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A Modal Characterization of
Observational Congruence on Finite Terms of CCS
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We propose a translation method of finite terms of CCS into formulas of a modal
language representing their class of observational congruence. For this purpose, we
define a modal language and a function associating with any finite term of CCS a
formula of the language, satisfied by the term. Furhtermore, this function is such
that two terms are congruent if and only if the corresponding formulas are
equivalent. The translation method consists in associating with operations on terms
(action, +) operations on the corresponding formulas. This work is a first step
towards the definition of a modal language with modalities expressing both
possibility and inevitability and which is compatible with observational con-
gruence.  © 1986 Academic Press, Inc.

1. INTRODUCTION

When a logic L is used to express program specifications it naturally
induces an equivalence relation ~* on programs: two programs PROG 1
and PROG 2 are equivalent if they cannot be distinguished by any formula
of L, ie., PROG 1 ~“PROG 2 iff for any formula F of L PROG 1 F and
PROG 2 |= F are equivalent.

Using a logic L as a program specification tool sets the problem of its
compatibility with respect to some equivalence relation ~ derived from the
operational semantics of the description language. Such a relation defines a
concept of operational equivalence which is supposed to be the most
suitable and satisfactory in practice for the comparison of programs. Then,
a minimal requirement for the adequacy of L as a specification tool is that
~ < ~* ie, if two programs are operationally equivalent then they have
the same (equivalent) specifications. The non-validity of this condition
implies that there exists a formula F of L and two operationally equivalent
programs, the one satisfying F and the other not; thus, using F to express a
property, does not allow a characterization of the most general class of
behaviors corresponding to this property. If in addition, L is to be used as
a verification tool then it is also necessary that ~“< ~ ie., if two
programs cannot be distinguished by formulas of L then they are

125

0019-9958/86 $3.00

Copyright © 1986 by Academic Press, Inc.
All rights of reproduction in any form reserved.



126 GRAF AND SIFAKIS

equivalent. Consequently, the adequacy of L as both a specification and a
verification tool, implies that the relations ~ and ~* agree.

The problem of the definition of logics compatible with some operational
equivalence relation has been stated in Hennessy and Milner (1980),
Brookes and Rounds (1983), and Stirling (1983), where simple modal
languages have been proposed to characterize observational equivalence or
congruence of CCS. According to these results, an equivalence or con-
gruence class can be characterized as the (infinite) conjunction of the for-
mulas satisfied by processes of this class. This paper is a first step to the
definition of a modal logic compatible with observational congruence of
CCS by following a different approach. A method is given to obtain a for-
mula representing the congruence class of a CCS-term in a compositional
manner. For this, we associate with CCS-operators, rules describing how
the formula representing the class of a CCS-term is obtained by com-
position of formulas of its sub-terms.

We consider a very general modal language L(A) for which labelled trees
(CCS-terms) on a vocabulary 4 constitute a class of models and try to
define a sub-language L, such that ~ ° coincides with observational con-
gruence in CCS. L(A4) contains as sublanguages the modal languages
introduced in Hennessy and Milner (1980) and Stirling (1983). A function
| | is defined, associating with any finite term ¢ of CCS a formula |z| of
L(A) such that |¢] is satisfied by all the terms and only the terms congruent
to ¢, ie, f|=|?| and for ¢, ¢, arbitrary finite terms, ¢, ~¢, iff |z,]=|1,],
where =~ is the observational congruence. Obviously, L, corresponds to
the sub-language of L(A) generated by the c¢lements of the image of | |.
This approach has been adopted to (hopefully) avoid limitations of the
works mentioned above, concerning the definition of modalities expressing
inevitability and the modal characterization of classes of infinite
behaviours. However, these two problems are not discussed in this paper.

For the definition of L(A), we have been inspired by Kozen (1982),
where a very general modal language with a least fixpoint operator has
been introduced. In Section III we first give a modal characterization of
strong equivalence of CCS to get the reader familiar with the principle of
translation of terms into formulas. Then, we give a translation method of
finite CCS terms into formulas representing their class of observational
congruence. This method consists of associating with operations on terms
(action, +) operations on the corresponding formulas. Finally, we discuss
the use of these results for the definition of a sufficiently powerful language
compatible with observational congruence.
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II. DEFINITION OF THE MODAL LANGUAGE

We introduce as in Kozen (1982) the modal language L(A4) as the sub-
language of the closed formulas of L'(4), defined on the logical constants
true, false, a set of constants 4 and a set of variables X as follows,

—true, false € L'(A4),

—AuX<L(4),

—f. ffeL’(4) implies =1 f, f v f e L(A4)
—felL'(4) implies {f>eL'(A4),

—xeX and f(x) is a functional, positive in the variable x, implies
ux. f(x)e L'(4).

SemanTICs. The class of models of L(A) is the class of the labelled trees
on A, T(A). A labelled tree ¢ is defined as 1 =(Q,, g9, { =“},c 4) Where,

— Q, is a set of states, the nodes of ¢,
— g, € Q, is the initial state, the root of ¢,
— {59}, 4 is a set of transition relations, »“< Q, x Q,;

as t is a tree we have 4ge Q, daec A q—>“q, and Vge Q,, g+#¢,, g has
exactly one predecessor.
We define in the usual manner a satisfaction relation

E g( U (th,))xL(A).

te T(A)

For a formula f e L{A) we write,
—t:q}:flff (la q:f)e t::
— = fiff ¢, g5 = f, where g, is the root of ¢,
— k= fiff tE= fVYie T(A).
For te T(A), qe Q,, f, f'e L(A), ge L'(A), and ae A4,

— 1, g =true,

—tgEf iff ¢ gk f,

—bLaEfv /[ iff t,qgffort,qk [,

—hLgka iff 3¢9'¢Q,q'-¢,

—tLqEL{S> iff 3¢°€Q,3daed(g->"q¢ and¢, ¢’ f),

—tgkEpx.glx) il VfeL(d4)(F g(f)> fimplies ¢, g = f).

643/68/1-3-9
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The notations false, A, o, = are used in the standard manner. We use
the abbreviation [ f]:= {1 f>, ie,

—tqE[f1ilfVg'eQ, Yaed (¢ ¢ implies £, ¢'}= /).

Notice that each state g€ Q, in 1 =(Q,, o, { >}, 1) defines a subtree 7,
of ¢, with root ¢ and set of states the set of the states reachable from ¢ in .
Thus, the transition relations — can be considered as relations on T(A4)
and one can write ¢, - ¢,, instead of g »“¢". In the sequel we consider
the class L{A4) of the formulas where any element of A is written within
the scope of one of the operators ( ) or [ ]. For such formulas f'we have
t,q=fiff 1, = f, ie., fis true at a state g of a tree ¢ iff fis true for the sub-
tree ¢, of 2. So, we consider only the satisfaction relation |= € T(4) x L4 ).
The following properties are used:

ProperTIES 1. For te T(4) and f, f;, i€ J, elements of L{A),
(a) tECan fHiff IteT(4) (t-°¢ and ¢' | f),
(b) tE[Vicsa; A fi]1iff VY e T(A4) (t > ¢ implies 3ie J (a=a; and
& 1))
() ELSfvIO=L Vv
(d) ES AL AL
Other properties of L(A) can be found in Kozen (1982), where a com-

plete axiomatization is given for a similar logic. In the sequel, we often
simply write f instead of |= f.

1. MopAL CHARACTERIZATION

II1.1 Strong Equivalence

In order to get the reader familiar with our approach, we give a modal
characterization of strong equivalence of CCS in terms of formulas of the
language described in 1L

DerINITION 1. (a) Consider the set of terms P(A) built from a constant
Nil, a set of unary operators 4 and a binary operator +, recursively
defined by »

— Nil e P(4),
—ape P(A) for pe P(A) and ac 4,
—p+ p' e P(4) for p, p'€ P(A4).
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(b) For aeA the relation —“< P(A)xP(A) is defined as the
smallest relation satisfying

—ap-°p,
—p, —*° p' implies p, +p, - p’,
—p, —“ p’ implies p, +p, = p".

So, with a term p can be associated a labelled tree 1, =
(Q,, P, {~°}aca) € T(A), where Q, is a set of subterms of p and —“ is the
relation defined above. In the sequel we identify a term pe P(A4) with the
tree t, representing it. So, if f is any formula of L{4") where A’ is
isomorphic to A, then we can write p = f instead of ¢, = f. As there is no

risk of confusion, we shall not distinguish between a unary operator a and
the corresponding constant of the modal language.

PROPERTIES 2. (a) Nil = [false],
(b) pl= fimplies apl=<{an f> rlan [f],
(c) pE<{anf)implies p+p'=<an f)and p'+plElan [),
(d) pyEL[fi]and p, = [f>] implies py + p, ELfi v 12],
() p+NiE fiff pE £,
) p+p'ELfIMfpELf]and p’=[f]

In the sequel we often omit conjunction operators in order to simplify
formulas.

DrFINITION 2. (strong equivalence). Let ~ be the greatest relation on
P(A) such that for p,, p, € P(4),

p1~p;iffVae A (p, —»° p) implies 3 p5(p, —=“ p3 and p| ~ p5))

and

Vae A (p, »° p>implies 3 pi(p, - p} and p| ~ p3)).

It has been shown that ~ is a congruence (Milner, 1980), and it can be
characterized by the axioms:

(A1) (py+p2)+ps=pi+(p2+Ds)
(A2) py+p.=p2+0ps;

(A3) ptp=p,
(A4) p+Nil=p.
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DerFINITION 3. Consider the function | |e P(4)— L{A) recursively
defined by

— | Nil| = [false]
—lapl=<anlp|> Alan]pl]
— | p1+p:l =4, A4, A B, v B,], if]p;|isoftheform 4, A [ B;]
with A4; of the form A, ,{f;>.
=|pul if | p,|=[false]
=|p2| if |p)|=_[false].

It can easily be shown that | | is a function associating with any term p a
formula |p| of the general form,

| p| = [false]

= A (a; ~ | p] >[\/ a, A \p,-\], where I is a finite set of indices.

iel iel

ExampLE 1. Computation of | p| for p=a Nil + ¢(a Nil + b Nil),

|a Nil| = (alfalse] ) [a[false]]

|b Nil| = (b[false] > [b[false]]

|a Nil + bNil | = (a[false]) {b[false]>[a[false] v b[false]]
[c(aNil+ b Nil)| = (c|aNil+ 5 Nil| > [¢|a Nil + b Nil | ]

|a Nil + ¢(a Nil + & Nil)] = {a[false]><{c|a Nil+ 5 Nil| >[c|a Nil + b Nil |
' v alfalse]].

The following theorem shows that the formula | p| corresponding to a
term p characterizes the equivalence class of p.

THEOREM 1. For any terms p, p’ of P(4), p'Elp| iff p' ~ p.

Proof. Proving this theorem amounts to proving the following three
propositions:
(P1) pElpl,
(P2) p'F|pl implies p'~ p,
(P3) p'~p implies | p'| =] p|.
(P1) By induction on the structure of the terms of P(4):
— Nil = [false] by property 2a).

—pk|p| implies apf=<alp|>lalpl] by Property 2(b), implies
ap=lap| by Definition 3.
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—pEIlpl, where | pl=Aic;<a;|p:|>[Viesa; | p:|], and p'E=|p],
where | p'| = N;cs<b; | P\ D[V icsb: | piI] implies p+ p =N, {a;| p;|D>
Nies <bi | PiI D[V iesa; 1 pil v Ve b1 /1], by Properties 2(c) and 2(d)
which implies p + p' = | p+ p’| by Definition 3.

(P2) The proof is done by induction on the structure of the formulas
lpl:

— p=[false] implies 4 p’ e P(A4) Aae A p—° p’, implies p~ Nil.

— Consider a formula | p| such that V p’ e P(4) p' =] p| i'mplies p'~p.
Then, for any term p, € P(4), p, =lap| implies p, = <{a|p|>[a|p|] by
Definition 3,

implies 3p,(p, = p, and p, [ pl) and VY p, ¥Yb(p, >° p, implies

b=a and p, = pl),

implies 3 p,(p, = p, and p, ~p) and V p, Vb(p; —° p, implies b=a

and p, ~ p),

implies p, ~ap by Definition 2;

— A similar proof can be done for | p, + p,|.

(P3) Itis easy to verify that | | preserves the axioms (A1)-(A4), that is

for any instance of an axiom of the form p=p’ we have |p|=]p’|. As
(A1)}-(A4) is a complete axiomatization of ~, we obtain the result. |

1I1.2. Observational Congruence

In the rest of the paper we give results characterizing the observational
congruence = of CCS. In this case the set of the terms on an alphabet A
containing a special symbol 7 is considered; 7 represents a hidden or unob-
servable action. As in the previous section we define a function
| e P(A4)— L{A) associating with a term p a formula | p| satisfied by all
the terms observationally congruent to p. We recall below the definition

and some important properties of ~ given in Milner; Hennessy and Milner
(1980).

DErFINITION 4. (a) For s=s5, "5, a sequence of 4*, write

p—>p iff Ip,-p,eP(A) p—>p, - p,—p.

(b) For s a sequence of (4 — {7})*, write

s . T*sgT* st * .
p=p iff p T pifs=5,"s

n

iff p—=> p'if s=e¢ the empty word of A*.
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(c) The observational equivalence =~ = (X ,=*, where

~ 0.7

—p="p’ for any p, p’ € P(A),
—px*tip ifVse(4— {t})*
[p=>"p, implies 3 p(p’ ="p} and p, = “p})) and
(p'=’p' implies 3 p,(p="p, and p, = “p))1.
It is shown that = is an equivalence relation. Denote by ~ the greatest
congruence on P(A) such that ~ < =~ Milner (1980).

In Hennessy and Milner a slightly different definition of observational
equivalence has been introduced, by taking se(4— {t}) instead of
se(A— {t})* in Definition 4c.

Furthermore, a complete axiomization has been given for the congruence

relation induced. By using these results, it is easy to deduce that the follow-
ing is a complete axiomatization of ~ on P(4).

(A1)-(A4) as defined in IIL1,

(AS) atp=ap,

(A6) tp+p=1p,

(A7) al(p, +tp2)+ap, =a(p, +1p,).

We do not consider the parallel composition operator |, as it is not
primitive in the case of finite terms.

PropPERTIES 3 (Hennessy and Milner (1980)).
@) w(pi+p2)+pi=1(p+p2)
(b) p=p' iff p~p'orp~1p ortp~p'.
1.2.1. Translation of a Term into its Characteristic Formula. The

following definitions are used to introduce the function | | translating
terms into their characteristic formulas.

DerFiNITION 5. For the class of the formulas f= A, ;{a; A fi) A
[Viexa: A fi] §uch that the f7s belong to L{A) and } f = false, define f
as the formula f:=\/;. v a; A f;.

PROPOSITION 1. " is a partial function from LLA> into L(A).

Proof. Suppose that for some formula f of L{A) we have,

F=hi= A <afd| v aiﬁ] (1)

iel ie K
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and

r=fi= A <bisd| Vo] @)

el ie Kz
We have to prove that

VieT(4)¥qeQ, (t.qk fiiff 1, gk 1) (3)
Let us first show that

(1) and (2) imply [/11=[/>] (4)

As fis not equivalent to false, there exists a tree ¢ such that ¢ = f. Suppose
that for some tree ¢, ¢'=[ f,]. Then by property (2c) and (2d) ¢+ ¢ |= f;.
Thus, 1 + ' = f, which implies 7 + ¢ = [ f,]. Then by property (2f) we have
t'l=[ f,] and consequently by symmetry the proof of (4). We show that (4)
implies (3). Suppose that for some teT(A) and g€ Q, 1,9V, ck a; [
This implies 1¢'€Q,, ¢ >“q and t,qk= f; for an ie K. As f,e L{4) we
have for the subtree 7, of 1, 1, = f.. This

implies a;t, = [a, f;] by property (2b),
implies a,t, =V, @ /i1,

implies a;t, = [V,cx, b,//]1 by (4),

implies 3 je K, such that ¢, =b, and 7, = f7,
implies ¢, gl=b,f] as ¢’ >“ g in ¢,

thus 2, g=Viex, b, /7. |

COROLLARY 1. For two formulas of L<{A), fi=Nienlain fo>
Viexain fi] and  fo=Nicp<bi A f;>[\/£eK2 b; n fi] Slﬁ"h that
W fi = false, fi=f, implies Apaifin [i)=ApLbifi A f2>  and
[\/Kl a; f1= [\/Kz b, fil 1

Notice that if for some pe P(A) p = fthen Fis such that p’ = [ f] implies

p+p' = f That is, [f] characterizes a class of terms such that their
addition to p preserves satisfaction of f.

DEFINITION 6. Let /' be a formula such that fis defined. Denote by E(f)
the formula, E(f) :=px. (fv <t Axd> A [t Axv f]).

ProrosITION 2. E(f)AE\/kGNXk, where Xo=f and Xy, =XV
LeanX oAt AXev [



134 GRAF AND SIFAKIS

Proof. As the trees representing the terms of P(A4) are of finite degree,
the functional Ax- {tx>[tx v f] is continuous. The result is obtained by
application of the Knaster—Tarski theorem. |

The interest of defining E(f) will become evident later when it is proved
that if f represents a congruence class of a term p then E(f) represents the
union of the congruence classes of p and of tp. For example, if
p=aNil+ b Nil then the following tree, presenting a term congruent to
7(a Nil + b Nil), satisfies E(f).

We define a function | | e P(4) - L{A ) such that for any pair of terms
p, p' of P(A4), p'=| p|iff p'~ p.
Notice that for such a function | | the following three propositions hold:
A. VpeP(A) pi=| p| (satisfaction),
B. Vp,p'eP(4)]|pl=]p’| implics p~ p’ (soundness),
C. Vp,p'eP(A) p~p implies | p| =|p’| (completeness).
The definition is given inductively by the following four rules. A subset
STRICT is also defined in order to make easier the expression of the rules.
STRICT is the set obtained by the rules given below and represents the set

of formulas corresponding to terms p which are not congruent to some
term of the form 7p’.

RuLe 1. — |Nil| = [false];
— [false] e STRICT.

Notice that Nil = [false] by Property (2a).

Rute 2. —|tp|=<°|p| if | p| eSTRICT
— |tpl =] p| otherwise,
where 1°| p|=<{t A Elp|> At A Elpl Vv I[Pl|];
— |zp| ¢ STRICT.
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The reader is invited to compare this rule with the corresponding rule in
the case of strong equivalence which is |[tp|={t A {p{dlzAlp|] In
Rule 2 we have replaced | p| by E| p| in order to take into account (AS5).
The formula | p| has been added to preserve satisfaction for terms con-
gruent to p by Property (3a) (take p=p, + p,).

RULE 3. ForaeA-— {1}
— |ap| =a°| p'| if there exists p' such that | p|=1°|p'|
— lap| =a°| p| otherwise,
where a°| pl=<a n E|p|> A [an E|p|[a/r]] and
|ﬁ|[a/f]=\/a/\f,- wheneuer]ﬁls\/ai/\fiand

iel iel
I'=liella,=1;# &
= false if |pl=falseorl =g

— |lap| e STRICT.

It is interesting to compare this rule with the corresponding rule in the
case of strong equivalence, which is |ap|={a A | p|>[a A | p|]. In Rule 3,
| p| is replaced by E| p| to take into account (AS). The formula | p|[a/7]
has been added to preserve satisfaction for terms congruent to ap by
application of (A7). In fact, for p=p, +tp, one gets ap~ap+ap,. The
formula added caracterizes all terms ap, such that ap~ap+ ap, by (A7).
Finally, notice that in the case where | p| =1°| p’|, using | p’| instead of | p|
is necessary in order to preserve (AS5).

RULE 4. — | p; + pal = | p1l if | p2| = [false]
—|p1+pat=\p2l i | py| = alse]
— | py+ P2l =|p.| DI p,| otherwise where for

| pil= /\ {a; AElpi|>|:\/ aﬁ?i':la

iel ieh

N
2l = A <, AE|p;|>[v b?lp,-’l],

iel ielh

[P @1 pal= N\ <ai A Elpil> N\ <b; A EIpiDL Bil v | P2l]

ielf ieli

The sets of indices I} and I, are defined by

I)={iel|djeLc(a,p;, b;p))}, IL={jeL|3iel, c(b,p;, a;p)}



136 GRAF AND SIFAKIS

where ¢ is the predicate:
clap, bp') iff [a®| p|1>[6°| p|] and not [a°| p|1=[b°]p|];

— P11 @1 py| ¢ STRICT iff | p, | @ p2 =7°| p| for some | p|.

It is shown that |p|=A;.,{a; A E| p;| )[\/ie,aﬁl] is the most
general form of the formulas of the image of | | for p=3,.,a;p;. A com-
parison between this rule and the corresponding rule in the case of strong
equivalence shows that the same principle is applied with the difference
that a factor may be “eliminated” to take into account (A6) and (A7). The
predicate c(ap, bp’) has been defined so that it is true whenever
ap+bp’ >~ bp’ by these axioms but not ap ~ bp'.

ExampLE 2. — The formula representing the congruence class of a Nil
is |aNil|=<a A E[false}>[a A E[false]]. Tt characterizes all the
processes starting only with a-transitions followed by an arbitrary number
of z-transitions.

— The formula representing the congruence class of ta Nil is
[taNil| =<t A E|laNil| Y[t A E|laNil| v |aNil|]
=<t A ElaNil|)[t A E|aNil| v a n E[false]].

It characterizes all the processes which have at least one starting t-tran-
sition leading to a process satisfying £ |a Nil| and which can have starting
a-transitions leading to £ | Nil|; these are the processes congruent to ta Nil,
such as

— The formula for ta Nil + a Nil is |ta Nil} @ |a Nil|. We have

|[taNil| =t A ElaNil| [t A ElaNil| v a A E[false]] and,
|aNil| = {a A E[false]>[a A E[false]].

The predicate ¢ defined in Rule 4 evaluates to c¢(aNil, ta Nil)=
laNil|o|zaNil| =true. So, we get the result {7aNil|@® |aNil|=
{t A ElaNil|}[t A ElaNil| van E[false]}=|ta Nil|. In fact ta Nil +
a Nil is congruent to za Nil due to (A6).
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— Computation of | p| for p=a Nil + 7(a Nil + b Nil):

|a Nil| = (aE[false] >[aE[false]]
| b Nil| = {bE[false] [ bE[false]]
la Nil + b Nil{ = {aE[false] > {bE[false] )[aE[false]
v bE[false]]
|z(a Nil + b Nil)] = {tE|a Nil + b Nil | )[tE|a Nil + b Nil|
v aE[false] v bE[false]]
|a Nil+ z(a Nil + b Nil)| = (zE|a Nil + b Nil | )[tE|a Nil + b Nil|
v aE[false] v bE[false]].

The absence of the factor {(aE[false]) in the result is due to the fact that
c(a Nil, t(a Nil+ b Nil)) is satisfied, ie.,

/\
[aE[false]] > [|z(a Nil + & Nil) | ] but not [aE[false] ]
/\
= [|z(a Nil + & Nil} | ].

PROPOSITION 3. | | is a function from P(A) into L{A>.

Proof. 1t is easy to prove by structural induction that the general form
of the formulas of the image of | | is | p| = A\;e X @G E| pi| D[ Viesail pil] or
| pl =[false]. Thus | | is total.

To prove that | | is a function it remains to prove that if
|pl=1°|p'|=1° p"| then a°| p'| =a°| p"|, as it is the only case where the
‘uniqueness of the image is not evident.

Suppose that for some p’, p”, °|p'|=1°| p"|. We have 1°|p'|=
CtE| p'|Y[<El p'| v | p'|T1and 2°| p"| = (tE| p"| [<E| p"| v | p"|]. By the
hypothesis and corollary of Proposition 1 we have (tE|p’|> = {(tE| p"|),
which implies {aE| p'|> = {aE| p"|) (1). Furthermore, [tE|p'| v | §'|]1=
[TE|p”| v | p”|] by Proposition 1,

implies [<E | p'| v t| p'|1=[<E| p"| v 7| "I,
implies [aE| p'| v | §'|[4/r1] = [aE| p"| v | 5" |[a/7]],
. PO PN '
equivalent to [a°] p’'|1=[a°| p”|]. Thus with (1) a°| p’'|=a°| p"{. |

/I|

LEMMA 1. For any term of P(A), | p| ¢ STRICT iff 3p’| pl =1°| p'|.

Proof. By the fact that t°] p’|¢ STRICT and by application of the
Rules 1 and 3 it is not possible to obtain a formula | p| =1°| p’| for some

r. 1
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THEOREM 2 (satisfaction). Vpe P(4) pk=|pl.
Proof. By induction on the structure of P(A4):
1. Nil |= [false] by Property 2(a).
2. Let | p| be a formula such that p k| p|.

2.1. If | p| e STRICT then |tp|=1°| p|. We have pl=| p| implies

tpk= <zl pl>[zlp|] by property 2(b),
implies tp = (tE| p|>[<El p| v | p|] by | p| = E| pl,
implies tp =1°| p|.

22. If | p|¢STRICT then 3p’'|p|=1°|p’| and by hypothesis
pET°|P']. Let G be the function Ax: {tx>[1x v | p|]. We have t°| p'| =
G(E|p'l)and E| p'|=|p’'| v G(E]| p'|) by Definition 6. From p =1°} p’'| we
obtain, p= E| p’| because 1°| p’' |2 E| p’|,

implies 3keN pl X, where X, is defined as in Proposition 2, by
taking Xo = [ p'|,

implies Tp = G(X,) by Property 2(b),

implies 7p }= G(E| p'|) by X, > E| p'l,

implies tp=1°| p’|.

3. Let | p| be a formula such that pl=| p|.

31. If | p|eSTRICT then |ap|=a°|p| and the proof can be
carried out exactly as in 2.1.

32, If | p|¢STRICT then dp' | p|=<°|p'|. Then |ap|=a’|p’|.
We have pl=1°| p’|,
implies p = E| p’| because t°| p'| 2 E| p’|,
implies ap = CaE| p'| >[aE| p'| v | p'|[a/t]] by Property 2(b),
implies apk=a°| p'|.

4. Let p, and p, be two terms of P(4) such that p, =|p,| and
p> k=1 pal. If py =Nil or p, =Nil then p; + p, = p,|®| p|. Otherwise,
take | pi|=Aicn<@E|p;|>L1 5111 and | prl=Aic,,<b.E| pi1>Ll p2l]
We have p,+p,E/f, where f=A,{@GEID|) Nien COEIPID
(5.1 v ipal]anf folp @] pal |

I11.2.2. Soundness of the Translation Method. The soundness of the
translation method will be deduced from a series of lemmas given below
which have all the same hypothesis, the induction hypothesis used in the
proof of Proposition 4.

Let F be a set of formulas of the image of | | such that

(1) Y|pleF,Vp' eP(A)|p'| subformula of | p| implies | p’| e F.

(2) VipleF,Vp'eP(A)p'k=|pl implies p'~ p.
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The following lemmas give properties of F.

LEmMMa 2. V|p|eF, Vp eP(A) p' =[] 7] impliesp+ p ~p.

Proof. Let p/, such that p’ =[] p|]. From Corollary 1 and Theorem 2,
we get p+ p' = | p|. Thus by induction hypothesis p+ p'~p. |

LEMMA 3. V|pleF, Vp' e P(A)p'EE|p| implies p'~p or p' ~1p.

Proof. From Proposition 2 we have E|p| =\, Y, whete Y, =|p]|
and Y, ,, =G(V,<, Y,) for k>0 and G=Ax- {tx)[tx v | p|].

Proof by Induction. Fork=0p =\, Y,is equivalent to p’[=| p|, i€,
p' =~ p. Suppose that for some k, p'}|=\/;<, Y; implies p'~p or p’ ~1p.
From p'EVici+ ¥; we deduce p'~p or p~1tp if pEV, ¥
Otherwise, p'= Y, ., is equivalent to p' k= {t(V;<x Y2 [t1(Vick ¥Yi) v
| 1 1. This implies

(a) Ipep —°po and pyE=V.<x Y: and by induction hypothesis
Do =P OT P =1D.
(b) Vp;p’ — “p;implies (a; =7 and p; EV,<, Y; 0r a;p;=[1 pl1).

From (b) we deduce a,p,~1p or a,p;+p~p (by Lemma 2). Thus, p’ is
of the form p’ =1p, + 3, a; p;, where, >, a;p; +1p~>,a;p;+ p+ip~1p
and tp, ~1p. Consequently p'~tp+3Y,a,p, ~1p. |

LemMa 4. Y |p|eF,Vp' eP(A) p'l=1°| p| implies p’' ~1p.

Proof. We use the notation of the proof of Lemma 3. p'|=1°| p| is
equivalent to p' = G(E| p|) (by Rule2), which implies p’' = G(\V/ 2, ¥;). As
G is continuous, we have p'E=V72,G(V,<; Y,) equivalent to 3keN,
p'EGV, <, Y)). Thus, p'E=Y,,, which implies p’~1p by the proof of
Lemma 3. |}

LEMMA 5. VY |p|eF,Vp eP(A)p'l=a’|p| implies p' ~ap.

Proof. p'l=a°|p| is equivalent to p'=<aE|p|y[aEl p| v | flla/r]].
From p'|=a°| p| we get

(a) Apop’ — “po and py EE| pl|, which implies p, ~ p or p, ~1p by
Lemma 3, which implies ap, ~ap by (AS).

(b) Vp,p'— “p,implies a;, =a and (p;}= E| p| or ap,}=[| pl[a/t]1]).
From p; = E| p| we obtain p; ~ p or p, ~tp, which implies ap, ~ap; from
ap; =1 plla/t]] we obtain 1p, =[] p|], and by Lemma2 p+1p, ~ p,
which implies ap+ ap, ~a(p+tp;)+ap; ~a(p+tp;) >~ ap by (A7).
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From (a) and (b) we deduce that p’ is of the form p’'=ap, + Y, ap;,
where ap, ~ap or ap+ap,~ap. Thus p' ~ap+3., ap,~ap. |

LemMa 6. V[ pil, [ p2| €F, [| p111= [ §.1] implies p, ~ p,.
Proof. From p, |=[| p;|] deduce that p, |=[| 5,11 and p, = [| 5, |]. By
using Lemma 2 we obtain p, + p, ~ p, and p, + p, ~p,. Thus p, ~p,. |

Lemvma 7. For |p\l, |p:leF, peP(4) pEIp,|®||p.| implies
pP=pi+p;.

If | p,| = [false] or | p,| = [false] the proof is trivial. Otherwise | p,| and
| p») are of the form,

pl= A <a,-E|p,-|>[\/a?|?il]

iel iel

and
P
al= A <b,-E|p;|>[v b?lp,‘l],

ieJ ied

such that
[P D] pal= /\ <a;Elpil> /\ CHAV AR ARAT AN
iel ied

where

I'={iell3jeJ c(a;,p;, b;p;)} and J'={jeJ|Aiel c(b;pj, a,p,)}.
From 3;c; a:,p; =\ p,| and 3., bipi =] p,| and | p,|, | p,| € L, we have

Z a;p;+ Z b;p; ~p,+ p,.

iel ield

Suppose that for some p, pl=| p,| ®| p,|. This implies

1. Viel'dp,p-“p,and p, =E|p,l, ie, a;p; ~a; p; as in the Proof
of Lemma §.
2. VieJ3pp~"pand p) k= E| pil, ie, b, p} ~b,p}.
3. Vp/p-cp! implies cp/E[[pI] or ¢;p/ELIpl], ie.,
Pyt p2+e;pl ~p, +p, by Lemma 2.
P N
Furthermore, VieI—I' 3jeJ’ such that [a7|p,/1>(b/p;|]. Thus
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a;p; E[b71pjl] and by Lemma2 b,p;+a,p;~b;p; Symmetrically,
VjeJ—J Jiel such that a,p, +b;p; ~a,p,. From 1, 2, and 3 we obtain

pP= z a;p; + Z biﬁ;+26ip;’ = Z a;p; + Z bilﬁ"‘Z"il’?

iel ied i iel ieJ i
=Y api+ Y bipi+ Y cpl xpi+pa+ Y ip! =pi+ s |
iel ied i i
PROPOSITION 4. V p, p'e P(A) p'l=| p| implies p' ~ p.
Proof. By induction on the structure of the formulas,
(1) p' k= [false] implies p’ ~ Nil.
(2) Let F be a set of formulas of the image of | | such that
—V |pleF,¥Yp' eP(A)|p'| subformula of | p| implies | p'| € F.
—V|pleF, VpeP(d)pt=|p| implies p’ ~ p.
By Lemmas 4, 5, and 7 the operations on formulas preserve this proper-
ty. 1

Now the soundness theorem follows as in IIL1.

THEOREM 3 (soundness). Vp'eP(A) |p'|=]|p]| implies p’ ~p.

Proof. |p'|=|p| implies p' = | p| by Theorem 2 which implies p’ ~ p
by Proposition4 |
I11.2.3. Completeness of the Translation Method. As (Al1)-(A7) is a

complete axiomatization of the observational congruence we can proceed
as in the proof of (P3) in Theorem 1.

LemMma 8. (A1) |[(py +pa)+psl=1py +(p2+ p3)l,
(A2) |pi+p.l=lp2+pil,

(A3) |p+pi=ipl

(A4) [p+Nil|=]|pl

Proof. The proofs of (A2), (A3) and (A4) are trivial. So it remains to
prove (Al), ie. (| p,|®@|p2 1)@ psl=1p | ®( P2l DI p3l). If some p, is
such that | p,| = [false] then the result follows by (A4). Otherwise, each
| p;| is of the general form | p;| = A;<a;;E| p;;| >[| #;|]. If some term of the
form <aFE] p|) of | p,| is eliminated in | p,| @ | p,| then it is eliminated in
Ipil®Upl @) psl) because /tlle relation deﬁneﬁl\ by the

. , s , , .
predicate c(ap, bp')=([1ap|1= [1bp'11) A D ([1ap|1=[1bp'|]) is tran-
sitive and antisymmetrical. ||
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LemMa 9. (AS5) |atp|=|ap|.

Proof. 1f | p|¢STRICT then |pl=1t°|p’| for some |p’'|eSTRICT.
This implies |tp| =t°| p’{, which implies |atp| =a°| p'| and |ap|=a°| p’|.
If | pleSTRICT then |tp|=1°|p| which implies |atp|=a°]p| and
lapl=a®| p|. Thus |atp|=|ap|. |

Lemma 10. (A6) [tp+pl=[tpl.
(A7) la(p; +1p,)+ap | =lalp, +1p,)l.
Proof. The proof is done by induction on the structure of the formulas.
Let K be any set of formulas of L{A4 ) such that
(1) |p| € K implies for any subformula [p'lof|pl, | PleK
(2) «°| pjeK implies for any be 4, b°| p|e K,
(3) |pleKand p~p' implies | p'j=|pl:
— {[false]} is such a set.
— Consider a set K and show that K'=Ku {|ap|||p|leK,
aeA}u{lp|®|p:l||pil, | p2l €K} satisfies (1), (2), (3).

Obviously, K’ satisfies (1), (2). It remains to prove that from any
instance of the axioms (A6), (A7) of the form p, = p, one can deduce
[ py|=|p,|, where | p,| and | p,| are formulas of the form a°| p|, t°| p|
and |p|@|p'| with | p|, | p'|€ K.

(a) For | py[, | po| of the form °| p| it has to be shown
(al) V|pleK|tpi=ltp+p| (A6)
(@2) Y |pal, 1 pi +psl €K [t(py +1p2)| = |t(py +1p2) +1Ds]
(A7).

To establish (al) and (a2) it is sufficient to prove that V|p;|,
| py + P3l €K,

(3) |t(py +p3)|=1t(py + p3)+ psl (by taking p; =1p,).

(b) For | py], | p,| of the form a°| p|, where ae A~ {t} it has to be
shown that V[p,l, [py+tp.l€eK la(p,+1py)i=la(p, +1p2)+ap:l
(A7)

(¢) The cases where | p,|, | p2| in instances of (A6), (A7) are of the
form | p| @ | p’| have already been considered in (a), (b).

Proof of (a3). If |p,+pslek, |p; +p;1¢STRICT then

lz(p; +p3)l=|p: +pslek
If | p,+ps|l=[false] or |p;|=[false] we deduce easily
|7(p, + p3) + psl=I11(p; +ps)|. Otherwise, [ps| is of the form |p;] =
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P .
Nier€a:E Pl >[Vicrai1pid] and  |z(py +ps)| is of the form
IT(/P1\+P3)| = (tE| py + ps| D[TEl py + psl v Bl v | Psl]. We  have
[ 15:11> [I%(p: +p5)1 Vie L This implics

—either c(a;p;, t(p, +p3)) Viel, in which case |7(p, + p;)| ®
|P3|ET(P1+P3)|,/\ P
—or diel [a;| pi|1=[°] ps +psl].
PORS
Thus a,=t and [|p;+psl1=[71p;/]. By Lemma2 we get

P14+ p; ~1p; and from | p, + p;| € K we obtain | p, + ps| =1°| p;|. This
contradicts the hypothesis that | p; + p;] e STRICT. |

Proof of (b). If |p,+tp,]eK and |p,+1p,|¢ STRICT then
p, +1p,1=1°|p'| for some |p'|eK, which implies |a(p,+1p,)| =
a’lp'leK If | py + 1p,| e STRICT then one can suppose without loss of
generality that | p,| € STRICT. We have |a(p, + tp,}| is of the form

la(p, +1py)| =<aE| py +1pal YLaE| py +1ps] v | Bylla/7]
Vv | Pl [a/t] v aEl p,|]

and
lap,| = <aE| py| Y[aE]| p,| v | po| La/t]].

We have [a°| p,|1=[a°] p; +tp,|] This implis,

-—either c(ap,, a(p, +1p,)) in which case |a{p, +1p,)|®
|ap2|E|a(/p{+‘Ep2)],

— (@’ p2l1=[a°| py +tpal]. By Lemma 2, ap, ~a(p, +tp,) which
implies p, = p; +1p,.

By Property (3b) this is the case iff 1p, ~ p, +tp, or p, ~t(p, +1p,) or
p,~p,+1p,. From the last case we deduce p,=~ztp,. As |p,l,
| py +1p,|€eK all three cases contradict the fact that |p,|,
| p1 +1p,] e STRICT. |

By using Lemmas 8, 9, 10 and reasoning as in proof of Theorem 1 (P3)
we get

THEOREM 4 (completeness). YV p,p'e P(A) p~p’ implies | p|=|p’|.

THEOREM 5 (characterization). The function | | characterizes obser-
vational congruence, i.e., for any pair p,p' of terms of P(A4), p'l=1p| iff
p'=p.

Proof. By theorems 2 and 4 and Proposition 4. |}

643/63/1-3-10
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1V. DiscussioN

This work has been motivated by the search for a sufficiently powerful
modal language compatible with observational congruence in CCS. By
following an approach different from that one of Brookes and Rounds
(1983), Hennessy and Milner (1980), and Stirling (1983), we obtained a
characterization of congruence classes on finite terms. A similar charac-
terization has been obtained for the class of recursively defined controllable
CCS processes, i.e., processes p for which there exists some p’ obser-
vationally equivalent to p and p’ has no t-transition Graf (1984), Graf and
Sifakis (1984). These results brought us to study a language L, for the
specification of controllable CCS processes which contains the one
proposed in Hennessy and Milner (1980). L, is a certain subset of the set of
formulas built from the constants [true] and {false] by using logical
operators and two independant modal operators @ and <) for ie A
Their meaning is given by,

OF=py (Fv<tny))

@F=(an &F)

@F=py (Fv{tay)altayvF])

@F=<ar @QF>A[ar ©Fv Fla/t]]
where F is a formula and F is such that VpeP(4) p=[F] iff 3p’
p+p' EF, ie, " is an extension of the function in II1.2.1.

Notice that @) F and (@) F are generalizations of E(F) and a°F. The for-
mula @) F Characterizes all the terms which either satisfy F or their only
possible derivations are t-derivations until some state is reached for which
F or Fis true. In a similar manner @ F characterizes all the terms for
which the only possible derivations are of the form at* until some state is
reached satisfying F or F. Thus the modality @ expresses eventuality or
inevitability. On the other hand the formulas ¢ F and < F express the
fact that it is possible to satisfy F by exectuting a sequence of 7* or a
sequence of at*, respectively. Obviously, @ in Hennessy and Milner

(1980) is equivalent to < < in L,. This language has been completely
studied in Graf (1984), Graf and Sifakis (1984).

Recervep July 30, 1984; accepten August, 1985
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