Introduction

Course HECS3: Performance and quantitative properties

Goran Frehse
September 28, 2016

High-confidence Embedded and Cyber-Physical Systems
Master of Science in Informatics at Grenoble

Univ. Grenoble Alpes, Laboratoire Verimag
frehse@imag. fr

frehse@imag.fr

Overview

Introduction
Embedded and Cyber-Physical Systems
Key Features of CPS
Fundamentals of Dynamical Systems
Specifying and Analyzing Properties
Model-Based Design

What to Expect in this Lecture

concepts from Embedded and Cyber-Physical Systems

e standard terminology (and some buzzwords)

¢ informal presentation (formalization in future lectures)
e arough map of the territory

e whatitis all for...

Embedded and Cyber-Physical Systems

original computer: standalone device

embedded system: integrated with non-computational
hardware for a specific purpose

e watches, cameras, refrigerators (integrated
microcontroller), ...

more examples”?

Embedded and Cyber-Physical Systems

cyber-physical system’: collection of communicating
computers, interacting with the physical world via feedback

e Using control, computing, communication
e smart buildings, medical devices, cars, ...

example: team of autonomous robots retrieving target inside
house

more examples”?

T term coined by Helen Gill at the US National Science Foundation (NSF) in 2006

CPS at Verimag’s Hybrid Systems Group

assisted and human-robot
automated driving interaction

DoingsionX 2 MixngsionX 2 Dichorgig sen X2

W]
chemical analog mixed-signal
batch plants circuits

FP7 + H2020 projects NANO 2017 project

smart buildings

SN

autonomous drones

Collaborations

Overview

INntroduction

Key Features of CPS

Key Features of CPS [Alur1d]

reactiveness

e traditionally: input — computing — output — stop

e mathematically: function: inputs — outputs

® reactive: ongoing computation

e mathematically: function from sequence of inputs to
seqguence of outputs

examples?

Key Features of CPS

concurrency

e traditionally: sequential computation (Turing machine)

e concurrent: multiple threads of computation, exchanging
information

e synchronous computation: all components execute in
lock-step

e asynchronous computation: components act
independently, communicating via messages

e poth can be useful levels of abstraction

examples?

Key Features of CPS

feedback control

e control system interacts with physical world with sensors
and actuators

¢ design requires modeling the dynamics of physical
guantities

e traditionally: continuous dynamics
—a small enough change in the input generates a small
change in the output

examples?

Key Features of CPS

real-time

e traditionally: no explicit notion of real time

e CPS: computation needs to finish within a given time
frame

¢ timing delays, timing-dependent coordination protocols,
resources allocation — study of real-time systems

examples?

Overview

INntroduction

Fundamentals of Dynamical Systems

Fundamentals of Dynamical Systems

goal: a unified view of seemingly disparate systems

¢ using the same concepts
e gdapting techniques where necessary

e combining different techniques when systems have
heterogeneous components

... which they do in cyber-physical systems!

examples?

Fundamentals of Dynamical Systems

dynamical system

e precisely identified entity
(we know what is part of the system and what isn't)

e defining behaviors over some notion of time
(we know what "before” and "after” mean)

e with (possibly) observable outputs
¢ (possibly) influenced by a given set of inputs

examples for what is not a dynamical system®

Fundamentals of Dynamical Systems

behavior

e cvolution of states over time

¢ (possibly) decorated with input or output

formalized as executions, runs, words, traces, trajectories, ...

examples?

Fundamentals of Dynamical Systems

disturbance

e something that modifies the inputs or outputs of the
system

random changes in the environment, electromagnetic
interference, sensor noise, quantization error(!)

more examples”?

Fundamentals of Dynamical Systems

deterministic system
e if the inputs are known, there is only one future behavior
nondeterministic system

e if the inputs are known, there is a known set of future
ehaviors
(actual behavior may be different each time we run the
system, but belong to the same set)

examples?

Fundamentals of Dynamical Systems

stochastic system

e if the inputs are known, the future behavior is known with
a certain probability
(it's the same behavior xyz% of the times we run the
system)

examples?

Fundamentals of Dynamical Systems

state

e set of values that suffices to predict the (sets of) future
behavior of the system if the inputs are known

state-space
¢ the set of states of the system

example: motion of a car (with accelerator and brake pedals)

Fundamentals of Dynamical Systems

transition

e relates a state to a successor state
e may depend on time and inputs

transition relation

¢ defines for each state the possible successor states
® g subset of states x time x inputs x states

time,input
state 2% state!

20

Fundamentals of Dynamical Systems

reachable states

e states in the closure of the transition relation
e starting from a given set of initial states

21

Fundamentals of Dynamical Systems

finite state system
¢ the state space and the inputs are finite sets

\What is maximum size of the transition relation
(deterministic/nondeterministic)”?

22

Fundamentals of Dynamical Systems

state-space exploration (enumerative)

e starting from a given initial state, visit all reachable states,
trying out all possible inputs
e — graph traversal, e.g., breadth-first search

always terminates if the state space is finite

example: check if the system can go to a given "bad” state

23

Fundamentals of Dynamical Systems

infinite state system
¢ the state space is an infinite set (enumerable or not)

state-space exploration no longer terminates

24

Fundamentals of Dynamical Systems

symbolic state-space exploration

e |ike state-space exploration, but using sets of states

e terminate if successors C visited states or bad states
overlap visited states

e Often uses overapproximation to operate on sets with
simple descriptions (intervals. . .)

may terminate even if state space is infinite

25

Fundamentals of Dynamical Systems

Example: A program computing /Xo using the babylonian

ethod
Xy = 1 Xk +)2
2 Xy)

implemented using int,float,rationals,reals, . ..

e state-space” initial state? inputs? outputs? time”?
e transition relation? behaviors?

e deterministic? finite”?

26

Fundamentals of Dynamical Systems

Exercises:

Given an implementation using int,float,rationals,reals, . ..

1.
2.

When is enumerative state-space exploration applicable?
What are the "bad states” for checking if the sequence
converges 10 /Xo?

. Apply symbolic state-space exploration starting from

Xo = 8. Use integer intervals to describe sets of states.
Overapproximate if necessary.
Start from xo = 9. How can the precision be increased?

Does always rounding up or always rounding down cover
all possibilities”?

27

Fundamentals of Dynamical Systems

Discrete-Time Dynamical System:

Xy = F(Xi, Uk) -

state-space? inttial state” inputs? outputs? time”?

why "discrete-time”?

transition relation?

deterministic? finite?

Examples: Finite state machine (digital computer)

28

Fundamentals of Dynamical Systems

Discrete-Time Continuous Dynamical System:

Xy = F (X, Uk) -

e fis a continuous function of x and u:

e a small enough change in the input (or in time) generates
an arbitrarily small change in the output

Examples: Digital controller (considering floating point as real
numbers); sun position at noon every day

29

Fundamentals of Dynamical Systems

Discrete-Time Continuous Dynamical System:
Xk41 = f(Xk, Uk) .

two main categories:

e fislinear: Xxr 1 = Axx + Buk
either converging, diverging, or periodic

e fis nonlinear:;
possibly chaotic behavior

30

Linear Map

scalar case:

for which values of a:

e converging,
e diverging,
e periodic?

Xi1 = aXk

31

Logistic Map

demographic model with reproduction and starvation
[R. May, 1976

Xir1 = MXi(1 — Xx)

o
o o O o o ©O oo OO 0O
0.8 °© 0 o7 0 % 0 o °
o %% @Y o ® o o)
0.6 ° o o © o Oo o
o o o © o
0.4 o o o0 o
O o) (e} o O o)
0.2 1o o S o © ° o,
0 $ o & O S ° ° oSS S

0 10 20 30 40 60 60 70O 80 90 100

32

Fundamentals of Dynamical Systems

Discrete-Time Piecewise Continuous Dynamical System:

;

fi (X, Uk) s Xk < Cq

Xk41 = ﬁ(Xk, Uk) , Ci_1 < Xk < Cj

| m (X, Uk) s Xk > Cm

e may exhibit complex behavior even for simple f;

Example: continuous systems with saturation of signals

33

Tent Map

Xk, Xk < %,
Xk+1 =]
p(1=Xe), Xk = 35
1 o
0.8 oooooooooooooooooooooooooo
0.6
e}
0.4 | 000000000000000000000000 A
0.2
0

O 10 20 30 40 50 60 70 80 90 100
Xo =06 =2

34

Tent Map

Xk s Xk < %,
Xk+1 =]
p(1=Xe), Xk = 35
1 o ° o o O
O
0.8 pooo, o "% o e
0.6 o0 P, G
O
0.4 009 o © g0 9 o
0.2 o) e} o O
0 o &

O 10 20 30 40 50 60 70 80 90 100
Xo = 0.6001, = 2

Tent Map

N[— N—

O 100 200 300 400 500 600 700 800 900 1,000
XO:O.6,/,L:1.6

36

Tent Map vs Logistic Map

tent map:

logistic map:
Vi1 = yi(1 — k)

forp=2andr=4:
X = 2sin™" Yk

relation between piecewise linear and nonlinear system

37

Fundamentals of Dynamical Systems

Continuous-Time (Continuous) Dynamical System:

Typically given by a differential equation system:

e can be converted to discrete-time system by sampling
at time points, e.9., t = ké

Example: Motion of a car

38

Fundamentals of Dynamical Systems

Discrete-Continuous Dynamical System (Hybrid System):

e mix of discrete and continuous dynamics
e discrete state changes are considered instantaneous

e discrete state determines continuous dynamics

Example: Motion of a car with gear shift

39

Levels of Abstraction

discrete (state) system (discrete dynamics)

continuous system (continuous dynamics)
e discrete or continuous time

discrete-continuous (hybrid) system

What is the "right” model?

40

Example: Robot in a Maze

e robot tumning at exactly 90 degrees, timing irrelevant:
discrete system
Can the robot leave the maze”?

® maze door opens and closes at specific times: timed
system
Can the robot leave the maze while the door is open?

e robot not turning exactly 90 degrees:
hybrid (discrete-continuous) system
accumulation of deviations!
Can the robot leave the maze while the door is open?

41

Overview

INntroduction

Specifying and Analyzing Properties

42

Specifying and Analyzing Properties

boolean properties

e state property: state — {true, false}
e.g., predicate over the state variables

e behavior property: behavior — {true, false}
e.q., all states along the behavior satisty the property

e system property: system — {true, false}
e.g., all behaviors from initial states satisty property

these generalizations to behaviors over time are called
temporal logics

examples?

43

Specifying and Analyzing Properties

probabilistic properties

e behavior probability: behavior — [0, 1]
e.g., probability that the behavior is taken (from given
initial state)

e probabilistic property: system — [0, 1]
e.g., probability that any behavior from the initial states
satisfies the property

these generalizations to behaviors over time are called
probabilistic temporal logics

examples?

44

Specifying and Analyzing Properties

safety: nothing bad ever happens

analysis technigues:

e inductive invariants,

e state-space exploration (enumerative, symbolic)

examples?

45

Specifying and Analyzing Properties

liveness: something good eventually happens
analysis technigues:

e temporal logics,

e model checking (generalization of state-space
exploration),

e ranking functions

examples?

46

Specifying and Analyzing Properties

probabilistic safety and liveness: nothing bad/something
good happens with a certain probability

analysis techniques:

¢ probabilistic temporal logics,
e model checking,
e fault-tree analysis

examples?

47

Specifying and Analyzing Properties

quantitative semantics of safety and liveness: distance to
nothing bad/something good happening

* c.g., min distance of any behavior to violating the
property

Example: x(t) < c forall t > O (boolean safety)

* quantitative semantics ¢ = mingo ¢ — x(t)
property satisfied iff g > O.

measure of robustness?

2 A Donzé, T. Ferrere, and O. Maler, “Efficient robust monitoring for STL,” | in Computer
Aided Verification, Springer, 2013, pp. 264-279. 48

Specifying and Analyzing Properties

real-time scheduling: system achieves given tasks in given
time frame

analysis technigues:

e model checking,
e worst-case execution time (WCET) analysis

quantitative property:
e computing worst-case execution time

examples?

49

Specifying and Analyzing Properties

stability: system will remain close to its steady state if
disturbances (inputs) small enough

analysis technigues:

® linear algebra,

¢ | yapunov functions (continuous ranking functions)
quantitative property:

e stability (gain) margin: amount that feedback can be
increased while remaining stable

examples?

50

Overview

INntroduction

Model-Based Design

51

Model-Based Design

e traditionally: design, implementation, testing, validation

e model-based: formal (mathematically precise)
requirements, models of the system and its environment,
analysis tools for checking requirements on the model

e detect design errors earlier, ensure higher reliability

52

Model-Based Design

e different from programming: may incorporate
nondeterminism and environment behavior

e structured design: complex tasks accomplished by
composing simple components (and conversely for
properties)

® requirements-based design: requirements are specified
up front and guide the design (choice between design
alternatives) and debugging

53

Model-Based Design

\ Solution for V
-~
a Description of system specifications, analysis, C \ ;
division of /S ompletion of system
req u I rements UML and other modeling languages
T A3 2 2
Horizontal division of labor | I _‘% < Ct
0\ e / (
" L i Integratiof
. 2 Simulation & tan|
high level model Vericaton i test
B specifications - test
—\ 2
Horizontal division of labor \ \ ?3 ¢ %:
PR |) L4
2
fication % Simulation & Hefinement
low level model i fcation . omnese | test
generation / test '
Horizontal division of labor \ v
12
D H I t t' Mechanical SoC board
impiementation clementsof \ on actual
actual system
i\ rd

HW/SW system implementation
Microcontrolier, ICE. key technology
system di i

levelopment environment

Development Vision for Systems Mixing
Software, Circuits and Mechanics (Fujitsu 2006)

54

Model-Based Design

Solution for V

-~

1 4\ Description of system specifications, analysis,
Source XY division of HW/SW Completion of system

p 13 UML and other modeling languages

architect LY

13 ,% 2

Horizontal division L
\ \ /
L i Integration/

Upst . = Slmylatnun & acceptance
mod simu |atI0n and verification verification

verification on
high level models

Horizontal divisio

Mids
el

Simulation &
verification

V3
Horizontal division of labor 2
81
b
= L .
Downstream V2 Mechanical SoC board “HW/SW system implementation
assembler AN E elements of on actual Microcontroller, ICE, key technology
1 actual system \ system development environment
T

Development Vision for Systems Mixing
Software, Circuits and Mechanics (Fujitsu 2006)

55

Formal Models

e unambiguous — not open to interpretation
e mathematically precise, can be analyzed rigorously

¢ block diagrams, code, state machines, differential
equations

56

Formal Verification

check if a formal model satisfies a property using
mathematical reasoning

e rigorous (sound)
e oxhaustive (all behavior is covered)

¢ (possibly) algorithmic or with computer support (theorem
prover)

57

Formal Verification

drawbacks:

e generally: not scalable (or not even decidable)
¢ o suitable model needs to be constructed first
e typically requires expert knowledge

hard questions:

¢ Does the model match reality”?
e \Who verifies the verifier?

58

Boeing & Tupolew Collision

e Uberlingen, July 1, 2002

B757-200 TU154M
N — I . 4 ® 21:33:03

= <<

— Alarm from Traffic Collision
Avoidance System (TCAS)

59

Boeing & Tupolew Collision

e Uberlingen, July 1, 2002

B757-200 TU154M
S~ . P/ e 21:33:03
— - — — Alarm from Traffic Collision
Avoidance System (TCAS)
o~ — e 21:34:49
) — Human air traffic controller

command

60

Boeing & Tupolew Collision

e Uberlingen, July 1, 2002
B757-200 TU154M

S~ . P/ o 21 :33:03
— - — — Alarm from Traffic Collision
Avoidance System (TCAS)

S~ — e 21:34:49
) — Human air traffic controller

command
S = e 21:34:56

— TCAS recommendation

61

Boeing & Tupolew Collision

B757-200 TU154M
i ! ===
i
D~ A
- T v

Uberlingen, July 1, 2002

e 21:33:03

— Alarm from Traffic Collision
Avoidance System (TCAS)

21:34:49

— Human air traffic controller
command

21:34:56

— TCAS recommendation

21:35:32

— Collision

62

Boeing & Tupolew Collision

e Uberlingen, July
B757-200 T111540

Official Inquiry Recommendation:

1, 2002

c Collision
m (TCAS)

controller

o “pilots are to obey and
— follow TCAS advisories,
regardless of whether
NN contrary instruction is given”
=> Requires high confidence design
N e 21:35:32
¢ J — Collision

hdation

63

Formal Verification

—————

I ———

Model of Formal
System Specification

Verification

(algorithmic)

TCAS verified
[Incorrect/] { Correct J in part

[Livadas, Lygeros,
Lynch, '00]

Unknown

64

Join Manoeuvre [fomiinetal]

e Traffic Coordination Problem
— join paths at different speed

o Goals
— avoid collision

— join with sufficient separation

65

Join Manoeuvre

disturbances

Traffic Coordination Problem
— join paths at different speed
Goals

— avoid collision

— join with sufficient separation

Models

— Environment: Planes

— Software: Controller
* switches fast/slow

Specification

— keep min. distance

66

Join Manoeuvre

reachable states
blue plane

reachable states
yellow plane

67

Join Manoeuvre

reachable states Possible collision!
blue plane \

reachable states
yellow plane

68

Formal Verification

"systems that users can bet their life on’

cars. ..
airplanes. ..
pacemakers. ..

-D. Corman, NSF

69

	Introduction
	Embedded and Cyber-Physical Systems
	Key Features of CPS
	Fundamentals of Dynamical Systems
	Specifying and Analyzing Properties
	Model-Based Design

