Language Overview
for PHAVer version 0.35

Goran Frehse

June 22, 2006

We have tried to construct a textual input language that is as user friendly
as possible, while keeping the parser simple. In the syntax, we have borrowed
extensively from the creators of HyTech [HHWT97], since their language is intu-
itively understandable. The following sections describe the syntax of PHAVer’s
representation of automata, states, relations etc., and brief descriptions of the
analysis commands, followed by a section on the user-definable parameters. For
formal definitions of hybrid automata, states, polyhedra, and PHAVer’s algo-
rithms please refer to [Fre05b, Fre05al.

1 General

Comments are preceded by either //, --, or enclosed in /* ... */. An identifier is
a letter plus any combination of letters, digits and the characters _ (underscore)
and ~ (tilde), where - is designated for joining the identifiers of locations of
composed automata. A number can be given in floating point format, e.g.,
3.14 or 6.626e-34, or as a fraction, e.g., 9/5. Note that numbers are internally
represented as exact rationals, and no conversion to binary floating point format
takes place (which would lead to rounding errors). E.g., the input 0.1 is parsed
and represented in PHAVer as 1/10, while a 64-bit floating point representation
of 0.1 would actually be the number

0.1000000000000000055511151231257827021181583404541015625.
Commands, constants, parameters and automata can occur in an arbitrary se-
quence. A command is terminated by ; (semi-colon).

2 Constants

Constants are defined in the form identifier := expression; where expression is
any combination of expressions, identifiers and numbers with +,-,/% (,).

3 Data Structures

There are four types of data structures that can be assigned to identifiers: lin-
ear formulas, sets of symbolic states, symbolic relations and automata. A linear
expression is specified over an arbitrary set of variables, numbers and constants
that can be combined using +,-,/,*,(,) as long as it yields a linear expression
over the variables. IL.e., it is not allowed to multiply two variables, or divide
by a variable, and the attempt to do so will result in an error message. A lin-
ear constraint is a combination of two linear expressions with one of the signs
<> <=>===. A convex linear formula is given as a conjunction of linear con-
straints that are joined by & (ampersand). A linear formula is a disjunction of
convex linear formulas joined by |. Brackets (,) can be used to avoid ambigu-
ities. A linear formula can be assigned to a variable in the form identifier =
linear formula;.

A symbolic state is a combination of a location name and a linear formula,
joined by &, e.g., start & x>0 & y==0. A set of symbolic states is a list of sym-
bolic states, joined by , (commata). A set of symbolic states of an automaton
aut is assigned to a variable in the form identifier = aut.{ set of symbolic states
}; Location names of automata in composition are concatenated with ~ as a
separator, e.g. as in off~stop. The use of the wildcards $ and ? is permit-
ted to specify sets of symbolic states. Use the separator ~ to determine which
automaton in the composition the location refers to. E.g., for four identical
automata Aj||A2||As||As with locations on,off, the identifier $~0f£f~$~$ refers
to all locations in which A, is in off, $~$~off~$ to those in which Ajg is in off,
and $~off~$ refers to both cases.

Remark Wildcards are purely syntactically understood by PHAVer and are
therefore to be used with extreme caution! E.g., for sets of symbolic states
regl=aut.{$ & truel}, reg2=aut.{locl & true}, regl.difference_assign(reg2) re-
sults in regl=aut.{$ & true}, while reg2.difference_assign(regl) yields the
empty set, reg2=aut.{}.

Symbolic relations are returned by the simulation relation algorithms. There
are currently no provisions for specifying relations. Identifiers can be assigned
to other identifiers simply using =.

4 Automata

In the following, let var_ident be an identifier defining a variable, loc_ident a
name for a location, label_ident an identifier defining a synchronization label.
An automaton with identifier aut is specified in the following form:

automaton aut

contr_var: war_ident,var_ident,...;

input_var: war-ident,var_ident,...;

parameter: war_ident,var_ident,. .. ;

synclabs: lab_ident,lab_ident,. .. ;

loc loc_ident:while invariant wait { derivative };
when guard sync label_ident do {trans_rel} goto loc_ident;
when guard sync label_ident goto loc_ident;

when ...
loc loc_ident: while ...
initially: snitial_states;

end

The invariant and the guard are linear formulas over the state and input
variables and the parameters. The derivative definition depends on the dynam-
ics:

e For “linear” (LHA) dynamics, it is a convex linear formula over the state
variables. E.g., 0 <= x* & x* < 1 for & € [0,1).

e For affine dynamics, it is a convex linear formula over the variables and
their derivatives. The differentiated variables are indicated by ’ (single
quote), e.g., x> == -2 * x for £ = —2x.

Note that parameter uncertainties can be incorporated by using inequalities.

A transition is specified by when ... goto statements. There always must be a
synchronization label associated with the transition. A linear formula trans_rel
specifies the jump relation p after a do statement, where the post-transition
value of the variable is indicated by * (single quote). State variables that are
not changed by the transition must be specified explicitly in the jump relation,
e.g., x’==x & y’==y. ! The reset of a variable to 0 would be defined, e.g., by
z’==0. If no jump relation p is specified, the controlled variables remain constant
and the inputs may change arbitrarily. The restriction that parameters remain
constant is always added automatically to the jump relation. Instead of a single
label per transition one may specify a comma-separated list, which adds one
copy of the transition per label.

Automata are composed using & (ampersand), e.g., comp_aut = autl & aut2;

The initial states are specified as a set of symbolic states after initially:,
which may include wildcards.

5 Commands

PHAVer provides commands for computing reachable sets of states and sim-
ulation relations, plus a number of commands for the manipulation and out-
put of data structures. In the following list, square brackets [are used to

L Although this might seem tedious and is different from the HyTech language, we find it
avoids errors and confusion when composing automata.

indicate optional arguments. identifier is used to denote the identifier for an
arbitrary object, formula_ident for a linear formula, state_ident for a set of
symbolic states, rel_ident for a symbolic relation and aut_ident for an automa-
ton. Let state_or_rel_ident stand for either a set of symbolic states or a rela-
tion. Let state_list be an explicit comma separated list of symbolic states, e.g.,
start & t==0, stop & t==1. Recall that objects can be copied with an assign-
ment new_identifier = old_identifier;

5.1 General

® echo "text";
Displays tezxt and starts a new line.

® who;
Displays a list of identifiers currently in memory, as well as the sizes of
automata.

e identifier .print ([" file_name"|[, method)) ;
If file_name is specified, writes a representation of identifier to the file
file_.name, otherwise to the standard output. An optional integer method
determines the format:

— 0: (default) Location names and linear formulas are produced in
textual form that can be read by PHAVer. E.g., aut.print("test",0)
saves an automaton description in the file test. It can be parsed
directly by PHAVer, e.g., using phaver test.

— 1: Output the linear formulas as a sequence of linear constraints in
floating point form. Equalities ¢ = 0, where ¢ is some linear formula,
are converted to ¢ > 0 A —¢ > 0. The coefficients of a constraint
> a;x; + b 0 are output separated by spaces, one constraint per
line. Convex formulas are separated by a blank line. No location in-
formation is given. This form can be used for output with polyhedral
visualization packages. The order of variables is the same as in the
list provided by the automaton output.

— 2: Output the linear formulas as a sequence of vertices in floating
point form. The vertices belonging to a convex formula are separated
by a blank line. No location information is given. This form can be
used for output with plotting tools like graph. If 2-dimensional, the
points are in counter-clockwise order and represent a closed line for
each convex formula, i.e., the last point is equal to the first. The
order of variables is the same as in the list provided by the automaton
output. There is also a script plot_2d_vertices.m to plot this output
with Matlab.

5.2

5.3

5.4

Reachability Analysis

state_ident=aut_ident .reachable;
Returns the set of states reachable in the automaton aut_ident from the
initial states.

state_identl=aut_ident .reachable (state_ident2) ;
Returns the set of states reachable in the automaton aut_ident from the
states in state_ident2.

state_identl=aut_ident .is_reachable (state_ident2) ;

Computes the set of reachable states, but stops as soon as a state in
state_ident2 is found. Returns the states that were found to be reachable
at the time of termination.

state_identl=aut_ident.is_reachable_fb(state_ident?) ;
Verifies whether state_ident2 is reachable from the initial states using for-
ward/backward refinement.

Simulation Checking

rel_ident=get_sim(aut_identl, aut_ident?2) ;
Returns a simulation relation for aut_identl <aut_ident2.

is_sim(aut_identl,aut_ident2) ;
Computes a simulation relation and displays whether aut_ident1 =< aut_ident2.

is_bisim(aut_identl,aut_ident2) ;
Computes a simulation relation and displays whether aut_ident1 < aut_ident2.

ag_sim(aut_ident],aut_ident2,aut_ident3,aut_idents) ;
Computes a simulation relation using assume/guarantee reasoning and
displays whether aut_ident! || aut-ident2 < aut_ident3 || aut_ident/.

Partitioning

aut_ident .set_partition_constraints ((lin_ezprl,01min,01maz) »
(lin_expr2,02min ,02maz) »- - -)3

Defines the partitioning constraints used in subsequent analyses. A lo-
cation will be split by a constraint of the form lin_expr! < ¢, where c is
the center of the location with respect to the linear expression. 61, and
01maz define the minimum and maximum extent of every location in the
partitioning process. The constraints are prioritized according to the par-
titioning parameters. The maximum values, d1,mq4z,- - -, May be omitted.

5.5

5.6

Queries

identifier! .contains (identifier2) ;
Writes whether the object identifier2 is contained in the object identifier!
of the same type to the standard output.

identifier .is_empty;
Writes whether the object identifier is empty to the standard output.

state_ident=aut_ident .inital_states;
Copies the initial states of aut_ident to state_ident.

state_ident=aut_ident .get_invariants;
Copies the invariants of aut_ident to state_ident.

Manipulation Commands

5.6.1 States and Relations

state_ident .rename (var_ident1,var_ident2) ;
Replaces the name of variable var_ident! with var_ident2.

identifier .remove (var_ident,var_ident,. ..) ;
Existential quantification over the specified variables.

identifier .project_to(var_ident,var_ident,...);
Existential quantification over all except the specified variables.

identifier . get_parameters(bool) ;

Performs existential quantification over state and input variables, i.e., non-
parameters. A boolean parameter bool specifies the quantification over
locations:

— false: Disjunction, the parameters are common to all locations. E.g.,
compute the set of reachable states, intersect it with a set of desired
states, and get the parameters for which all desired states are reach-
able with option false.

— true: Conjunction, the parameters occur in any of the locations. E.g.,
compute the set of reachable states, intersect it with a set of forbidden
states, and get the parameters for which any of the forbidden states
are reachable with option true.

state_ident=state_or_rel_ident .loc_union;
Returns the states unified over the locations, attributed to the location
wildcard $.

state_ident=state_or_rel_ident .loc_intersection;
Returns the states intersected over the locations, attributed to the location
wildcard $.

e identifier! .intersection_assign(identifier?) ;
Intersects identifier2 with identifier! and puts the result into identifieri.

e identifier! .difference_assign(identifier2) ;
Subtracts identifier2 from identifier! and puts the result into identifierl.

o rel_identl=rel_ident? .inverse;
If rel_ident2 is a relation R, then rel_ident! is assigned R~!.

o rel_identl=rel_ident2.project_to_first;
If rel_ident2 is a relation R(p,q), then rel_ident! is assigned R’ = {p|3q :

R(p,q)}-

5.6.2 Automata

o qut_ident.add_label (lab_ident) ;
Adds the label lab_ident to the alphabet of the automaton aut_ident. Can
be used to add an extra label that is dedicated for partitioning to an
existing model.

e qut_ident.reverse;
Reverses causality (time and transitions) in the automaton. This may be
used to implement backwards reachability by reversing the automaton,
and then using standard forward reachability. Don’t forget whether you
want to change the initial states in the process.

e qut_ident.initial_states(state_ident);
Replaces the initial states of aut_ident with state_ident.

e qut_ident.invariant_assign(state_ident);
Replaces the invariants of aut_ident with state_ident.

6 Parameters

The following is a summary of the parameters used in PHAVer. A parameter is
defined in the form identi fier = value;. The default setting is given in brackets,
and the type is boolean unless specified otherwise.

6.1 General

e ELAPSE_TIME (true): Can be used to switch off the time-elapse operator.
Useful for the analysis of purely discrete systems, but the speed-up is
modest.

6.2 Reachability Analysis

e REACH_MAX_ITER (0): Integer specifying the maximum number of iterations
used, i.e., the number of discrete transitions explored. Only active if > 0.
A value of -1 returns the initial states after partitioning and time elapse.

e CHEAP_CONTAIN_RETURN_OTHERS (true): Determines the type of containment
test used:

— false: exact, i.e., a convex polyhedron p is considered contained in a
non-convex polyhedron ¢ if the difference p \ ¢ is empty.

— true: a convex polyhedron p is considered contained in a non-convex
polyhedron ¢ = ¢; U ... U ¢, (a union of convex polyhedra) if there
is a convex polyhedron ¢; in the union that contains it, i.e., 3i €
{1,...,n}: q C ¢;. This method is generally faster than exact testing,
although it results in more polyhedra.

e USE_CONVEX_HULL (false): Use convex-hull over-approximations. Highly rec-
ommended when using on-the-fly partitioning, and usually a good idea.

e REACH_STOP_USE_CONVEX_HULL_ITER (1000000000): Integer specifying the max-
imum number of iterations for which the convex-hull over-approximation
is used. Can be set to a lower value to improve termination.

e REACH_USE_BBOX (false): Causes the over-approximation of the post-transition
states with a bounding box. Can be used to force termination, but usually
leads to excessive over-approximation.

e REACH_USE_BBOX_ITER (1000000000): Integer specifying the frequency n (a
number of iterations) with which the bounding-box over-approximation is
used. It is only applied at one iteration, then followed by n iterations with
the normal setting. Can be set to a lower value to improve termination.
Note that it is independent of REACH_USE_BBOX.

e REACH_ONLY_EXPLORE (false): Toggles a special ezploration mode: There is
no testing if newly reached states are contained in previous ones. Termi-
nates only if the number of iterations is set with REACH_MAX_ITER.

e SEARCH_METHOD (0): Experimental feature, directing the search order ac-
cording to 0: breadth-first incl. doubles (HyTech-like), 1: post horizon-
based, 2: predecessor ratio, 3: depth-first, 4: breadth-first, 6: topological
sort of reachable states, 7: topological sort of all states. So far, only 0, 6
and 7 are useful. Use 6 and 7 mainly with PARTITION_CHECK_TIME_RELEVANCE
(_DURING and/or _FINAL) to true.

e SNAPSHOT_INTERVAL (0): Experimental feature. Writes every n iterations
the currently reachable set into files. Projects to the first two variables.

6.3

6.4

Overapproximations

CONSTRAINT_BITSIZE (0): Integer specifying the number of bits used in con-
straints, i.e., in the polyhedral computations. Equalities are not affected.
If a constraint can not be specified with that amount of bits, a error is
thrown. Only active if > 0.

REACH_BITSIZE_TRIGGER (0): Integer threshold for limiting the number of
bits used. The bits are reduced as specified in CONSTRAINT_BITSIZE only
if they exceed this threshold. Can significantly improve termination and
reduce the over-approximation, usually set to 10 — —30x the limit.

REACH_STOP_USE_BITSIZE (1000000000): Integer specifying the maximum
number of iterations for which the number of bits are constrained. Can
be set to a lower value to improve termination.

LIMIT_CONSTRAINTS_METHOD (1): Integer specifying the method with which
the number of constraints is reduced:

— 0: constraints are evaluated according to slack (slow).

— 1: constraints are evaluated according to angle (very fast).

REACH_CONSTRAINT_LIMIT (0): Integer specifying the maximum number of
constraints allowed in a convex polyhedron. Exceeding polyhedra will be
over-approximated as specified by LIMIT_CONSTRAINTS_METHOD. The lim-
iting is performed before the time-elapse operator, so that the resulting
number of constraints can be higher. Usually set to at least 2™ if n is the
number of variables. Only active if > 0.

REACH_CONSTRAINT_TRIGGER (0): Integer threshold for limiting the number
of constraints. A convex polyhedron is reduced to REACH_CONSTRAINT_LIMIT
constraint once it exceeds this threshold. Can significantly improve ter-
mination, usually set to 2-3x the constraint limit. Boundedness of the
polyhedron is preserved, with more constraints if necessary. Only active
if > 0.

TP_CONSTRAINT_LIMIT (0): Integer specifying the maximum number of con-
straints used for describing the derivative. Exceeding derivative formu-
las will be over-approximated as specified by LIMIT_CONSTRAINTS_METHOD.
Boundedness of the polyhedron is preserved, with more constraints if nec-
essary. Only active if > 0.

Simulation Checking

PRIME_R_WITH_REACH (true): Initialize the simulation relation with the reach-
able states of P||Q.

USE_CONVEX_HULL_FOR_PRIMING (true): Use convex-hull reachability for the
initialization if PRIME_R_WITH_REACH is true.

6.5

PRIME_R_WITH_DISCRETE_REACH (true): Over-approximating initialization of
the simulation relation with the locations of P||@ that are reachable by
discrete transitions.

STOP_AT_BAD_STATES (true): Stop as soon as bad states are encountered.
Only useful if PRIME_R_WITH_REACH=true.

SHOW_BAD_STATES (false): Output bad states as they are encountered.

SIM_SIMPLIFY_R (true): Simplify the simulation relation, i.e., remove re-
dundant polyhedra and join convex unions where possible, after each dif-
ference operation. Costly, but usually indispensable.

Partitioning

TIME_POST_ITER (0): Integer specifying how many iterations are performed
between reachable states and restricting the derivative to those reachable
states. This number equals to £ — 1 in Postf_pr. Higher numbers im-
prove the accuracy of refined dynamics, but numbers > 0 require that the
derivative is re-computed every time the cell is examined, which may slow

down the analysis significantly.

PARTITION_CHECK_TIME_RELEVANCE (true): Eliminate partitioning transitions
that are never crossed by timed transitions and are therefore irrelevant as
they are created when a location is split.

PARTITION_CHECK_TIME_RELEVANCE_DURING (true): Eliminate partitioning tran-
sitions that are never crossed by timed transitions and are therefore irrele-
vant testing all connected transitions when a location is split. This helps to
additionally remove transitions, helping convergence, memory and speed.

PARTITION_CHECK_TIME_RELEVANCE_FINAL (true): Eliminate partitioning tran-
sitions that are never crossed by timed transitions and are therefore irrel-
evant, testing all connected transitions when the location is split to mini-
mum critera and will not be split further. This is may be used alternatively
or in addition to PARTITION_CHECK_TIME_RELEVANCE_DURING, with better or
worse performance.

REFINE_DERIVATIVE_METHOD (2): Integer determining how the set of deriva-
tives is determined:
— 0: constraint-based,
1: bounding box of method 0,
— 2: projection-based,
3:

bounding box of method 2.

PARTITION_PRIORITIZE_REACH_SPLIT (false): Prioritize constraints that have
reachable states strictly on both sides.

10

e PARTITION_PRIORITIZE_ANGLE (false): Prioritize constraints according to
the maximum angle spanned by the derivative in the resulting locations.

e PARTITION_SMALLEST_FIRST (false): Prioritize constraints according to their
extent in the location. The value false corresponds to largest first, which
is volume optimal.

e PARTITION_DERIV_MAXANGLE (1): Floating point number <(;,;,. A location
is only refined if <(nin > <deriv(l,S), where <gerin (1,.5) is the max. angle
between any two derivative vectors in the location. A value smaller than 1
results in a partitioning based loosely on the “curvature” of the derivative,
typically between 0.85 — 0.99.

References

[Fre05a]

[Fre05b)

[HHWT97]

Goran Frehse. Compositional Verification of Hybrid Systems Using
Simulation Relations. PhD thesis, Radboud University Nijmegen,
2005. available at http://webdoc.ubn.ru.nl/mono/f/frehse_g/
compveofh.pdf.

Goran Frehse. PHAVer: Algorithmic verification of hybrid systems
past HyTech. In Manfred Morari and Lothar Thiele, editors, Hybrid
Systems: Computation and Control (HSCC’05), Mar. 9-11, 2005,
Ziirich, CH, volume 2289 of LNCS. Springer, 2005. PHAVer is
available at http://www.cs.ru.nl/"goranf/.

Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi.
HYTECH: A model checker for hybrid systems. Int. Journal on
Software Tools for Technology Transfer, 1(1-2):110-122, December
1997.

11

