of
different nature have been detected such as incorrect initializations of local variables, or too
weak conditions. Some of them are only detectable in some peculiar sequence of events that it
would be unlikely to obtain by simulation, such as unspecified receptions, non termination of
the monitor election phase or duplication of messages. Implementations have been derived from
the formal specifications.

The section relative to formal verification overviews the method followed and contains the
major results obtained for the critical protocols that have been studied. Annexes K and L
complement this section by surveying the various models that can be used to represent reactive
systems and techniques for specifying system behaviour.

Section 15.3 is dedicated to implementation validation by means of fault injection. Work on
implementation validation is aimed at testing the basic building blocks that support the fault
tolerance features of the Delta-4 architecture: the fail-silent assumption of the NAC components
and the fault resiliency provided by AMp. The experimental validation carried out is based on
the use of physical fault injection, i.e., physical faults are directly injected on the pins of the
circuits that constitute the NAC.

The distributed testbed, including the fault injection tool MESSALINE, that has been
developed to carry out this work provides an experimental environment that enables not only
successive versions of the AMp software to be addressed!, but also two distinct versions of the
NAC hardware: one with restricted self-checking mechanisms (referred to as a fail-uncontrolled
NAC) and another with improved self-checking (referred to as a fail-silent NAC).

The section relative to fault-injection validation contains an overview of the method, a brief
description of the testbed and the major results obtained so far (essentially, those for the fail-
uncontrolled NAC).

Section 154 deals with dependability modelling and evaluation. The objective of this
activity is to provide the users with a quantified assessment of the amount of dependability that
the architecture provides, i.e., the degree by which they can justifiably rely on the architecture.

Dependability modelling is based on Markov processes. Use of Markov process is first
justified and general expressions giving the equivalent failure rate and the steady-state or
asymptotic unavailability are presented.

Delta-4 is a modular and open architecture and all possible configurations have a common
point: a communication support system that constitutes a hard core since its failure leads to loss
of interactions between the hosts. In this section, emphasis is put on the selection of the “best”
architecture among all possible ones.

Various communication topologies are considered (802.4 token bus, and 802.5 and FDDI
token rings), for each of them a single and a double configuration architecture is modelled. Two
dependability measures are evaluated: the equivalent failure rate and the asymptotic
unavailability.

1 Obuained in particular as a result of the corrections induced by the design errors detected during this
validation phase.
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It is shown that for the single media configurations the equivalent failure rates are limited
by the failure rate of the medium and non-covered failures of the NACs and that, for the double
media configurations, they are directly related to the failure rate of the non-covered failures
only.

Comparison of these architectures showed that it is very difficult to classify them: the
evaluated measures depend on several parameters and a tradeoff is needed to select the most
suitable architecture. However it is shown that — whatever the architecture — the coverage
factor of the NAC is of prime importance, it is thus worthwhile to put emphasis on this
coverage (i.e., self-checking mechanisms) during development,

Finally, section 15.5 is devoted to software reliability evaluation. Quantitative assessment
of software reliability is usually carried out through the application of reliability growth models.
These models enable prediction of either the number of failures to be activated for the next
period of time or the mean time for the next failures or the software failure rate or some
combinations of these measures.

Reliability growth models are generally parametric models and these parameters have to be
estimated (i.e., model calibration) to carry out dependability predictions. Calibration of the
models is fulfilled through failure data collected on the software either during development or in
operation. Predictions are thus based on the observation of the software behaviour during a
given period of time, calibration of the model using the observed failure data and application of
the model to estimate dependability measures.

Data collection is a long process and is now being carried out on the developed software.
Reliability growth models will be applied when sufficient data items have been collected.

Since insufficient data has been collected at the time of writing, this section is mainly
devoted to data collection and the problems that this data collection induces.

15.2. Protocol Validation

15.2.1. Introduction

In the Delta-4 project, the need to assure reliable communication among distributed sites has led
to the definition of specific protocols, such as the Atomic Multicast protocol (AMp) or the Inter
Replica protocol (IRp). As the system architecture is based on these protocols, the quality of
their development is crucial. One approach for improving quality is to carry out simultaneously
the design and its verification by using formal methods and then to derive the implementation.
The usual informal specifications given in an implementation guide are not sufficient to
achieve formal verification. The first task is to provide a structured formal description of the
protocols and of the delivered services. These formalizations are useful on their own, as they
enforce the specifier to explicit the assumptions on which the system is based. Furthermore, it
is important to verify formally the consistency of the service definition with the protocol
description to detect possible inconsistencies early in the software development activity.

15.2.1.1. Formal Verification Techniques. Formal verification of a design requires a
description of an algorithm and a description of its “service specifications”. The aim is then to
verify formally that the described algorithm delivers the specified service.

The systems we are interested in interact with their environment and thus cannot be
adequately described by a purely functional view, in terms of input/output. Typical examples
are operating systems, communication protocols, distributed data bases, digital systems ...
These systems, which are better specified in terms of their behaviours, are known as reactive
systems [Pnueli 1986]. There is a large agreement on the fact that the algorithms involved in
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such systems are highly complex, and their development needs a large effort, especially
concerning formalization and verification of their design. Furthermore, the verification of time
bounds in the distributed algorithms used in communication protocols is crucial.

Two main classes of techniques have been proposed for formal verification:

* Program verification based on deductive methods [Misra and Chandy 1981, Owicki
and Gries 1976]: a distributed system is described as an abstract program, and the
service to be delivered is characterized by a set of properties, described for example
by formulas of temporal logics [Pnueli 1977], which are transformed into assertions
about the program. The proof of these assertions can be partially automated by using
theorem provers, e.g., [Boyer and Moore 1979, Gordon et al. 1979]. These
methods extend to concurrent programs the methods proposed by Floyd [Floyd
1967] and Hoare [Hoare 1972] for sequential programs.

» Model checking techniques consisting in: building a model from the description of
the distributed system, and checking the service properties on this model by using
appropriate algorithms. Usually these methods are restricted to finite state programs
and are suitable for protocols. Many proposals based on this approach have been
made, for example [Clarke et al. 1986, Fernandez et al. 1985, Holzmann 1984,
West 1982, Zafiropulo et al. 1980]. These techniques are more adequate for
automatic verification of large systems.

Both approaches require:

« A formal description of the algorithm under study, given, e.g., in the form of a
labelled transition system or a set of equations, or a CCS [Milner 1980], CSP
[Hoare 1985], Lustre [Caspi et al. 1987], Estelle [ISO 9074] or Lotos [ISO 8807]
program. In the case of model checking, this description is translated into a model
(see annexe K) representing the behaviour of the algorithm.

+ Formal service specifications, given as a set of properties characterizing this service,
or as an abstract algorithm describing it. In the case of model checking, each
property is evaluated on the model.

+ The assumptions about the execution environment of the algorithm.

For the result of the verification to be meaningful, some soundness condition must be
satisfied. One possible soundness condition is that all properties that are formally verified must
be true in reality. If one is more interested in error detection, the soundness condition may also
be formulated the other way round, i.e., each error detected in the verification phase must
correspond to a real error.

15.2.1.2. Verification of Timed Algorithms. Usual methods for reasoning about
reactive systems abstract away from quantitative time, preserving only ordering properties,
such as “whenever a process receives a message, it has been sent previously by another
process”. However, in the domain of distributed systems, especially fault-tolerant ones, the
notion of time is important.
First, two remarks should be made:
» The notions of time in the algorithm and in the model need not to be the same.

« Formal verification is different from performance evaluation. Formal verification is
performed on an abstraction of an implementation. Performance evaluation works on
a particular implementation, for which intervals of execution times for all basic
actions are supposed to be known, and thus an exact picture of the time behaviour
may be obtained.
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The notion of time needed for the verification depends obviously on the notion of time
needed by the described algorithm. A classification of algorithms can be given [Cristian 1991],
based essentially on two criteria: synchrony and presence or absence of a global clock:

» Asynchronous systems that work without taking time into account at all, in the sense
that no upper bounds of execution times of actions need to be given for the system to
work correctly; thus the given algorithm is supposed to work under any timing
constraints.

* Synchronous systems in which all processes can be considered as working off a
common clock, for example digital circuits or distributed systems in which the
clocks local to each node are synchronized (see, for example, section 9.6.6 for the
low-level clock synchronization proposed in XPA).

* Synchronous systems in which a global clock is not available, but an assumption is
made about the upper bounds of the time needed for actions, where these upper
bounds refer to local time.

The systems in the first category are also called systems with unbounded delay. Those in
the last two categories are systems with bounded delay. The verified protocols of the Delta-4
architecture are in the third category. General verification methods must be adapted to this class
of systems, the main problem being the introduction into the model of a suitable notion of time.

The remainder of this presents the actual verification work in the Delta-4 project and the
main results that have been obtained. Two annexes provide a more detailed description of the
formal verification method by model checking. Annexe K introduces different models and
possible notions of time used for verification; annexe L presents the nature of the service
specifications and gives some formalisms allowing us to describe the specifications concerning
time.

15.2.2. Verification of Protocols in the Delta-4 Project

The work mainly concerns the formal specifications of the considered protocols, the
clarification of the assumptions made on the behaviour of the environment and the formal
verification, from which the new implementations have been structured and developed. The
primitive material for the formal verification activity in Delta-4 was an existing communication
stack software, including the critical protocols to be verified, that was partially and informally
specified. The results obtained have required tight interaction between the designer-implementer
and the specifier-verifier teams.

The verification work has been carried out in two steps: first, providing formal
specifications, then verifying formally their consistency.

The specifications of each protocol have been structured into three formal descriptions:

* A description of the state machines implemented in the protocol.

* A description of the properties of the environment (e.g., duration of the message
transmissions, limitation of the number of messages lost in sequence, ordering of
the delivery of messages). These properties of the environment correspond to the
concept of “operational envelope” used in section 5.1.2.

* A description of the expected service, by a set of logic formulas. A classification of
the usual properties is discussed in annexe L.

Formal verification has enabled detection of inconsistencies in these formal specifications
and thus led to removal of design faults. Model checking techniques have been applied, using
the Xesar tool [Richier et al. 1987] developed at LGI. These methods were chosen because they
are suitable for finite state machines such as protocols and can be automated to a large extent,
even for complex systems (the Xesar tool allows verification of quite large models [Graf et al.




376 15, Validation

1989]). Furthermore, they provide considerable help for the detection of errors since they are
based on a complete search of the graph of all possible behaviours of the system to be verified,
using appropriate algorithms. Error states can not only be detected, but execution sequences
leading to them can be displayed.

15.2.2.1. Verification using the Xesar Tool. The Xesar tool implements model
checking techniques: it evaluates properties given by formulas of the branching time temporal
logic CTL [Clarke et al. 1986] or by Biichi automata [Biichi 1962] on a model generated from a
program written in Estelle/R, according to its formal semantics. More details concerning the
model can be found in annexe L.

The specifications of the system to be verified are described by a finite set of
communicating processes, forming a closed system; that is, for each possible communication,
the complete description of both emission and reception must be provided. Therefore, the
protocol environment must also be described explicitly by a (set of) process(es).

Each verification is carried out on a model obtained from a program describing a particular
system configuration embedded in its environment, with a particular initialization; such a
program is called in the sequel a scenario.

The protocol description language Estelle/R is a variant of Estelle. The main difference is
that in Estelle/R communication is modelled by the rendezvous mechanism. Communication by
rendezvous requires explicit representation of finite buffers by processes. The problem arising
from “communication through unbounded buffers” of Estelle is that certain deadlock situations
cannot be detected, since it is possible to carry on filling some message buffer forever.

The formal semantics of an Estelle/R model is based on the ATP algebra [Nicollin et al.
1990] where a “clocktick” event is used for the translation of the “delay” construction. The
global model is obtained by using the semantics of ATP for the parallel composition, i.e.,
interleaving semantics with synchronization of all processes on “clocktick” as discussed in
annexe K.

Formulas of the CTL temporal logics or automata describing the properties that characterize
the service specification, are evaluated on the model; the complexity of the model checking
algorithms is discussed in annexe L.

An error is detected if, during the traversal, a state not compatible with the property is
encountered. In this case, the execution sequence leading to this state can be analysed. If the
traversal can be completed without detecting an error, the model satisfies the property.

If a complete traversal is not possible in a reasonable time, the absence of detected errors
does not allow one to deduce that the protocol is correct. Nevertheless, it increases the
confidence we may have in it, In this case it is also possible to make several partial traversals
with different criteria for the choice of the successor state in order to increase the coverage, as
proposed in [Holzmann 1990].

15.2.2.2. Formal Verification of Protocols. Applying formal techniques to perform a
brute force global verification of the innovative Delta-4 protocols is an unrealistic task since
their execution environment involves the whole Delta-4 architecture. The two main problems to
be solved first are: the characterization of the protocol execution to be verified and the
establishment of a suitable model for bounded time protocols.

Formal verification using the Xesar tool allows automatic analysis of specific complex
configurations of the protocol execution. In each configuration, exhaustive analysis allows
detection of all design errors, even those occurring in complex execution sequences and which
are very unlikely to be detected by simulation or test, as they might occur with very low
probability.
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To infer the validity of the protocol in any configuration, one needs some “inductive”
method. Different solutions have been proposed, generally based on an invariant characterizing
the behaviour of the protocol. This invariant must have a “good” structure, i.e., it must allow
induction on the structure of the configuration. However, the protocols considered in this
project are too complex since they are based on the (simultaneous and successive) use of
different paradigms (two phase protocols, election, reliable multicast, use of time out to avoid
livelocks, ...). The complexity of the interaction of these paradigms does not allow description
of the complete behaviour of the protocol by a “suitable” invariant,

However, for any particular protocol, non-explicit reasonings, based on considerations
about the overall structure (e.g., making symmetry considerations or exploiting the splitting of
the protocol into independent phases) provide convincing arguments that the general validity
can be deduced from the verification of a limited family of configurations. For example, it can
be argued that in the case of AMp protocols, configurations with three machines are sufficient,
and that we can further limit the possible actions in any of these machines.

Practically, a finite set of scenarios (judiciously selected configurations of a fixed number
of networked protocol machines) is exhaustively verified.

A crucial point in the verification is the choice of an adequate model, suitable in the present
case to time bounded systems, such that all properties formally verified on the model must be
true in reality. This adequacy depends deeply on the abstraction level used for the protocol
machine description and on the modelling of its environment. For example, if the environment
is modelled by a process “chaos” (i.e., that can modify transmitted messages in any possible
way), all detected errors may not correspond to real errors in the protocol,

In the present work, the environment consists of adjacent layers of the communication
stack; the model must take into account the different features characterizing the behaviour of
these layers, such as buffering, occurrence of faults, and timing constraints.

The first two features are explicitly represented in the model. Concerning time, two kinds
of modelling have been used, depending on the nature of the system to be verified:

* In systems where all message transmissions are implicitly clocked, timeless models
are used. For example, in the Turbo-AMp or token-based AMp protocol, (an
extension of the IEEE 802.5 token ring MAC protocol, see section 10.8.1) all
messages are implicitly clocked by the token circulation mechanism. Therefore, the
verification of a service property is made under some fairness assumptions, stating
that the property is true provided the token is effectively circulating.

* In other systems, e.g., the token-less AMp (see section 10.8.2) and IRp protocols,
the passing of time is introduced explicitly in the model, by means of a specific
clocktick action. Thus, time bounds can be verified without using fairness
assumptions, and some statements concerning time limits can be made. However, all
the obtained results can only be guaranteed to be valid for the particular timer values
for which the verification has been carried out.

A survey on time modelling for the purpose of verification can be found in annexe K.

15.2.2.3. Results of the Verification Work. Two families of protocols have been

verified and consistent, structured specifications of both protocol machines and services have
been provided:

+ reliable group or multicast communication protocols (token-based and token-less
implementations of AMp, see sections 10.8.1 and 10.8.2) — only the atomic
quality of service (see section 10.4) has been verified;

« inter replica coordination protocols (IRp) managing the replicated aspects of the
session service users, and supporting distributed fault tolerance by active replication.
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For each protocol, formal specifications have been provided:

+ The services have been characterized by a set of formulas, e.g., the AMp properties
given in table 1 of chapter 10.

« All the environment assumptions have been specified. For instance, in the case of
the token-less AMp protocol, this leads to the formal characterization of the abstract
network given in table 3 of chapter 10. In the case of the IRp protocols, they consist
of the atomic quality of xAMp service and additional properties stating that station
failure indications are received in bounded time. Thus, network management does
not need to be fully characterized.

» Only the abstraction of the protocol machine data structures relevant to verification
have been defined. It is worth noting, however, that all transitions were in fact fully
specified.

This task has been carried out in tight collaboration with the designer of the protocols
because a detailed knowledge of the protocol architecture as well as of the verification method is
needed. Some design errors were directly discovered during this collaboration.

The verification of the consistency of these specifications has been made as previously
discussed. For example, in the case of token-less AMp, scenarios were grouped in different
sets, covering each of the relevant steps of AMp execution, including: message transmission,
monitor election, joining a group, leaving a group, and failure recovery. A justification for the
chosen set of scenarios can be found in [Verissimo and Marques 1990]. The “sub-services”,
i.e., the expected services for each of these steps, were also defined by sets of properties.

For instance, for the monitor election scenarios the following properties were defined:

» “There is one and only one winner of a monitor competition.”

« “If the current monitor fails and there are still live members, another monitor
competition takes place.”

* “The monitor competition always terminates successfully unless all the group
members fail.”

Additional information is needed to define the scenarios associated with each step:

+ The set of the possible initial states in which the steps can start. For example, for the
monitor election step the initial states correspond to the states reached after the
occurrence of an error in any other step: failure of the sender or of one of the
receivers during a message transmission step; failure of one of the stations during a
joining step; and so on. One or several scenarios are needed for each class of initial
states

» The number of stations needed for the verification of each step. For example, for the
monitor election step, it is possible to examine all possible error cases with three
stations. The failed stations need not be represented.

Particular configurations with a fixed number (e.g., 3 for the token-less AMp) of
interconnected protocol machines, covering critical cases derived from the structure of the
protocol, have been verified with the Xesar tool. The generated models have reasonable size
(on average 350,000 states for the token-less AMp). Non trivial inconsistencies, have been
detected (and corrected) in the specifications.

Two types of inconsistencies have been identified: “superficial” ones that can be easily
corrected, and “deep” ones that need more analysis to be corrected. Deep inconsistencies may
show up inconsistencies in the application of the paradigms underlying the design of the
protocol.
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In both AMp and IRp protocols, a significant number of superficial inconsistencies were
detected, for example: bad initializations of local variables; incorrect parameters; conditions in
transitions that are too weak, etc.

A first example of a “deep” inconsistency was found in the token-less AMp: it
corresponded to a livelock situation where, in some global states, a “monitor election”
procedure can be restarted forever and will thus never terminate.

A second example is given by the IRp protocols.

Let us first describe shortly how these protocols work. The IRp protocols ensure that a
family of replicated entities perform the same actions, and that an external user perceives all the
replicas as a single one. Each correct replica has a complete knowledge of the state of the other
correct replicas. To enforce this point, a replica uses the AMp protocol to inform the other
replicas of any internal change.

When a message is sent outside the group of replicas, an election is carried out to select
exactly one sender. Timers are used to control the relative speed of execution of the different
replicas.

Three paradigms (atomic multicast, election, time-outs) are used together. As the number of
possible behaviours is very large, conflicts occur. For example, two inconsistencies have been
detected in the message send protocol:

+ If a replica dies after its election as a sender, the other replicas are sometimes unable
to elect another sender.

+ If timers expire exactly at the moment a sender is elected, due to transmission
delays, it can happen that the sender sends the message and a new election is
performed, resulting in the message being sent twice.

Detailed results and the formal description of the services, of the protocol machines and of
the environment assumptions can be found: for AMp in ([Baptista et al. 1990, Graf et al. 1989,
Graf et al. 1990]) and for IRp in forthcoming reports.

To conclude, the benefit of this work is to force the definition of consistent formal
specifications, that are of great importance when developing innovative protocols. Indeed,
formal specifications do not only allow unambiguous characterizations of the protocol
behaviour and facilitate reasoning about it, but some methodological points are to be stressed in
the process of development for such systems:

* These verified formal specifications increase the confidence in a more correct design
of protocols. As all possible behaviours are examined in a systematic way, the result
is often more reliable than the result of mere simulation.

* The verification task and the definition of scenarios for verification require well-
structured specifications; the software implementation can take advantage of this
structuring of the specified distributed algorithm.

* The assumptions about the behaviour of the environment (for example the network
in the case of AMp) are truly formalized.

* The service specifications are used for the implementation validation, for instance by
fault injection (see next section).

* The automatic derivation from the formal specifications, of tests and assertions to be
verified by the implementation can also be envisaged.

Note however, that in our experience, the automatic generation of executable code is not a
realistic issue, in so far as the generation of efficient code depends highly on the characteristics
of the environment in which the protocols are to execute. In the context of Delta-4, performance
requirements do not allow automatic generation of code for significant parts of software, and
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many local optimizations are required by existing heterogeneous components of the
architecture.

15.3. Fault Injection

15.3.1. Introduction

The fault tolerance features of the Delta-4 architecture are based on the multicast communication
system (MCS) that provides generalized multicast services. The proper operation of MCS is
further based on:

» the verification of a set of well defined properties that characterize the extended
service provided by the atomic multicast protocol (AMp),
» the assumed fail-silent property of the underlying network attachment controllers
(NACs) hardware modules that connect the stations to the Delta-4 network.
The validation described in this section is thus aimed at:

« estimating the coverage provided by the fault tolerance mechanisms, which
incorporate two levels of coverage:

- the local coverage achieved by the self-checking mechanisms which control the
extraction of the NACs,

- the distributed coverage corresponding to the fault tolerance provided by both
the defensive characteristics of AMp and the NAC self-checking mechanisms,
* testing, in the presence of faults, the service provided by AMp.

This validation is also intended to address the successive versions of the AMp software
(obtained in particular as a result of the corrections induced by the design errors detected during
this validation phase) as well as two distinct versions of the NAC hardware featuring quite
distinct levels of redundancy (fail-uncontrolled NAC and fail-silent NAC)2. Both NAC
architectures are made up of two boards:

* amain board that ensures the interfacing with the host computer,
« a specific board that connects the main board to the physical medium.

15.3.2. Fault-Injection-Based Experimental Validation

Fault-injection is particularly attractive [Chillarege and Bowen 1989, Crouzet and Decouty
1982, Damm 1988, Gunneflo et al. 1989, Lala 1983, Segall et al. 1988] as a complement of
other possible approaches such as proving or analytical modeling, By speeding up the
occurrence of errors and failures, fault injection is in fact a method for resting the fault-tolerance
mechanisms (FTMs) with respect to their own specific inputs: the faults.

Basically, fault injection has thus the same characteristics and limitations as any testing
approach: its accuracy depends heavily on the representativeness of the inputs of the test and its
actual impact is related to the number of significant events — erroneous behaviours of the
FTMs — observed during the test sequence. Stated in other words, the coverage estimates
derived from a fault injection test sequence are usually easier to extrapolate to the real
operational domain when they are low. As an example, if an unacceptably low coverage figure
is obtained in the case of a test sequence where only permanent faults have been injected, it can

2 Afail-uncontrolled NAC refers to a NAC characterized by restricted self-checking mechanisms, while a fail-
silent NAC is provided with improved self-checking mechanisms.
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be confidently assumed that this figure constitutes an upper bound for the “actual” coverage,
i.e., when more demanding cases (e.g., transient faults) are also considered.

Two important contributions of fault injection concern the verification of the FTMs and the
characterization of their behaviour, thus enabling any weakness in their design and/or
implementation to be revealed. Also, a statistical analysis of the responses obtained during the
fault injection experiments enables some relevant dependability parameters — coverage, fault
dormancy, error latency, etc. — to be estimated.

Different forms of fault injection experiments (e.g., fault simulation [Choi et al. 1989],
fault emulation [Gérardin 1986], error seeding [Mahmood et al. 1984], mutation testing
[DeMillo et al. 1978], physical fault injection [Cortes et al. 1987], etc.) can be considered
depending on i) the complexity of the system to be validated (the rarger system), ii) the types
of faults injected and iii) its level of application at various stages of the development process
[Arlat et al. 1990]. The fault injection method used here is the physical fault injection method: in
this case, the faults are directly injected on the pins of the integrated circuits (ICs) that
implement the prototype of the target system. Although this methodology can only be applied at
the final stages of the development process, its main advantages are that the tested prototype is
close to the final systern and that it enables a global validation of a complex system integrating
both hardware and software features of the fault tolerance mechanisms.

Another practical limitation that is often opposed to pin-level fault injection is related to the
representativeness of the injected faults with respect to the internal faults (in particular in the
case of VLSI circuits). Such a limitation can be realistically — albeit partially — overcome by
the application of multiple intermittent error patterns on the pins. The multiplicity and the values
of the applied error patterns can be either randomly generated or possibly deduced from a fault
simulation analysis of the IC considered.

From a general point of view, the experimental validation is based on the concept of a fault
injection test sequence. More precisely, a fault injection test sequence is characterized by an
input domain and an output domain. The inpur domain corresponds to a set of injected faults F
and a set A that specifies the data used for the activation of the target system and thus, of the
injected faults. The output domain corresponds to i) a set of readouts R that are collected to
characterize the target system behaviour in presence of faults and ii) a set of measures M that
are derived from the analysis and processing of the FAR sets. Together, the FARM sets
constitute the major attributes that can be used to characterize fully a fault injection test
sequence. In practice, the fault injection test sequence is made up of a series of experiments;
each experiment specifies a point of the {FxAxR] space.

15.3.3. The Testbed

For the application of fault injection to validate the Delta-4 architecture a distributed testbed was
built using the fault injection tool MESSALINE developed at LAAS. The hardware testbed
configuration is shown on figure 1.

The Target System contains four stations interconnected by the Target System Network3.
Each station is made up of a NAC containing the implementations of the AMp and Physical
entities that are under test together with a Targer System Host (TSH) which activates and
observes the service offered by the AMp. The activation consists in the generation of traffic
flow through the target system network and the observation consists in the collection of data
obtained from each station.

3 All the experiments carried out to date concern the 802.5 token ring version of MCS.
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Fig, 1- The Hardware Testbed Configuration

The purpose of the Experiment Supervisor (ES) is twofold: i) run-time control of the
target system and ii) collection and analysis of the observed data. The Testbed Network, which
is an Ethernet type LAN in the present implementation, ensures the communication between the
ES and the TSHs. The ES is implemented on a Bull DPX2000 machine.

Most hardware and software necessary for the fault injection test sequence are part of
MESSALINE. For sake of conciseness, only the two principal components are briefly
presented here; a more detailed description of MESSALINE hardware architecture is given in
[Arlat et al. 1990]

The Experiment Controller (EC) implements the injection of the elements of the F set and
the collection of the hardware signals used to elaborate some elements of the R set. Faults are
injected into the NAC component of a specific station (designated hereafter as the injected
station) by the forcing technique®. A connection with the wiring concentrator of the target token
ring network allows the states of the insertion relays of the stations connected on the ring to be
read. These are used for the post-test analysis, as will be explained later. The only intervention
of the operator is to position the probe on the circuit selected by the Test Sequence Manager
(TSM).

The TSM is implemented on a Macintosh IT computer, connected to the EC and to the ES
through serial lines. There are also physical connections between MESSALINE and all the
stations (TSHs and NACs) to enable automatic hardware resets: the NACs are reset after each
experiment whereas a host reset is requested only in case of a station crash.

In the reported experiments, the Target System is made up of four Bull SPS7 machines,
running UNIX System V, as TSHs. The preliminary (fail-uncontrolled) NAC architecture
tested so far contains only limited self-checking mechanisms, namely the mechanisms offered
by the 802.5 token-ring standard (internal bus parity check, watch-dog timer, etc.). Improved
self-checking (fail-silent) NACs, featuring duplicated processors and memory, that have been
designed to interface a Ferranti Argus 2000 TSH are now being validated on the same testbed.

4 In the case of the forcing technique, voltage levels are directly applied by means of multi-pin probes on IC

pins and associated equipotential lines.
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15.3.4. Definition of the Test Sequence

This section presents successively the main parameters that specify the Fault, Activation,
Readout and Measure (FARM) attributes of the test sequence.

15.3.4.1. The F Set. Faults are injected into a single NAC; the four stations were thus
partitioned into two sets: the injected station (station S1) and the three “correct” (non-injected)
stations (stations S2, S3 and S4).

For each IC, the injected pins, the nature and the timing characteristics of the injected faults
were selected according to the order and form given below:

1) Multiplicity (MX): faults are injected on several (1, 2 or 3) pins of an IC, with a
frequency of 50%, 30% and 20% respectively,

2) Location: selection of MX pins among the injectable pins, with a uniform
distribution.

3) Nature: stuck-at-0 and stuck-at-1 faults, each with equal probability of occurrence.

4) Timing characteristics: the faults injected are essentially intermittent faults; their
temporal parameters are composed of three values:

* lead time (from start of experiment to first pulse): uniformly distributed
between 1s and 40s,

* period: logarithmically distributed between 10 ps and 30 ms,

* width: uniformly distributed between 2ps and 1ms, with a duty
cycle < 50%.

In the lack of sound available data concerning actual IC failure modes, most of the
parameters were selected according to a uniform distribution among range values selected quite
arbitrarily. However, the limitation to a multiplicity order of 3 is to some extent substantiated by
the results presented in [Gunneflo et al. 1989] for a microprocessor in the presence of single
event upsets. These results show that more than 80% of the internal single-event upsets led to
the occurrence of the first error pattern on 3 pins at most. The logarithmic distribution for the
period is intended to obtain a significant number of short period intermittent faults while
maintaining a wide selection range.

15.3.4.2. The A Set. The workload was varied to study its impact on the behaviour of the
target system. The activation is characterized by the application of two types of traffic flows:
observed traffic flow with respect to which AMp properties are tested and background traffic
flow to provide more realistic activation of the target system.

To provide a representative activation set, five activation modes have been considered for
the stations; table 1 shows the transmitter and receiver allocations of the stations for each mode
with respect to observed traffic and background traffic flows.

15.3.4.3. The R Set. Three types of readouts are collected for each experiment:

* binary readouts: activation of the injected faults, status of the ring insertion relays for
each NAC, AMp properties derived from the analysis of the messages,

* riming readouts: time of activation of the injected fault, time of extraction of the
stations,

* message readouts: number of messages exchanged for both traffic flows and number
of messages positively or negatively confirmed for the observed traffic.

5 The observed traffic consisted of 100 messages.
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Table 1 - Transmitter and Receiver Allocation per Activation Mode

T: Transmitter present, R: Receiver present, —: No Traffic, X: Not inserted

Observed Traffic Background Traffic
Mode 51 52 83 84 s1 82 83 54
1 TR TR R R TR TR TR TR
2 R TR TR R TR TR TR TR
3 — TR TR R TR TR TR TR
4 — TR TR R —— TR TR TR
5 X TR TR R X TR TR TR

The information concerning whether or not a particular fault becomes activated during an
experiment can be obtained from specific monitoring devices implemented in MESSALINE that
sense current variations on the pin(s) where the fault is injected [Arlat et al. 1990]. The status of
these devices can be read by software. Such information was used to eliminate from the
statistics those experiments where the fault was not activated during the experiment and to
perform a direct measurement of fault dormancy for faults that were observed to become
activated.

The collection of occurrence and timing readouts enabled empirical distributions to be
derived for the fault dormancy. Empirical distributions were also derived for the coverage
achieved by the hardware error detection mechanisms of the NACs and by the AMp.

On the average, each fault injection experiment took about five minutes. This large value is
mainly due i) to the experiment set-up and ii) to the possible execution of the automatic
recovery and restart procedures, in case of failure of the testbed after a fault has been injected.
More specifically, the watch-dog monitoring the useful duration of each experiment was set to
110s.

15.3.4.4. The M Set. The measures considered for the analysis presented here consist of
two types of measures: predicates and time distributions.

Let E designate the error occurrence predicate; i.e., E is true if the injected fault is activated
on the faulted pin(s). Let J; denote the status of the ring insertion relay of statien §;,i=1, ...,
4; Ii is true if S; is inserted into the ring.

The local coverage or error detection predicate D characterizes the efficiency of the NAC
self-checking mechanisms:

D=E-+T;

D is true if the NAC of the injected station is extracted when the injected fault is activated (the
expected behaviour in presence of faults)®. The notation: A « B is used to designate the
conjunction between predicates A and B.

6 An opposite use of D has been made in the case of mode 5 to test if the station remained extracted when
faults were injected; thus, in this case, a 100% coverage is assumed when the station remains extracted.
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Let P designate the predicate corresponding to the conjunction of the subset” of the AMp
properties considered (see table 1 of chapter 10 for a definition of the AMp properties). Let
predicate C characterize the confinement of the fault/error (i.e., all the “correct” stations remain
inserted in the ring). The distributed coverage or fault tolerance predicate T, that characterizes
the defensive properties of the protocol at the MAC layer, can be expressed as:

T=E+P+C=E-+(Pa3-Pa6+Pa9)« (Ip*I3°1y)
T is true whenever all the AMp properties are verified, the confinement of the fault/error is
ensured when E is true. Although, it might a priori mask interesting characteristics, the
grouping of the P and C predicates into one single predicate is substantiated by the two
following remarks:

« the results obtained to date [Aguera et al. 1989, Arlat et al. 1989] have never led to
an observation of P being false when C was true,
« the status of predicate P is of little interest when predicate C is false.
Thus, in subsequent analyses, the status of predicate T can be strongly related to the status
of predicate C.

Two types of time distributions complement the analysis. The fault dormancy measures the
time interval between the injection of a fault and its activation as an error at the point(s) of
injection. If Tq denotes this random variable, and Tg and T the error and fault times
respectively, then:

Tag=Te-TF
The extraction latency corresponds to the time interval between the injection of a fault and

the extraction of the NAC of the injected station; if Ty denotes this random variable, and Tp the
extraction time, then:

Ti=Tp-Tr
15.3.5. Major Results Obtained

15.3.5.1. Characterization of the Experimental Results. For each circuit submitted
to fault injection, 30 experiments were carried out for each of the 5 activation modes.
Accordingly, the complete test of one IC consisted of a run of 150 experiments that was fully
automated to enable the experiments to be carried out overnight. A total of 40 circuits out of the
101 that compose the NAC (with restricted self-checking) was submitted to fault injection.
Even though this represents only a subset of the circuits, the use of the forcing technique
allowed a high proportion of the actual equipotential lines to be faulted, resulting thus in a pin
coverage of 84%.

Another level of uncertainty is attached to the practical restriction to 110s of the observation
domain; in particular, it is clear that a distinction has to be made between:

* a fault which does not become active during an experiment,
» a fault that would never become active.

However, it has to be pointed out that such an uncertainty may lead [Arlat et al. 1990]:
* either to pessimistic estimates (e.g. in the case of the local coverage predicate D),
* Or to optimistic estimates (e.g., in the case of the T predicate).

7 The subset of AMp properties tested so far include unanimity, non triviality and order; testing properties
such as termination and causality would require a global clock and global ordering of the observed
interactions that were not implemented for the sake of simplicity,




Nevertheless, the analysis of the shape of the time distributions obtained provide an a
posteriori means to support the acceptability of the observation domain. Furthermore, the
exchange of several tens of messages (up to 100 messages) from the observed traffic flow
during each experiment provides a sufficient activation domain enabling a reliable analysis of
the P and C predicates to be carried out.

In this section, the focus is essentially on the presentation of summarized results
concerning coverage estimations (local and distributed) and the evolution of three successive
versions of the AMp. Detailed results and analysis of the influence of the activation modes,
dormancy distribution, and others, can be found in [Aguera et al. 1989, Arlat et al. 1990, Arlat
et al. 1989]. As the fifth activation mode is specific (faults are injected into a non-inserted
NAC) and indicated a 100% coverage for the D and T predicates, the reported statistics concern
the first four modes only.

15.3.5.2. Estimation of the Coverages. Figure 2 summarizes the major statistical
results obtained concerning the estimation of the local and distributed coverages of the fail-
uncontrolled NAC running the first version of the AMp software. The percents indicate the
values of asymptotic coverage for the predicates E (error), D (detection at NAC level) and T
(tolerance of AMp). The time measures indicate the means for fault dormancy and error latency
distributions.

The minimum distributed coverage (NAC + AMp) is about 68 % (82 % x 83 %). The
apparent fault coverage, i.e., the proportion of tolerated errors is about 85 % (17.5 % + 82 %
x 83 %). The estimation of the actual coverage depends on the causes of the 17.5 % for the

D T combination, which requires supplementary observations of the AMp.

93% 82% 83%
87 ms 27s

l 7% iO.S% l 17%

Non-significant
Experiments

Fig. 2 - Summary of the Coverage Eslimates

Further studies, including i) correlation tests and ii) the analysis of a supplementary set of
1600 experiments in which faults were injected directly onto the NAC relay control circuitry to
ensure immediate (T} =0) NAC extraction have been carried out. These studies made it
possible to identify the causes of the 14 % [82 % x 17 %] of errors correctly detected but not

tolerated (D-"'f). About 8 % of these failures can be attributed to an erroneous behaviour of
AMp. The major proportion (92 %) is probably due to the excessive latency of NAC self-

checking mechanisms (this hypothesis is substantiated by observed correlation between the D= T
occurrences and measured detected latency [Aguera et al. 1989]).

15.3.5.3. Impact of Fault Injection on the Development Process. Traces and
memory dumps recorded for each experiment in which non-confinement occurred provided the
protocol implementers with useful data for the fault removal task. As a consequence, two more
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versions of the AMp were submitted to the fault injection tests. For these tests, 8 of the circuits
of the same NAC were selected among those that contributed most to the D+ T proportion in
the tests realized for the first version. The statistics presented were obtained in a set of 3600
experiments (8 x 150 x 3). The experiments showed that the distributed coverage was
substantially enhanced, and that some types of errors were no longer obtained.

15.3.5.3.1. Evolution of the Distributed Coverage. Figure 3 illustrates the variation
of the D T proportion observed for three successive versions V1, V2 and V2.3.

Mode 1 I Mode2 B8 Modes Mode 4

{—x—- Modes 1-4 }—

Vi V2 ve3

Fig. 3 - Variation of D T Combination according to the Different Versions

It can be noted that passing from V1 to V2 had an impact on modes 1 and 2, although a
certain degradation could be noted in mode 4. Instead, the passage from V2 to V2.3 caused an
important decrease in the proportions of AMp failures, especially in modes 3 and 4. The
percentages indicated on the histograms average the global variation for modes 1-4. The
percentage of De T is reduced by 50% from version V1 to V2.3, which demonstrates that there

was an increase in AMp reliability.

15.3.5.3.2. Evolution of the Number of Errors per AMp Module. Figure 4 shows
the distribution of the errors observed on the main software modules of the NAC for the three
successive versions. For conciseness, only the modules in which errors were detected are
shown. The Monitor operations enable the system to keep a coherent view of the multicast
group in the network and to recover from station failures. The Emitter and Receiver entities
perform the atomic data transfer operations. The Driver controls the exchange of information
with the communication medium. A more detailed description can be found in [Ribot 1989].

15.3.6. Conclusion

In spite of the limitations of the physical fault injection approach (late application in the
development process, for example) and the difficulties in applying it, especially in the case of
distributed architectures (selection of faults to be injected; synchronization of the instant of fault
injection with target system activity; parasitic mutations induced by the physical interference
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Fig. 4 - Distribution of the Errors observed in the Different Software Modules

between the target system and the experimental tool; effort to set up a reliable distributed
testbed, among others), the use of the approach was very fruitful.

The distributed testbed, including the fault injection tool MESSALINE, that has been
developed to carry out this work provides a fairly comprehensive experimental environment that
enables:

a) a global testing of the services provided by AMp, which allows assessment of not
only the interactions among several peer implementations but also those with the
layers below,

b) the estimation of the effectiveness of the fault-tolerance features of the target system
in the presence of injected physical faults,

¢) the automated execution of a test sequence without operator intervention that was
made possible only by the integration of fault tolerance features in the testbed itself.
As an example, at the end of each experiment, should the injected station be found to
have crashed, it is rebooted automatically.
For the sake of conciseness, only a fraction of the experimental results obtained has been
included here. Other relevant contributions to mention are:

« the characterization of the behaviour of the system in the presence of fault, e.g., the
impact of the activation modes; the influence of different types of faults (permanent,
intermittent and transient faults); the impact of fault location (main versus specific
board), among others;

» the identification of the limited performance of the self-checking mechanisms
implemented on the tested NAC. Analysis based on a specific set of experiments
showed that most AMp failure cases were caused by the excessive latency of the
error detection mechanisms (especially for the main board). These results justify the
need for the improved NAC architecture employing duplicated circuitry, The next
step is thus the test of this NAC with enhanced self-checking (fail-silent NAC) to
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evaluate local and distributed coverages to help to decide whether the benefits
obtained justifies the increased cost.

The most recent version of the AMp software is being used now for the comparison of the
two NAC architectures for the tests mentioned in the above paragraph. For these experiments,
the property relative to the reconfiguration (called consistent group view, see table 1 of chapter
10) is included in the analysis. The preliminary results of these experiments are reported in
[Arlat et al. 1991].

Finally, it is worth noting that the coverage estimates presented in this section correspond
essentially to conditional dependability measures for the fault tolerance mechanisms tested (i.e.,
conditioned by the occurrence of a fault or an error). In particular, they do not account at all for
the fault occurrence process. Work is currently being carried out that is intended to refine these
coverage estimates by integrating the experimental results with a model-based description of the
fault occurrence process. Towards this end, two approaches are currently conducted which are
aimed at:

* weighting the coverages obtained for the faults injected on one IC by the failure rate
associated to that IC,

* implementing the link between experimental measures and Markov models to derive
dependability measures.

15.4. Dependability Evaluation

15.4.1. Introduction

Dependability evaluation is viewed here as quantitative rather than qualitative. Its aim is to
compare the various design solutions, to define some essential parameters and to study their
effects on system dependability. A global dependability model will be defined that can be used
to evaluate several measures of the dependability achievable by different configurations of the
architecture. The dependability verification using fault-injection will provide assistance in the
necessary quantification of the model parameters.

The results obtained from the different activities of this work should provide the users of
the Delta-4 architecture with guidance in the decisions concerning configuration of their own
system. The final assessment of the quality of the architecture should help the development
process itself as well as maintenance planning,

It should be noted that this activity is centred on the OSA architecture although it is possible
that the models could be easily extended to cover the XPA architecture.

15.4.2. First Analysis

The aim is to develop a global model of the dependability of the architecture includin g both
hardware and software faults. It will then be necessary to estimate the parameters of this global
model and finally evaluate the dependability measures to study the reliability, the safety, the
availability, etc., achievable by various configurations of the architecture.

It is very difficult to establish directly a correct global model; so a progressive method will
be used. It is necessary to establish a global evaluation strategy in terms of inter-connected sub-
models. After the study of the sub-models, it is necessary to aggregate them and study the
global model. This organization in sub-models should also give some early feedback about the
design of the different components included in the sub-models.

For the purposes of the evaluation, three levels can be distinguished in the Delta-4 OSA
architecture:
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e the hardware level (networks, NACs, hosts ...),

« the system software level (local executive communication stack, administration
system, Deltase/XEQ),

+ the application software level.
These levels will give a solution for the design of interconnected sub-models and simplify
the dependability study.
We have defined three main objectives:

+ modelling and evaluation of the communication hardware (comparison of the various
communication topologies)

« extension of the communication architecture model to include the host-resident
management information base (this model will include the MIB and MIB-
management taking into account the replication of these entities on several hosts,
before the extension to the complete hardware and software architecture).

« establishment of the global model of a target application and the evaluation of its
dependability measures (aggregation of the previous sub-models in order to provide
a framework for quantifying the dependability offered by a particular configuration
of the architecture).
The first objective has already been achieved and the results will be summarised hereafter
(see §15.4.4). The next step is to include the host-resident management information base.

15.4.3. Evaluation Method

Several methods for evaluating dependability measures can be distinguished: reliability block
diagrams, fault-tree (or event-tree) analysis and state diagrams [Laprie 1983]. The main
advantages of the latter are:

« their ability to account for the stochastic dependencies which result for instance from
maintenance and solicitation processes, or from simultaneous consideration of
several classes of faults,

« various dependability measures can be derived from the same model.

A state diagram is a graph in which the nodes represent the states of the system and the
edges the elementary events leading to system transition from one state to another. The system
model may be viewed as a representation of (i) the modifications of the system structure
resulting from the events likely to affect the system dependability (fault-error-failure process,
maintenance actions) and of (ii) other events of interest (e.g., solicitation process corresponding
to the user’s requests).

15.4.3.1. Markov Chains. When the elementary events can be considered as exponentially
distributed (constant failure rates) the state diagram corresponds to a time-homogeneous
Markov chain, Markov modelling is well adapted to dependability evaluation, it is well-suited
for comparing different possible structures at the design phase (or during operational life if the
architecture of the system allows this possibility) in order to select the “best” one.

Evaluating system dependability measures using Markov chain may be viewed as being
composed of two tasks:

» model construction: derivation of the system behaviour model from the elementary
stochastic processes,

» model processing: derivation of dependability measures from the system behaviour
model.
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The model may be very large for complex systems, in which case we need formal methods
to construct it and program packages to handle it.

The current approaches aimed at formalizing Markov chain construction when accounting
for stochastic dependencies are either algebraic approaches or graphic approaches.

Graphic approaches are based on stochastic Petri nets [Béounes and Laprie 1985, Beyaert
et al. 1981, Molloy 1982] for which the basic idea is very simple, and thus attractive: when the
transitions of the Petri net are weighted by hazard rates, the reachability graph may be
interpreted as a Markov transition graph,

Advantage is taken of the SURF-2 dependability evaluation tool that is currently being
developed by LAAS (independently of the Delta-4 project). This tool is based on Markov
process evaluation techniques and model description can be carried out either directly using a
Markov chain or using stochastic Petri nets,

15.4.3.2. Constant and Non-Constant Hazard Rates. The constancy of failure rates
is a widely-recognised, and widely-used, assumption for element failures due to physical
faults. Concerning the maintenance rate, it has been shown [Laprie 1975, Laprie et al. 1981]
that considering corrective maintenance (repair) rates as being constant is, although not
physically realistic, a perfectly satisfactory hypothesis for reliability evaluation. It is less
satisfactory for availability evaluation since asymptotic unavailability may vary by a factor 1 to
2 when considering a constant repair rate or a constant repair time,

More generally, it can be considered that, under the assumption of exponentially distributed
times to failures, assuming a constant hazard rate for the other processes is a satisfactory
hypothesis as long as the mean values are small when compared to the mean times to failures.

Concerning software failure rates, due to the corrections introduced during the software life
cycle, the failure rate generally decreases during the development and even in operational life.
However, if no more modifications are performed or if the modifications still performed do not
significantly affect the failure rate, consideration of a constant failure rate constitutes a good
assumption. Usually this situation corresponds to an advanced phase of the operational life.
Experimental results confirm this assumption [Kanoun and Sabourin 1987, Nagel and Skrivan
1982]. This failure rate (denoted residual failure rate) can be derived by applying a reliability
growth model to data collected on the software in operation: the hyperexponential model
developed at LAAS and used for several projects [Kanoun et al. 1988, Laprie 1984, Laprie et
al. 1990] is the only model able to predict this measure.

What are the alternatives in terms of modelling techniques? There are three ways for
handling non-constant hazard rates:

* time-varying Markov processes [Howard 1971],

» semi-Markov processes [Howard 1971],

« transformation of a non-Markov process to a Markov process by adding either (i)
supplementary variables [Cox and Miller 1968] or (ii) fictitious states (the method of
stages [Cox and Miller 1968, Singh et al. 1977].

Our recommendation (which has been put into practice for several years in the
dependability group at LAAS) is the following [Costes et al. 1981, Laprie 1975, Laprie et al.
1990]:

* consider all the hazard rates as constant and derive a time-homogeneous Markov
chain,

+ perform sensitivity studies using the device of stages for those rates that are
considered to be non-constant, starting with one fictitious state for each non constant
rate, and stopping when addition of more states is of non-perceptible influence.
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This recommendation stems from the following facts:

« amodel is always an approximation of the real word, and this approximation has to
be globally consistent,

» when modelling phenomena stochastically, the first moment generally determines the
order of magnitude, the further moments bringing in refinements; an exponential
distribution can be seen as the distribution corresponding to the knowledge of the
first moment only.

15.4.3.3. Equivalent Failure Rate. When the non-absorbing states (non failed states)
constitute an irreducible set (i.e., the graph associated with the non absorbing states is strongly
connected), it can be shown that the absorption process is asymptotically a homogeneous
Poisson process, whose failure rate (denoted equivalent failure rate) is given by:

| | transition rates of the considered path

M:

. paths from I I output rates of the considered state
Initial state (1) T :
to the failed state ® ?exscéglqﬁ

The reliability is then given by:
R(t) = cxp{~7\.eq t)

and the asymptotic unavailability is equal to:

A ="
1!

where [ is the repair rate from the failed state.

Since the Delta-4 system is repairable, the associated graphs are generally strongly
connected, and this approach will be adopted in the following: the different sub-systems will be
evaluated through their equivalent failure rates.

15.4.3.4. Parameters of the Sub-Models. The parameters needed to establish the sub-
models are (i) the failure rates of the different components of the architecture, (ii) the repair
rates as well as the repair policy and (iii) the coverage factors that quantify the effectiveness of
error-detection and fault-tolerance mechanisms. The estimation of these parameters will entail
the use of failure rate data banks when such banks exist as well as the use of the results
obtained from hardware fault-injection. In some cases, extrapolation of failure data obtained on
similar projects will be of great help. Concerning the maintenance process, one has to assume
some realistic repair policies (see subsection 15.4.4.1).

At the moment, reasonable figures have been guessed and the values of these parameters
will be used before the end of the project to predict system dependability from a modular and
parametric model. When the “real” values are evaluated from the definite project the
corresponding parameters will be replaced in the model.

15.4.4. Modelling and Dependability Evaluation of the Communication System

The various hardware communication architectures are the 802.4 token bus, and 802.5 and
FDDI token rings. In each architecture, every host possesses a NAC that interfaces the host and
the underlying media. The communications software and a part of the administration software
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are executed on the NACs. The couple host-NAC form a node or a station, and the set of the
NAC:s with the underlying media constitute the communication system.

There are thus two essential aspects to be taken into account in the models: the
communication topology and the nature of the NACs: fail-silent (with extended self-checking
mechanisms) or fail-uncontrolled (with limited self-checking mechanisms).

15.4.4.1. Model Assumptions. We assume that a non-covered failure of one element
leads to a total system failure and we will consider the following maintenance policy:

» a covered failure (of the NAC or of the medium) does not affect service delivery,
moreover the repair of such a failure does not need service interruption,

« after a non-covered failure (of the NAC or of the medium), service delivery is
interrupted, repair of all the failed elements is carried out before service is resumed,

« in case of one or several covered NAC failures, followed by a covered failure of the
medium, repair priority is given to the medium,

» for the double ring, the wiring concentrators have the higher repair priority.

15.4.4.2. Notation and Numerical Values of the Parameters. The two types of
NAGCs are modelled in the same manner. They differ by the numerical values of the parameters:
for the fail-silent NAC, error detection coverage should be higher, the failure rate is also higher
due to the greater amount of hardware necessary to enhance the self-checking. The equivalent
failure rate of the communication system is evaluated as a ratio of the failure rate of the NAC,
The double FDDI ring has the same model as the double 802.5 ring.

The main parameters of the models are:

* Aw, the failure rate of the NAC — a value of 104/ h has been taken as a reference
and corresponds to 1 failure per year,
* Awc, the failure rate of a wiring concentrator in the double ring, it should be about

the same as the failure rate of a NAC (it has been taken in fact equal to Ay in this
study),

* n, the number of stations — fixed (arbitrarily) at 15,
* N, the number of wiring concentrators in the double ring,

+ Ag, the failure rate of the bus — a value of 2 10-5/h has been taken; this
corresponds to 1 failure per 5 years,

* Ap, the failure rate of the ring — it has been taken equal to Az,

* U, the repair rate, a repair duration of 2 hours has been adopted.

The coverage factors for the different elements are denoted: py, for the NAC, pg, for the
bus, py, for a link in the ring, pwc, for the wiring concentrator and p’wc, for the correct
reconfiguration of the double ring after a non-covered failure of a wiring concentrator.

Let px be defined as: py = 1-py where X € {N,B,I,WC}.

15.4.4.3. Summary of the Results. The expressions for the equivalent failure rates of
the different architectures are very complex for the double media. However they can be

simplified using the fact that: Z ] << 1.
u

The expressions of these failure rates considering only the first order terms are;
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It can be noted that, for the single media the equivalent failure rates are limited by the failure
rate of the medium and the non-covered failures of the NACs and that, for the double media,
they are directly related to the failure rate of the non-covered failures.

The coverage factors are thus of prime importance (this has important consequences on the
dependability of a system containing both Delta-4 NACs and non-Delta-4 NACs, see annexe

M). However, due to the numerical values of the different failure rates the coverage of the
NAGs, py has more influence than pp and p,.

For the ring, duplication is worthwhile only for Az >5 103 /h even with a perfect
coverage of the NACs, py =1, (figure 5, for which p; =0.95 and pwe = p’we = 0.9).
This is due to the introduction of the wiring concentrators whose failure rates are of the same

order of magnitude than the NACs, For instance, considering py = 1, duplication of the ring
acts as follows:

» for Ag = 10-3 / h, it increases the unavailability from 11 min. to 48 min. / year,

« for Ap = 10-4 /h, it decreases the unavailability from 1h 45 min. to
58 min. / year.
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Fig. 5 - Communication System Unavailability (in hours per year) for the Single and the Double Ring, with
py=095and 1.

With respect to dependability improvement due to the duplication of the bus, the
unavailability of the communication system with a single and a double bus, versus the failure

rate of the bus (Ag) and for py = 0.95 and 1, is given in figure 6.

When the coverage factors are less than 1, duplication can lead to dependability
deterioration depending on the value of the bus failure rate: for instance for py = p; = 0.95,
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improvement is effective only for Ag 22 10-3 /h. This is because when Ag is low,
dependability is conditioned by the NAC failures.
When the coverage factor of the NAC is equal to 1, duplication is worthwhile, for example:
« for Ag = 10-3 / h, duplication of the bus decreases the unavailability from 0.2
(11 min. / year) to 1 min. / year,
o for Ap = 10-4 /h, unavailability is decreased from 1 h 45 min. to
11 min. / year,
which is a significant improvement.
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Fig. 6 - Communication System Unavailability (in hours per year) for the Single and the Double Bus, with
py =095 and 1.

Concerning comparison of these architectures, it is very difficult to classify them.
Assuming the same failure rate for the bus and for the ring leads to the same expression of the
equivalent failure rate and for the unavailability of the single medium. Figures 5 and 6 show
that for reasonable failure rates (A = Az < Ay) dependability measures are independent from
this failure rate. Which means that the single bus and the single ring are equivalent.

Duplication of the medium can even deteriorate the dependability measures depending in the
parameter values. The results enable the different architectures to be compared according to the
various parameters in order to make a tradeoff and to select the more suitable architecture. For
instance, for the considered values, the double bus seems more interesting than the double ring
for Ag <4 10-3/h, however, the value of the failure rate of the wiring concentrator is of

prime importance: a lower value of Ay, acts in favour of the double ring.

15.5. Software Reliability

15.5.1. Introduction

The idea of using the collection of data to carry out a reliability evaluation is not a new one. The
techniques have been applied in several areas, including hardware reliability evaluations, over
several years. Data collection for software has also been successfully implemented in several
projects and was introduced within Delta-4 as the basis for both quantified and qualitative
evaluation. This section provides a general overview of the reasons for data collection, its
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relationship to software testing and software reliability prediction and a discussion of the
problems of data collection. It then goes on to describe the data collection and reliability
modelling activities undertaken within Delta-4 and to discuss some project-specific topics.

15.5.2. Reasons for Data Collection

There are several reasons for collecting data. These can be broken down into three separate
levels of interest as below:

15.5.2.1. Managerial. At the highest level, data collection allows managers to have a clear
picture of the progress of the development of the software and the problems encountered. It
aids in overall project control and increases the amount of information available to management
during the actual development of the software. This gives management the opportunity to solve
problems as they occur rather than waiting until the effects of the problems have been
propagated throughout the rest of the project.

15.5.2.2. Development. The data collected provides a clear historical record of the
evolution of the software by keeping track of the incidents that occurred, the faults found and
the changes made, thus allowing the developers to backtrack if necessary. In cases where the
information is analysed as part of the development control procedure, data collection may
prevent duplication of effort arising from addressing problems previously identified and solved.
The data also provides a basis for the sensible planning of maintenance and future
enhancements to the product.

15.5.2.3. Research. The data collected can provide the information necessary for further
research into means of achieving and predicting software reliability using static analysis tools
and modelling techniques. Significant research has already been done on the modelling side but
work on the use of static analysis tools and their effect on reliability has so far been limited to a
very small section of the software community. This research in the long term should benefit
both management and software developers by enabling managers to locate problems earlier in
the project and developers to have the opportunity to gauge how well the module has been
constructed, before any testing has taken place. Frequently, extensive maintenance can prove to
be detrimental to the structure and complexity of the code. The application of static analysis
tools during routine maintenance and enhancements should allow the effects of the changes
made after initial development to be assessed.

15.5.3. Planning and Implementation of Data Collection

To ensure that the data collected is of high quality, the planning and organization of the
collection activity should take into account the need for adequate resources and skilled staff. It
is also desirable to automate the data collection as much as possible to improve consistency and
validity and to establish a project contact within each participating company. This contact’s
duties should include the management of data and the data collection activity to ensure the
completeness of the data and data set, with an emphasis on accuracy and quality of data. The
contact will also be able to act as an intermediary between those storing and analysing the data
and those collecting it.

Some projects have taken the approach of collecting as much data as possible, as it may be
of potential use in the future, although at the time it would serve no purpose. Given endless
resources, time and man-effort, this may be a very useful thing to do. However, collecting data
incurs cost and the financial constraints placed upon the project will dictate the depth and range
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of the data collection activity. With this in mind, some thought should be given towards the
most cost effective means of collection.

Some data can be accumulated for little cost, e.g., by use of static and dynamic analysis,
whereas collection of other data can be more expensive. Static analysis tools provide valuable
data in their own right but, the very fact that they are static analysers means that the code is not
executed, and hence they cannot provide dynamic data, e.g., test coverage, time between
failures.

The data collected should be “multi-purpose” to enable the use of the original data in a
variety of areas. For some applications, minor amendments may be necessary but it is important
to ensure that these amendments do not violate the integrity of the data.

On the research level, the data collected can be used both in a reliability evaluation and to
assess the effectiveness and correctness of other techniques. Perhaps the best way to illustrate
this point is by an example — several sets of data are input to a new software engineering tool
that predicts very high failure rates. If we already know that the data has come from code that
has been highly reliable in operational use over a considerable period of time, then confidence
in the tool will be significantly reduced.

The data can also be used as a yardstick for project planning and projections on a
managerial level and as a basis for future work on similar projects on the development level. It
provides developers with the opportunity of learning from their mistakes and achievements by
applying the data to the identification of their main problem areas or strengths, hence potentially
improving the quality of their work.

15.5.4. Data Collection and Software Developers

To gain the best results from any data collection procedures, management should be aware of
the reasons for data collection so that they can appreciate both the need for data collection and
the need to motivate those people actually collecting the data. The collection mechanism should
be made as simple as possible to ensure that the data collected is of an acceptable quality. Once
the data collection methods are produced and agreed, they should be disseminated in the most
appropriate manner.

Feedback of the results obtained on the data should be given at regular intervals in a clear
and concise manner. Individuals are generally keen to improve the standard and quality of their
work and are therefore interested in receiving feedback as long as it is done constructively. If
the data collection activity is perceived in any way to be a means of performance measurement
then the developers will be demotivated and the data collection activity will fail [Littlewood
1987]. It is important that this feedback is provided as quickly as possible to improve co-
operation, even more so in cases where the staff involved in the software design and
development are also responsible for testing.

The analysis of the data collected may allow software developers to discover answers to
some very important questions:

* Am I always making the same sort of mistakes in the same areas?

Records will indicate whether or not there are constant sources of error affecting the
quality of particular products.

» How effective are my testing procedures?

Analysis of the records may show that the testing itself, rather than the items tested,
tends to be at fault. This can lead to a more effective testing practice.

e How do I know what to test?
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The results of any walkthroughs that have been done allow developers to pinpoint
any areas of weakness inherent in the code. Static analysers provide the developers
with an internal picture of the data or control flow within the modules. This allows
the developer to produce test data that will address the areas of weakness and
increase the structural coverage of the code.

* How do I know when to start testing?

By using walkthroughs as well as static analysers it is possible to significantly
reduce the time spent in finding those faults that can be identified before the dynamic
testing activity begins. Dynamic testing should begin only once there is a significant
decrease in the cost-effectiveness of other techniques and the developers are satisfied
that errors already identified have been removed.

* How do I know when 1o stop testing?

The data collected provides an overview of the number of faults found and allows
these faults to be classified. It cannot provide a hard and fast rule on when the
testing should be stopped but can give an indication of the effectiveness and
coverage of the testing already completed,

It should however be reiterated that while it is of the utmost importance to encourage the
data collectors to proceed in a diligent and professional manner, so that the best results possible
are attained, their own management needs to be persuaded about the importance of what they
are doing. Without the approval of management, the data collection procedure will not be given
the priority it requires.

15.5.5. Data Collection and Project Managers

Managers of all software projects need to have access to information on the development of a
particular piece of software. They need to be able to collect and review operational information
in order to have the fullest possible picture of the current project. The data collected as partof a
reliability evaluation provides additional information on ‘good’ and ‘bad’ trends in
performance, suspected or actual deviations from experience of previous projects, as well as
providing input to future projects to help support:

= feasibility studies,
* project planning,

* project costing,

» resource allocation,

* choice of development methods, testing methodologies, process control and support
facilities.

This enables managers to do their job more efficiently and make cost-effective use of the
resources available.

Data collection must be purposeful. It should avoid obstructing or duplicating other
activities, and if possible be built in to the development process, in order to make it acceptable
to project staff. In many cases, those involved with the project may not fully appreciate the
potential future benefits from regular data collection and may be tempted to give it a low priority
at times when it should have high priority, e.g., during testing. In addition, the short-term
benefits of data collection and analysis may not be immediately apparent as it takes some time to
gather a suitable subset to make any reasonable statistical comparisons. However, the benefits
of some data collection may be immediately available if the data required for such a subset is
obtainable for other sources or there are commonly accepted precedences, e.g., McCabe’s
complexity measure [McCabe 1976].
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For the best possible results, it is necessary to start data collection as early as possible in
the project but this will vary from project to project. Data collected at a very early stage during
testing should provide information on the progress being made by developers of individual
modules, allowing managers to monitor closely those modules that are critical to the
development of the system. Thus, a greater managerial control can be exercised over the entire
software life-cycle.

15.5.6. Data Collection and Testing

Before the testing of any software product, it is very important to have produced a test plan
defining the testing work in detail. This plan should provide a baseline for the work to be done
and will help to provide effective status reporting. Data collection should be seen as an integral
part of the testing activity and provides an ideal medium for the recording of the test results.

If data has already been collected before the start of the testing activity the results obtained
can be used to indicate those modules that are more likely to contain faults. It is then possible to
test these “faulty” modules first so that any modifications required can be made while the rest of
the system is being tested. Using data previously collected from similar projects it may be
possible to predict roughly the number and type of faults inherent in the software. Combining
this prediction with the number of errors actually detected can provide an indication of the
success of the testing activity.

The approved ANSI standard [IEEE 829] for software test documentation describes a test
log and a test incident report and concentrates on providing a framework for collecting data
during dynamic testing. The ANSI test log describes a chronological record of relevant details
about each test performed, and the subsequent results (error messages generated, aborts,
requests for operator action, etc.), Discrepancies, including what happened before and after any
unexpected events, are described.

The ANSI test incident report documents any event that requires investigation or correction,
summarising the discrepancies noted and refers to the appropriate test specification and test log
entry. It includes the expected and actual results, the environment, anomalies, attempts to
repeat, and the names of the testers and observers. Related activities and observations that may
help to isolate and correct the problem are also included [Hetzel 1984].

15.5.7. Data Collection Problems

All data collected must be accurate and of the necessary level of detail so both developers and
analysts can understand, and in some way measure, the software development process. Often
the inconsistency of data definitions and a lack of commonality of terminology impose barriers
to the general usage and effective interpretation of the available information.

The ANSI standard on Software Test Documentation described in the previous section goes
some way to eliminating the problems encountered with the software data collection process, by
providing collection standards. However, for data collection in general, there is still a need for
commonly accepted terminology and data definitions. This would provide a solution to some of
the common data collection problems listed below:

1. Inconsistent Definitions:
« Inconsistent phase definitions.
« Using terms without actually defining them.
* Inconsistent use of terms which have standard definitions.
+ Standard definitions that do exist may not be freely available.
* Accepted definitions that are contradictory.
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. Observational Bias. The problem with any subjective measure is that for a single

given condition people will supply different answers. Some people are
fundamentally very generous or critical when making subjective judgements. In
other cases, ratings are conditioned by the individual’s desire for the project to
succeed, or at least appear to be successful.

Local vs. Global Frame of Reference. Consider a small department that consists
exclusively of highly experienced and talented personnel who have been using a
given development method for several years. If they are asked to rate the level of
rigour with which they have applied that development method on a particular
project, they may rate it as medium rigour with respect to the rest of the
department’s projects. However, with respect to other departments within the same
organization that have limited experience of the development method, they should be
rated as applying a high level of rigour.

. Averaging and Side Effects. When project or subsystem assessments establish

ratings of complexity, required reliability, timing constraints, etc., they tend to
provide the rating for the most highly-stressed portion rather than the average rating
across the project or subsystem. Also, people will intuitively give large software
projects higher complexity ratings than small projects. This can be avoided by using
tools such as COCOMO (COnstructive COst MOdel) [Boehm 1981] and several of
the static analysers to calculate intrinsic complexity

. Double Counting. In cases where a particular piece of code is being developed for

use in two separate subsystems the information on the software may be included
twice.

During the data collection process, problems will usually arise concerned with the accurate
recording of software metrics. The values collected ought to be:

* Repeatable — two independent data collectors would obtain the same value if they

were to measure the same item.

Comparable — the metric values obtained from different items have been obtained
using the same procedures or an equivalent translation process has been produced.

Verifiable — the values can be checked for clerical errors and inconsistencies.

To satisfy these requirements, it is necessary that data collection procedures be
implemented and adhered to, since the way in which data is recorded, verified and analysed will
influence the success of any data collection activities. The following suggestions will however
ensure that the data collection is as successful as possible:

data collection should be integrated into the development process

data collection should be automated wherever feasible

data should be treated as a company resource and facilities should be available
to keep historical records of projects, as well as monitoring current projects

data that cannot be collected automatically should be collected at the time, not based
on the recollection of past events, and verified immediately

software engineers should be motivated enough to keep accurate records, and to
participate in the data collection process

the timescales between data collection and analysis should be minimized

A data collection activity following some, if not all, of the suggestions above will benefit
the project as a whole and provide important information for use during reliability evaluations.
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15.5.8. Data Collection and Delta-4

Within Delta-4, consideration was given to the method of data collection, its use within the
project and the definition, storage and analysis of the data. This helped to remove ambiguities in
the results of the collection caused by poorly specified requests for information and therefore
improved the validity of and confidence in the data. The data collection manuals used attempt to
either define the terms used or provide examples in cases that are open to misinterpretation.

As it was also important to reduce the costs of data collection to a minimum, the most cost-
efficient techniques were implemented wherever possible. However, because the reliability
growth models being used for the Delta-4 reliability evaluation require inter-failure times, it was
necessary to accept a slightly larger overhead in order to be able to provide the data to drive the
models.

Unfortunately it was not possible to introduce data collection until most of the code had
been written and, in most cases, some initial testing had already been undertaken. It was
however envisaged that sufficient data would be collected to allow a detailed reliability
evaluation to take place during the project.

The original data collection activities that were produced ranged from extremely detailed
collection activities to a set of simplified data collection forms. The detailed collection activity
that was to be carried out at Ferranti on the development of Deltase for Ada consisted of a
comprehensive set of collection forms as outlined below:

A) An operating environment form containing information on the hardware and
software resources in use at each development and/or test site.

B) Several forms that only need to be filled in once for each product (e.g., Deltase for
Ada). These forms provide background information and, although they are not
directly used in the reliability evaluation, deliver a basic description of the structure
of the software product and process. They are:

* Product form — contains information on the components and tasks associated
with the product.

* Task structure form — contains information on the relationships between
tasks

* System/subsystem structure form — contains information on the relationships
between the different software components and how they are integrated.

» Textual system/subsystem structure form — contains information on the
relationships between the textual components of the system,

C) Two forms that need to be completed for each task:

* Task definition form — contains information on the type of task being
performed and dependencies between tasks.

» Task resource form — contains information on task duration and effort
expended. This has been separated from the task definition form to ensure data
confidentiality.

D) A form that needs to be completed for each component. The form required differs
depending on whether the component is a software component or a textual
component:

* Software component form — contains basic metrics and cross-references to
the system/subsystem form and the task form.

* Textual component form — as for the software component form.
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E) A final set of forms that provide the data required to drive the reliability growth
models described later. This data is collected from several phases of the
development process — in the early phases from design and code walkthroughs, in
the later phases from dynamic testing and finally during maintenance. These forms
are all cross referenced to allow the data to be processed into the correct format for
the models.

+ Test history — contains information on the behaviour of the software under
test.

» Incident form — completed for each incident. Contains information on the
cause and severity of the incident.

* Fault form — completed for each fault. Contains information on how the fault
was discovered, when it was actually introduced (i.e., during which phase of
development) and its cause.

» Change form — completed for each change. Contains information on how the
need for change was determined and the purpose of the change (e.g., planned
enhancement, fault correction).

The use of several forms at different levels of detail was designed to provide a
comprehensive picture of the software being developed and to ensure the completeness of the
data set over time. However, due to a change of direction in the project out of the control of the
data collectors, this detailed data collection was not implemented.

A simplified data collection manual has been provided to other Delta-4 partners who were
willing to collect data but did not have the time and effort available for an extensive data
collection activity. This manual consists of only three forms — a software log, an incident
report and a change report. The software log provides a detailed history of the execution of the
software over time and includes details of the test phase and test type for data collected during
testing. An example of the form is shown in figure 7.

This form is, however, not restricted to the testing phase but could be used throughout
software development. The other forms provide more detailed information on the incidents and
changes referenced in the software log and are very similar to the incident and change forms
used in the more extensive data collection activity. Using this simplified approach minimizes the
time spent on data collection but still allows sufficient data to be collected to be able to apply the
reliability growth models to the software.

The forms in the simplified data collection manual are compliant with the ANSI Standard
for Software Test Documentation described earlier. However certain areas of the standard are
not necessary for the Delta-4 data collection activity. Where there is a mapping between the
needs of Delta-4 and the standard, the two have been kept as consistent as possible.

Within Delta-4, to complement the work done on data collection, the mechanisms for data
storage, transfer and analysis were set up as shown:

* Data storage. All data collected has been stored in a central analysis database and
consideration has been given to the content and structure of this database. Plans
were made to validate and verify the data before entry, incorporating the lessons
learnt from previous data collections. A consistency checker is available to ensure
that the data sets within the database are as complete as possible.

» Data transfer. Applications have been developed to execute some static analysis tools
in a consistent manner and output the results to standard flat files. This standard flat
file format allows the data to be fed directly into the central database.

* Data analysis. The data in the database can be output in the format required by a
generic statistical package. The analysis process has been automated so that output
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from the static analysis tool can be fed into the statistical package and analysed. A
list of the code metrics is then automatically produced that indicates which metrics
are outliers.

SOFTWARE LOG

DATA COLLECTOR : COMPONENT ID VERSION ID :

DATE|START TIME |END TIME FEST PHASE [TEST TYPE] INCIDENT ID| CHANGE ID

Fig. 7 - The Delta-4 Software Log

Although data collection could not be introduced right at the start of the project, every effort
has been made to ensure the effectiveness and success of the data collection activity by
providing automated versions of the forms and keeping the collection as simple as possible.
The implemented mechanisms allowed prompt and accurate feedback directly to the relevant
project members.

15.5.9. Data Collection and Predictions

Continuous data collection means that it is easier to statistically identify trends as and when they
occur. The summary statistics provided as a result of statistical analysis should include
information on the most frequent error causes, the most common means of detection and the
most error prone modules. Detailed statistical analyses should also be provided for any trends
that give cause for concern.

The reliability of software can be qualitatively and quantitatively assessed during its
development, provided the use of the software is restricted to its specified purpose. Data
collection can lead to an improved understanding of the software development process and this
improved understanding extends to the reliability assessment of the software product itself,
There is currently no single agreed method of producing reliable software and therefore, the
collection, storage and analysis of data can aid in the evaluation of the links between the
development method(s) and the reliability of the software.

Software reliability models use data on the times at which software failures are observed to
occur, although the data can be processed for input to models that require data about the number
of failures within a given timescale. For use in driving the software reliability models, the
failure data will need to be processed, as several failures may result from one error.

All the reliability growth models rely on inter-failure times and require that a minimum
number of errors occur before the data can be fitted to the model. Once the data has been
processed, the use of a general linear model may help to identify problem areas in the software.
When enough error data has been generated, the data is run through the reliability growth
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models. Unlike hardware reliability modelling, where large quantities of a particular piece of
equipment can be tested, software reliability modelling involves just one unique software
product. The profile of the software changes when each error is encountered and repaired, with
the result that it is impossible to determine in advance which model will best fit the data. Not
only is the piece of software itself unique but so is each operational environment in which it is
to be used. Therefore an assessment of a piece of software will contain restrictions as to the
applicability of the reliability attached to the software.

A considerable number of reliability growth models have been published over the past
twenty years and there has gradually developed an underlying unity in the approach of the
models to the problem of software reliability [Mellor 1987], in that they adopt the following
assumptions:

« the system contains a set of errors on delivery,
» each error causes failure independently of all the others,
= each error causes failure at its own particular rate,

« failures due to the manifestation of a single error occur as a Poisson process®:

Some of the models also assume that on manifestation, an error is immediately and
perfectly removed.

A software suite of nine models is currently produced by Reliability Consultants Ltd. and
can be used to fit data to the models and to enable an analysis of the predictive accuracy of the
models for each data set.

To use these models, the following procedure is implemented:

« assume that there has been a sequence of failures during continuous use of the
software

+ collect at least the minimum number of processed failures required to run the model
and the times between failures

« collate the inter-failure times of the software, tg,.....ta.
« verify that the chosen model fits the data reasonably well
« take the chosen model and fit parameters using statistical estimation techniques

« use the fitted model to estimate quantities of interest, e.g., current failure rate, time
to next failure, number of remaining errors, etc.

The technique used to analyse the models ([Rook 1990], chapter 6) is that of partitioning
the processed failure data so that the observed data on the first failures ty......tj.1 are fitted to the
models and the predictions made by the models when the data have been fitted to them are
compared with the subsequent failure data (tj,....tp) thereby giving a measure of the predictive
accuracy of the models. The accuracy of the predictions is analysed using standard statistical
techniques, such as u-plots and prequential likelihood, which will determine bias and noisiness
in the dataset.

The testing scenario should match, as closely as possible, the environment in which the
software will be put to use. To this end, records of all data input during testing should be kept,
so that comparisons of testing and the operational profile can be made. It is very important that

8 If a number of incidents are recorded within a set of time periods, and the following three conditions are
satisfied, then the process is a Poisson process:
a. Events occurring in two disjointed time intervals are independent
b. The number of events occurring in a time interval (11, 12) is only dependent on the length of the
interval t=tp-t] and not on t]
¢. The probability that more than one event will occur at the same time, and the probability that an
infinite number of events will occur in some finite time interval are both zero.
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the data input during testing is carefully selected to optimize the test coverage of the paths
through the software that will be exercised in operational use. Figure 8 shows one possible
relationship between the set of inputs leading to failure and the set of inputs covered by testing.

3at of all possioie set of all possible
inputs to the program inputs to the program

et of inputs covered by
festing.

These may not cover all
the areas in which
failure-prone inputs lie.

set of inputs leading to failure
of the software

set of inputs leading to failure
of the software

The software before testing Test coverage of failure-prone inputs

Fig. 8 - The Software Before and After Testing

There is an important potential problem in the simulation of the operational profile. A
relatively small change in the characteristics of the profile can often lead to the execution of a
previously rarely used piece of code, resulting in a whole new cluster of errors being found.
Conversely, a larger change in the profile can have little or no effect on reliability. This is
counter intuitive, but a corollary of this property is that a small error in determining the
operational profile can cause a massive error in determining the reliability ([Rook 1990],
chapter 1).

15.5.10. Predictions in Delta-4

The suite of nine models discussed above is being used to evaluate the reliability of the
software. However, since Deltase is a support environment, this has raised several points of
interest:

* The support environment does not execute continuously and has been designed to
supply many services by multiple and diverse mechanisms in such a way as to
minimize overhead. As a result, the measurement of execution time is difficult to
achieve and an instrumented version of the code has been produced to provide
execution time measurements. It is probable that the presence of the instrumentation
may affect the results obtained since the process of measuring will affect the quality
of the measurements.

* The distributed architecture means that ports on multiple different machines are
neither fully independent nor fully interdependent. This has implications for the
timing measurements, as different machines have different timing capabilities.

* The replication of software components raises problems in the processing of the data
for the models. If the times of their parallel executions are summed, this will give an
inaccurate measure of the reliability, since it is the overall reliability produced by the
system architecture that interests us, not the duplicated reliability measurements of
the replicas.
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The instrumentation inserted into the code has entailed a prolonged effort to analyse the data
produced by the instrumentation. Times for the remote procedure calls (RPCs) have had to be
extrapolated from cumulative figures for:

« the number of RPCs sent/received,

« the number of characters sent/received,

« timings on RPCs of various length,

« timings on the various machines used on the network.

The instrumentation has produced (after processing) four different sets of timings:

1. for three Deltase objects which are quite distinct and whose timings are therefore
not duplicated elsewhere by the instrumentation,

2. for the time spent in the libraries on each machine,

3. for the RPCs on UNIX, MCS and Ethernet,

4. for the Catalogue, Factory and Factory Agent.

The timings for the final set contain timings of some of the RPCs and there is therefore
duplication of timings that is impossible to calculate from the measurements.

To enable a meaningful analysis, the software problem reports have had to be cross-
referenced to the incident report forms generated by the instrumentation and the faults relating to
each of the subsets of the timings extracted.

It is intended that a quantitative assessment will be available by the end of the project since
there is now enough failure data to drive the models but the results are not available at the time
of writing of this document.
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