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Abstract. In 1995, HyTech broke new ground as a potentially powerful
tool for verifying hybrid systems – yet it has remained severely lim-
ited in its applicability to more complex systems. We address the main
problems of HyTech with PHAVer, a new tool for the exact verification
of safety properties of hybrid systems with piecewise constant bounds
on the derivatives. Affine dynamics are handled by on-the-fly overap-
proximation and by partitioning the state space based on user-definable
constraints and the dynamics of the system. PHAVer’s exact arithmetic
is robust due to the use of the Parma Polyhedra Library, which supports
arbitrarily large numbers. To manage the complexity of the polyhedral
computations, we propose methods to conservatively limit the number
of bits and constraints of polyhedra. Experimental results for a naviga-
tion benchmark and a tunnel diode circuit show the effectiveness of the
approach.

1 Introduction

Systems with discrete as well as continuous dynamics, i.e., hybrid systems, are
notoriously complex to analyze, and the algorithmic verification of hybrid sys-
tems remains a challenging problem, both from a theoretic point of view as well
as from the implementation side. Ideally, one would like to obtain either an ex-
act result or a conservative overapproximation of the behavior of the system,
e.g., as the set of reachable states. An exact computation is possible with linear
hybrid automata (LHA) [1], which are defined by linear predicates and piecewise
constant bounds on the derivatives. They were proposed and studied in detail
by Henzinger et al., see [2] for an extensive discussion, who presented in 1995 a
tool called HyTech that could perform various computations with such systems
[3]. It featured a powerful input language and functionality, but suffered from
a major flaw: its exact arithmetic was using limited digits, which can quickly
lead to overflow errors. While it was successfully used to analyze a number of
examples, see [4,5] and references therein, the overflow problem prohibits any
application to more complex systems.

The valuable experiences with HyTech have prompted a number of sugges-
tions for improvement, a summary of which can be found in [4]. We address the
most pressing ones with PHAVer (Polyhedral Hybrid Automaton Verifyer), a
new tool for analyzing linear hybrid automata with the following characteristics:



– exact and robust arithmetic based on the Parma Polyhedra Library [6],
– on-the-fly overapproximation of piecewise affine dynamics,
– conservative limiting of bits and constraints in polyhedral computations,
– support for compositional and assume-guarantee reasoning. 1

PHAVer’s extended functionality and computational robustness open up new
application domains as well as research issues that were abandoned because of
the limits of previous implementations. Exact arithmetic entails, in addition to
the security and beauty of formal correctness, the significant advantage of a
separation of concerns. Problems of convergence, combinatorial explosion and
nondeterminism can be identified as such, which is very difficult if they are in-
tertwined with numerical difficulties. We present PHAVer’s algorithm for over-
approximating piecewise affine dynamics with LHA, which partitions locations
with user-specified constraints to limit and localize the overapproximation. The
constraints allow the user to include expert knowledge in refining certain vari-
ables to a specified detail, and can be adapted to the dynamics by prioritizing
the size or the spread angle of the derivatives of a location. Due to the exact
arithmetic, the size of coefficients as well as the number of constraints that define
polyhedra can grow excessively. We propose methods to simplify polyhedra by
limiting both the number of bits and contraints. The applicability of PHAVer
and the effectiveness of the proposed methods are demonstrated with a naviga-
tion benchmark [7], and a tunnel diode circuit [8]. In addition to the reachability
algorithm, PHAVer includes a separate engine for computing simulation relations
between hybrid automata. It can be used to verify equivalence or abstraction be-
tween different models, and for assume-guarantee reasoning. For lack of space,
the reader is referred to [9] for further details on the approach.

Earlier attempts to improve over HyTech include the use of interval arith-
metic [10], which can quickly lead to prohibitively large overapproximations. An
algorithm specialized on rectangular automata was proposed in [11] and imple-
mented based on the HyTech engine. It is able to use a limited number of bits
through component-wise conservative rounding of the coefficients. However, the
rectangular over-approximation can become prohibitively large. An improvement
was proposed in [12] by allowing arbitrary convex polyhedra. It also incorporates
a strategy to reduce the number of bits by component-wise overapproximation,
but is based on a vertice representation of polyhedra and its complexity is ex-
ponential in the number of variables. While most tools for timed automata use
exact computations, we are not aware of tools for hybrid systems that do so
apart from HyTech. The first HyTech prototype was implemented in Mathemat-
ica and did not have any numerical restrictions, but it was also 50–1000 times
slower than the later version written in C++ [13]. Our on-the-fly overapproxima-
tion essentially performs a partitioning of the state space similar to the approach
in [14]. For the simplification of polyhedra it has been suggested to use bounding
boxes or oriented rectangular hulls [15]. Instead, we propose to simply drop the

1 Not addressed are more advanced input capabilities like hierarchy, templates and
directional communication labels, since we consider these easily and more appropri-
ately handled by a GUI-frontend or editor.



least significant of the constraints, as this seems a good compromise in terms of
accuracy and speed. For a survey of verification tools for hybrid automata, see
[16].

In the next section, we will briefly introduce the hybrid automaton model
used by PHAVer, which has a simple Input/Output structure to support com-
positional reasoning. In Sect. 3 we present the reachability analysis algorithm
and its on-the-fly overapproximation of affine dynamics. Experimental results
are provided for a navigation benchmark. Methods to manage the complexity of
polyhedra by limiting the bits and constraints are proposed in Sect., 4, and illus-
trated with a tunnel diode circuit. We sum up the results and present conclusions
in Sect. 5.

2 Hybrid I/O-Automata with Affine Dynamics

The theory of hybrid I/O-automata has been developed extensively by Lynch,
Segala, Vaandrager and Weinberg [17]. It is a very general framework that is
based on (almost) arbitrary trajectories of a set of variables, which can have
different dynamic types. Since our focus is on obtaining a computable framework
for compositional reasoning, we have proposed a simple concept of I/O-automata
in [9], which is largely based on the hybrid automata in [1]. Given a set Var of
variables, a valuation is a function v : Var → R. Let V (Var) denote the set of
valuations over Var. An activity is a function f : R

≥0 → V (Var). Let act(Var)
denote the set of activities over the variables in Var. A set S of activities is
time-invariant if for all f ∈ S, d ∈ R

≥0 : fd(t) := f(t + d) ∈ S. Let ↓Var ) be the
projection onto the variables in Var .

Definition 1 (Hybrid I/O-Automaton). [9]A hybrid Input/Output-auto-
maton (HIOA) H = (Loc, VarS, VarI , VarO, Lab, →, Act, Inv, Init) consists
of the following:

– A finite set Loc of locations.
– Finite and disjoint sets of state and input variables, VarS and VarI , and of

output variables VarO ⊆ VarS. Let Var = VarS ∪ VarI .
– A finite set Lab of synchronization labels.
– A finite set of discrete transitions →⊆ Loc×Lab× 2V (V ar)×V (V ar) ×Loc. A

transition (l, a, µ, l′) ∈→ is also written as l
a,µ
−−→H l′.

– A mapping Act : Loc → 2act(Var) to time-invariant sets of activities.
– A mapping Inv : Loc → 2V (V ar) from locations to sets of valuations.
– Initial states Init ⊆ Loc × V (V ar) s.t. (l, v)∈Init ⇒ v ∈ Inv(l).

In PHAVer, we deal with hybrid automata that can be analyzed using polyhedra,
i.e., finite linear formulas. A linear expression is of the form

∑

i aixi + b, and a
convex linear formula is a finite conjunction of constraints

∑

i aixi + b ⊲⊳ 0, with
ai, b ∈ Z, xi ∈ Var and a sign ⊲⊳∈ {<,≤,=}. A non-convex linear formula, or
linear formula, is a finite disjunction of convex linear formulas. A linear hybrid
automaton (LHA) [1] is a hybrid automaton in which the invariants and the



continuous transition relation are given by linear formulas over Var , and the
activities are given by linear formulas over the time derivatives of the variables. If
the dynamics are given by linear formulas over the derivatives and the variables,
we call it an affine hybrid automaton. 2

3 Reachability Analysis in PHAVer

A reachability analysis computes all states that are connected to the initial states
by a run. We enhance the fixpoint computation algorithm for reachability with
operators for the partitioning of locations and the simplification of sets of states
described by polyhedra. The partitioning of locations is used when affine dy-
namics are overapproximated with LHA-dynamics, where locations are split into
smaller parts to improve the accuracy. The simplification operator fulfills two
purposes: Firstly, the overapproximation of sets of states with a simpler represen-
tation keeps the complexity from growing beyond computationally manageable
limits. Secondly, since termination is not guaranteed for linear hybrid automata,
overapproximation of the sets of states as well as the set of derivatives can be
used to accelerate convergence and possibly force termination by reducing the
model to a class where reachability is decidable. The challenge lies in trading
speed, termination and resource consumption against the loss of accuracy. The
algorithm used in PHAVer for computing the set of reachable states is shown in
Fig. 1. We give a brief summary of the operators used. Let X, Y and Y1, . . . , Yz

procedure GetReach

Input: a set of initial states SI

Output: the set of states SR reachable from SI

(SI , {SI}) := partition loc(SI , {SI});
W, SR := time elapse(SI);
while W 6= ∅ do

N := trans post(W );
(N, (SI , SR, W )) := partition loc(N, (SI , SR, W ));
N := cheap difference(N, SR);
N := union approx(N, SR);
N := simplify(N);
N := time post(N, simplify(time deriv(N, Inv)));
SR := SR ∪ N ;

W := N
od.

Fig. 1. Reachability Algorithm in PHAVer

2 In literature, a LHA is also referred to as a piecewise constant HA, and an affine HA
as a linear HA.



be arbitrary sets of states, each described by a set of convex polyhedra for each
location.

Post-Operators: The operator time elapse(X,Y ) computes the successors of
a set of states X by letting time elapse according to a set Y that attributes a set
of derivatives to each location. The successors of discrete transitions are given
by trans post(X). A detailed description can be found in [2].

Overapproximating Operators: The operator cheap difference(X,Y ) com-
putes a overapproximation of X \ Y by returning the polyhedra in Y that are
not individually contained in some polyhedra of X. The gain in speed usually
far outweighs the fact that more states are iterated than necessary [2]. With
union approx (X,Y ), the union of new states X and old states Y can optionally
be overapproximated, e.g., by using the convex hull. If there are no new states
for a location, the operator returns the empty set for that location. The simplify
operator is used to reduce the complexity the representation of states by over-
approximation. It can also be applied to the set of derivatives in the location.
Current options in PHAVer for simplify include a bounding box overapproxi-
mation, limiting the number of bits used by the coefficients of constraints, and
limiting the number of constraints.

Partitioning Operators: The operator partition loc(X, (Y1, . . . , Yz)) parti-
tions the locations with states in X as described in Sect. 3.1 and maps the
states in Y1, . . . , Yz to the new set of locations. The operator time deriv(X,Y )
computes the set of derivatives that any state in X might exhibit, provided that
the states are confined to Y :

time deriv(X,Y ) = {(l, ḟ(t))|∃(l, v) ∈ X, f ∈ Act(l), t ∈ IR≥0 :

(f(0) = v ∧ ∀t′, 0 ≤ t′ ≤ t : f(t′) ∈ Y )}

In the following section we give a more detailed description of the partitioning
operator and its parameters.

3.1 On-the-fly Over-Approximation of Affine Dynamics

While PHAVer’s computations are based on linear hybrid automata models, it
also accepts affine dynamics, which are then overapproximated conservatively.
The approximation error depends on the size of the location and the dynamics, so
PHAVer offers to partition reachable locations during the analysis. The partition-
ing takes place by splitting locations recursively along user-defined hyperplanes
until a minimum size is reached or the dynamics are sufficiently partitioned.

The relaxed affine dynamics are given by a convex linear formula for its
derivatives, i.e., a conjunction of constraints

aT
i ẋ + âT

i x ⊲⊳i bi, ai, âi ∈ ZZn, bi ∈ ZZ, ⊲⊳i∈ {<,≤,=}, i = 1, . . . ,m. (1)



for each location. In the following, we assume the equalities to be modeled
using conjuncts of pairs of inequalities. In a location loc, the constraints (1)
are overapproximated conservatively with constraints of the form αiẋ ⊲⊳i βi,
αi ∈ ZZn, βi ∈ ZZ, by finding the infimum of (1) inside the invariant Inv(loc).
Let

p/q = inf
x∈Inv(loc)

âT
i x, p, q ∈ ZZ.

If p/q exists, the set of ẋ that fulfill (1) is bounded by aT
i ẋ ⊲⊳i bi−p/q, otherwise

the constraint must be dropped. The linear constraint on ẋ is then given by
αi = qai, βi = qbi − p.

The resulting overapproximation error depends on the size of the locations
and the dynamics but can be made arbitrarily small by defining suitably small
locations. PHAVer does so by recursively splitting a location along a suitable hy-
perplane chosen from a user-provided set. The splitting is repeated in reachable
locations until a certain threshold, e.g., a minimum size, is reached. We account
for the dynamics of the system using the spatial angle that is spanned by the
derivatives in a location. Let the spread of a set of valuations X be

∢(X) = arccos min
x,y∈X

xT y/|x||y|

and the spread of the derivatives of states X confined to states Y in location loc

∢deriv (loc,X, Y ) = ∢ ({v|(loc, v) ∈ time deriv(X,Y )}) .

The spread of the derivatives is used in two ways: The partitioning of a location
is stopped once the spread is smaller than a given minimum, or the constraints
are prioritized according to the spread of the derivatives in the location after the
splitting.

Recall that a hyperplane h is defined by an equation aT
h x = bh, where the

normal vector ah determines its direction and the inhomogeneous term bh its
position, for which we choose the center of the location. Let the slack of h in a
location loc be defined by

∆(ah) = max
x∈Inv(loc)

aT
h x − min

x∈Inv(loc)
aT

h x.

In PHAVer, the user provides a list of candidate normal vectors ah,i and the
minimum and maximum slack that the hyperplanes will have in the partitioned
locations, i.e.,

Cand = {(ah,1,∆min,1,∆max,1), . . . , (ah,m,∆min,m,∆max,m)}.

This allows the user to include expert knowledge by choosing planes and location
sizes suitable for the system. The candidate hyperplanes are prioritized according
to a user-controlled list of criteria. We consider the criteria to be a map

split crit : {aT x ⊲⊳ b|a ∈ ZZn, b ∈ ZZ} × Loc × 2SH 7→ (IR ∪∞∪−∞)z



that attributes a z-tuple of prioritizing measures, evaluated lexicographically, to
each constraint, and takes into account a set of valuations considered of interest.
Two special symbols are included: ∞ voids the constraint, but it can be overruled
by −∞, which takes precedence over all other factors. The currently implemented
measure split crit(aT x ⊲⊳ b, loc,N) takes into account the set N of reachable
states in the location, and offers the following choices:

1. Prioritize constraints according to their slack:

split crit1 =

{

∆(ah)/∆min,h if∆(ah) > ∆min,h,
∞ otherwise.

2. Prioritize constraints that have reachable states only on one side:

split crit2 =

{

1 if ∃x, x′ ∈ N : aT x < b ∧ aT x′ > b
0 otherwise.

3. Prioritize constraints according to the spread of the derivatives. Discard
constraint if a minimum spread ∢min is reached and the slack is smaller
than ∆max,h:

split crit3 =







−∢deriv (loc,N, Inv) if ∢deriv (loc,N, Inv) ≥ ∢min

∨ ∆(ah) > ∆max,h,
∞ otherwise.

4. Prioritize constraints according to the derivative spread after the constraint
is applied:

split crit4 = −max{∢deriv (loc,N, {(l, x) ∈ Inv | aT x ≤ b}),

∢deriv (loc,N, {(l, x) ∈ Inv | aT x ≥ b})}.

For efficiency, the partitioning is applied on the fly as shown in the reacha-
bility algorithm of Fig. 1. The algorithms for splitting a location, and refining
the location with the prioritized candidate constraints are shown in Fig. 2 and
Fig. 3.

3.2 Example: Navigation Benchmark

We illustrate the reachability analysis of PHAVer with a benchmark proposed
in [7]. It models an object moving in a plane, and following dynamically a set
of desired velocities vd(i) = (sin(iπ/4), cos(iπ/4))T , i = 0, . . . , 7, where i is
attributed to each unit square in the plane by a given map M . A special symbol
A denotes the set of target states, and B denotes the set of forbidden states for the
object. We verified that the forbidden states are not reachable for the instances
shown in Fig. 4, whose maps are given by:

MNAV01 = MNAV02 = MNAV03 =





B 2 4
2 3 4
2 2 A



 ,MNAV04 =





B 2 4
2 2 4
1 1 A



 .



procedure SplitLocation

Input: HIOA H = (Loc, VarS , VarI , VarO, Lab, →, Act , Inv , Init),
location loc, constraint aT

i x ⊲⊳i bi, splitting label τH ,
list {Y1, . . . , Yn} of set of states of H for remapping

Output: Hybrid I/O-automaton H with split location loc

Loc:={l ∈ Loc | l 6= loc} ∪ {(loc,≤), (loc,≥)};
→:={(l, a, µ, l′) ∈→ | l 6= loc ∧ l′ 6= loc}

∪{(l, a, µ, (loc,≤)), (l, a, µ, (loc,≥)) | (l, a, µ, loc) ∈→}
∪{((loc,≤), a, µ, l′), ((loc,≥), a, µ, l′) | (loc, a, µ, l) ∈→}
∪{(l, τH , {x′ = x|x ∈ Var}, l′) | l, l′ ∈ {(loc,≤), (loc,≥)}};

Act:={l 7→ x(t) ∈ Act | l 6= loc}
∪{(loc, ⊲⊳) 7→ x(t) | loc 7→ x(t) ∈ Act , ⊲⊳∈ {≤,≥}};

for S ∈ {Y1, . . . , Yn} ∪ {Inv , Init} do

S:={(l, x) ∈ S | l 6= loc}
∪{((loc, ⊲⊳), x) | (loc, x) ∈ S ∧ aT

i x ⊲⊳ bi, ⊲⊳∈ {≤,≥}}
od.

Fig. 2. Splitting a location along a hyperplane

procedure partition loc

Input: HIOA H = (Loc, VarS , VarI , VarO, Lab, →, Act , Inv , Init),
set of investigated states N , set of candidate constraints
Cand = {(ah,1, ∆min,1, ∆max,1), . . . , (ah,m, ∆min,m, ∆max,m)},
list {Y1, . . . , Yn} of set of states of H for remapping

Output: Hybrid I/O-automaton H with locations in N partitioned

for loc ∈ {l ∈ Loc|∃x : (l, x) ∈ N} do

do

for i = 1, . . . , m do

bi:=1/2

(

max
x∈Inv(loc)

aT
h,ix + min

x∈Inv(loc)
aT

h,ix

)

;

ci:=split crit(aT
h,ix = bi, loc, N)

od;

k:=argmin
i=1,...,m

ci;

if ∞ /∈ ck ∨ −∞ ∈ ck then

SplitLocation(H, loc, aT
h,kx = bk, τH , {Y1, . . . , Yn})

od

while k exists and ∞ /∈ ck ∨ −∞ ∈ ck od

od.

Fig. 3. Refining states with a set of candidate constraints



The dynamics of the 4-dimensional state vector (x1, x2, v1, v2)
T are given by

(

ẋ
v̇

)

=

(

0 I
0 A

) (

x
v

)

−

(

0
A

)(

0
vd(i)

)

, with A =

(

−1.2 0.1
0.1 −1.2

)

.

The initial states for for NAV01–NAV03 are defined by x0 ∈ [2, 3] × [1, 2], for
NAV04 by x0 ∈ [0, 1] × [0, 1], and

v0,NAV01 ∈ [−0.3, 0.3] × [−0.3, 0], v0,NAV02 ∈ [−0.3, 0.3] × [−0.3, 0.3],
v0,NAV03 ∈ [−0.4, 0.4] × [−0.4, 0.4], v0,NAV04 ∈ [0.1, 0.5] × [0.05, 0.25].

As splitting constraints we use Cand = {(v1, δ1,∞), (v2, δ2,∞)}, where appropri-
ate δi were established by some trial-and-error runs, and (split crit1) as splitting
criterion. Note that x1, x2 need not be partitioned, since they depend only on v.
The other analysis parameters were left at their default setting. While we need
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Fig. 4. Reachable states in the x1, x2-plane (initial states darkest)



to specify bounds for the analysis region, we can handle the unbounded case by
checking that the reachable state space is strictly contained in the analysis region.
All instances shown were obtained with a-priori bounds of [−2, 2] on the veloci-
ties, and the reachable velocities remained within an interval [−1.1, 1.1], which
confirms our a-priori bounds as valid. Figure 4 shows the set of reachable states
computed by PHAVer as a result. Computation times and memory consumption
are shown in Table 1, and were obtained on a Pentium IV, 1.9GHz with 768 MB
RAM running Linux. For the instances NAV01–NAV03, the analysis was fairly
straightforward, with δi = 0.5. For the instance NAV04 we had to set δi = 0.25,
and the analysis did not terminate at first. We applied a heuristic: The convex
hull was computed for the first 20 iterations for speed, then switched to nor-
mal reachability, and at iteration 40 a bounding box simplification was triggered
manually. In comparison, for a predicate abstraction tool the following times
were reported in [18]: For NAV01–NAV03 34s, 153s (68MB) and 152s (180MB),
respectively, on a Sun Enterprise 3000 (4 x 250 MHz UltraSPARC) with 1 GB
RAM.

Table 1. Computation times and memory requirements

Automaton Reachable Set
Instance Time Memory Iter. Loc. Trans. Loc. Polyh.

NAV01 34.73 s 62.6 MB 13 141 3452 79 646
NAV02 62.16 s 89.7 MB 13 153 3716 84 1406
NAV02i 41.05 s 53.7 MB 13 148 3661 84 84
NAV03 61.88 s 90.0 MB 13 153 3716 84 1406
NAV04ii 225.08 s 116.3 MB 45 267 7773 167 362

i convex hull, ii convex hull up to iter. 20, bounding box at iter. 40

4 Managing the Complexity of Polyhedra

A set of symbolic states is described by a linear formula, the convex sub-formulas
of which define convex polyhedra, which in turn are described by a set of con-
straints. In exact fixpoint computations with polyhedra, the size of numbers
in the formula as well as the number of constraints typically increases unless
the structure of the hybrid system imposes boundaries, e.g., with resets or in-
variants. To keep the complexity manageable, we propose the simplification of
complex polyhedra in a strictly conservative fashion by limiting the number of
bits, i.e., the size of coefficients, and the number of constraints. We reduce only
inequalities to preserve the affine dimension of the polyhedron. In practice, both
simplifications are applied when the number of bits or constraints exceeds a
given threshold that is significantly higher than the reduction level. The result-



ing hysteresis between exact computations and overapproximations gives cyclic
dependencies time to stabilize.

4.1 Limiting the Number of Bits

We consider the ith constraint aT
i x ⊲⊳i bi of a polyhedron of the form Ax+b ⊲⊳ 0,

where ai is a vector of the coefficients aij ∈ ZZ of A, i = 1, . . . ,m, j = 1, . . . , n, ⊲⊳
is a vector of signs ⊲⊳i∈ {≤, <,=}, and b is a vector of inhomogeneous coefficients
bi ∈ ZZ. We assume that the aij and bi have no common factor and that there
are no redundant constraints. The goal is to find a new constraint αT

i x ⊲⊳i βi

with coefficients αij having less than z bits, i.e., |αij |, |βi| ≤ 2z − 1, with the
least overapproximation possible. Expressing the new coefficients in terms of a
scaling factor f > 0, rounding errors rij , |rij | ≤ 0.5 and an error ri for the
inhomogeneous term we get αij = faij + rij and βi = fbi + ri. There is no
a-priori bound on ri, since it depends on the new direction αi and the other
constraints that define the polyhedron. In our iterative approach we initially
assume βi to be close to fbi. Since βi must be rounded upwards to guarantee
conservativeness, we get |ri| ≤ 1 as an optimistic estimate. The initial upper
bounds for f are therefore given by:

f ≤ (2z − 3/2)/|aij |, and (2)

f ≤ (2z − 2)/|bi|. (3)

To predict the effects of rounding precisely is difficult and would lead to a mixed
integer linear program, so we employ a heuristic algorithm, shown in Fig. 5. Let
round(x) be a function that returns the next integer between x and zero, and
ceil(x) be a function that rounds to the next larger integer. First, we estimate f
based on (2),(3), then we compute a new βi using linear programming. If βi has
more than z bit, we decrease f and start over. The procedure is repeated until
all coefficients αij = 0, in which case the problem is infeasible. Note that it is not
guaranteed that the new polyhedron is bounded. Figure 6 illustrates the basic
scheme. The normal vector ai of the constraint, shown in (a), is approximated
by αi, as shown in (b). Linear programming yields the inhomogeneous term q
that makes the constraint tangent to the polyhedron, as in (c). Rounding of q
yields βi, and the polyhedron outlined in (d).

4.2 Limiting the Number of Constraints

To reduce the complexity of a polyhedron, we propose to drop constraints based
on a criterion crit that measures the the difference between the polyhedron with
and without the constraint. As with limiting the number of bits, we usually chose
to not limit equalities in order to preserve the affine dimension of the polyhedron.
If an equality is to be limited, it must be replaced by two inequalities.

Let P be a set of linear constraints describing a convex polyhedron, and
P \i = P \ {aT

i x ⊲⊳i bi} be the polyhedron without it’s ith constraint. Then the
difference between the points contained P and P \i is the polyhedron P¬i = P \i∪



procedure LimitConstraintBits

Input: Polyhedron as a set of constraints P = {aT
k x ⊲⊳k bk|k = 1, . . . , m},

index i to constraint to be limited, desired number of bits z
Output: new constraint αT

i x ⊲⊳i bi

success := false;
f := min{(2z − 3/2)/|aij |, (2

z − 2)/|bi| | j = 1, . . . , n};
while ¬success do

for j = 1, . . . , n do αij := round(faij) od;

q := min
x∈P

αT
i x ;

if αi = 0 or q = −∞ then abort fi;

βi := ceil(q);
if |βi| ≤ 2z − 1 then success := true
else f := min{f/2 − 3/(4|aij |), (2

z − 2)/|βi| | j = 1, . . . , n} fi;

od.

Fig. 5. Limiting the number of bits of a constraint

Fig. 6. Limiting the number of bits of a constraint



{−aT
i x ⊲⊳i−bi}, where (⊲⊳i, ⊲⊳i) ∈ {(<,≤), (≤, <)}, obtained by simply replacing

the ith constraint with its complement. It has less non-redundant constraints
than P and is therefore preferable in the formulations below. We consider three
methods:

1. volumetric: Let V (P ) be the volume of the points contained in P . Then
crit = V (P \i) − V (P ) = V (P¬i). Requires P¬i to be bounded.

2. slack: Let bmax = maxx aT
i x s.t. x ∈ P¬i. Then crit = (bmax − bi)/||ai||,

i.e., the distance, measured in the direction of ai, between the points farthest
apart in P¬i. Requires P¬i to be bounded in the direction of ai.

3. angle: crit = −maxj 6=i aT
j ai. Measures the negative cosine of the closest

angle between the normal vector of the ith constraint and all others.

We consider two general procedures of selecting the z most important out of m
original constraints:

1. deconstruction: Starting from the entire set of constraints, drop the m − z
constraints with the least effect according to crit .

2. construction: Starting from an empty set of constraints, add the z constraints
with the greatest effect according to crit .

While deconstruction is more likely to preserve as much as possible of the original
polyhedron, construction requires less iterations if m > 2z. The criteria based
on volume and slack require the initial polyhedron to be bounded, for which one
could use, e.g., the invariant of the location.

The construction method with an angle criterion was the fastest in our ex-
periments. The algorithm is shown in Fig. 7, where C is the set of candidate
constraints and H is the set of chosen constraints. H is initialized with the set
of equalities and an arbitrary initial constraint. Here we choose the one with the
smallest coefficients. In a while-loop, the constraint is chosen based on the best
of the worst-cases, i.e., the smallest angle with the constraints in H. Since aT

j ai

is the cosine of the angle, choosing the smallest angle translates into maximiz-
ing aT

j ai. The constraint is added to H and removed from the candidates C,
and the procedures is repeated until |H| ≥ z and the boundedness of P implies
boundedness of H.

4.3 Example: Tunnel-Diode Oscillator Circuit

Consider a tunnel-diode oscillator circuit [8]. It models the current I and the
voltage drop V of a tunnel diode in parallel to the capacitor of a serial RLC cir-
cuit, which are in stable oscillation for the given parameters. The state equations
are given by

V̇ = 1/C(−Id(V ) + I),

İ = 1/L(−V − 1/G · I + Vin),



procedure LimitConstraintsByAngle

Input: Polyhedron P as a set of constraints aT
i x ⊲⊳i bi, i = 1, . . . , m,

desired number of constraints z
Output: Polyhedron H

for i = 1, . . . , m, j = 1, . . . , m, j > i do α(i, j) := aT
i aj od;

H := {aT
k x ⊲⊳k bk | k = argmink(maxj |akj |)} ∪ {aT

i x ⊲⊳i bi| ⊲⊳i∈ {=}};
C := P \ H;

while (|C| > 0 ∧ (|H| < z ∨ (bounded(P ) ∧ ¬bounded(H))) do

j = argminj (maxi α(i, j)) s.t. aT
i x ⊲⊳i bi ∈ H, aT

j x ⊲⊳j bj ∈ C;

H := H ∪ {aT
j x ⊲⊳j bj};

C := C \ {aT
j x ⊲⊳j bj}

od.

Fig. 7. Reconstructing a polyhedron with a limited number of constraints by
angle prioritization

where C = 1 pF , L = 1 µH, G = 5 mΩ−1, Vin = 0.3 V , and the diode current

Id(V ) =







6.0105V 3 − 0.9917V 2 + 0.0545V if V ≤ 0.055,
0.0692V 3 − 0.0421V 2 + 0.004V + 8.9579e−4 if 0.055 ≤ V ≤ 0.35,
0.2634V 3 − 0.2765V 2 + 0.0968V − 0.0112 if 0.35 ≤ V.

The dynamics were approximated with LHA, similar to the approach in Sect. 3.1.
Figure 8(a) shows the convex hull of the reachable states starting from V ∈
[0.42V, 0.52V ], I = 0.6mA. It also shows the invariants (dashed) generated
by the partitioning algorithm using constraints Cand = {(V, 0.7/128, 0.7/16),
(I, 1.5/128, 1.5/16)}, i.e., max. 128 partitions in both directions, and splitting
criterion (split crit3, split crit1) with ∢min = arccos(0.99). The analysis with
PHAVer took 52.63s and 55MB RAM, with the largest coefficient taking up
7352 bits and at most 7 constraints per polyhedron.

A stopwatch was added to the system to measure the cycle time, i.e., the max-
imum time it takes any state to cross the threshold I = 0.6µA, V > 0.25V twice.
For the clocked circuit, the number of bits and constraints grows rapidly and a
more precise analysis, such as shown in Fig. 8(b) is only possible with limits on
both. We compare the exact analysis for constraints Cand = {(V, 0.7/32, 0.7/16),
(I, 1.5/32, 1.5/16)} with an analysis limiting the bits to 16 when a threshold of
300 bits is reached, and a limit of 32 constraints at a threshold of 56. Fig-
ures 9(a) and 9(b) show a polynomial increase in the number of constraints, and
an exponential increase of the number of bits in the new polyhedra found at
each iteration. The analysis takes 979s (210MB) when exact, and 79s (39.6MB)
when limited. At a more than tenfold increase in speed, the overapproximation
is negligible and results in a cycle time estimate that is only 0.25 percent larger.
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(a) V -I-Plane, invariants dashed

(b) Clocked

Fig. 8. Reachable states of Tunnel Diode Circuit



(a) Number of bits (b) Number of constraints

Fig. 9. Clocked Tunnel Diode Circuit, exact (dashed) and with limits on bits
and constraints (solid)

5 Conclusions

PHAVer, a new tool for verifying safety properties of linear hybrid automata,
provides exact, robust arithmetic, on-the-fly overapproximation of affine dynam-
ics, and supports compositional and assume/guarantee-reasoning. To manage
the complexity of the underlying polyhedral computations, we proposed meth-
ods for conservatively limiting the number of bits and constraints that describe
a polyhedron. Experimental results for a navigation benchmark and a tunnel
diode circuit demonstrated the effectiveness of the approach. Future research
will focus on heuristics for guaranteeing termination, adapting the partitioning
further to the dynamics and improved search algorithms. PHAVer is available at
http://www.cs.ru.nl/∼goranf/.
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