
1ARTIST summerschool, Nässlingen, 30-09-2005

Verification of UML models with
timing constraints using IF

Susanne Graf
Verimag

http://www-if.imag.fr/
http://www-omega.imag.fr/

http://www-verimag.imag.fr/~graf/Artist-summerschool/

http://www-if.imag.fr/
http://www-omega.imag.fr/

2ARTIST summerschool, Nässlingen, 30-09-2005

IST OMEGA: validation in the context of model-
based development of real-time systems

Model
(UML/
XMI) Behaviour

Time
platform

Running
implementation

feedback

Test

Semantic models

Validation tools

System Requirements╥

update

EnvironmentSystem Requirements/
assumptions

UML CASE tools feedback

3ARTIST summerschool, Nässlingen, 30-09-2005

The IF toolbox: approach

High-level programming and modeling
notations (SDL, UML, SCADE, Java …)

Low-level semantics: transition systems

simulation

test
verification1

verification2

verification3

state
explosion

High-level semantics: structured notation,
reduced number of general concepts
(communication, coordination, time)

Static analysis:
model extraction,

abstraction,..

4ARTIST summerschool, Nässlingen, 30-09-2005

IF tool-set: overview

RT

aml2if uml2if sdl2if

IF
Specifications

IF
Exploration Engine

TGV based
TC generation

ATS

model
construction

AUT

model
checking
observers
µ-calculs

mincost path
extraction

schedules

Rational Rose,
Rapsody,

Argos, OMEGAObjecteering ObjectGeode

AldebaranSPIDER

IF
Static Analyzer

LASH

RMC

TReX

SPIN

guided
simulation

observer
verification

5ARTIST summerschool, Nässlingen, 30-09-2005

Outline

IF notation and tool-set (8)
Omega Real-time profile (7)
IFx: IF frontend for UML (5)
Case studies (11)
Conclusions and future work (2)

6ARTIST summerschool, Nässlingen, 30-09-2005

IF language

P1(N1)

P3(N3)

P2(N2)sr[s(t1)]

…

…

…s

t

?s(x) [x=0]
// A[1] = x

[t=0]ε

+ A : array
- t : clock

System =
Set of concurrent processes
- timed automata with urgency
- hierarchical automata
- complex + abstract data types
- dynamic creation
- non-determinism

Communication
- asynchronous channels
- various routing / delay / loss models
- shared variables

Execution control
- dynamic priorities

Assumptions and Requirements
- observers (weak synchronization)

{ prio1 : x < y if x.t < y.t }

⊕⊕

7ARTIST summerschool, Nässlingen, 30-09-2005

System description

Processes (components)

Interactions
Data

Extended hierarchical timed automata
(non-determinism, dynamic creation)

- asynchronous channels
- shared variables

- predefined data types
(basic types, arrays,
records)

- abstract data types
Execution control

- priority rules

Observers
- assumptions
- requirements

8ARTIST summerschool, Nässlingen, 30-09-2005

IF: system description

// processes
process P1(N1)

…
endprocess;
…
process P3(N3)

…
endprocess;

// signalroutes
signalroute sr1(1) …

from P1 to P3 ;

// signals
signal s1(t1)
signal s2(t1, t2),

s1(t1)

signal

s2 (t1, t2)

parameter

process
(N1 initial
instances)

local data

P2(N2)

P3(N3)

P1(N1)P1(N1)

signalroute
…

…

…
…sr(1)

…

9ARTIST summerschool, Nässlingen, 30-09-2005

IF: process description

process P1(N1);
fpar … ;

// types, variables, constants,
procedures

state s0 … ;
… // transition t1

endstate;

state s1 #unstable…;
… // transitions t2, t3

endstate;

… // states s2, s3, s4
endprocess;

Process = hierarchical timed automaton

s2

s1

s3

s0

s4

t1

t4

t5

t3t2

local data + local clocks

s41

s42

t6 t7

P1(N1)

parameters

local data

state

outgoing transitions

stable
nostable

10ARTIST summerschool, Nässlingen, 30-09-2005

IF: transitions

transition = urgency + trigger + body

state s0
…

urgency eager
provided x!=10;
when c2 >= 4;
input update(m);

body ….
nextstate s1;
…
endstate;

= trigger

urgency

untimed guard

timed guard

signal consumption
from the process

buffer

statement list, ext.
proc.

t1

statement = data assignment
message sending,
process or signalroute creation or destruction, …

sequential. conditional, or
iterative composition

urgency

untimed guard

11ARTIST summerschool, Nässlingen, 30-09-2005

IF: signal routes

signal route = connector = process to process communication channel with
attributes, can be dynamically created

signalroute s1(1) #unicast #lossy #fifo
from server to client with grant, fail;

route
name

initial instance number attributes
signal set

endpointsattributes:
• queuing policy: fifo | multiset
• reliability: reliable | lossy
• delivery policy: peer | unicast | multicast
• delay policy: urgent | delay[l,u] | rate[l,u]

12ARTIST summerschool, Nässlingen, 30-09-2005

IF: dynamic priorities

priority order between process instances p1, p2
(free variables ranging over the active process set)

priority_rule_name: p1 < p2 if condition(p1,p2)

semantics: only maximal enabled processes can execute

examples of scheduling policies

fixed priority: p1 < p2 if p1 instanceof T and p2 instanceof R

EDF: p1 < p2 if Task(p2).timer < Task(p1).timer

run-to-completion: p1 < p2 if p2 = manager(0).running

13ARTIST summerschool, Nässlingen, 30-09-2005

IF: observer for the expression of properties

Observers specify safety properties (assumptions and requirements)
Event language acceptors: processes with specific triggers for monitoring
events, system state, elapsed time
3 types of states : normal / error / ignore
Semantics:

transitions triggered by monitored events are executed with highest priority
Reaching an ignore state = reaching un uninteresting part (assumption)

idle

error

match output SDT(void, b)

[b <> R(0).flag]
[b = R(0).flag]

set x := 0

[x >= t_ack]

match input ACK(void)
[x =< t_ack]

test

wait
ignore

[x> t_ack]

14ARTIST summerschool, Nässlingen, 30-09-2005

IF tool-set: overview

RT

aml2if uml2if sdl2if

IF
Specifications

IF
Exploration Engine

TGV based
TC generation

ATS

model
construction

AUT

model
checking
observers
µ-calculs

mincost path
extraction

schedules

Rational Rose,
Rapsody,

Argos, OMEGAObjecteering ObjectGeode

AldebaranSPIDER

IF
Static Analyzer

LASH

RMC

TReX

SPIN

guided
simulation

observer
verification

12

3

15ARTIST summerschool, Nässlingen, 30-09-2005

IF: core components

syntactic
transformation tools:

- static analyser
- code generator LTS exploration tools

-- debugging
-- model checking
-- test generation

writer

IF specifications

parser

IF AST

dynamic scheduling

interaction model
state space

representation

C/C++ code

application
specific

process code

predefined modules

(time, channels, etc.)compiler

16ARTIST summerschool, Nässlingen, 30-09-2005

IF: exploration engine

asynchronous execution (max. concurrency)

I1:P2I2:P1 I1:TimeI1:P1 I2:P2 Ik:Pj

output

create

set, resetrun step

active
instances

process 1 process 2 process j time

dynamic scheduling (dynamic priorities)

execution
control

17ARTIST summerschool, Nässlingen, 30-09-2005

IF: state space representation

configurations

configuration
chunks

instances

queue
contents

messages

state storage is
completely done by the
simulator

structural
representation of
configurations offering
maximal sharing

unique tables
implemented as hash
tables with collision or
search trees (splay
trees or 2-3 trees)

18ARTIST summerschool, Nässlingen, 30-09-2005

IF: representation of time

i) discrete time
- clock valuations represented as
integer values
- time progress by an explicit tick
transition to the next deadline

ii) symbolic time
- clock valuations represented by
(varying size) difference bound
matrices (DBMs)
- time progress is implicit:
State = state + time constraint
- non convex time zones may
arise due to urgency: represented
implicitly by unions of DBMs

Time represented by a dedicated
process instance handling:
• dynamic clock allocation (set, reset)
• representation of clock valuations
• checking time constraints (time
guards)
• computation of time progress
conditions w.r.t. actual deadlines
• firing time progress transitions, if
enabled

Two concrete implementations are
available (others can be easily
added)

KRONOS,
UPPAAL

19ARTIST summerschool, Nässlingen, 30-09-2005

IF tool-set: overview

RT

aml2if uml2if sdl2if

IF
Specifications

IF
Exploration Engine

TGV based
TC generation

ATS

model
construction

AUT

model
checking
observers
µ-calculs

mincost path
extraction

schedules

Rational Rose,
Rapsody,

Argos, OMEGAObjecteering ObjectGeode

AldebaranSPIDER

IF
Static Analyzer

LASH

RMC

TReX

SPIN

guided
simulation

observer
verification

12

3

20ARTIST summerschool, Nässlingen, 30-09-2005

IF: Static analysis

Approach
source code transformations for model reduction
code optimization methods

Particular techniques implemented so far
live variable analysis: remove dead variables and/or reset variables
when useless in a control state
slicing: remove unreachable code, model elements w.r.t. a property,
e.g. assumptions about the environment
variable abstraction: extract the relevant part after removing some
variables
queue reduction: static analysis of queues

Result: usually, impressive state space reduction

21ARTIST summerschool, Nässlingen, 30-09-2005

Outline

IF notation and tool-set (8)
Omega Real-time profile (7)
IFx: IF frontend for UML (5)
Case studies (11)
Conclusions and future work (2)

22ARTIST summerschool, Nässlingen, 30-09-2005

Omega UML profile: general features
Structure

• class diagrams distinguishing active and passive classes
• structuring concepts : inheritance, associations, compositions
• architecture and components (UML 2.0-like, not available in UML 1.4)

Behavior
• state machines with action language (compatible to UML1.4 A.S.)
• operations defined by methods (action body) → polymorphic
• concurrency : active/passive objects activity groups
• interactions: primitive/triggered operations, asynchronous signals

Requirements and assumptions
• operational : observers, Live Sequence Charts
• declarative : OCL constraints on event histories

Timing constraints (in requirements, structure and design)
• declarative : timed events, linear (duration) constraints
• imperative : timers, clocks
• Deployment related

23ARTIST summerschool, Nässlingen, 30-09-2005

Omega UML profile: interaction model & semantics

active/passive objects define activity groups
interactions: primitive/triggered operations,
asynchronous signals

[Damm, Josko, Pnueli, Votintseva 2002 & Hooman, Zwaag 2003] –
based on the Rhapsody tool semantics

o1
a

o3

a’

o1’

o2’

o2
op(int)

Activity group
Run-to-completion

24ARTIST summerschool, Nässlingen, 30-09-2005

Omega UML profile: Time extensions

Compatible SPT profile and UML 2.0
Basics

A notion of global time, time progress non-deterministic, but
controllable by the model
Time primitive types: Time, Duration with operations
Timed Events: instants of occurrences of identified state
changes in executions

Operational time access (UML 2.0)
time dependent behavior
Mechanisms for measuring durations: timers, clocks
Corresponding actions: set, reset,…

25ARTIST summerschool, Nässlingen, 30-09-2005

compilation of method calls

caller

callX::m(…)

: X

create
: X::m(…)

returnX::m(…)

26ARTIST summerschool, Nässlingen, 30-09-2005

Omega UML profile: Time extensions

Time constraints
Constraints on durations between occurrences of events

OCL based patterns for constraining durations between occurrences
of 2 events
SPT like derived patterns associated with syntactic entities

– response time, duration of actions deadline
constraints,

– duration in state, delay of channel, ...
Observers with time guards

Scheduling
Notion of resource, explicit model of architecture elements (can
be reused)
Execution time of actions
Priorities for expressing scheduling policies

27ARTIST summerschool, Nässlingen, 30-09-2005

Omega UML profile : requirements as observers

special objects monitoring the system state / events
example (Ariane-5) : If the Pyro1 object enters state “Ignition_done”,
then the Pyro2 object shall enter the state “Ignition_done” in not less than
TimeConstants.MN_5*2 + Tpstot and not more than TimeConstants.MN_5*2 +
Tpstar time units.

liftoff_performed_right2
g : Ground
mc : MissionConstants
tc : TimeConstants

<<Observer>>

wait_start

wait_ignition_p1

match send ::EADS::Signals::Start(void) by g /
begin mc := g.Acyclic.MissionConstants; tc :=

g.Acyclic.TimeConstants end

p1_ignited

[g.Acyclic.EAP.Pyro1 @ Ignition_done]

ko
<<error>>

ok choice

[now >= (tc.MN_5 * 2 + mc.Tpstar_prep)]

[g.Acyclic.EAP.Pyro2 @ Ignition_done][now >= (tc.MN_5 * 2 + mc.Tpstot_prep)]
[now < (tc.MN_5*2 + mc.Tpstot_prep)]

observer
stereotype

observer
variables

event observation
(see time profile)

state observation (variables
+ control states of
reachable objects)

error state

end state

28ARTIST summerschool, Nässlingen, 30-09-2005

Omega UML profile : observables

observable events
for signals : send, receive, accept
for operations : invoke, receive, accept, invokereturn, …
for states : entry, exit
for actions : start, end, start-end (for instantaneous actions)

observable state
all entities reachable by navigation from already known entities (e.g.
obtained from events)
can be stored in the observer

observing time
use clocks local to an observer
read clocks of visible part of the model

29ARTIST summerschool, Nässlingen, 30-09-2005

Omega UML profile : requirements as constraints

Define explicit events and constraints
example (Ariane-5) : If the Pyro1 object enters state “Ignition_done”,
then the Pyro2 object shall enter the state “Ignition_done” in not less than
TimeConstants.MN_5*2 + Tpstot and not more than TimeConstants.MN_5*2 +
Tpstar time units.

IgnPyro1
p : Pyro

<<TimedEvent>>

liftoff_performed_right
i1 : IgnPyro1

<<TimedAssert>>

i2 : IgnPyro2

{ duration(i1,i2) >=
TimeConstants.MN_5*2 + Tpstot

duration(i1,i2) <=
TimeConstants.MN_5*2 + Tpstar
}

{ match enter Pyro @ Ignition_done
by p when p = p.EAP.Pyro1 }

IgnPyro2
p : Pyro

<<TimedEvent>>

{ match enter Pyro @ Ignition_done
by pwhen p = p.EAP.Pyro2 }

30ARTIST summerschool, Nässlingen, 30-09-2005

Outline

IF notation and tool-set (8)
Omega Real-time profile (7)
IFx: IF frontend for UML (5)
Case studies (11)
Conclusions and future work (2)

31ARTIST summerschool, Nässlingen, 30-09-2005

IFx: overview

Rhapsody

Rose

Objecteering

Argo

XMI 1.0/1.1
(UML 1.4 +
stereotypes)

XMI reader UML 1.4
repository

UML 1.4
API

IF 2.0
translator

UML2IF

IF 2.0
TOOLBOX

IF spec

32ARTIST summerschool, Nässlingen, 30-09-2005

IFx: mapping UML to IF
Mapping OO concepts to (extended) communicating automata

Structure
class → process type
attributes & associations → variables
inheritance → replication of features
signals, basic data types → direct mapping

Behavior
state machines (with restrictions) → IF hierarchical automata
action language → IF actions, automaton encoding
operations:

operation call/return → signal exchange
procedure activations → process creation
polymorphism → untyped PIDs
dynamic binding → destination object automaton determines the executed
procedure

Observers and events: direct mapping

33ARTIST summerschool, Nässlingen, 30-09-2005

IFx: example of mapping

IF

BeverageUnit

prepare() : Boolean

<<Active>>

CofeeUnit

prepare()

<<Active>> TeaUnit

prepare()

<<Active>>

BeverageDispenser
btype : Integer
stat : Boolean

<<Triggered>> select(btype : Integer)

<<Active>>

1

0..1
+abu

0..1

1

1

+cu
1

+bd
1

1

1

+tu 1

+bd1

BeverageDispenser

CoffeeUnit TeaUnit

CoffeeUnit::prepare TeaUnit::prepare

idle

wait_money

trigger select(btype) /
if(btype = 1) then abu := cu

else abu := cu fi

dec

[true] / begin return
select(); stat :=
mu.collect(2) end

[not stat]

[stat] / stat := abu.prepare()

BeverageDispenser

wait_moneyidle
?select(b)
// …

mu ! call_collect(2)

?return_collect(stat)
…

34ARTIST summerschool, Nässlingen, 30-09-2005

IFx: global architecture

35ARTIST summerschool, Nässlingen, 30-09-2005

IFx: simulation/verification interface

user friendly
simulation

rewind/reply
conditional
breakpoints

…

customizable
presentation of
results for UML
users

36ARTIST summerschool, Nässlingen, 30-09-2005

Outline

IF notation and tool-set (8)
Omega Real-time profile (7)
IFx: IF frontend for UML (5)
Case studies (11)
Conclusions and future work (2)

37ARTIST summerschool, Nässlingen, 30-09-2005

IFx: case studies
Ariane-5 flight program (together with EADS) – Rational Rose

statically validate the well formedness of the model wrt the Omega profile,
9 safety properties of the flight regulation and configuration components,
analyzed the schedulability of the cyclic / acyclic components under the
assumption of fixed priority preemptive scheduling policy,
safety properties concerning bus read/write access under this policy

MARS bus monitor (together with NLR) – I-Logix Rhapsody
static validation
proved 4 safety properties concerning the correctness of the MessageReceiver,
discover reactivity limits of the MessageReceiver and to fine-tune its behavior in
order to improve reactivity.

Sensor Voting (together with IAI) – Rational Rose
static validation
proved 4 safety properties concerning the timing of data acquiring by the three
Sensors: end-to-end duration, duration between consecutive reads, etc.

A depannage service specification (done FT) – Rational Rose and IF
showed service level timing properties

38ARTIST summerschool, Nässlingen, 30-09-2005

Ariane 5 flight program

Joint work with EADS SPACE Transportation

Regulation
engines/boosters
ignition/extinction

Configuration
stage/payload

separation

Control
Navigation
Guidance
Algorithms

OBC (On Board Computer)

Ground

Equipment
-sensors
-actuators

flight program specification
built by reverse engineering by EADS
high level, non-deterministic, abstracts
the whole program as a OMEGA UML
model

23 classes, 27 runtime objects
~7000 lines of IF code

flight program requirements
General requirements

– no deadlock, no timelock
– no implicit signal consumption

Overall system requirements
– flight phase order
– stop sequence order

Local requirements of components
– activation signals arrive in some
predefined time interval

39ARTIST summerschool, Nässlingen, 30-09-2005

Ariane 5: detailed architecture

Ground

Regulation GNC

Equipment
Valves Pyros

Sequencer
EAP stage
EPC stage

…

start(H0)

Thrust monitor
SRI

Attitude
…

openValve
ignitPyro

requestEAPPrep
requestEAPRelease
…

startCyclic

23 classes
29 run-time objects
7000 LOC IF
74 processes

Bus

40ARTIST summerschool, Nässlingen, 30-09-2005

Ariane 5: techniques applied

model generation
partial order reduction needed

Full state space cannot be constructed
use some conservative abstractions

translation
- Mapping of complete UML
specification into IF with uml2if
- fixed static errors (typing, naming)

model exploration
random or guided simulation
several inconsistencies found

model checking
9 safety properties about correct

sequencing of sub-phases
– concern only the acyclic part
– abstraction of GNC part

schedulability analysis
– concerns the entire system
– abstraction of mission duration

static analysis
live variable analysis
20% of all variables are dead in each

state

41ARTIST summerschool, Nässlingen, 30-09-2005

Ariane 5: safety properties

9 safety properties about the correct sequencing of
sub-phases:

between any two commands sent by the flight program to
the valves there should elapse at least 50ms
a valve should not receive signal Open while in state Open,
nor signal Close while in state Closed.
if some instance of class Valve fails to open (i.e. enters the
state Failed Open) then

No instance of the Pyro class reaches the state Ignition done.
All instances of class Valve shall reach one of the states Failed
Close or Close after at most 2 seconds since the initial valve
failure.
The events EAP Preparation and EAP Release are never
emitted.

…

42ARTIST summerschool, Nässlingen, 30-09-2005

Informal description
If the liftoff is performed, the
boosters shall be released at due
time.

Too late

Too early

Boosters release =
pyro2.ignition

Liftoff = pyro1.ignition

Error state

Property example (timed)

Formal description
Using an observer

43ARTIST summerschool, Nässlingen, 30-09-2005

Ariane 5: scheduling analysis

A typical scenario for this category of systems
pre-emptive fixed priority scheduling

one processor
three tasks :

scheduling goals :
NC and Guidance cycles are respected
Bus read / writes do not conflict

=> modeled by (simple) safety observers

Regulation
- sporadic
- E = 2-5ms (func)
- priority : 0

NC
- periodic 72ms
- E = 36-64ms (f)
- priority : 1

Guidance
- periodic 576ms
- E = ? ms
- priority : 2 Standard

scheduling
analaysis:
? < 64ms

Not enough

44ARTIST summerschool, Nässlingen, 30-09-2005

Ariane 5: why we cannot abstract functionality

BGY

SRI_Up stre
am_1

 / SRI.SRI_upstream()

EAP_Calculat
e_aiming

QDP_Calcu lat
e_ aiming

SRI_Upstre
am_2

Control_Predic
t_state_vector SRI_Down

stream

Decide_EAP
_Separation

Na vig atio n_
performed

Interpolation_
performed

Calculate_
atti tude

EAP phase QDP phase

EAP phase

QDP phase

Start_Minor_
Cycle

Guidance_ra
n

 / BGY.Perform_BGY()

[fasvol<>2] / Control.Calculate_EAP_aiming() [fasvol=2] / Control.Calculate_QDP_aiming()

 / Control.Predict_EAP_state_vector() / Control.Predict_QDP_state_vector() / SRI.SRI_down strea m()

Synchro() / begin minor_cycle:=minor_cycle+1 end

 / A tti tu de .Calcul ate_ At titude()

[fasvol=2] /
Thrust_Monitor.Decide_EAP_Sepa

ration()

[fasvol<>2]

[minor_cycle<guidance_period]
[minor_cycle>=guidance_period] / begin

minor_cycle:=0;Guidance_Task!Start_Guidance_cycl
e() end

 / Data_tables.Interpolate()

[minor_cycle=6] / Navigation.Flight_Protection()

[m in or_cycl e=2] / Na vi ga tio n.Pe rform_ Na viga tio n()
[minor_cycle<>2 and minor_cycle<>6]

5ms

2ms

2ms

10ms

5ms

5ms 0..5ms

20ms
10ms

5ms

10ms

Worst case : 64ms (/72 !)
(Average : 42ms)

45ARTIST summerschool, Nässlingen, 30-09-2005

Model of multitasking in OMEGA UML: an explicit model

46ARTIST summerschool, Nässlingen, 30-09-2005

Model of multitasking in OMEGA UML

Definition of task priority
begin

theTask := new::CPU::FPPSTask::FPPSTask(1, Acyclic.Ground.CPU)
end

Definition of CPU consumption for each function
begin

Cyclics.theTask.exec(5)
end

This task has the first priority

This action consumes 5 units of time

47ARTIST summerschool, Nässlingen, 30-09-2005

Ariane 5: results of scheduling analysis

=> scheduling analysis reduced to verification

Regulation
- sporadic
- E = 2-5ms (func)
- priority : 0

NC
- periodic 72ms
- E = 37-64ms (f)
- priority : 1

Guidance
- periodic 576ms
- E = 230 ms
- priority : 2

-E = 230 ms

Difficulty:
combination of long / short cycles and mission phases

=> state explosion
2 Solutions:
→ over-approximate Regulation part (non-deterministic) leads to a

more pessimistic resource estimation for Guidance
→ drastic shortening of mission duration is an exact under-

approximation and gives more precise results

48ARTIST summerschool, Nässlingen, 30-09-2005

Conclusions: Omega UML profile

Modeling reactive systems
Good expressivity (similar to Rhapsody, Room, SDL,…)
Well defined semantics with some non determinism with a
sufficient granularity for adding timing

Timing and deployment
Direct expression of time constraints as in existing frameworks
General naming scheme for events for the expression of semantic
level granularity (SPT defines names for pairs of events)
A framework for defining semantics of any SPT like RT profile
Architecture (processors, buses,…) defined by special
components and mappings with a few specific concepts

To be done
Explicit component models, where interfaces (required, provided
or mixed) can be modeled by observers
Architecture and deployment related concepts not settled, need
more experimentation

49ARTIST summerschool, Nässlingen, 30-09-2005

Conclusions: IF language and tools

IF language:
Few concepts, but rich enough for efficient state space reduction and
abstraction in the context of state space exploration based validation
Multiple observers reacting to the same event pose semantic problems

need for a composition framework
Mapping UML to IF: designed for flexibility (anticipate semantic

variations):
Can hardwire stricter or less strict concurrency constraints, can handle
asynchronous calls,

IF validation tools:
Very flexible and positive results on all case studies
more specialized abstractions would be useful
Need for verification of observers need for a framework for
composition

IF UML user interface:
Very helpful, exploits information in XMI
more powerful interfaces need information of case tool internal APIs

50ARTIST summerschool, Nässlingen, 30-09-2005

Questions ?Questions ?

Advertisements:

- MARTES workshop with Models 2005, October 4, 2005
(http://www.martes.org)

- IF webpage: http://www-if.imag.fr/ (there are more tutorials)

http://www.martes.org/
http://www-if.imag.fr/

	
	IST OMEGA: validation in the context of model-based development of real-time systems
	The IF toolbox: approach
	IF tool-set: overview
	Outline
	IF language
	System description
	IF: system description
	IF: process description
	IF: transitions
	IF: signal routes
	IF: dynamic priorities
	IF: observer for the expression of properties
	IF tool-set: overview
	IF: core components
	IF: exploration engine
	IF: state space representation
	IF: representation of time
	IF tool-set: overview
	IF: Static analysis
	Outline
	Omega UML profile: general features
	Omega UML profile: interaction model & semantics
	Omega UML profile: Time extensions
	compilation of method calls
	Omega UML profile: Time extensions
	Omega UML profile : requirements as observers
	Omega UML profile : observables
	Omega UML profile : requirements as constraints
	Outline
	IFx: overview
	IFx: mapping UML to IF
	IFx: example of mapping
	IFx: global architecture
	IFx: simulation/verification interface
	Outline
	IFx: case studies
	Ariane 5 flight program
	Ariane 5: detailed architecture
	Ariane 5: techniques applied
	Ariane 5: safety properties
	Property example (timed)
	Ariane 5: scheduling analysis
	Ariane 5: why we cannot abstract functionality
	Model of multitasking in OMEGA UML: an explicit model
	Model of multitasking in OMEGA UML
	Ariane 5: results of scheduling analysis
	Conclusions: Omega UML profile
	Conclusions: IF language and tools
	
	
	Choice of a UML profile
	Results: tools
	Timed behavior
	Timed behavior
	Static analysis
	Behavioral equivalence checking
	Optimization
	compilation of UML elements
	polymorphism, concurrency…
	UML-to-IF compiler
	the front-end GUI
	case studies in Omega
	Conclusions
	Discussion : validation
	Omega UML profile: general features
	Ongoing work
	System description
	IF: exploration engine

