
INFORMATION AND CONTROL 68, 125-145 (1986) 

A Modal Characterization of 
Observational Congruence on Finite Terms of CCS 

S.  G R A F  A N D  J .  S IFAKIS  

IMAG - G6nie Informatique, 
BP 68, 38402 St Martin-dHkres C6dex, France 

We propose a translation method of finite terms of CCS into formulas of a modal 
language representing their class of observational congruence. For this purpose, we 
define a modal language and a function associating with any finite term of CCS a 
formula of the language, satisfied by the term. Furhtermore, this function is such 
that two terms are congruent if and only if the corresponding formulas are 
equivalent. The translation method consists in associating with operations on terms 
(action, +)  operations on the corresponding formulas. This work is a first step 
towards the definition of a modal language with modalities expressing both 
possibility and inevitability and which is compatible with observational con- 
gruence. © 1986 Academic Press, Inc. 

I .  I N T R O D U C T I O N  

When  a logic L is used to express p r o g r a m  specificat ions it na tu ra l ly  

induces an equivalence re la t ion  ~ L on p rograms :  two p r o g r a m s  P R O G  1 
and P R O G  2 are equivalent  if they cannot  be d is t inguished by any fo rmula  
of L, i.e., P R O G  1 ~ L p R O G  2 iff for any formula  F of L P R O G  1 ~ F and  

P R O G  2 ~ F are equivalent .  
Using  a logic L as a p r o g r a m  specification tool  sets the p rob lem of its 

compat ib i l i ty  with respect  to some equivalence re la t ion ~ der ived from the 
opera t iona l  semant ics  of the descr ip t ion  language.  Such a re la t ion defines a 
concept  of ope ra t iona l  equivalence which is supposed  to be the mos t  
sui table and  sat isfactory in pract ice for the c ompa r i son  of p rograms .  Then,  
a min ima l  requ i rement  for the adequacy  of L as a specif icat ion tool  is that  
_~ _~ ,,~ L, i.e., if two p r o g r a m s  are ope ra t iona l ly  equivalent  then they have 
the same (equivalent)  specifications.  The non-va l id i ty  of this condi t ion  
implies that  there  exists a fo rmula  F of L and two ope ra t iona l ly  equivalent  
p rograms ,  the one satisfying F and  the o ther  not;  thus, using F to express a 
p roper ty ,  does not  a l low a charac te r i za t ion  of the mos t  general  class of 
behaviors  co r respond ing  to this proper ty .  If  in addi t ion ,  L is to be used as 
a verif icat ion tool  then it is also necessary tha t  ~L____  i.e., if two 
p rog rams  canno t  be d is t inguished by formulas  of L then they are 
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126 GRAF AND SIFAKIS 

equivalent. Consequently, the adequacy of L as both a specification and a 
verification tool, implies that the relations -~ and ~ c agree. 

The problem of the definition of logics compatible with some operational 
equivalence relation has been stated in Hennessy and Milner (1980), 
Brookes and Rounds (1983), and Stirling (1983), where simple modal 
languages have been proposed to characterize observational equivalence or 
congruence of CCS. According to these results, an equivalence or con- 
gruence class can be characterized as the (infinite) conjunction of the for- 
mulas satisfied by processes of this class. This paper is a first step to the 
definition of a modal logic compatible with observational congruence of 
CCS by following a different approach. A method is given to obtain a for- 
mula representing the congruence class of a CCS-term in a compositional 
manner. For this, we associate with CCS-operators, rules describing how 
the formula representing the class of a CCS-term is obtained by com- 
position of formulas of its sub-terms. 

We consider a very general modal language L(A) for which labelled trees 
(CCS-terms) on a vocabulary A constitute a class of models and try to 
define a sub-language L 0 such that ~ ~ coincides with observational con- 
gruence in CCS. L(A) contains as sublanguages the modal languages 
introduced in Hennessy and Milner (1980) and Stirling (1983). A function 
] ] is defined, associating with any finite term t of CCS a formula ] t] of 
L(A) such that I t ] is satisfied by all the terms and only the terms congruent 
to t, i.e., t ~ ] t] and for tl, t2 arbitrary finite terms, tl -~ t2 iff ] tl I - ] t2], 
where ~ is the observational congruence. Obviously, L0 corresponds to 
the sub-language of L(A) generated by the elements of the image of l I- 
This approach has been adopted to (hopefully) avoid limitations of the 
works mentioned above, concerning the definition of modalities expressing 
inevitability and the modal characterization of classes of infinite 
behaviours. However, these two problems are not discussed in this paper. 

For the definition of L(A), we have been inspired by Kozen (1982), 
where a very general modal language with a least fixpoint operator has 
been introduced. In Section III we first give a modal characterization of 
strong equivalence of CCS to get the reader familiar with the principle of 
translation of terms into formulas. Then, we give a translation method of 
finite CCS terms into formulas representing their class of observational 
congruence. This method consists of associating with operations on terms 
(action, + )  operations on the corresponding formulas. Finally, we discuss 
the use of these results for the definition of a sufficiently powerful language 
compatible with observational congruence. 
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II. DEFINITION OF THE MODAL LANGUAGE 

We introduce as in Kozen (1982) the modal language L(A) as the sub- 
language of the closed formulas of L'(A), defined on the logical constants 
true, false, a set of constants A and a set of variables X as follows, 

- -  true, false eL'(A), 
A u X ~ L ' ( A ) ,  

- - f ,  f '~L ' (A)  implies -7f, f v f ' e L ( A )  
- - fEL ' (A )  implies ( f >  ~L'(A),  

- - x  e X and f (x)  is a functional, positive in the variable x, implies 
ktx. f(x)  e L'(A ). 

SEMANTICS. The class of models of L(A) is the class of the labelled trees 
on A, T(A). A labelled tree t is defined as t=(Q,, qo, {~a}a~A) where, 

- -  Qt is a set of states, the nodes of t, 

- -  qo ~ Qt is the initial state, the root of t, 

- -  {~"}a~A is a set of transition relations, ~a___ Qt × Qt; 

as t is a tree we have ~qeQt ~aEA q ~ q o  and VqeQt, q#qo, q has 
exactly one predecessor. 

We define in the usual manner a satisfaction relation 

~ ~ (  [9 ( txQ,) )xL(A) .  
t e  T (A)  

For a formula f ~ L(A) we write, 

- - t , q ~  f i f f  ( t ,q , f )~  ~ ,  
- -  t ~ f iff t, qo ~ f where qo is the root of t, 

- -  ~ / i f f  t ~  f V t e  T(A). 

For te T(A), qE Q,,f, f '  eL(A), geL'(A), and aeA, 

- -  t, q ~ true, 

- - t , q ~ T f  
- - t , q ~ f v f '  
- - t , q ~ a  

- - t , q ~ ( f >  
- -  t, q ~ #x.g(x) 

iff t, q ~ f, 
iff t , q~  f ort, q~  f ' ,  
iff 2q' e Q, q' --. a q, 
iff 3q' eQ, 3 a e A ( q ~ a q '  andt, q '~  f),  
iff V f eL (A)  (~ g( f )= fimplies t, q~  f). 

643/68/1-3-9 
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The notations false, A, D, _---- are used in the standard manner. We use 
the abbreviation [ f ]  := -7 (-n f ) ,  i.e., 

- -  t, q ~  [ f ]  iff Vq 'eQt  Va~A (q~aq'  implies t, q ' ~ f ) .  

Notice that each state qe  Q, in t = (Q,, qo, {~a}a~A) defines a subtree tq 
of t, with root q and set of states the set of the states reachable from q in t. 
Thus, the transition relations __.a can be considered as relations on T(A) 
and one can write tq ___~a tq,, instead of q ~ q'. In the sequel we consider 
the class L ( A )  of the formulas where any element of A is written within 
the scope of one of the operators ( ) or [ ]. For such formulas f we have 
t, q ~ f i f f  tq ~ f, i.e., f i s  true at a state q of a tree t i f f f i s  true for the sub- 
tree tq of t. So, we consider only the satisfaction relation ~ e T(A) x L (A  ). 
The following properties are used: 

PROPERTIES 1. For t~ T(A) and f, f , ,  i~J, elements of L ( A ) ,  

(a) t ~ ( a A  f )  i f f3t '~T(A) (t-*at ' and t ' ~ f ) ,  

(b) t ~  [Vi~jai A f~] i ffVt '~ T(A) ( t ~  a t' implies qi~J  (a=ai and 
t 'V fi)), 

(c) ~ ( f  v f ' ) -  ( f )  v ( f ' ) ,  

(d) ~ ( f  A f ' ) = ( f )  A ( f ' ) .  

Other properties of L(A) can be found in Kozen (1982), where a com- 
plete axiomatization is given for a similar logic. In the sequel, we often 
simply write f instead of ~ f 

III. MODAL CHARACTERIZATION 

III.1 Strong Equivalence 

In order to get the reader familiar with our approach, we give a modal 
characterization of strong equivalence of CCS in terms of formulas of the 
language described in II. 

DEFINITION 1. (a) Consider the set of terms P(A) built from a constant 
Nil, a set of unary operators A and a binary operator + ,  recursively 
defined by 

- -  N i l  e P(A), 

- - a p ~  P(A) for peP(A)  and a~ A, 

- -  p + p' E P(A) for p, p' ~ P(A). 
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(b) For a~A the relation ~a~_P(A)xP(A) is defined as the 
smallest relation satisfying 

- -  a p  ~ a p ,  

- - P l  ~ a  p, implies Pl +P2 ~ P', 

- -P2  ~ P' implies Pl +P2 ~ P'. 

So, with a term p can be associated a labelled tree tp = 

(Qp, p, {~a}a~A)E T(A), where Qp is a set of subterms o fp  and ~ a  is the 
relation defined above. In the sequel we identify a term p ~ P(A) with the 
tree tp representing it. So, if f is any formula of L(A' )  where A' is 
isomorphic to A, then we can write p ~ f instead of tp ~ f. As there is no 
risk of confusion, we shall not distinguish between a unary operator a and 
the corresponding constant of the modal language. 

PROPERTIES 2. 

(b) 
(c) 
(d) 
(e) 
(f) 

(a) Nil ~ [false], 

p ~ f impl ies  ap~ (a/~ f ) / x  [a/x f] ,  
p ~  (a  A f )  implies p+ p '~  (a /x f )  and p' + p ~  (a A f ) ,  

p~ ~ [f~] and P2 ~ [f2] implies pl + P2 ~ [ L  v f2], 

p+ Nil~ f i f f  p ~  f, 

p + p' ~ I f ]  iff p ~ I f ]  and p' ~ [ f ] .  

In the sequel we often omit conjunction operators in order to simplify 
formulas. 

DEFINITION 2. (strong equivalence). Let ~ be the greatest relation on 
P(A) such that for Pl,  P2 ~ P(A), 

Pl ~ P2 iffVa ~ A (Pl ~ a  p, implies ~ Pz(P2 __.a p~ andp]  ~ p~)) 

and 

Va ~ A (p: __.a p~ implies 3 P~(Pl ~ "  P~ and p'~ ~ p~)). 

It has been shown that ~ is a congruence (Milner, 1980), and it can be 
characterized by the axioms: 

(A1) (P~+P2)+P3 =Pl + ( P 2 + P 3 ) ,  

(A2) P l + P 2 = P 2 + P l ,  
(A3) p+p=p,  
(A4) p + N i l = p .  
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DEFINITION 3. Consider the function I [ ~ P ( A ) - - , L ( A )  recursively 
defined by 

- -  I Nill = [false] 

- - l a p l  = ( a  ^ I p l ) / x  [a /x  [ p l ]  

- - I p l  +p2l=A1/x A2/x [Bl v B2], if I pi] is of the form A i/x [Bi] 
with A i of the form/~i~ s(f~).  

=LPl[  if [p2[=  [false] 
= l p 2 l  if Ipll =[fa lse] .  

It can easily be shown that ] ) is a function associating with any term p a 
formula I pl of the general form, 

I Pl = [false] 

= A  (a iA  I p i l ) I V a i A  Ipil],whereIisafinitesetofindices. 
i ~ l  L i 6 l  

EXAMPLE 1. Computation of [ p[ for p = a Nil + c(a Nil + b Nil), 

]a Nil[ = ( a [ f a l s e ] )  [a[false] ] 
[b Nil[ = @[false]  ) [b[false] ] 
[a Nil + bNil[ = ( a [ f a l s e ] )  (b [ f a l se ] ) [ a [ f a l se ]  v b[false]]  
] c( a Nil + b Nil )[ = ( c i a Nil + b Nil [ > [ e l a Nil + b Nil ] ] 
]a Nil + c(a Nil + b Nil)] = ( a [ f a l s e ] )  (c[ a Nil + b Nil] ) [cJa Nil + b Nil J 

v a[false]] .  

The following theorem shows that the formula I Pl corresponding to a 
term p characterizes the equivalence class of p. 

THEOREM 1. For any terms p, p' of P(A), p' ~{ p[ iff p '~p .  

Proof Proving this theorem amounts to proving the following three 
propositions: 

(P1) p~Jp] ,  

(P2) p ' ~  I Pl implies p ' ~ p ,  

(P3) p ' ~ p i m p l i e s  i p ' l ~ l p [ .  

(P1) By induction on the structure of the terms of P(A): 

- -  Nil ~ [false] by property 2a). 

- - p ~ i p ]  implies a p ~ ( a l p l ) [ a l p f ]  by Property 2(b), implies 
ap ~ tape by Definition 3. 
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- -  P ~ I P I, where I P t =/~i~,  (ai[  p~l ) [V/~,a~ I Pil],  and p' ~ [ P'I, 
where [ p ' J = A , ~ : ( b ,  J p ;}) [V,~sb~lp ;J ]  implies p + p ' ~ A , c ~ ( a ~ l p ~ l )  
/~i~s (bi lP;l)[V~cla~lpi[  v ~/~sb~lp;[], by Properties 2(c) and 2(d) 
which implies p + p' ~ [ p + p'[ by Definition 3. 

(P2) The proof is done by induction on the structure of the formulas 
Ipl: 

- - p  ~ [false] implies 71 p' ~ P(A ) 71a ~ A p --+~ p', implies p~Ni l .  

- -  Consider a formula L P ] such that V p' ~ P(A) p' ~ [ p [ implies p' ~ p. 
Then, for any term Pl eP(A),  Pl ~Lap[ implies Pl ~ ( a l P l ) [ a l p [ ]  by 
Definition 3, 

implies 3P2(P~ ~ ' P 2  and P2 ~ [ P l )  and Vp2 Vb(p~---~bp2 implies 
b = a  andp2 ~ [p[), 

implies 3pz(p 1 ---~ P2 and Pa ~P)  and V p 2 Vb(pl ~b  _P2 implies b = a  
and P2 "~P), 

implies pz ~ ap by Definition 2; 

- -  A similar proof can be done for I p~ + P2 I. 

(P3) It is easy to verify that I I preserves the axioms (A1) (A4), that is 
for any instance of an axiom of the form p = p '  we have I P [ -  ]P'I. As 
(A1)-(A4) is a complete axiomatization of ~ ,  we obtain the result. | 

III.2. Observational Congruence 

In the rest of the paper we give results characterizing the observational 
congruence _~ of CCS. In this case the set of the terms on an alphabet A 
containing a special symbol z is considered; r represents a hidden or unob- 
servable action. As in the previous section we define a function 
I ]~ P ( A ) ~  L ( A )  associating with a term p a formula I pl satisfied by all 
the terms observationally congruent to p. We recall below the definition 
and some important properties of _~ given in Milner; Hennessy and Milner 
(1980). 

DEFINITION 4. (a) For s = So '"sn  a sequence of A*, write 

s sO Sn 
P ~P' i f f 3 P l " " P n e P ( A ) P  ~Pl ""P~ ~P'. 

(b) For s a sequence of ( A -  {r})*, write 

r*so**  • •. sn~*) p t  . .  
pg>p' iff p i f s = s o "  sn 

~* p, 
iff p , if s = e the empty word of A*. 
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(c) The observational equivalence ~ = 02°=0 ~ ~, where 

__ p ~ Op, for any p, p' e P(A), 

_ _ p _ k + l p ,  if V s e ( A -  {~})* 
[p=*. spl implies 3p'l(p'=*. sp'l andpl  -~ kp,)) and 

(p'=> "p~ implies 3 PI(P =~ ~P~ and Pl ~ kp] ))]. 

It is shown that ~ is an equivalence relation. Denote by "-~ the greatest 
congruence on P(A) such that ~ c _~ Milner (1980). 

In Hennessy and Milner a slightly different definition of observational 
equivalence has been introduced, by taking s ~ ( A - { z } )  instead of 
s~ (A - {~})* in Definition 4c. 

Furthermore, a complete axiomization has been given for the congruence 
relation induced. By using these results, it is easy to deduce that the follow- 
ing is a complete axiomatization of --- on P(A). 

(A1)-(A4) as defined in III.1, 

(A5) arp=ap,  

(A6) z p + p = T p ,  

(A7) a(pl + zP2) + ap2 = a(pl + zP2). 

We do not consider the parallel composition operator 11, as it is not 
primitive in the case of finite terms. 

PROPERTIES 3 (Hennessy and Milner (1980)). 
(a)  z ( p  I q- P2) --k Pl  --  ~ (P t  q- P2). 

(b) p ~  p' iff p~- p' or p~- zp' or zp~- p'. 

III.2.1. Translation of a Term into its Character&tic Formula. The 
following definitions are used to introduce the function I J translating 
terms into their characteristic formulas. 

DEFINITION 5. For the class of the formulas f = A i ~ x ( a ~  /x f ~ ) ^  
[Vi~Kai /x f i ]  such that the f,.'s belong to L ( A )  and ~= f = f a l s e ,  def inef  
as the formula f : =  Vi~x ai/x fi. 

PROPOSITION 1. ~ & a partial function from L ( A  ) into L(A). 

Proof Suppose that for some formula f of L ( A  ) we have, 

i ~ I I  i 1 
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and 

f = A  = A (b~f'~)[ V b,Z] 
i~12 i~K2 

(2) 

We have to prove that 

Vte T(A) Vq~Q, (t, q ~  f¢~ iff t, q#f9  (3) 

Let us first show that 

(1) and (2) imply [f~] = If2] (4) 

Asf i s  not equivalent to false, there exists a tree t such that t D f  Suppose 
that for some tree t', t 'D [-fl]. Then by property (2c) and (2d) t+  t' Df~. 
Thus, t + t' ~ f2  which implies t + t' D [J~2]. Then by property (2f) we have 
t' D If2] and consequently by .symmetry the proof of (4). We show that (4) 
implies (3). Suppose that for some teT(A) and qeQ, t, qDVi~<aef,-. 
This implies q q ' e Q ,  q ' ~ ' q  and t ,q~f , ,  for an i e K  1. As f, ~ L ( A )  we 
have for the subtree tq of t, tq ~ fi. This 

implies 

implies 

implies 

implies 

implies 

aitq D [aif,.] by property (2b), 

aitq ~ [ - V i ~  K 1 aifi], 
ait q ~ [Vi~x2b,f;] by (4), 

3 j e K2 such that ai = bj and tq ~ fj,  
t, q~bj.fj  as q,._~a, q in t, 

thus t ,q~Vi~x2bjZ.  | 

COROLLARY 1. For two formulas of L (A) ,  f l=Ai~t , (a i /x  f~} 
[Vi~Kl ai A fi] and f2 =AiE12(bi A f;}[VieK2 bi A f ;]  such  that 
~= fl  -false, f l  - f2 implies A,~(aifi A fl)=-/~t2(bi~ A f2) and 
[-VKI aifi] =- [VK2 bif~]. | 

Notice that if for some p e P(A) p D f t h e n f i s  such that p' D [ f ]  implies 
P + P ' D  f That is, I f ]  characterizes a class of terms such that their 
addition to p preserves satisfaction o f f  

DEFINITION 6. Le t fbe  a formula such tha t f i s  defined. Denote by E(f)  
the formula, E(f):=/~x. ( f v  (z A x ) / x  [v ^ x v f ] ) .  

PROPOSITION 2. E ( f ) - - V k ~ X k ,  where Xo = f  and Xk+l =Xk V 
<~ ^ x ~ >  ^ D ^ X ~  v f ] .  
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Proof As the trees representing the terms of P(A) are of finite degree, 
the functional 2x. ( z x ) [ z x  v f ]  is continuous. The result is obtained by 
application of the Knaster-Tarski theorem. | 

The interest of defining E(f)  will become evident later when it is proved 
that  i f f  represents a congruence class of a term p then E(f)  represents the 
union of the congruence classes of p and of zp. For example, if 
p = a Nil + b Nil then the following tree, presenting a term congruent to 
z(a Nil + b Nil), satisfies E(f). 

b 

a a 

We define a function I Is  P(A)--* L ( A )  such that for any pair of terms 
p,p' ofP(A),p'~lPl iffp'~p. 

Notice that for such a function I I the following three propositions hold: 

A. VpeP(A)  P ~ I P l  (satisfaction), 

B. V p, p' ~ P(A) I P l - I P'I implies p -~ p' (soundness), 

C. Vp, p '~P(A)p~-p '  implies I P l -  IP'I (completeness). 

The definition is given inductively by the following four rules. A subset 
STRICT is also defined in order to make easier the expression of the rules. 
STRICT is the set obtained by the rules given below and represents the set 
of formulas corresponding to terms p which are not congruent to some 
term of the form zp'. 

RULE 1. - - I N i l l  = [false]; 

- -  [false] ~ STRICT. 

Notice that Nil # [false] by Property (2a). 

R U L E  2l I zp I = z°l p I ~f I P I ~ STRICT 

- - I z P l  = I Pl otherwise, 

where z°l Pl = (z A El Pl > A [z A El P l v  I/~1]; 

- -  I rPl ¢ STRICT. 
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The reader is invited to compare this rule with the corresponding rule in 
the case of strong equivalence which is I zpl = ( r  A I P{ )[~ A I p l ] .  In 
Rule 2 we have replaced I P] by El Pl in order to take into account (A5). 
The formula 1/31 has been added to preserve satisfaction for terms con- 
gruent to p by Property (3a) (take p = pl + P2). 

RULE 3. F o r a ~ A - { z }  

- -  l apl = a ° [ p'[ i f  there exists p' such that [ p! = r° I P'[ 

- -  Iap ] = a ° ] p I otherwise, 

where a°lpl  = (a  A E I P l )  A [a A E [ p [ [ a / v ] ]  and 

I/~1 [ a / ~ ]  = V a A f i  
i e I '  

=false 

- -  [ ap [ ~ STRICT. 

whenever ] P l =- V ai A Z and 
i e l  

I ' =  { i e l l a ~  =z }  4=~5 

i f  I ~ l - false or I' = ~ 

It is interesting to compare this rule with the corresponding rule in the 
case of strong equivalence, which is l apl  = (a  A r Pl ) [ a  A I P l]. In Rule 3, 
I pl is replaced by El Pl to take into account (A5). The formula J/~l[a/v] 
has been added to preserve satisfaction for terms congruent to ap by 
application of (A7). In fact, for p = Pl + rP2 one gets a p ~ - a p  + ap2. The 
formula added caracterizes all terms ap2 such that ap ~_ap + ap2 by (A7). 
Finally, notice that in the case where ] p I - ~°1 p, l, using ] p' ] instead of ] p] 
is necessary in order to preserve (A5). 

RULE 4. - - I P l + P z l = l p x l i f l P z r - - [ f a l s e ]  

- - I P ~ + P 2 1 = I P 2 l z f  } p x l = [ f a l s e ]  

- -  I Pl + P21 = I Pl[ ® I Pz] otherwise where for  

I p l I = A  ( a e A E I P ~ I )  a i[p i[  , 
i~  I1 i 1 

Vv ] Ip21--m (bi A E I p ; I )  bOlP;I , 
i612  L i E I 2  

I p l [ O l p z [ = A  (ai  A E ] p i [ )  A ( b i A E [ p ; [ ) [ [ / ~ l [  v [/~2[]. 
i ~ l ~  i e I ~  

The sets of indices 1'1 and I~ are defined by 

I ' l = { i e I l [ ~ j e I z c ( a ~ p ~ , b j p j )  }, I ' 2 = { j e I 2 [ ~ i e I ~ c ( b j p j ,  aip~)}, 
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where c is the predicate: 
A A A A 

c(ap, bp') iff [a°l P l ] = [b°l P l ] and not [a°l P l ] - [b°l P l 3; 

- - I p l l O l p 2 l ¢ S T R I C T i f f l p ~ l O l p 2 l = t ° l p l f o r s o m e l p l .  

It is shown that I p l = A i ~ l ( a i A E I p i l ) [ V i ~ z a ? l p i l ]  is the most 
general form of the formulas of the image of l I for P=Zi~la~p~. A com- 
parison between this rule and the corresponding rule in the case of strong 
equivalence shows that the same principle is applied with the difference 
that a factor may be "eliminated" to take into account (A6) and (A7). The 
predicate c(ap, bp') has been defined so that it is true whenever 
ap + bp' ~ bp' by these axioms but not ap ~ bp'. 

EXAMPLE 2. - -  The formula representing the congruence class of a Nil 
is [a Nil[ = ( a  ^ E[false] ) [a ^ E[false] ]. It characterizes all the 
processes starting only with a-transitions followed by an arbitrary number 
of z-transitions. 

- -  The formula representing the congruence class of ta Nil is 

IzaNil[ = (z  ^ E l a N i l l ) [ t  ^ E laNi l l  v l aN i l [ ]  

= (z  A Ela  N i l ] ) [ z  ^ E / a N i l /  v a ^ E[false]] .  

It characterizes all the processes which have at least one starting z-tran- 
sition leading to a process satisfying E [a Nil{ and which can have starting 
a-transitions leading to E [ Nil I; these are the processes congruent to ta Nil, 
Such as 

T "~ T 

- -  The formula for za Nil + a Nil is J ta  Nil l @ J a Nil l. We have 

Ira Nill = (z  ^ E l a N i l l ) [ t  ^ E l a  Nill v a ^ E[fa lse]]  and, 

l a Nil l = ( a  ^ E[false] ) [ a  ^ El-false]]. 

The predicate c defined in Rule 4 evaluates to c(aNil, zaNi l )= 
]a Nil l ~ Ira Nil l = true. So, we get the result Ira Nil l 03 [a Nil[ = 
( t  ^ E[aNi l [ ) [ z  A Ela  Nilr v a ^ E[ fa l se] ]  = Ira Nil[. In fact r a N i l +  
a Nil is congruent to va Nil due to (A6). 
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- -  Computation of [ p[ for p = a Nil + r(a Nil + b Nil): 

[a Nil h = ( aE[ fa l s e ] ) [ aE[ fa l s e ]  ] 

[b Nil[ = (bE[ fa l s e ] )  [,bE[false] ] 

]a Nil + b Nil l = ( aE [ f a l s e ] )  ( bE[ fa l s e ] )  [aE[false] 

v bE[false] ] 

[z(a Nil + b Nil)l = ( rE[  a Nil + b Nil[ ) [-rE[ a Nil + b Nil l 

v aE[false] v bE[false]]  

[a Nil + r(a Nil + b Nil)[ = (rE[ a Nil + b Nil[ ) [ r E [ a  Nil + b Nil] 

v aE[false] v bE[false]] .  

The absence of the factor ( aE [ f a l s e ] )  in the result is due to the fact that 
c(a Nil, r(a Nil + b Nil)) is satisfied, i.e., 

[aE[,false] ] = [1 z(a Nil + b Nil) 1] but not [-aE[false] ] 

- [ [ r (a  N i l + b  Nil) 1]. 

PROPOSITION 3. I I is a function from P(A) into L ( A ) .  

Proof It is easy to prove by structural induction that the general form 
of the formulas of the image of l [ is I Pl =Ai~1(aiE[ pin ) [ V ~ l a ° [  p~[] or 
[pl = [false]. Thus [ [ is total. 

To prove that [ [ is a function it remains to prove that if 
[ p [ - r ° l p ' l -  r°[ p"[ then a°[ p ' [ - a ° [p , 'L ,  as it is the only case where the 
"uniqueness of the image is not evident. 

Suppose that for some p', p", r ° i p ' [ - r ° i p " [ .  We have r ° [ p ' [ =  
< r E ] p ' l ) [ r E l P ' l  v 1/~'1] and r°lp"]  = < r E [ p " l ) [ r E l p " [  v 1/~"1]. By the 
hypothesis and corollary of Proposition 1 we have ( rE[  p'[ > - <tEl P"I >, 
which implies <aEI P'L > - <aE[ p"[ ) (1). Furthermore, [rE[ p'[ v ]/~'[] - 
[ rE[p"[  v [/~"[] by Proposition 1, 

implies [ r E l p ' [  v r n / ~ ' [ ] -  [ rE lp" [  v r]/~"1], 

implies [aE[p'[ v IFl[a/r]]-  [aElp"l v Ifi"[[a/r]], 

equivalent to [ a ° l p ' l ]  = [a° lp" l ] .  Thus with (1) a°lP ' l  =a° lp" ] .  I 

LEMMA 1. For any term of P(A), Ipl ¢STRICT i f fSp ' lp[  ~z° lp ' l .  

Proof. By the fact that r° lp ' l  ~STRICT and by application of the 
Rules 1 and 3 it is not possible to obtain a formula I P I - z°l P' I for some 
P'. l 
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THEOREM 2 (satisfaction). Vp ~ P(A) p ~ I P I. 

Proof By induction on the structure of P(A): 

1. N i l ~  [false] by Property 2(a). 

2. Let I P l be a formula such that p ~ [ p f. 

2.1. If Ipl sSTRICT then Ivpl =z°l  pf. We have p ~ l p l  implies 
Tp~  (~1 p l ) [ ~ [ p [ ]  by property 2(b), 

implies r p ~  (rElPl)[zElp[ v I/~l] by IPl ~ElPl,  
implies zp ~ ~°[ p[. 

2.2. If [ p [¢STRICT then 3 p ' l p ] - = z  °[p'[  and by hypothesis 
p~z°[p'[ .  Let G be the function 2x. ( z x ) [ z x  v [/~[]. We have z°[p'[  = 
G(E[ p'[) and EI p'[ - ] p'[ v G(E[ p'[) by Definition 6. From p ~ z°[ p'[ we 
obtain, p ~ E[ p'[ because z ° I P'[ ~ EI P'I, 

implies 3 k e  N p ~ Xk where Xk is defined as in Proposition 2, by 
taking Xo = I P'[, 

implies zp ~ G(X~) by Property 2(b), 
implies zp~G(Elp ' l )  by Xk~Elp '[ ,  
implies zp ~ z°[ p'[. 

3. Let [pl be a formula such that p ~  IP[. 

3.1. If I p [ e S T R I C T  then lapl=a°[pt  and the proof can be 
carried out exactly as in 2.1. 

3.2. If IPI~STRICT then 3p'  I P l - r  °[p'[.  Then l ap]=a°lp'[. 
We have p # z° l p' [, 

implies p ~ El p' [ because r ° I P' I ~ EI 
implies ap ~ <aE[ P'I ) [aE[  p'[ v [ p'[ 
implies ap ~ a° l P' l . 

4. Let p~ and P2 be two terms of 
P2 ~ IP2I. If P1 =Ni l  or P2 =Ni l  then Pl 
take [p~l=Ae~z~(aeE[pel)[lp~l] and 

p'[,  
[a/z] ] by Property 2(b), 

P(A) such that Pl ~ ]Pl[  and 
+ P2 ~ ] Pl ] (~) [ P2 [. Otherwise, 
[p21 = Ai~,2( b~EI P;I )[I ~2J]. 

We have P l + P 2 ~ f ,  where f = A i ~ l ( a i E l P i l ) A i ~ 1 2 ( b i E l p ; [ )  
[I]) l l  V I]721] a n f f ~ l p l l @ l p 2 l .  | 

III.2.2. Soundness of the Translation Method The soundness of the 
translation method will be deduced from a series of lemmas given below 
which have all the same hypothesis, the induction hypothesis used in the 
proof of Proposition 4. 

Let F be a set of formulas of the image of ] [ such that 

(1) g ] p [ e F, g p' e P(A) [ p'[ subformula of [ p [ implies [ p'[ e F. 

(2) V[p[eF, V p ' ~ P ( A ) p ' ~ l p [  impliesp'-~p. 
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The following lemmas give properties of F. 

LEMMA 2. Vlpl eF, V p ' e P ( A ) p ' ~  [1/~1] impl iesp+p'~-p .  

Proof Let p', such that p' ~ [I/~ [ ]. From Corollary 1 and Theorem 2, 
we get p + p' ~ I p l. Thus by induction hypothesis p + p' -~ p. | 

LEMMA 3. V J p l e F ,  V p ' e P( A ) p ' ~ E ] p ] implies p ' ~- p or p ' ~- r p. 

Proof From Proposition 2 we have El p [ = V~_ o Yi, where Yo = [ P [ 
and Yk+l =G(Vi<~k Yi) for k>~0 and G=2x"  ( z x ) [ z x  v IPl]- 

Proof by Nduction. For k = 0 p' ~ Vi~k Y~ is equivalent to p' ~ I P I, i.e., 
p'~_p. Suppose that for some k, P ' ~ V ~ k  Y~ implies p'~-p  or p'~-rp. 
From P ' ~ V e ~ k + l Y i  we deduce p ' ~ - p  or p'~-zp if p ' ~ V ~ k Y i .  
Otherwise, p ' ~  Yk+l is equivalent to p ' ~  (r(Vi<~k Yi))[z(Vi~g Yi) v 
[/~1]. This implies 

(a) 3 p o p ' ~ p o  and Po ~V~_<k Y~ and by induction hypothesis 

Po -~ P or Po ~- zp. 
(b) Vpi p' ~ "'p~ implies (a~ = z and Pi ~ V i ~ k  Y~ or a~p~ ~ [1 fi[]). 

From (b) we deduce a~p~ ~-~p or aip~+p ~-p (by Lemma 2). Thus, p' is 
of the form p' = zpo + 52~ aipg, where, ~ a~p~ + zp ~- ~, i  a~p~ + p + rp ~- "cp 
and rpo -~ zp. Consequently p' ~- zp + ~ a~p~ ~- zp. | 

LEMMA 4. ¥ [ p [ e F ,  V p ' e P ( A ) p ' ~ z ° l p [  impliesp'~--zp. 

Proof We use the notation of the proof of Lemma 3. p ' ~  ~°[ p[ is 
equivalent to p' ~ G(E[ p[)  (by Rule 2), which implies p' ~ G(V,?°=o Y~). As 
G is continuous, we have p '~V~_oG(Vi_<j  Y~) equivalent to 3 k e N ,  
p'~G(V~<~k Y~). Thus, p ' ~  Yk+~ which implies p ' ~ z p  by the proof of 
Lemma 3. | 

LEMMA 5. V I p [ c F ,  V p ' ~ P ( A ) p ' ~ a ° [ p [  impliesp'~-ap. 

Proof p ' ~ a ° l p [  is equivalent to p ' ~ ( a E l p l ) [ a E [ p [  v [ / ~ [ [ a / r ] ] .  
From p'  # a ° [ p[ we get 

(a) ~pop'--*apo andpo  # E I p [ ,  which implies Po~-P o r p o - ~ r p  by 
Lemma 3, which implies apo ~-ap by (A5). 

(b) V Pi P' --* a'Pi implies ai = a and (pi # EI p [ or api ~ [1/~ [ [a/z ] ]). 
From Pi ~ El P l we obtain p~ ~ p  or p~-~zp, which implies ap~ "~ap; from 
api ~ [ I /}[ [a /z] ]  we obtain "cpi ~ [I/51], and by Lemma 2 p + z p i  "~p, 
which implies ap + api ~- a(p + zp~) + apf "~ a(p + zp~) ~- ap by (A7). 
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From (a) and (b) we deduce that p' is of the form p ' =  apo + ~,i ap~, 
where ap~ ~- ap or ap + ape ~- ap. Thus p' ~_ ap + ~e ap~ ~- ap. | 

LEMMA 6. VlPal, [p2[sF, [ I P a l ] ~ [ I P 2 1 ]  impliesPl~-P2 • 

Proof From p; ~ [IPel] deduce thatpl  ~ [1/~21] andp2 ~ [IP~I]. By 
using Lemma 2 we obtain P2 + Pl ~- P2 and Pl + P2 -~Pl. Thus Pl -~ P2. | 

LEMMA 7. For IPl[, [p21~F, p e P ( A )  P~IP~IOI[P21 implies 
P --~Pl +P2- 

If [P~I = [false] or I P21 - [false] the proof is trivial. Otherwise I Pll and 
I P21 are of the form, 

Iv ] [Pll = A (a iEIp i [ )  ai [p;[ 
i ~ I  L i ~ l  

and 

[ A  1 IPzl = A (b ,EIp; i> VbO[p ; I  , 
i e J  i ~ J  

such that 

[Pl[OIP2[=/~ (agElpi[) A (b~EIP;I)[I~Ol[ v [/~21], 
i ~ l '  i ~ J '  

where 

I' = { i~ I [~ j~J '  c(a~pi, bjp))}' a n d J ' = { j ~ J [ ~ i ~  I '  c(bjp); aip~)}. 

From ~i~i aiPi ~ Ipll and ~i~s b ip~ lp2[  and [pl[, IP21 ~L0 we have 

aipi + ~ bip~ ~-Pl + P2. 
i ~ l  i ~ J  

Suppose that for some p, p ~ [ Pl] ~ ] P21. This implies 

1. V ie I' 3 fii P ~a'Pi and/~i ~E[  Pi], i.e., aifii ~- aepi as in the Proof 
of Lemma 5. 

2. V ieJ'3fi~p--*blp~ and p ~  Elpel, i.e., b~p~ "~-bep~. 

3. Vp;'p~C'p; ' implies cip;'~[[~l['] o r  cip;'~[lfi21], i.e., 
Pl + P2 + ciP~' ~- Pl +P2 by Lemma 2. 

Furthermore, V i ~ I - I '  3 j ~ J '  such that [aTlp i l ]~[b; lp j[] .  Thus 
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o ! t ~ ! aip~ ~[b) lp)l] and by Lemma2 bjp)+a~p~_bjp). Symmetrically, 
V j ~ J - J '  3i~I'  such that a~pi +bjpj ~-aip~. From 1, 2, and 3 we obtain 

P = Z aiffi + E bifi; q- Z ciP7 "~ E aiPi q- E b~p; + Z GP;' 
i ~ F  i ~ J '  i i c l '  i ~ J '  i 

~- Z a,p~+ Z b,P;+Zc,P; '  "~P~ +p2 + ~ c , p ;  ~-p, +p2.  | 
i ~ l  i ~ J  i i 

PROPOSITION 4. V p, p' ~ P(A) p' ~ I P] implies p' ~- p. 

Proof By induction on the structure of the formulas, 

(1) p ' ~  [-false] implies p' -~Nil. 

(2) Let F be a set of formulas of the image of [ [ such that 

- -  V [ p [ ~ F, V p' ~ P(A ) I P'I subformula of [ p [ implies I P'I ~ F. 

- - r ip [  eF,  Vp'eP(A)  p '~[p[  implies p' -~p. 

By Lemmas 4, 5, and 7 the operations on formulas preserve this proper- 
ty. | 

Now the soundness theorem follows as in III.1. 

THEOREM 3 (soundness). Vp' ~ P(A) [ p'[ = [ p[ implies p' ~_p. 

Proof ] P'[ - I P l implies p' ~ I P[ by Theorem 2 which implies p' "-- p 
by Proposition4 | .  

II1.2.3. Completeness of the Translation Method. As (A1)-(A7) is a 
complete axiomatization of the observational congruence we can proceed 
as in the proof of (P3) in Theorem 1. 

LEMMA 

(A2) 

(A3) 

(A4) 

Proof 

8. (A1) l ( p l + p 2 ) + p 3 L - L p l + ( p 2 + p 3 ) l ,  

IPl + Pz[-[P2 + P,L, 
Lp+p{=--Ip], 

I P + Y i l l  = [Pl. 

The proofs of (A2), (A3) and (A4) are trivial. So it remains to 
prove (h l ) ,  i.e. ( [p l lGIp21)OIp31~lp l lG( Ipz lGIp3[ ) .  If some Pi is 
such that [ p i [ -  [false] then the result follows by (A4). Otherwise, each 
[Pi[ is of the general form ]p~[ = Aj(auE[ pij[ ) [ ] /~]  ]. If some term of the 
form (aEI p] ) of I Pl[ is eliminated in [ pl[ @ [P2[ then it is eliminated in 
I P l I • (I P=I G I P31) because the relation defined by the 

/ x .  / ' x  

predicate c(ap, bp') = ([I ~P i ] ~ [I bp't ]) A -~ ([I ~P I ] =-- [I bp'l ])  is tran- 
sitive and antisymmetrical. | 
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LEMMA 9. (A5) [arpl-lapl. 

Proof If. [Pl ~ STRICT then I P[ -= ~°1 P'I for some [ P'I e STRICT. 
This implies Irpl ~° lp ' l ,  which implies lazpl-a°lp'l and lapl-a°lp'l. 
If I P l s S T R I C T  then I r P ] = r  °lpl  which implies l a r p l = a ° l P l  and 
lap[=a°lpl. Thus [a~p[-[apl. | 

LEMMA 10. ( A 6 ) [ z p + p l = - l r p [ .  

(A7) la(Pa +'cP2)+aP2[ =-=-[a(pl +77p2)1. 

Proof. The proof is done by induction on the structure of the formulas. 
Let K be any set of formulas of L(A > such that 

(1) I P I ~ K implies for any subformula I P' ] of I P I, I P' I e K, 

(2) a°[pleKimplies for any beA, b°lpleK, 
(3) IPleKandp~-p' implies [ p ' l - [ p ] :  

- -  { [false] } is such a set. 

- -Cons ider  a set K and show that K'=Ku{IaplIIpI~K, 
aeA}u{Ipll@lPa[llPl[, Ipz[ eK} satisfies (1), (2), (3). 

Obviously, K' satisfies (1), (2). It remains to prove that from any 
instance of the axioms (A6), (A7) of the form Pl =P2 one can deduce 
[Pl[ -=- [P21, where IP1[ and [P21 are formulas of the form a°lp[, z°lp[ 
and Ipl@lp'l with IPJ, Ip'JeK. 

(a) For [Pl[, [Pzl of the form r°[p[ it has to be shown 

(al)  V l p l e K l z p [ = l z p + p l  (A6) 

(a2) ¥1p2l, l p j + z p 2 1 s K [ z ( p l + r p 2 ) l - I ~ ( p l + ~ p 2 ) + ~ p 2 [  
(A7). 

To establish (al)  and (a2) it is sufficient to prove that V Ipzl, 
IP~ +p31eK, 

(a3) I z ( P ~ + P 3 ) [ = I T ( P J + P 3 ) + P 3 I  (by takingp3=zP2) .  
(b) For [Pl I, I P2I of the form a°l p I, where a z A -  {~} it has to be 

shown that V IP2[, [Pl +'cP2[ eK la(pt +zP2)I =-la(p~ +zp2)+ap2[ 
(A7). 

(c) The cases where I P~ I, I P21 in instances of (A6), (A7) are of the 
form I P l ® I P'I have already been considered in (a), (b). 

Proof of (a3). If IP~ +P31 ~K, IPJ +P3} ¢STRICT then 
Iv(P~ + P z ) I -  [p l  +P3I eK. 

If I Pl  +P3[ = [false] or IP3] = [false] we deduce easily 
I~(Pl + P3) + P31 ~- I Z(Pl +P3)[' Otherwise, [ P3[ is of the form [P3[ = 



OBSERVATIONAL CONGRUENCE 143 

Ai~t(aiElpi l )EVi~zaOlpi l]  and I r (pa+p3) l  is of the form 
Iz(pl +P3)I = ( z E l p l  +p3l)EzE[pl  + P3I v I~11 v lfi3[]. We have 
[a,.4~p;]] ~ [Iz(pa +P3)]  V i i i .  This implies 

- -e i the r  c(aiPi, z (p l+p3) )  Vi~L in which case I r ( p l + p 3 ) [ G  

[P3[ -~ z(Pl + P3)[, 

- - o r  3 i ~ I  Ea/I Pi l l  - D°lp ,  q-P3 I]. 

Thus a ~ = r  and [Ipl+P31]=[z°[p~l] .  By Lemma2 we get 
Pl -I-p3 ~ P i  and from IPl + P 3 l e K  we obtain IPl +p3l=z° lp i l .  This 
contradicts the hypothesis that I P~ + P3I ~ STRICT. | 

Proof of (b). If I Pl + rp2] ~ K  and I P~ + rpg] ¢ STRICT then 
Ip l+zp21=z° lp ' l  for some Ip ']eK,  which implies [a(pl+zP2)[= 
a°lp'l  eK. If [p~ + rP21 ~STRICT then one can suppose without loss of 
generality that [P21 ~ STRICT. We have l a(p~ + zp2)l is of the form 

l a(pl + rP2) l  = (aEI e l  ~- '~P2l ) [aEI pa + zp21 v I ~O, IEa/v3 

v IP~ I  [a/z] v aEIp2l] 

and 

lap21 = (aEIP21)EaEIP21 v 1~021 Ea/vJ3. 

We have [a°l Pz/] = [a°l Pl + "rP2l]. This implis, 

- -e i the r  c(ap2, a(pl + zp2)) in which case l a(pl + ~p2)] ® 
lap21 =- l a(pl + "rp2)1, 

- -  [a'@Pa [ ] -- [a ° [ Pl + ~P213. By Lemma 2, ap2 ~- a(p~ + rp2) which 
implies P2 ~ Pl + zP;. 

By Property (3b) this is the case iff zp2 "" pl + ~P2 or P2 "" r(P~ + rP~) or 
p2"~p~ +rp2.  From the last case we deduce p2~-rp2. AS I P21, 
fP~ + z P 2 l ~ K  all three cases contradict the fact that [P2I, 
I Pl +zP2l eSTRICT. | 

By using Lemmas 8, 9, 10 and reasoning as in proof of Theorem 1 (P3) 
we get 

THEOREM 4 (completeness). Vp, p' E P(A) p ~_ p' implies [ p[ =_ [ p' I. 

THEOREM 5 (characterization). The function II  characterizes obser- 
vational congruence, i.e., for any pair p,p'  of terms of P(A), p ' ~  IPl /ff 
p'..~p. 

Proof. By theorems 2 and 4 and Proposition 4. | 
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IV. DISCUSSION 

This work has been motivated by the search for a sufficiently powerful 
modal language compatible with observational congruence in CCS. By 
following an approach different from that one of Brookes and Rounds 
(1983), Hennessy and Milner (1980), and Stirling (1983), we obtained a 
characterization of congruence classes on finite terms. A similar charac- 
terization has been obtained for the class of recursively defined controllable 
CCS processes, i.e., processes p for which there exists some p' obser- 
vationally equivalent to p and p' has no z-transition Graf (1984), Graf and 
Sifakis (1984). These results brought us to study a language L0 for the 
specification of controllable CCS processes which contains the one 
proposed in Hennessy and Milner (1980). L0 is a certain subset of the set of 
formulas built from the constants [true] and [false] by using logical 
operators and two independant modal operators @ and <~> for 2 ~ A. 
Their meaning is given by, 

<~>r=#y. ( F v  (z A y ) )  

@F--(a^ <~>F) 
@F=#y'(Fv (z ^ y )  A [z/x y v F])  

@ F = < a A  @ F )  A [aA @FvF[a/z]] 
where F is a formula and P is such that VpeP(A) p ~ [ P ]  iff Sp' 
p + p' ~F,  i.e., ^ is an extension of the function in III.2.1. 

Notice that © F and @ F are generalizations of E(F) and a°F. The for- 
mula @ F Characterizes all the terms which either satisfy F or their only 
possible derivations are z-derivations until some state is reached for which 
F or _F is true. In a similar manner @ F characterizes all the terms for 
which the only possible derivations are of the form az* until some state is 
reached satisfying F or F. Thus the modality @ expresses eventuality or 
inevitability. On the other hand the formulas <~> F and @ F express the 
fact that it is possible to satisfy F by exectuting a sequence of z* or a 
sequence of az*, respectively. Obviously, @ in Hennessy and Milner 
(1980) is equivalent to <~> <~> in Lo. This language has been completely 
studied in Graf (1984), Graf and Sifakis (1984). 
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