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Abstract—The theories underlying control engineering and
real-time systems engineering use idealized models that mutually
abstract from central aspects of the other discipline. Control the-
ory usually assumes jitter-free sampling and negligible (constant)
input-output latencies, disregarding complex real-world timing
effects. Real-time systems theory uses abstract performance
models that neglect the functional behavior and derives worst-
case situations with limited expressiveness for control functions,
e.g., in physically dominated automotive systems. In this paper,
we propose an approach that integrates state-of-the art timing
models into functional analysis. We combine physical, control and
timing models by representing them as a network of hybrid au-
tomata. Closed-loop properties can then be verified on this hybrid
automata network by using standard model checkers for hybrid
systems. Since the computational complexity is critical for model
checking, we discuss abstract models of timing behavior that
seem particularly suited for this type of analysis. The approach
facilitates systematic co-engineering between both control and
real-time disciplines, increasing design efficiency and confidence
in the system. The approach is illustrated by analyzing an
industrial example, the control software of an electro-mechanical
braking system, with the hybrid model checker SpaceEx.

I. INTRODUCTION
In automotive systems, software is executed on embedded

control units to control physical processes with complex dy-
namics using sensors and actuators. Examples include engine
control, active safety systems (anti-lock braking system and
electronic stability control), and braking systems, to mention
only a few. Usually, the execution platform executes several
applications in parallel. As a consequence, concurrently exe-
cuted applications compete for processor time. Since only one
application can be executed at the same time, a real-time kernel
arbitrates the access to the processor according to a scheduling
policy, leading to increased and varying response times for the
applications due to preemptions, blocking effects, etc.

Worst-case timing analysis techniques that are usually ag-
nostic to the underlying application’s functionality are of lim-
ited use for industrial control applications. The reason is that
the correctness of the application is primarily determined by
the functional behavior of the control software instead of only
focusing on satisfying deadlines. In particular, the functional
properties of industrial control software must consider various
goals such as responsiveness, small overshoot, and bounded
dynamics.

On the other hand, control design is usually performed as-
suming idealized timing assumptions, including sampling with-
out jitter and negligible delay from controller input (sensing)
to output (actuation). Of course, these idealized assumptions

do not hold in practice: the functional behavior is influenced
by the above stated timing effects.

For industrial control applications, we need new interdisci-
plinary techniques that integrate results from timing analysis
with functional analysis of control software. The aim of this
paper is to introduce a practical approach for co-design be-
tween control engineering and real-time systems engineering.
To this end, we investigate two prominent models from real-
time systems research, arrival curves and typical worst-case
models, and integrate them with functional verification tech-
niques. In particular, we propose a system model that allows an
engineer to integrate specific timing models into a closed-loop
functional model. This functional model is a hybrid model with
discrete parts, such as mode switches and clock cycles, and
continuous parts such as the physics of the plant. We rely on
functional verification of hybrid systems to prove properties of
the closed-loop functional model. In particular, this paper uses
the hybrid system state space explorer SpaceEx for closed-
loop reachability analysis. We validate our approach based
on an industrial example, the control software of an electro-
mechanical braking system, and two different timing models.

The main contributions of this paper can be summarized as
follows:
• We propose a novel approach integrating timing and

closed-loop verification that is based on a combination of
LET (logical execution times) and TWCA (typical worst-
case analysis).

• We show how to analyze closed-loop properties of our
new model using reachability analysis of hybrid automata.

• We show the effectiveness of our approach on an indus-
trial example of an electro-mechanical brake.

The remainder of this paper is structured as follows: First,
we present our system model and introduce our approach for
closed loop control software analysis. Second, we describe
existing formal analysis of timing models in Section III and
discuss them in relation to our proposed closed loop analysis
approach. In Section IV we motivate our approach based on an
industrial case study. Section V provides background in related
work before concluding the paper in Section VI.

II. SYSTEM MODEL AND PROPOSED APPROACH
A. System model

Automotive software systems typically consist of several
dozens functionalities that are scheduled using OSEK [1]
compliant operating systems. In this kind of operating systems
we deal with static priority preemptive scheduling policies.
Scheduled entities are called tasks that are repeated cyclically
with a fixed period. Each task contains several processes that



Fig. 1. Sample schedule of a system consisting of three tasks with different
priorities. Tasks are mere containers for processes that contain the actual code,
e. g., control algorithms. Preemptions by higher priority tasks lead to sampling
jitter and response time jitter for process P5 influencing its functional behavior.

contain the functional code. Processes are assigned to tasks
according to the continuous dynamics of the physical process
they control, e. g., injection control in motor management
has higher dynamics than exhaust gas control, and therefore
requires a shorter period. In the simplest case that we assume
in this paper, one functionality (e. g., one controller) is realized
using a single process. However, more complex functionalities
are realized using several communicating processes possibly
distributed over several tasks. Please note that the approach
presented in this paper can be easily extended to this more
general case.

Processes are functions without arguments and return val-
ues that only communicate over shared memory. For data
consistency reasons, all data that is required by processes
inside a task, is copied from shared memory into local buffers.
Note that this data copy mechanism is not performed directly
inside the interrupt releasing the task, but after the releasing
interrupt and before executing processes. This is important
to mention, since this leads to sampling jitter (variable time
between task release and process execution) in case the task
is directly preempted after release, as can be seen in Figure 1.
Data written by processes into shared memory, e. g., updated
actuator values as result of a control algorithm, become visible
immediately, since there is no equivalent copying mechanism
for data written by processes. It is obvious that this semantic
leads to a response time jitter of a process (variable time
from process start to end), a well-known and well-studied
effect in real-time systems research. Note that for control this
is problematic as one may be working with data read after
the nominal sampling time (sampling jitter) and applying the
control decisions too late (response time jitter). Both effects
might lead to decreased performance of the control software.

For systematically considering timing effects in closed-
loop verification, we propose the system model presented in
Figure 2(c). This novel approach leverages the two approaches
on the left of the figure: Classical timing analysis determines
the effect of scheduling on software timing models as shown in
Fig. 2(a). Here the abstract scheduler model denotes a policy

specifying how the execution platforms activates and preempts
tasks and processes. The software timing model is a description
of the activation patterns and computation demands of tasks
and processes. The results of such an analysis are timing
properties such as response time and jitter.

Functional verification of hybrid systems as shown in
Fig. 2(b) checks that a closed-loop system comprised of
software and plant has certain specified properties. As shown in
the figure, verification is often performed on an abstract, con-
tinuous model of the software that is agnostic of discretization,
scheduling and timing effects. In contrast to timing properties,
closed-loop properties concern functional behavior. Examples
include control properties, where an internal state should be
steered towards a desired set point, e. g., the rise time (”How
responsive is my system to a jump in the desired value?”)
and settling time (”After what time does the internal state stay
close to the desired value”). A concrete example for rise time
is given in the case study in section Sec. IV-B, where we have
the requirement that the brake reacts swiftly (small rise time)
to braking requests (jump in set point of braking position).

To consider the impact of timing effects on closed-loop
performance, our closed-loop model explicitly includes a
scheduler property model derived from timing analysis. The
scheduler property model specifies the points in time where
data values are read from the plant and written back to the
actuator. We can use this for our closed-loop analysis by
composing the scheduler property models with a refined, dis-
cretized software model (and the plant) as shown in Fig. 2(c).
We derive our scheduler property models from existing timing
analysis techniques, namely busy window-based approaches
using arrival curves and Typical Worst Case Analysis [2].
Before detailing on specific timing analyses and how to
derive scheduler property models, we explain our approach
for closed-loop verification.

B. Timing-aware, closed-loop verification
We use model checking to verify the specified closed-

loop properties as follows. Hybrid automata as a modeling
formalism combine continuous-time and discrete-event dynam-
ics. Discrete-time systems can be modeled by generating a
discrete event at the corresponding sampling times. Hybrid
automata allow us to combine models from different domains
by embedding them into the same continuous-time, discrete-
event framework, e. g., an ordinary differential equation (ODE)
model of the plant, a discrete-time model of the controller,
and an abstract timed model of the scheduler. So the plant,
the controller, and the scheduler are each modeled by one
or more hybrid automata, which are then composed into a
hybrid automata network. The model checker symbolically
computes the set of reachable states for the entire network,
which is sufficient to decide safety properties (nothing bad ever
happens) and bounded liveness properties (something good
happens within a given time frame). The set of reachable states
can be queried within the model checker to obtain conservative
bounds on the variables, e. g., maximum overshoot, or to
check whether a given set of state is reachable or not. This
mechanism can be used to check more complex properties
by adding a so-called monitor automaton to the network. A
monitor automaton features a fail state that is reachable if
the property is violated, and thus encodes the property as a
reachability problem. If the model checker can show that the
fail state is not reachable when the monitor is composed with



Fig. 2. (a) Classic timing analysis focuses on the effect of schedulers on software timing, e. g., meeting certain deadlines. (b) Hybrid system verification uses
closed-loop models and specification of properties on the closed-loop behavior to prove correct functional behavior. (c) Our proposed approach joins timing
analysis with hybrid system verification. We leverage a scheduler property model describing all possible behaviors of the discretized system on the execution
platform, such that the verification can check that the closed-loop properties hold.

the closed-loop model, then the property is guaranteed to be
satisfied. For example, to show that the system reaches a target
set within a given time frame, the monitor consists of an initial
state, a fail state, and a clock. The fail state is connected to
the initial state with a transition that is enabled if the system
has not reached the target set at the end of the time frame,
which is measured by the clock.

The heterogeneous closed-loop model described above is
not trivial to analyze. Model checkers for hybrid systems tra-
ditionally struggle with systems that feature a lot of continuous
variables, but recently developed approximation techniques
allow one to handle certain systems with hundreds of variables
at an acceptable loss of accuracy, e. g., [15]. Nonetheless, the
approach needs to handle a combinatorial explosion both in
terms of the number of reachable discrete states and in terms
of the reachable sets of continuous variables. One of the key
challenges of the work presented in this paper is to develop
an abstract scheduler property model that is expressive enough
to yield useful information, and for which closed-loop model
checking is possible with reasonable computational cost.

C. Existing approaches for timing analyses
Different possibilities have been previously proposed to

quantify sampling jitter and response time jitter in order to
make them accessible for systematic analysis. Note that these
approaches are all further detailed in the related work in
Section V.

1) Traces: Use scheduling simulation to derive traces de-
scribing the points in time where data is read and written
back.

2) Probabilistic approaches: Model sampling and response
time jitter as random variables with known expectations.

3) Analytic models such as arrival curves.
While method 1 can be used in simulation contexts to get

a first impression about the behavior of a controller under
scheduling influences, it only considers single scenarios and
cannot be used to give any formal guarantees about the
behavior of the control algorithm. Probabilistic approaches
such as method 2 require to model the distribution of the jitter
which is practically infeasible to derive. The reason is hidden
dependencies between tasks and processes, that are not only
due to scheduling and communication but also due to digital

hardware mechanisms such as caching and pipelining. Method
3 captures the scheduling influences safely, and thus represents
a sound basis for formal verification approaches. However, the
safe over-approximation of BCRT (best-case response time)
and WCRT (worst-case response time) by the upper and
lower arrival curve leads to a large set of possible behaviors
that hinders efficient and realistic analysis. Additionally, it is
not clear how the information captured by the arrival curves
can be leveraged constructively for systematic, timing-aware
controller design.

D. Novel approach for integrating timing and closed-loop
verification

In this paper we prefer to use an alternative approach for
design and analysis of timing-aware controllers. The approach
allows for a safe approximation and formal proof of controller
properties, while being constructive, in the sense that control
engineers can account for timing effects during controller de-
sign, and thus design more efficient, yet still robust controllers.

In order to combine real-time analysis methods construc-
tively with control engineering, we propose to employ the well
known concept of Logical Execution Times (LET) [3]. LETs
can be used to enforce deterministic data read and data write
semantics1, which is very useful for designing and composing
control software.

The determinism provided by the LET abstraction greatly
reduces the effort for closed-loop analysis and integrates well
with scheduling analysis for correct-by-construction system
synthesis. More precisely, using platform mechanisms imple-
menting the LET semantics, data produced by each process
can be written back at its WCRT. By this means, the WCRTs
can be interpreted as systematic and constant latencies during
control design. This greatly reduces the set of possible timing
behaviors to a single deterministic schedule, thereby facilitat-
ing controller design and functional verification. The reason is
that we do not need to consider reading and writing as separate
non-deterministic models, but can integrate them into one joint
scheduler property model.

Unfortunately, such a straight-forward approach is not fea-
sible in practice. The reason is that WCRTs are usually far

1Jitters are eliminated at the cost of increased latency



too large (up to 90% of the period in automotive systems)
to be useful for designing controllers that are robust against
model errors and external disturbances. A much more practical
approach is combining the LET semantic with the Typical
Worst-Case Analysis (TWCA) method [2].

E. Typical Worst-Case Analysis (TWCA)
TWCA exploits the fact that worst-case scheduling situa-

tions for a process under analysis are rare and usually do
not occur repetitively for subsequent executions. Based on this
observation, TWCA derives a typical worst-case response time
(TWCRT) that is far smaller than the actual WCRT, as well
as error bounds on the number of violations of that TWCRT
in a given time window. More precisely, the output of TWCA
consists of (i) a TWCRT bound on the response time and (ii)
a function err such that, for k ≥ 1, it holds that out of k
consecutive executions, at most err(k) response times may be
larger than the computed TWCRT. Table I shows an example
of such an error (number of deadline misses) for some values
of k (consecutive executions). For example, the second line
reads as follows: out of 18 consecutive executions, at most 3
may have a response time that is larger than TWCRT. Note
that the error computed by TWCA is similar to the properties
verified on weakly-hard systems [4].

The complete theory behind TWCA is beyond the scope of
this paper. Informally, TWCA is based on the identification
of some specific activation patterns, e. g., for interrupt service
routines, which clearly have a typical case and an exceptional
case — think of periodic bursts as an example [5]. TWCA
performs two response-time analyses instead of one: the first
analysis is the standard WCRT analysis mentioned before,
while the second analysis uses the same approach on a
different model in which the non-typical activation scenarios
are ignored. This being done, TWCA uses some information
obtained during the WCRT analysis to determine the error
associated to the TWCRT. Basically, the error is computed by
considering the fact that the impact of a non-typical activation
cannot last forever in a schedulable system, and can in fact be
bounded by the worst-case busy window (called busy period
in its first mention in [6]). As a consequence, knowing the
frequency of non-typical activation scenarios, which can be
represented in the simple case using an arrival curve, one can
determine how many executions at most may be impacted by
a non-typical activation and thus experience a response time
above the TWCRT.

For system synthesis we propose to assume that data is
written back deterministically at the TWCRT. Thus, the timing
determinism provided by the LET semantic can be exploited
without inflicting prohibitively high input-output delays for
the controller. However, compared to the approach using the
WCRT as discussed above, we now have to account for the
effect of TWCRT violations during verification. This is a trade-
off: For controller design, we can leverage a smaller dead time
(TWCRT � WCRT), while for verification the resulting set
of timing behaviors to analyze will increase slightly. However,
we will show that this increase is very small compared to the
number of behaviors in systems with jittering response times.

In this paper we assume that when the process violates
the TWCRT, its execution is discarded, and the last written
data remains valid. From a control design perspective, this
is a valid assumption, since there exists a vast amount of
control approaches (notably in the domain of networked con-

trol) that can systematically account for sampling losses and
prove whether or not the controller is stable and adheres to
required performance criteria [7], [8]. From the scheduling
analysis perspective, note that the work by Quinton et al. [2]
is based on a different assumption, namely that executions
which miss their deadline run until completion. For static
priority preemptive schedulers, using directly the original anal-
ysis provides conservative results w. r. t. our new hypothesis:
killing an execution which has missed its deadline will directly
reduce the delay inflicted to subsequent executions of the same
process while having no impact of the interference from higher
priority tasks.

A more formal and general comparison of the two schedul-
ing strategies regarding weakly-hard guarantees is left for
future work.

III. FORMAL ANALYSIS OF TIMING MODELS
In this section, we consider two different timing models

– arrival curves and typical worst-case models – and show
how to use them within our system framework for closed-
loop analyses in III-B. Please note that both models are
inherently different. We will present both models and discuss
their differences in Section III-C.

Before diving into the concrete models for the analyses we
provide an overview of the relevant background on hybrid and
timed automata.

A. Background: Hybrid and timed automata
We model the interaction of discrete events and continuous,

time-driven dynamics with hybrid automata and follow the
model of Alur et al. [9]. A hybrid automaton is a tuple
H = (L,V, Init ,F , I, T ,B) consisting of a labeled graph
with vertices L, the so-called locations, and edges T , the so-
called transitions. It describes the nondeterministic evolution
of a finite set of continuous variables V over time. We associate
each of the n variables with a dimension in Rn. A state is a
tuple (l, x) ∈ L × Rn. Init ∈ L × Rn describes the initial
state. In every state (l, x), the time-driven evolution of the
continuous variables, the so-called flow, is described by a set
of differential equations or inclusions, i. e., ẋ ∈ F(l, x) ⊆ Rn.
The system may remain in location l, evolving according to
the flow F(l), only as long as the state is inside the invariant
I(l).

A transition (l, b, µ, l′) ∈ T , with label b ∈ B describes the
discrete transition (edge) from location l to location l′, l, l′ ∈
L. A transition is guarded by a guard g ∈ G, i. e., the transition
may be taken if for the current state (l, x), x ∈ g. When taking
the transition the state can nondeterministically jump to any
successor in the jump relation µ ⊆ Rn×Rn, i. e., it can jump
from (l, x) to (l′, x′) iff (x, x′) ∈ µ. The set of states that can
jump is called the guard of the transition, and consists of the
projection of µ onto x. In the following we use SpaceEx for
formal verification of hybrid systems models. SpaceEx accepts
hybrid automata with piecewise affine dynamics (PWA), i. e.,
where the flow F is described by linear ordinary differential
equation (ODE). Invariants, jump relations, and initial states
are described by linear predicates (polyhedra) over the state
variables.

Hybrid automata can be combined to form complex models
by running them in parallel. This parallel composition allows
the hybrid automata to share variables (details are omitted for
lack of space), and synchronize on shared transition labels:
a transition may take place in one of the automata only if



NoMiss
0 ≤ time0 ≤ 1

time′0 = 1/P ∧ time′1 = 1/P ∧ time′2 = 1/P
∧time′3 = 1/P ∧ time′4 = 1/P

deadline met
time0 ≥ 1
time0 := 0

deadline miss
time0 ≥ 1 ∧ time1 ≥ miss(2) ∧ time2 ≥ miss(3)

∧time3 ≥ miss(4) ∧ time4 ≥ miss(5)
time4 := time3 ∧ time3 := time2 ∧ time2 := time1

time1 := time0 ∧ time0 := 0

Fig. 3. Scheduler property model based on TWCA as modeled in SpaceEx.

all other automata that feature the same label can also take
a transition with this label. Synchronizing transitions are then
executed simultaneously. A more detailed description on how
to model control systems in SpaceEx is described in [10].

A simple example of a hybrid automaton as it is used
in this paper is shown in Figure 3. It has a single loca-
tion, i. e., L = {NoMiss}. There are 5 continuous variables
{time0, time1, ..., time4} ∈ R5. Each of these variables
describes a clock with constant derivative. The invariant
I(NoMiss) describes that we can stay in location NoMiss
for at most one period. There are two possible transitions, one
with label deadline_met (on the right) and one with label
deadline_miss. Note that in this case deadline_met
corresponds to the point in time where data is read from
the plant. Writing data back to the plant is then performed
deterministically after the TWCRT deadline. In other words,
in this model we decide at reading time whether a deadline will
be met or missed. We can take the deadline_met transition
after exactly one period, since the guard checks that time0 ≥ 1
and the invariant imposes that time0 ≤ 1. In this case, we reset
time0 :=0, i. e., start a new period. The other transition has a
more restrictive guard (with a conjunction of predicates on the
clock variables) and more elaborate assignment of the clock
variables that is detailed below.

Note that in previous timing analysis approaches using state-
based analysis, timed automata are used, especially in the
context of Uppaal. Timed automata are a special class of hybrid
automata, where the continuous variables represent clocks, that
have a constant flow and can only be reset to zero. Obviously,
all timed automata can be represented as hybrid automata and
due to the larger expressiveness of hybrid automata models
may be modeled in a simpler, more concise manner.

B. Scheduler property models as hybrid automata
We use arrival curves and TWCA to derive scheduler

property models as hybrid automata. We use a compositional
approach, where we can cleanly separate scheduler property
models that generate events that in this case trigger data reads
from the plant model.

1) Arrival curve models: For arrival curves, we follow the
results of Lampka et al. [11], [12]. They present how to convert
abstract stream models such as PJD (periodic with jitter) or
time-interval based models to a network of co-operating timed
automata (TA). As described TA are a special subclass of HA.

As such, it is straight-forward to integrate these TA models
into our framework.2

Note that we used arrival curves solely for modeling the
sampling jitter in this paper. Generally, we also need to model
response time jitter. However, in our first evaluation focusing
on verification efficiency, already the sampling jitter arrival
curve model rendered closed-loop analysis infeasible for state-
of-the-art verification tools.

2) Typical worst-case models with LET: In the following,
we describe an approach to derive scheduler property models
using TWCA for systems with LET semantics. These weakly-
hard models are called TWCA models for simplicity in the
following. As a running example, we use the specific TWCA
results in Table I, where we denote the maximum number of
deadline misses in a given number of subsequent sampling
periods. The corresponding model is shown in Figure 3. The
basic idea of the approach is that we have one clock that
models the periodic schedule of the controller, here time0.
Note that we model clocks with a period P that we use as
a normalization in the flow. The clock time0 together with
the guards on the two transitions model the fixed period, i. e.,
each period we have to take one of the transitions and reset
the clock accordingly.

For each row in Table I, we need to measure the interval
over which we have missed a specific number of deadlines.
As we can see in the figure, we need a dedicated clock to
measure each of these intervals, concretely time1, the interval
over which we had one miss, up to time4, the interval over
which we had four misses. We use these measured intervals
to decide whether another schedule deadline may be missed
over the current interval. Therefore these clocks are used in the
transition on the bottom of Figure 3 in the guard condition.
As an example, we are allowed to miss a third deadline in the
current period if there were only two misses over at least the
last 18 consecutive executions. As such, we use in this case
time2 with the threshold for 3 misses miss(3). Analogously,
the same holds for all other model thresholds. Please note
that taking the transition at the top of Figure 3 with label
deadline_miss corresponds to a deadline miss. Therefore,
this transition is guarded by measuring the time intervals in
which a certain number of deadlines were missed before, i. e.,
using miss(2), miss(3), etc. as discussed above.

Intuitively, the TWCA model controls writing of the data.
When the deadline is missed, data is not written to the
actuators. For verification, we simplify the model by realizing
that in these cases, where we do not write the data to the
plant, we do not need to compute new actuator values in the
first place and therefore do not need to sample the sensors in
this case. As we have a deterministic, fixed-timing relationship
between a read and a write operation in our model, we
synchronize deadline_met with the read operation. This
is a safe simplification of the model to facilitate verification.
Note that the LET that we assume for the execution of the
controller is modeled by a fixed delay between reading and
writing. To further improve efficiency, we use a variation of
the hybrid automaton in Figure 3 in which clock values are no
longer computed when they are not needed. This is achieved
by having a location each with one, two, three, and four active

2While these models can be simplified in the more powerful hybrid
automaton formulation, e. g., due to not being limited to variable reset to
zero, this is out-of-scope of this work.



# deadline misses consecutive executions
2 2
3 18
4 20
5 56

TABLE I. TYPICAL WORST-CASE ANALYSIS MODEL FOR A GIVEN
PROCESS THAT IS EXECUTED PERIODICALLY EACH 1 ms. THE WORST

CASE RESPONSE TIME IS 0.8 ms. THE TYPICAL CASE RESPONSE TIME IS
0.4 ms WITH THE GIVEN BOUNDS ON MISSES PER CONSECUTIVE

EXECUTIONS.

clocks. The automaton selects the locations depending on how
many events are being tracked, i. e., how many clocks are still
within the largest time frame (here miss(5)).

3) Formal definition of TWCA automaton: Formally, we
construct a hybrid automaton from the TWCA model as
follows. Let P be the sampling period, and let N be the
maximum number of deadline misses considered. The TWCA
model consists of an N -dimensional integer vector miss which
encodes that a maximum of i deadline misses can take place
in any miss(i) consecutive executions (sampling periods). The
hybrid automaton is

HTWCA = (L,V, Init ,F , I, T ,B),

with a single location L = {NoMiss}. The variables V =
{time0, . . . , timeN−1}, where timei models the time since i
misses have been observed. The initial states are

Init = NoMiss× {time0 = 0 ∧
∧

1≤i<N

timei = miss(N)},

where the timei for i ≥ 1 are set to a value high enough that
they initially do not restrict the occurrence of events. The flow
is given by

F(NoMiss) = {
∧

0≤i<N

time′i = 1/P},

i. e., all variables are clocks normalized on the period P , and
the invariant is

I = {NoMiss} × {0 ≤ time0 ≤ 1}.

The set of transition labels is B =
{deadline met, deadline miss}. The transition label
deadline met serves to trigger the control actions in the
rest of the model via synchronization of transitions that
have this label. The label deadline miss synchronizes
with a dummy automaton that allows transitioning at
all times. There are two transitions in HTWCA. First,
the occurrence of an event is modeled by a transition
(NoMiss, deadline met, µdeadline met, NoMiss) ∈ T , where

µdeadline met = {time0 ≥ 1∧time′0 = 0∧
∧

1≤i<N

time′i = timei},

i. e., time0 is reset while the other clocks do not change.
The transition guard and the invariant together ensure that
the deadline met transitions take place when time0 =
1. Since time0 is reset to zero, the deadline met tran-
sitions can only occur exactly at the sampling period
P . Second, missing an event is modeled by a transi-
tion (NoMiss, deadline miss, µdeadline miss, NoMiss) ∈ T ,

where

µdeadline miss = {time0 ≥ 1 ∧
∧

1≤i<N

timei ≥ miss(i+ 1)

∧ time′0 = 0 ∧
∧

1≤i<N

time′i = timei−1 },

i. e., time0 is reset and the other clocks take the value that
corresponds to the previously missed event. Due to the guard
constraints, the transition is only enabled if the time since the
i-th miss is greater or equal to miss(i + 1), which enforces
the semantics of the TWCA model.

C. Differences between both scheduler property models
Arrival curves are used in timing analysis methods to model

the activation patterns of tasks and processes. They do not
make any assumptions about underlying platform mechanisms
(e. g., scheduling policy) or other concurrently executed tasks
and processes. TWCA models, on the other hand, are synthe-
sized from more information, and are already the result of an
analysis step taking into account platform mechanisms, timing
constraints, and other concurrent tasks and processes. It is,
therefore, clear that the arrival curve model is more general
than the TWCA model.

However, the restricted TWCA model exactly covers many
relevant industrial scenarios, and makes the verification ques-
tion addressed in this paper a much simpler task that scales
considerably better than using arrival curve models (compare
Section III-E). In particular, the scheduler property model for
TWCA is discrete (number of deadlines misses in a given
number of consecutive executions), whereas the space of
possible activation patterns described by arrival curves is con-
tinuous. Therefore, TWCA models represent a suitable trade-
off between accuracy, generality and scalability for combining
timing analysis with closed-loop functional verification. The
same is not true for arrival curve models: Integrating arrival
curves into closed-loop models leads to a computationally
expensive verification task for realistic systems (with state-of-
the-art methods). This is not surprising as the computational
complexity already occurs in state-based timing analysis using
arrival curves with Timed Automata [13].

D. Reachability analysis for closed-loop, hybrid models
To check whether the specification is satisfied, we compute

the set of reachable states of the system, i. e., all states that
lie on one of the trajectories. The computation is exhaustive,
so that all states are covered independently of the number
of transitions or the time spent in locations. Computing the
reachable states is similar to numeric simulation, except that
sets of values are used instead of numbers. One can regard
this as a generalization of interval-based ODE solvers that
are guaranteed to contain the exact solution, but with one
difference: While even guaranteed ODE solvers only compute
the ranges of reachable values at specific discrete points in
time, computing all reachable states involves also covering
the states in the continuum between those time points. In
our tool SpaceEx, this is achieved using first order Taylor
approximations, whose remainder is bounded conservatively.
Reachability is an undecidable problem for all except the most
simple dynamics, so one tries to compute a conservative cover
that is precise enough to prove that the specification is satisfied.

While numerical simulation is fast and can be carried out
for arbitrarily complex, nonlinear dynamics, it is limited to



computing one single behavior (trajectory) at a time, in a
deterministic scenario in which all side conditions (inputs,
disturbances, initial conditions) are attributed a fixed numerical
value. Reachability computation, on the other hand, is carried
out with sets, and one can therefore take into account a wide
variety of nondeterminism, even continuous nondeterminism
such as disturbances that act continuously over time and are
only known up to some bounds. A single run of reachability
computation can therefore replace a very large number of
simulations, which would otherwise be necessary to cover all
combinations. The downside of reachability analysis is the
computational complexity, namely in the form of state space
explosion, and the fact that scalable methods are so far known
mainly for simple dynamics such as linear ODEs.

One of the main difficulties in reachability analysis is the
computation with high-dimensional continuous sets. The key
lies in finding suitable set representations. The representation
must be easy to compute with, in particular the operations for
solving the ODE (equivalent to low-order ODE solver code)
and the operations to cover the continuum between time points
(convex hull and Minkowski sum). Furthermore, geometric
operations such as union and intersection are necessary, e. g., to
apply invariant and guard constraints. Polyhedra in constraint
representation are suitable for some of these operations, but
scale terribly for others. Recently, scalability breakthroughs
have been achieved by combining suitable algorithms on
the ODE side with “lazy” set representations (support func-
tions) and template polyhedra [14]. Template polyhedra are
polyhedra whose facet normals have fixed directions, and
approximating the solution of a number of set operations with
template polyhedra can be done very efficiently. The downside
of templates is that they are fixed in advance and may work
more or less well depending on the model and its dynamics.
For the results presented in this paper, we use templates that
correspond to computing a bounding box on the states at each
point in time, which is somewhat similar to solving the ODEs
with interval arithmetic.

E. Advantages of Typical Worst-Case Analysis over Arrival
Curves for Closed-Loop Models

While arrival curves present an elegant way to model
uncertainty in the scheduling of controller events, the non-
determinism that they introduce in the timing turns out to
be very challenging for the type of reachability analysis we
consider. In the arrival curve model, events can arrive at any
time over a certain interval. This means that one must compute
the reachable states over that interval before the event, and
then the set of successors of those states after the event. This is
inherently difficult for our type of analysis, since the reachable
states over an interval of time is generally a non-convex set,
while successor computations are carried out on convex sets.
So the nonconvex set forcibly needs to be covered with a
collection of convex sets before the successor computations
can be carried out. This is also known as convexification, and
the process produces a number of convex sets that increases
with the length of the interval over which the event can take
place. Since convexification is carried out for each occurrence
of an event, this can quickly lead to an exponential increase in
the number of sets that have to be computed. To take the case
study presented in the next section as an example, we could
compute the reachable states using a conservative arrival curve
model only up to three (!) time units, while the typical worst-

case analysis can be carried out over 14 time units, which is
sufficient for the specification.3

Modeling the scheduler property with timed arrival curves
leads to a sequence of events that occur nondeterministically
on the time axis. In the closed-loop model, this corresponds to
the discrete controller updates taking place at any time over a
relatively large time interval. Combining this nondeterminism
with the plant dynamics leads to a difficult model for a hybrid
model checker. Informally speaking, the model checker needs
to evaluate an exponential function (the solution of the ODEs
of the plant) over time intervals of increasing length. The
influence of the timing uncertainty is therefore highly non-
linear. In our experiments, we encounter a massive explosion
in the number of symbolic states and an accumulation of the
approximation error over time.

Modeling the scheduler property with the TWCA model,
on the other hand, leads to a closed-loop model in which
the discrete controller updates take place at regular intervals.
While there may be nondeterminism in terms of the occurring
events, and in terms of the states of the plant states, the timing
of events is deterministic and thus easier to handle by the
model checker. Informally speaking, the model checker needs
to evaluate an exponential function (the solution of the ODEs
of the plant) at only discrete points in time. Since the systems
are piecewise linear, the influence of any nondeterminism in
terms of the plant states is linear. Experimentally, we see only
a mild state explosion in our model, and the approximation
error remains small over the considered time horizon.

IV. MOTIVATING CASE STUDY: EMB
A. EMB and control systems in industry

The basic mechanical structure of an electro mechanic
braking system (EMB) contains the following components:
• DC Motor
• Gear box
• Brake caliper
• Brake disk
• Brake pedal as interface to the driver
Figure 4(a) shows the concretization of our general approach

from Fig. 2(c): our focus is the software that controls the
electro-mechanical brake. We have two requirements on re-
sponse time and impulse that we need to verify on the closed-
loop model. We have a scheduler property model based on
TWCA as shown in Fig.3.

The EMB model consists of several parts: The electric DC
motor, driving the brake caliper, comprising of the rotating
mass of the rotor and the spindle, the gearbox between
the rotational mass of the rotor and the translation mass of
the caliper, as well as the translational mass of the caliper
including a stiff spring model for the brake disk.

A brake request is realized using two different modes of
operations as shown in Fig. 4(b). First, the DC motor moves
the brake caliper into position x0, denoting the position at
the brake disk. Once position x0 is reached, the DC motors
applies the requested braking force. In this paper we focus on
the positioning of the caliper at the braking disk. This part of

3The TWCA analysis exhaustively computes a cover of all reachable states
up to 14 time units in 40 s, giving a total of 1423 symbolic states. The arrival
curves analysis can compute all states for a bounded horizon of 2 time units
within 30 s, giving a total of 316 symbolic states. For a bounded horizon of
3 time units, we obtain 2659 symbolic states in 814 s. For a bounded horizon
of 4 time units, the analysis times out after two hours.



(a) Concretization of system
model: Using a TWCA scheduler
property model to analyze the
closed-loop properties of an
electro-mechanical brake (EMB).

(b) Simplified EMB plant model for
required functionality. A brake cy-
cle consists of: 1) positioning of the
caliper into position x0 (brake disk),
and 2) applying force to the brake
disk.

Fig. 4. EMB case study: concrete timing-aware closed-loop analysis and
plant functionality

Fig. 5. Schematic of the closed-loop model consisting of (discretized)
software and plant, the scheduler property model and the synchronization using
the deadline_met label.

the functionality is of interest for several scenarios: braking,
disk wiping, and pre-crash preparations.

Figure 5 shows a schematic of our model in SpaceEx.
The figure indicates the typical closed-loop model of software
and plant and the synchronization with the scheduler property
model from Fig. 3 using the label deadline_met.4 Please
note that the discretized software model includes data read at
activation (by the deadline_met) as well as writing to the
actuators at the TWCRT using LET semantics.

B. EMB requirements
For the correct functioning of the braking functionality the

following requirements must be enforced:
• Response time for reaching the braking position x0

(tRmax ): the caliper must reach x0 = 0.05 dm after the
braking request is issued within 20ms with a precision
of 4%. This requirement ensures the reactiveness of the
system.

• Small impulse: If the caliper hits the braking disk with
a high impulse, force closure occurs and the driver feels
an abrupt deceleration. While this might be acceptable
for braking, it must not happen in other scenarios where
the caliper is positioned close to the braking disk (e. g.,
disk wiping). The caliper speed at contact must be below
2 mm/s.

4Similarly we composed the system with a TA model of arrival curves.

C. Analysis in SpaceEx
We are able to show that the system satisfies the specification

by computing the reachable states of a model in which we
stop the evolution of the system when within 4% of contact
(x ≤ 0.048). As initial conditions we fix that the brake caliper
is at rest in position x = 0. A global timer t is added to the
model in order to measure the response time. We model the
TWCA property model based on Table I. The control output
is applied with LET semantics 0.4 ms after the typical case
response time.

We use the tool SpaceEx [14] with the STC algorithm from
[15] to compute a finite cover of the reachable states. The
computation is exhaustive, i. e., it terminates with a fixed point
without any bounds on the number of transitions or on the
time horizon. The result nonetheless ranges over finite time
since the evolutions are stopped in the model by the constraint
x ≤ 0.048, i. e., trajectories beyond this level are disregarded.
On a standard laptop (MacBook Pro), the computation takes
40 s, giving a total of 1423 symbolic states. The memory
consumption is less than 50 MB.

Figure 6(a) shows the projection of the reachable states from
the 12-dimensional state space onto the t/x plane. It shows
that the response time of the braking position is at around
12.5 ms, which satisfies the specification by a good margin.
The figure also shows the branching of trajectories caused by
skipping actuator updates due to violations of the typical case
response time as specified in Table I. To illustrate a case where
the caliper response time is violated, we consider a modified
version where the controller setpoint is chosen deliberately
close to violating the specification. As shown in Figure 7, only
one single case fails the contact specification. The failure is
drastic, since the limit on the response time is exceeded by
a factor of more than two. Note that the problematic timing
scenario corresponds to neither the slowest nor the fastest
response, but to one of the middle cases. This shows that our
method can detect the presence of realistic problems in control
software considering timing.

For the second requirement on small impulse, we observe
the current I , which in our model is proportional to the caliper
velocity, i. e., ẋ = cI , with c = 0.008. The requirement
is therefore satisfied if I ≤ 1.25 A. This is verified by
intersecting the reachable states with the plane of contact,
x = 0.048, and projecting onto the variable I . This gives the
bounds I ∈ [0.38, 0.99], which satisfies the specification. As
an illustration, Figure 6(b) shows the reachable values of I
at the point of contact, for all possible time instants at which
contact can occur under the given typical case response time.

This first proof-of-concept application with its positive re-
sults shows the great potential of our timing-aware closed-loop
analysis. Nevertheless, there are several questions that remain
for future work, such as (i) inclusion of uncertainties (e. g., in
initial position) and disturbances and (ii) detailed performance
assessment on additional examples.

V. BACKGROUND AND RELATED WORK
A. Timing analysis

Classical work in real-time systems is mainly concerned
with the so-called schedulability of a system. The system
models considered by many contributions usually assume ap-
plication models consisting of periodic and sporadic tasks with
precedence constraints. Tasks (sometimes also task chains)
are associated with deadlines that must be fulfilled in order
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(a) Position over time as analyzed in SpaceEx for the typical worst-case
analysis. The different branches that we see in the the position evolution are
the result of skipping actuator updates due to violations of the typical case
response time as specified in Table I.

I
[A]

8 9 10 11 12 13
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

t[ms]

(b) Current over the different possible time instants at which the brake caliper
may get in contact with the brake disks, as analyzed in SpaceEx. Since the
current is proportional to the velocity of the brake caliper, this provides bounds
on the impulse of the collision between the caliper and the disk.

Fig. 6. Visualization of closed-loop behavior of the EMB from SpaceEx reachability analysis.
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Fig. 7. Position over time as analyzed in SpaceEx for a controller set-
point deliberately close to violating the specification. Out of the many timing
scenarios, only one single case fails the contact specification.

for the system to be schedulable. The concrete techniques
applicable for answering the question whether or not a given
system is schedulable strongly depend on the assumed platform
model and the scheduling strategy. In cases that the application
and platform models are simple enough, maximum utilization
bounds can be derived to decide whether or not a given
system is schedulable. Prominent examples for this kind of
analyses are, for instance, the work of Liu and Layland for
independent periodic task sets under rate-monotonic fixed
priority scheduling on a single core platform [16], or the work
of Dertouzos on earliest deadline first (EDF) scheduling [17].
An overview of extensions on those basic works can be found
under [18].

When it comes to more complex application and platform
models as they are used, for instance, in automotive systems,
methods based on the so-called busy window approach com-
bined with reasoning about the critical instant as proposed by
Lehoczky [6] must be used in order to successfully analyze a
system’s real-time behavior. As of today there exist industry
strength tools, such as SymTA/S5, that are capable of analyzing
complex distributed systems consisting of platforms with het-
erogeneous scheduling strategies and bus arbitration protocols
with high precision.

Lampka et al. [11] showed a hybrid analysis based on a
general approach to model arrival curves as (networks of)
timed automata. We leverage their work as scheduler property
models for real-time calculus. However, different to our work
they do not consider the functional dynamics of the software,
but the schedulability of a system.

5www.symtavision.com

Until today the above described methods have only found
little attention in the development of real-world automotive
applications. The reason is that automotive systems strongly
interact with the environment to sense and control physical
processes. This has been neglected by those approaches. In
fact reasoning about real-time scheduling of task sets in
isolation is of limited practical use, since it represents only
a small building block for proving correct functional behavior
in automotive systems.

B. Co-engineering approaches
Of course, we are not the first to recognize the need of inte-

grating real-time scheduling approaches with functional behav-
ioral models. One example is the work on the TrueTime tool-
box [19] that enhances Simulink with scheduling simulation
for simple scheduling policies. This enables function developer
to assess the functional behavior of control applications under
temporal effects that are due to real-time scheduling (latency
and jitter) already on model level. While this is very useful
in practice, our work focus on a comprehensive approach
leveraging formal verification rather than on single simulations.
Another approach in this line of research is implemented in
the JitterBug toolbox [20]. Here, timing effects are described
using probabilistic models that can elegantly be integrated into
control engineering system theory to prove stability and control
performance. The drawback is that probabilistic models are
rarely adequate to describe the timing behavior in automotive
systems. The main reason are unknown dependencies due to
digital hardware mechanisms that are impossible to capture.

Kumar et al. [21] extend the work in [11] and use the above-
detailed hybrid analysis for controller design. The authors use
a similar strategy as our TWCA-based approach by using a
delay threshold that is smaller than the worst-case yet typically
met. Then, in controller design, the sporadic misses that can
be quantified by the hybrid analyses, are used in the stability
analysis of the controller. In contrast, we do not focus on
stability of a single controller, but want to verify general
properties of a closed-loop system such as responsiveness
and overshoots of a system that even may include different
controllers and mode switches.

Alur et al. [22] synthesize an automaton that includes all
schedules that satisfy given stability and settling-time require-
ments. This is complementary to our approach as (i) they con-
sider stability properties (and settling time) of the closed-loop
system, while we are interesting in general safety properties
and (ii) their starting point are the properties from which they



derive the class of acceptable schedules, while we describe the
set of possible schedules and evaluate all system evolutions
given these schedules. Both Alur et al. [22] and our approach
use a logical execution time abstraction.

Related to our system model approach is the work on cyber-
physical system design contracts [23]. These contracts are very
similar to our scheduler property models and describe several
similar scheduling analysis approaches that may be useful
for contracts including the LET approach that we generalize
using TWCA by including deadline misses. Derler et al. [23]
share our vision of a co-engineering approach between control
design and software design. In contrast to their work, we focus
in this work on computational methods and corresponding
modeling for systematic verification of closed-loop functional
properties instead of relying on simulations.

VI. CONCLUSION
For industrial embedded applications controlling physical

processes, systematic co-engineering is indispensable. Focus-
ing on timing effects, we need co-engineering approaches
that integrate state-of-the-art timing analysis and closed-loop,
functional analysis. This allows software engineers to verify
the correctness and performance of their control software early
in the design process, while still considering timing effects
introduced by scheduling on the digital ECU hardware. In
this paper, we motivate and present such a co-engineering
approach.

To this end, we propose to integrate scheduler property
models from existing timing analysis techniques into closed-
loop system models to systematically analyze the closed-loop
properties of control software. We present a system model
that allows software engineers to evaluate the effect of timing
on closed-loop systems using a model-based approach. We
showcase this approach based on two different timing anal-
ysis techniques. We discuss the industrial relevance of these
models and identify weakly-hard models based on typical-case
analysis as very suitable for design and analysis of closed-loop
system models. We present a relevant industrial case study of
an electro-mechanical brake, where we used these weakly-hard
(TWCA) models to verify on a model level that the closed-
loop system satisfies its specification, here with respect to two
different performance criteria of the controller. Additional to
timing, there are other effects that might influence the closed-
loop behavior on the target platform, e. g., sensor and actuator
variances. Our approach based on functional verification easily
allows us to extend our models to integrate these uncertainties
in future work.
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R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable
verification of hybrid systems,” in CAV, ser. LNCS, G. Gopalakrishnan
and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 379–395.

[15] G. Frehse, R. Kateja, and C. Le Guernic, “Flowpipe approximation and
clustering in space-time,” in Proc. Hybrid systems: computation and
control. ACM, 2013, pp. 203–212.

[16] C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard real-time environment,” in Journal of the ACM,
vol. 20(1), 1973, pp. 46–61.

[17] M. L. Dertouzos, “Control robotics: the procedural control of physical
processes,” in Proceedings of the IFIP Congress, 1974, pp. 807–813.
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