
Introduction
Course HECS3: Performance and quantitative properties

Goran Frehse
September 28, 2016
High-confidence Embedded and Cyber-Physical Systems
Master of Science in Informatics at Grenoble
Univ. Grenoble Alpes, Laboratoire Verimag
frehse@imag.fr

frehse@imag.fr

Overview

Introduction

Embedded and Cyber-Physical Systems

Key Features of CPS

Fundamentals of Dynamical Systems

Specifying and Analyzing Properties

Model-Based Design

2

What to Expect in this Lecture

concepts from Embedded and Cyber-Physical Systems

• standard terminology (and some buzzwords)
• informal presentation (formalization in future lectures)
• a rough map of the territory
• what it is all for...

3

Embedded and Cyber-Physical Systems

original computer: standalone device

embedded system: integrated with non-computational
hardware for a specific purpose

• watches, cameras, refrigerators (integrated
microcontroller), …

more examples?

4

Embedded and Cyber-Physical Systems

cyber-physical system1: collection of communicating
computers, interacting with the physical world via feedback

• using control, computing, communication
• smart buildings, medical devices, cars, …

example: team of autonomous robots retrieving target inside
house

more examples?

1 term coined by Helen Gill at the US National Science Foundation (NSF) in 2006 5

CPS at Verimag’s Hybrid Systems Group

12

Variety of Application Domains

1. Automated vehicle of Tecnalia 2. Sandwich assembly robot of R.U.Robotics Ltd. 3. http://www.itproportal.com/2012/12/21/smart-cities-smarter-buildings/ 4. MILOX™: Pipeless Production System http://www.toyo-
eng.co.jp/en/product_line/medication/milox/index.html 5. Dang, Donzé, Maler. Verification of analog and mixed-signal circuits using hybrid systems techniques. FMCAD'04 6. Bitcraze Crazyflie

chemical
batch plants

assisted and
automated driving

analog mixed-signal
circuits

autonomous drones

smart buildingshuman-robot
interaction

FP7 + H2020 projects NANO 2017 project Collaborations

6

Overview

Introduction

Embedded and Cyber-Physical Systems

Key Features of CPS

Fundamentals of Dynamical Systems

Specifying and Analyzing Properties

Model-Based Design

7

Key Features of CPS [Alur’15]

reactiveness

• traditionally: input → computing → output → stop
• mathematically: function: inputs → outputs
• reactive: ongoing computation
• mathematically: function from sequence of inputs to
sequence of outputs

examples?

8

Key Features of CPS

concurrency

• traditionally: sequential computation (Turing machine)
• concurrent: multiple threads of computation, exchanging
information

• synchronous computation: all components execute in
lock-step

• asynchronous computation: components act
independently, communicating via messages

• both can be useful levels of abstraction

examples?

9

Key Features of CPS

feedback control

• control system interacts with physical world with sensors
and actuators

• design requires modeling the dynamics of physical
quantities

• traditionally: continuous dynamics
– a small enough change in the input generates a small
change in the output

examples?

10

Key Features of CPS

real-time

• traditionally: no explicit notion of real time
• CPS: computation needs to finish within a given time
frame

• timing delays, timing-dependent coordination protocols,
resources allocation → study of real-time systems

examples?

11

Overview

Introduction

Embedded and Cyber-Physical Systems

Key Features of CPS

Fundamentals of Dynamical Systems

Specifying and Analyzing Properties

Model-Based Design

12

Fundamentals of Dynamical Systems

goal: a unified view of seemingly disparate systems

• using the same concepts
• adapting techniques where necessary
• combining different techniques when systems have
heterogeneous components

... which they do in cyber-physical systems!

examples?

13

Fundamentals of Dynamical Systems

dynamical system

• precisely identified entity
(we know what is part of the system and what isn’t)

• defining behaviors over some notion of time
(we know what ”before” and ”after” mean)

• with (possibly) observable outputs
• (possibly) influenced by a given set of inputs

examples for what is not a dynamical system?

14

Fundamentals of Dynamical Systems

behavior

• evolution of states over time
• (possibly) decorated with input or output

formalized as executions, runs, words, traces, trajectories,…

examples?

15

Fundamentals of Dynamical Systems

disturbance

• something that modifies the inputs or outputs of the
system

random changes in the environment, electromagnetic
interference, sensor noise, quantization error(!)

more examples?

16

Fundamentals of Dynamical Systems

deterministic system

• if the inputs are known, there is only one future behavior

nondeterministic system

• if the inputs are known, there is a known set of future
behaviors
(actual behavior may be different each time we run the
system, but belong to the same set)

examples?

17

Fundamentals of Dynamical Systems

stochastic system

• if the inputs are known, the future behavior is known with
a certain probability
(it’s the same behavior xyz% of the times we run the
system)

examples?

18

Fundamentals of Dynamical Systems

state

• set of values that suffices to predict the (sets of) future
behavior of the system if the inputs are known

state-space

• the set of states of the system

example: motion of a car (with accelerator and brake pedals)

19

Fundamentals of Dynamical Systems

transition

• relates a state to a successor state
• may depend on time and inputs

transition relation

• defines for each state the possible successor states
• a subset of states × time × inputs × states

state time,input−−−−−→ state′

20

Fundamentals of Dynamical Systems

reachable states

• states in the closure of the transition relation
• starting from a given set of initial states

21

Fundamentals of Dynamical Systems

finite state system

• the state space and the inputs are finite sets

What is maximum size of the transition relation
(deterministic/nondeterministic)?

22

Fundamentals of Dynamical Systems

state-space exploration (enumerative)

• starting from a given initial state, visit all reachable states,
trying out all possible inputs

• = graph traversal, e.g., breadth-first search

always terminates if the state space is finite

example: check if the system can go to a given ”bad” state

23

Fundamentals of Dynamical Systems

infinite state system

• the state space is an infinite set (enumerable or not)

state-space exploration no longer terminates

24

Fundamentals of Dynamical Systems

symbolic state-space exploration

• like state-space exploration, but using sets of states
• terminate if successors ⊆ visited states or bad states
overlap visited states

• often uses overapproximation to operate on sets with
simple descriptions (intervals…)

may terminate even if state space is infinite

25

Fundamentals of Dynamical Systems

Example: A program computing √x0 using the babylonian
method

xk+1 = 1
2

(
xk +

x0
xk

)
.

implemented using int,float,rationals,reals,…

• state-space? initial state? inputs? outputs? time?
• transition relation? behaviors?
• deterministic? finite?

26

Fundamentals of Dynamical Systems

Exercises:

Given an implementation using int,float,rationals,reals,…

1. When is enumerative state-space exploration applicable?
2. What are the ”bad states” for checking if the sequence

converges to √x0?
3. Apply symbolic state-space exploration starting from

x0 = 8. Use integer intervals to describe sets of states.
Overapproximate if necessary.

4. Start from x0 = 9. How can the precision be increased?
5. Does always rounding up or always rounding down cover

all possibilities?

27

Fundamentals of Dynamical Systems

Discrete-Time Dynamical System:

xk+1 = f (xk, uk) .

• state-space? initial state? inputs? outputs? time?
• why ”discrete-time”?
• transition relation?
• deterministic? finite?

Examples: Finite state machine (digital computer)

28

Fundamentals of Dynamical Systems

Discrete-Time Continuous Dynamical System:

xk+1 = f (xk, uk) .

• f is a continuous function of x and u:
• a small enough change in the input (or in time) generates
an arbitrarily small change in the output

Examples: Digital controller (considering floating point as real
numbers); sun position at noon every day

29

Fundamentals of Dynamical Systems

Discrete-Time Continuous Dynamical System:

xk+1 = f (xk, uk) .

two main categories:

• f is linear: xk+1 = Axk + Buk

either converging, diverging, or periodic
• f is nonlinear:
possibly chaotic behavior

30

Linear Map

scalar case:
xk+1 = axk

for which values of a:

• converging,
• diverging,
• periodic?

31

Logistic Map

demographic model with reproduction and starvation
[R. May, 1976]

xk+1 = rxk(1− xk)

0 10 20 30 40 50 60 70 80 90 100
0

0.2
0.4
0.6
0.8
1

x0 = 0.6, r = 4

32

Fundamentals of Dynamical Systems

Discrete-Time Piecewise Continuous Dynamical System:

xk+1 =

f1 (xk, uk) , xk ≤ c1
...
fi (xk, uk) , ci−1 < xk ≤ ci
...
fm (xk, uk) , xk > cm

• may exhibit complex behavior even for simple fi

Example: continuous systems with saturation of signals

33

Tent Map

xk+1 =

µxk, xk < 1
2 ,

µ(1− xk), xk ≥ 1
2

0 10 20 30 40 50 60 70 80 90 100
0

0.2
0.4
0.6
0.8
1

x0 = 0.6, µ = 2

34

Tent Map

xk+1 =

µxk, xk < 1
2 ,

µ(1− xk), xk ≥ 1
2

0 10 20 30 40 50 60 70 80 90 100
0

0.2
0.4
0.6
0.8
1

x0 = 0.6001, µ = 2

35

Tent Map

xk+1 =

µxk, xk < 1
2 ,

µ(1− xk), xk ≥ 1
2

0 100 200 300 400 500 600 700 800 900 1,000
0

0.2
0.4
0.6
0.8
1

x0 = 0.6, µ = 1.5

36

Tent Map vs Logistic Map

tent map:

xk+1 =

µxk, xk < 1
2 ,

µ(1− xk), xk ≥ 1
2

logistic map:
yk+1 = ryk(1− yk)

for µ = 2 and r = 4:

xk = 2
π
sin−1

√yk

relation between piecewise linear and nonlinear system

37

Fundamentals of Dynamical Systems

Continuous-Time (Continuous) Dynamical System:

Typically given by a differential equation system:

ẋ(t) = f (x(t), u(t)) .

• can be converted to discrete-time system by sampling
at time points, e.g., t = kδ

Example: Motion of a car

38

Fundamentals of Dynamical Systems

Discrete-Continuous Dynamical System (Hybrid System):

• mix of discrete and continuous dynamics
• discrete state changes are considered instantaneous
• discrete state determines continuous dynamics

Example: Motion of a car with gear shift

39

Levels of Abstraction

discrete (state) system (discrete dynamics)

continuous system (continuous dynamics)

• discrete or continuous time

discrete-continuous (hybrid) system

What is the ”right” model?

40

Example: Robot in a Maze

• robot turning at exactly 90 degrees, timing irrelevant:
discrete system
Can the robot leave the maze?

• maze door opens and closes at specific times: timed
system
Can the robot leave the maze while the door is open?

• robot not turning exactly 90 degrees:
hybrid (discrete-continuous) system
accumulation of deviations!
Can the robot leave the maze while the door is open?

41

Overview

Introduction

Embedded and Cyber-Physical Systems

Key Features of CPS

Fundamentals of Dynamical Systems

Specifying and Analyzing Properties

Model-Based Design

42

Specifying and Analyzing Properties

boolean properties

• state property: state → {true, false}
e.g., predicate over the state variables

• behavior property: behavior → {true, false}
e.g., all states along the behavior satisfy the property

• system property: system → {true, false}
e.g., all behaviors from initial states satisfy property

these generalizations to behaviors over time are called
temporal logics

examples?

43

Specifying and Analyzing Properties

probabilistic properties

• behavior probability: behavior → [0, 1]
e.g., probability that the behavior is taken (from given
initial state)

• probabilistic property: system → [0, 1]
e.g., probability that any behavior from the initial states
satisfies the property

these generalizations to behaviors over time are called
probabilistic temporal logics

examples?

44

Specifying and Analyzing Properties

safety: nothing bad ever happens

analysis techniques:

• inductive invariants,
• state-space exploration (enumerative, symbolic)

examples?

45

Specifying and Analyzing Properties

liveness: something good eventually happens

analysis techniques:

• temporal logics,
• model checking (generalization of state-space
exploration),

• ranking functions

examples?

46

Specifying and Analyzing Properties

probabilistic safety and liveness: nothing bad/something
good happens with a certain probability

analysis techniques:

• probabilistic temporal logics,
• model checking,
• fault-tree analysis

examples?

47

Specifying and Analyzing Properties

quantitative semantics of safety and liveness: distance to
nothing bad/something good happening

• e.g., min distance of any behavior to violating the
property

Example: x(t) ≤ c for all t ≥ 0 (boolean safety)

• quantitative semantics q = mint≥0 c− x(t)
property satisfied iff q ≥ 0.

measure of robustness2

2 A. Donzé, T. Ferrere, and O. Maler, “Efficient robust monitoring for STL,” , in Computer
Aided Verification, Springer, 2013, pp. 264–279. 48

Specifying and Analyzing Properties

real-time scheduling: system achieves given tasks in given
time frame

analysis techniques:

• model checking,
• worst-case execution time (WCET) analysis

quantitative property:

• computing worst-case execution time

examples?

49

Specifying and Analyzing Properties

stability: system will remain close to its steady state if
disturbances (inputs) small enough

analysis techniques:

• linear algebra,
• Lyapunov functions (continuous ranking functions)

quantitative property:

• stability (gain) margin: amount that feedback can be
increased while remaining stable

examples?

50

Overview

Introduction

Embedded and Cyber-Physical Systems

Key Features of CPS

Fundamentals of Dynamical Systems

Specifying and Analyzing Properties

Model-Based Design

51

Model-Based Design

• traditionally: design, implementation, testing, validation
• model-based: formal (mathematically precise)
requirements, models of the system and its environment,
analysis tools for checking requirements on the model

• detect design errors earlier, ensure higher reliability

52

Model-Based Design

• different from programming: may incorporate
nondeterminism and environment behavior

• structured design: complex tasks accomplished by
composing simple components (and conversely for
properties)

• requirements-based design: requirements are specified
up front and guide the design (choice between design
alternatives) and debugging

53

Model-Based Design

3

Model-Based Development

Development Vision for Systems Mixing
Software, Circuits and Mechanics (Fujitsu 2006)

http://www.fujitsu.com/downloads/EDG/binary/pdf/find/24-1e/2.pdf

high level modelhigh level model

requirementsrequirements

implementationimplementation

low level modellow level model testtest

testtest

54

Model-Based Design

4

Model-Based Development

Development Vision for Systems Mixing
Software, Circuits and Mechanics (Fujitsu 2006)

http://www.fujitsu.com/downloads/EDG/binary/pdf/find/24-1e/2.pdf

simulation and
verification on

high level models

simulation and
verification on

high level models

55

Formal Models

• unambiguous – not open to interpretation
• mathematically precise, can be analyzed rigorously
• block diagrams, code, state machines, differential
equations

56

Formal Verification

check if a formal model satisfies a property using
mathematical reasoning

• rigorous (sound)
• exhaustive (all behavior is covered)
• (possibly) algorithmic or with computer support (theorem
prover)

57

Formal Verification

drawbacks:

• generally: not scalable (or not even decidable)
• a suitable model needs to be constructed first
• typically requires expert knowledge

hard questions:

• Does the model match reality?
• Who verifies the verifier?

58

Boeing & Tupolew Collision

2

Boeing & Tupolew Collision

● Überlingen, July 1, 2002

● 21:33:03

– Alarm from Traffic Collision

Avoidance System (TCAS)

B757-200 TU154M

!

59

Boeing & Tupolew Collision

3

Boeing & Tupolew Collision

● Überlingen, July 1, 2002

● 21:33:03

– Alarm from Traffic Collision

Avoidance System (TCAS)

● 21:34:49

– Human air traffic controller

command

B757-200 TU154M

!

60

Boeing & Tupolew Collision

4

Boeing & Tupolew Collision

● Überlingen, July 1, 2002

● 21:33:03

– Alarm from Traffic Collision

Avoidance System (TCAS)

● 21:34:49

– Human air traffic controller

command

● 21:34:56

– TCAS recommendation

B757-200 TU154M

!

61

Boeing & Tupolew Collision

5

Boeing & Tupolew Collision

● Überlingen, July 1, 2002

● 21:33:03

– Alarm from Traffic Collision

Avoidance System (TCAS)

● 21:34:49

– Human air traffic controller

command

● 21:34:56

– TCAS recommendation

● 21:35:32

– Collision

B757-200 TU154M

!

62

Boeing & Tupolew Collision

6

Boeing & Tupolew Collision

● Überlingen, July 1, 2002

● 21:33:03

– Alarm from Traffic Collision

Avoidance System (TCAS)

● 21:34:49

– Human air traffic controller

command

● 21:34:56

– TCAS recommendation

● 21:35:32

– Collision

B757-200 TU154M

!

Official Inquiry Recommendation:

“pilots are to obey and

follow TCAS advisories,

regardless of whether

contrary instruction is given”

 Requires high confidence design

Official Inquiry Recommendation:

“pilots are to obey and

follow TCAS advisories,

regardless of whether

contrary instruction is given”

 Requires high confidence design

2

63

Formal Verification

7

Incorrect /

Unknown

Revise

Design

Formal Verification

Model of

System

Formal

Specification

Correct

TCAS verified

in part
[Livadas, Lygeros,

Lynch, ’00]

Verification

(algorithmic)

64

Join Manoeuvre [Tomlin et al.]

8

Join Maneuver [Tomlin et al.]

● Traffic Coordination Problem

– join paths at different speed

● Goals

– avoid collision

– join with sufficient separation

65

Join Manoeuvre

9

Join Maneuver [Tomlin et al.]

● Traffic Coordination Problem

– join paths at different speed

● Goals

– avoid collision

– join with sufficient separation

● Models

– Environment: Planes

– Software: Controller

• switches fast/slow

● Specification

– keep min. distance

disturbances

66

Join Manoeuvre

11

Join Maneuver [Tomlin et al.]

time

reachable states

yellow plane

reachable states

blue plane

67

Join Manoeuvre

12

Join Maneuver [Tomlin et al.]

time

Possible collision!Possible collision!

reachable states

yellow plane

reachable states

blue plane

68

Formal Verification

”systems that users can bet their life on”
-D. Corman, NSF

cars…
airplanes…
pacemakers…

69

	Introduction
	Embedded and Cyber-Physical Systems
	Key Features of CPS
	Fundamentals of Dynamical Systems
	Specifying and Analyzing Properties
	Model-Based Design

