
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

PHAVer: Algorithmic Verification of Hybrid Systems past
HyTech?

Goran Frehse

VERIMAG,
2, ave de Vignate, 38610 Gieres, France, e-mail: goran.frehse@imag.fr,
WWW home page: http://www-verimag.imag.fr/~frehse

Received: June 20, 2006 / Revised version: date

Abstract. In 1995, HyTech broke new ground as a po-
tentially powerful tool for verifying hybrid systems –
yet its appicability remains limited to relatively sim-
ple systems. We address the main problems of HyTech
with PHAVer, a new tool for the exact verification of
safety properties of hybrid systems with piecewise con-
stant bounds on the derivatives. Affine dynamics are
handled by on-the-fly overapproximation, partitioning
the state space based on user-definable constraints and
the dynamics of the system. PHAVer features exact arith-
metic in a robust implementation that, based on the
Parma Polyhedra Library, supports arbitrarily large num-
bers. To manage the complexity of the polyhedral com-
putations, we propose methods to conservatively limit
the number of bits and constraints of polyhedra. Exper-
imental results for a navigation benchmark and a tunnel
diode circuit show the effectiveness of the approach.

Key words: hybrid systems – verification – tools – poly-
hedra

1 Introduction

Systems with interacting discrete as well as continuous
dynamics, so-called hybrid systems, are known to be no-
toriously complex to analyze. Their algorithmic verifica-
tion remains a challenging problem, from a theoretical
point of view because of decidability problems, and from
the implementation side because the slightest numerical
errors can void the results. We present PHAVer (Polyhe-
dral Hybrid Automaton Verifier), a verification tool that

? A preliminary version of this paper appeared in the Proceed-
ings of Hybrid Systems: Computation and Control (HSCC 2005),
Lecture Notes in Computer Science 3414, Springer-Verlag, 2005,
pp. 258–273.

aims at overcoming the limitations of predecessors such
as as HyTech [1]. Although PHAVer uses in principle
the same algorithm as HyTech we not merely present
a new implementation of known algorithms, but pro-
pose heuristics to overcome inherent and fundamental
problems of reachability computations, namely excessive
complexity, slow convergence and loss of accuracy due to
overapproximations. As a result, we are able to analyze
systems previously beyond the reach of verification tools.

In this paper we consider the reachability problem,
i.e., computing the set of reachable states of a system or
a conservative overapproximation thereof. While reach-
ability is a relatively simple property in the context of
verification, more complex safety or bounded liveness
properties can be formulated as reachability problems
by adding monitoring components to the system [2].
Computations in PHAVer are based on linear hybrid au-
tomata (LHA) [3], which are defined by linear predicates
and piecewise constant bounds on the derivatives. They
stand out from other classes of hybrid automata because
there are known algorithms for computing exact reacha-
bility over an infinite time horizon [4]. PHAVer is based
on such reachability algorithms for LHA, but can also
compute conservative overapproximations for hybrid au-
tomata with more complex dynamics thanks to an on-
the-fly implementation of phase-portrait approximation
[5]. In practise, reachability computations face three fun-
damental problems: excessive complexity, slow conver-
gence and insufficient accuracy. The complexity of the
set of reachable states can be prohibitively large. In ad-
dition to the state explosion problem, well-known from
the domain of discrete systems, one has to deal with ex-
pensive polyhedral computations whose complexity in-
creases, often exponentially, with each iteration of the
analysis. Inevitably, one has to resort to overapproxima-
tions for all but the most simple problems. Although ter-
mination is not guaranteed in general, it may be induced
by overapproximation. However, convergence might be

2 Goran Frehse: PHAVer: Algorithmic Verification of Hybrid Systems past HyTech

prohibitively slow, and overapproximations may have a
positive or negative effect that is hard to predict. Over-
approximations are essential to handle complexity and
convergence problems, but they forcibly decrease the ac-

curacy of the results. E.g., the obtained set of reachable
states might contain forbidden states that are not actu-
ally reachable by the system.

In applications, complexity and convergence prob-
lems manifest themselves in terms of computation time,
memory consumption and degradation of accuracy, and
the challenge is to find an acceptable trade-off between
them. We propose the following heuristics to enable such
a trade-off. We manage the complexity of polyhedral
computations by imposing a limit on the number of bits
and constraints in polyhedral representations, overap-
proximating them in a manner that is guaranteed to
be conservative. These overapproximations immediately
imply termination if the invariants of the hybrid automa-
ton are bounded. However, they may lead to severe con-
vergence problems, which we counter by applying them
only when triggered by a given complexity threshold.
Experimental results indicate that the proposed overap-
proximations are sufficiently accurate in practical appli-
cations.

In addition to the reachability algorithm, PHAVer
includes a separate engine for computing simulation re-
lations between hybrid automata. It can be used to verify
equivalence or refinement between different models, and
in assume-guarantee-style proofs. The reader is referred
to [6,7] for a description of the approach and some ex-
perimental results. Using PHAVer, we successfully ver-
ified analog and mixed-signal circuits that were previ-
ously beyond the reach of verification tools, see [8,9].
PHAVer has been used by others to verify safety proper-
ties of hybrid Chi specifications [10], and to verify a type
of stability of hybrid systems [11]. It was also used in
abstraction-refinement schemes based on rectangular au-
tomata [12] and based on LHA [9]. A performance com-
parison between PHAVer and HSOLVER in [13] turned
out in PHAVer’s favor.

Hybrid Automata Our hybrid automata are based on
the classic model in [14]. We added a distinction between
input and output variables, comparability and compata-
bility definitions from [15]. In addition, we adopted from
[3] that the set of variables may be different for each au-
tomaton in a composition, and there is a set of initial
states.

From HyTech to PHAVer In 1995, Henzinger et al. pre-
sented the tool HyTech [1]. It features a powerful input
language permitting to specify fixed-point algorithms
based on post- and pre-operators, but suffers from a
major flaw: It uses exact arithmetic with a data struc-
ture of limited digits, which can quickly lead to over-
flow errors. It was successfully used to analyze a num-
ber of relatively small examples [16,17,18,19,20,21], but

the overflow problem prohibits any application to more
complex systems. Nonetheless, the numerous valuable
experiences with HyTech have spawned important sug-
gestions for improvement [17], most of which we incor-
porated in PHAVer. The basic operations in PHAVer,
i.e., discrete and timed post-operators based on poly-
hedral computations, are identical to those in HyTech,
and use exact arithmetic with unlimited precision. Our
implementation is immune to overflow errors thanks to
its use of the Parma Polyhedra Library (PPL) [22] and
the GNU Multiple Precision Arithmetic Library (GMP)
[23], which can handle computations with hundreds of
thousands of bits on a standard PC. The first HyTech
prototype was implemented in Mathematica and did not
have any numerical restrictions, but it was also 50–1000
times slower than the later version written in C++ [24].

Overapproximating Dynamics The on-the-fly overapprox-
imation in PHAVer is a variation of the phase-portrait
approximation from [5]. It differs in that the invariants
of the partitioned locations do not have an open cover,
because we split along hyperplanes and the invariants
only overlap on the plane. It has been shown in [12]
that this is valid for affine dynamics. Similar variants
of partitiong the state space are used throughout liter-
ature, e.g., in [25,26], although we’re not aware of any
work using the angular spread of the derivatives. Ear-
lier attempts to improve over HyTech include the use of
interval arithmetic [27], which can quickly lead to pro-
hibitively large overapproximations. Recently, interval
arithmetic was combined with abstraction refinement in
a tool called HSOLVER, which can deal conservatively
with nonlinear dynamics [28]. For a survey of verification
tools for hybrid automata, see [29].

Managing complexity In the context of timed systems,
zones are rounded in [30] by dropping constraints or
rounding to a constant lower bound. An algorithm spe-
cialized on rectangular automata was proposed in [31]
and implemented based on the HyTech engine. It is able
to use a limited number of bits through component-wise
conservative rounding of the coefficients. However, the
rectangular over-approximation can become prohibitively
large. An improvement was proposed in [32] by allow-
ing arbitrary convex polyhedra. It also incorporates a
strategy to reduce the number of bits by component-wise
overapproximation, but is based on a vertice represen-
tation of polyhedra and its complexity is exponential in
the number of variables. For the simplification of poly-
hedra it has been suggested to use bounding boxes or
oriented rectangular hulls [33]. Instead, we propose to
simply drop the least significant of the constraints, as
this seems a good compromise in terms of accuracy and
speed.

In the next section we introduce the hybrid automa-
ton model used in PHAVer. In Sect. 3 we present the
reachability analysis algorithm and its on-the-fly over-

Goran Frehse: PHAVer: Algorithmic Verification of Hybrid Systems past HyTech 3

approximation of affine dynamics. Experimental results
are provided for a navigation benchmark. Methods to
manage the complexity of polyhedra by limiting the bits
and constraints are proposed in Sect., 4, and illustrated
with a tunnel diode circuit. We draw some conclusions
in Sect. 5.

2 Hybrid Automata with Controlled Variables

Hybrid automata [34] are widely recognized as an intu-
itive and expressive modeling paradigm for hybrid sys-
tems. Out of several different definitions present in liter-
ature we choose a slight variation of the hybrid automata
in [14] because they admit compositional reasoning. To
reason about equivalence between automata in a practi-
cal manner, we enrich them with a distinction between
input and output variables, as in [15], although we forego
such a distinction between synchronization labels for the
sake of simplicity.

Preliminaries Given a set X = {x1, . . . , xn} of vari-
ables, a valuation is a function v : X → R. We use
Ẋ to denote the set {ẋ1, . . . , ẋn} of dotted variables,
and X ′ to denote the set {x′

1, . . . , x
′
n} of primed vari-

ables. Let V (X) denote the set of valuations over X .
The projection of v is v↓X̄= {x → v(x)|x ∈ X̄}. The
embedding of a set U ⊆ V (X) into variables X̄ ⊇ X is
U |X̄ = {v ∈ V (X̄)|v↓X∈ U}. When a valuation u over X

and a valuation v over X̄ agree, i.e., u↓X∩X̄= v↓X∩X̄ , we
use u t v to denote the valuation w defined by w↓X= u
and w↓X̄= v. Arithmetic operations on valuations are
defined in the straightforward way. An activity over X
is a function f : R

≥0 → V (X). Let Acts(X) denote the
set of activities over X . The derivative ḟ of an activ-
ity f is an activity over Ẋ, defined analogously to the
derivative in R

n. The extension of operators from valu-
ations to activities is done pointwise. Let constX(Y) =
{(v, v′)|v, v′ ∈ V (X), v↓Y = v′↓Y }.

A hybrid automaton H = (Loc, (X, O, C),Lab,Edg ,
Flow , Inv , Init) consists of the following:

– A set X = {x1, . . . , xn} of continuous, real-valued
variables. They are divided into controlled variables
C and input variables I = X \ C, and a subset O of
C is designated as the output variables.

– A set Loc of locations. A state is a pair (l, v) of a
location l and a valuation v, which attributes a value
to each of the variables.

– A set Lab of synchronization labels including the stut-

ter label τ .
– A set Edg of transitions that describe instantaneous

changes of location, in the course of which variables
may change their values. Each transition (l, a, µ, l′) ∈
Edg has a source location l, a target location l′. It is
associated with a synchronization label a and with a
jump relation µ that relates values of variables before
the transition to values they take after the transition.

The projection of the jump relation to the variables
before the transition describes for which variable val-
ues the transition is enabled; this is often referred
to as a guard. Each location l has a self-loop stutter

transition (l, τ, constX(C), l) that lets the input vari-
ables change arbitrarily within the invariant, while
the controlled variables remain constant.

– A mapping Flow attributes to each location a set
of valuations over the variables and their derivatives,
which determines how variables can change over time.

– A set of states Inv called invariant. All behavior is
constrained to the invariant at all times. In this paper
we consider only invariants that are convex in each
location.

– A set Ini of initial states, contained in the invariants,
from which all behavior of the automaton originates.

A linear constraint over a set of variables X has the form

∑

i

αixi + β ./ 0, (1)

where αi and β are integer constants and ./ is a sign ./ is
either < or ≤. A convex linear predicate is a conjunction
of linear constraints. We write Ẋ = {ẋ1, . . . , ẋn} to de-
note derivatives, and using X ′ = {x′

1, . . . , x
′
n} describe

a relation R ∈ X × X with a predicate over X ∪ X ′. In
a Linear Hybrid Automaton (LHA) [3], invariants and
initial states are given by linear predicates over X , flow
predicates by convex linear predicates over Ẋ , and jump
relations by linear predicates over X ∪ X ′. PHAVer can
handle affine hybrid automata, which are defined like
LHA except that flows may be given by linear constraints
over X ∪ Ẋ. The use of inequalities in flow predicates
allows us to model dynamics of the form ẋ = Ax + b
with the elements of A and b given by intervals. 1 Note
that LHA can model discrete-time dynamics of the form
xk+1 = Axk + b by updating the variables in transitions
with a jump relation x′

i =
∑

j aijxj + bi.

Complex systems can be constructed in a modular
fashion using parallel composition. Our hybrid automata
are compositional with respect to reachability properties
[7], which means that a state that is not reachable in
a given automaton H will also not be reachable in a
composition of H with any other automaton. This allows
one to analyze isolated subsystems and conclude that
any non-reachability property found will also hold in the
entire system. We use the standard definition of parallel
composition:

Definition 1 (Parallel Composition). [14] Hybrid
automata H1, H2 are compatible if C1∩C2 = ∅, X1∩C2 ⊆
O2 and X2 ∩C1 ⊆ O1. The parallel composition of com-
patible hybrid automata H1, H2 is the hybrid automaton
H with

1 In literature, affine hybrid automata are sometimes also re-
ferred to as a linear hybrid automata, e.g., in [35], which may lead
to confusion with LHA.

4 Goran Frehse: PHAVer: Algorithmic Verification of Hybrid Systems past HyTech

– Loc = Loc1 × Loc2,
– X = X1 ∪ X2, C = C1 ∪ C2, O = O1 ∪ O2, Lab =

Lab1 ∪ Lab2

– ((l1, l2), a, µ, (l′2, l
′
2)) ∈ Edg iff

– (l1, a1, µ1, l
′
1) ∈ Edg1 and (l2, a2, µ2, l

′
2) ∈ Edg2

– either a = a1 = a2, or a = a1 /∈ Lab2 and a2 = τ ,
or a1 = τ and a = a2 /∈ Lab1,

– µ = {(v, v′)|(v↓Xi
, v′↓Xi

) ∈ µi};

– Flow (l1, l2) = Flow1(l1)|X∪Ẋ ∩ Flow2(l2)|X∪Ẋ ;
– Inv(l1, l2) = Inv1(l1)|X ∩ Inv2(l2)|X ;
– Init(l1, l2) = Init1(l1)|X ∩ Init2(l2)|X .

Example 1. Consider the model of a timing based mutual-
exclusion protocol shown in Fig. 1, adapted from [4]. In
every location l of Pi, there is a transition (l, τ, µ, l) with
µ = {(v, v′)|v(xi) = v′(xi), v(k), v′(k) ∈ R} (omitted
from the figure). Variables stay constant in transitions
unless there is an explicit assignement. The system is
considered safe if there are never two or more processes
in the critical section at the same time. It is a compo-
sitional adaptation of the model given in [4], and pa-
rameterized to n processes with time constants ci and di

that represent the minimal, respectively maximal, skew
of their clocks. The processes Pi have a controlled vari-
able xi to model their local clock and an input variable k
that models a semaphore. Because none of the processes
controls k, it is modeled separately in an automaton S
we call a shared variable model. S has k as a controlled
variable and fixes its derivative to zero. It gives the pro-
cesses access to k by synchronizing on transitions labeled
with set i or releasei. It has no restrictions on the jump
relations of these transitions, and thus allows the pro-
cesses to change k to an arbitrary value.

Semantics The behavior of a hybrid automaton is based
on two types of transitions: Discrete transitions are man-
ifestations of the transitions in Edg , and change the lo-
cation and variables instantaneously. Timed transitions
describe the change of the variables over time with an
admissible activity. An activity f(t) ∈ Acts(X) is called
admissible over an interval [0, δ] in a location l if δ = 0,
or ∀t, 0 ≤ t ≤ δ : f(t) ∈ Inv(l), f(t) t ḟ(t) ∈ Flow (l).
In weak runs, we consider τ -transitions unobservable as
long as they do not change the variables.

Definition 2 (Run, Reachability). For a given hy-
brid automaton H , there is a discrete transition σ =

p
δ,a
−−→ p′ with source and target states p, p′ and label a ∈

Lab iff p, p′ ∈ Inv and there is a transition loc(p)
a,µ
−−→H

loc(p′) with (val (p), val (p′)) ∈ µ. There is a timed tran-

sition σ = p
δ,f
−−→ p′ with duration δ ∈ R

≥0 and ac-
tivity f over X called witness iff p, p′ ∈ Inv , and f
is differentiable and admissible over [0, δ] in loc(p) and
f(0) = val (p). A run of a hybrid automaton H is a finite
or infinite sequence

σ = p0
δ0,f0,a0

−−−−−→ p1
δ1,f1,a1

−−−−−→ . . .
δn−1,fn−1,an−1

−−−−−−−−−−→ pn

such that for all i ≥ 0 pi
δi,fi

−−−→ (loc(pi), fi(δi))
ai−→ pi+1.

A state p′ is reachable if there exists a run σ with p0 ∈
Init and pn = p′.

3 Reachability Analysis in PHAVer

We compute the set of reachable states as the fixed-point
of two Post -operators, which yield the image states of
discrete, respectively timed, transitions. If the flow in
a location is affine, it is overapproximated with LHA-
dynamics, i.e., with constant bounds on the derivatives.
The accuracy of this overapproximation depends on the
size of the invariant, so locations are partitioned on the
fly depending on several criteria. We give an overview of
our algorithm, and then provide detailed descriptions of
the operations involved.

The implementation in PHAVer processes a shared
passed and waiting list as shown in Fig.2. First, the lo-
cations of the initial states are partitioned, time elapse is
applied, and they are put on the passed and waiting list.
In the main loop, a set of states is taken from the wait-
ing list, and the successor states of discrete transitions
are computed. Then the locations of these successors are
partitioned, and in each partition the dynamics are over-
approximated with LHA-dynamics. The set of succes-
sors is subjected to complexity management, which may
overapproximate it with a set of lower complexity. Time
elapse is applied to this new set, and it is added to the
passed list. The new states, i.e., those that were not pre-
viously on the passed list, are put onto the waiting list.
The loop repeats until the waiting list is empty.

Remark 1. Note that to be sound, time elapse must be
applied after any overapproximation, such as convex hull
or complexity management, unless the overapproxima-
tion is guaranteed to be invariant with respect to time
elapse.

The basic algorithm, shown on the left side of Fig.2,
is similar to the one used in HyTech, and summarized
in the next section. Partitioning, overapproximation and
complexity management are specific to PHAVer, and will
be discussed in detail in the remainder of the paper.

3.1 Reachability of LHA

We summarize the standard reachability algorithm from
[4,36] for LHA using polyhedra. To compute the set of
reachable states, one repeatedly computes the successors
of timed and discrete transitions. Let

Post t(P) = {p′|∃δ, f, p ∈ P : p
δ,f
−−→ p′}

be the set of timed successors and

Postd(P) = {p′|∃a, p ∈ P : p
a
−→ p′}

Goran Frehse: PHAVer: Algorithmic Verification of Hybrid Systems past HyTech 5

idle

ci ≤ ẋi ≤ di

wait
xi ≤ a

ci ≤ ẋi ≤ di

check

ci ≤ ẋi ≤ di

critical

ci ≤ ẋi ≤ di

starti

k = 0
x′

i
= 0

seti

k′ = i
x′

i
= 0

enteri

k = i
xi ≥ b

releasei

k′ = 0

aborti

k 6= i
xi ≥ b

(a) Process Pi

always
k̇ = 0

set1
k′ ∈ R

.

.

.

setn

k′ ∈ R

release1

k′ ∈ R

.

.

.

releasen

k′ ∈ R

τ
k′ = k

(b) Shared variable model S

Fig. 1. Compositional model of timing based mutual-exclusion protocol in [4]

Fig. 2. Reachability algorithm in PHAVer

be the set of discrete successors. The set of reachable
states, denoted by Reach, is the smallest fixed-point of
the sequence given by P0 = Init and

Pk+1 = Postd (Post t(Pk)) . (2)

We recall the basic definitions and operations on poly-
hedra, and use them to define the post -operators for
LHA.

Definition 3. A convex polyhedron S is a set in R
n that

can be represented as the conjunction of a finite number
of linear constraints, i.e.,

S = {x|
∧

i

aT
i x ./i bi}, (3)

where ai ∈ R
n, bi ∈ R and ./i∈ {<,≤}. This is re-

ferred to as the constraint representation of the polyhe-
dron. Strict inequalities aT

i x < bi can be replaced with
nonstrict inequalities aT

i x + ε ≤ bi by introducing an
auxiliary variable ε that may take an arbitrary positive

value [36]. In the following, we will therefore only con-
sider nonstrict inequalities, which define closed polyhe-
dra. Alternatively, a polyhedron can be described by a
generator representation (V, R) as the convex hull of a
finite set V ⊆ R

n of vertices and a finite set R ⊆ R
n of

rays, i.e.,

S = {
∑

vi∈V

λivi +
∑

ri∈R

µiri | λi, µi ≥ 0,
∑

i

λi = 1}. (4)

One may switch between constraint and generator rep-
resentations, although at a potentially exponential cost.
Some operations are easier in constraint form, e.g., inter-
section, while others are easier in generator form, e.g.,
testing for emptiness. Therefore modern polyhedral li-
braries, such as the PPL, keep both represenations in
what is referred to as the double description method. Pro-
jection and embedding operators are easily implemented
in constraint form by removing elements or adding zeros
to the vectors ai.

Recall that in a discrete transition (l, a, µ, l′) ∈ Edg ,
the jump relation µ is a predicate over X ∪ X ′, where
the primed variables specify the new values after the
transition. The discrete successors of a set of states P
are

Postd(P) =
⋃

(l,a,µ,l′)∈Edg

l′×

((

P (l)|X∪X′

∩ µ
)

y

X′→X
∩ Inv(l′)

)

, (5)

where ↓X′→X denotes that we project onto the primed
variables X ′, and rename the variables as unprimed. The
timed successor operator is slightly more involved. For
LHA with convex invariants there is an activity from one
state in location l to another iff they are connected by
a straight line whose derivative is in Flow (l) [4]. This
allows one to replace the passage of time by simple ex-
istential quantification as follows. Let S ↗ F be defined
as

S ↗ F = {v′|∃δ ∈ R
≥0, w ∈ F, v ∈ S : v′ = v + wδ}.

(6)

6 Goran Frehse: PHAVer: Algorithmic Verification of Hybrid Systems past HyTech

(a) Derivatives (b) States

Fig. 3. Time elapse for LHA

This operation is easily implemented using the genera-
tor representation [36]. Let (V, R) be the generator rep-
resentation of S, and (V ′, R′) that of F . Then S ↗ F =
(V, R ∪ V ′ ∪ R′). For convex invariants, the timed suc-
cessors are then given by

Post t(P) =
⋃

l∈loc(P)

l × (P (l) ↗ Flow (l)) ∩ Inv(l). (7)

Example 2. Consider the mutual exclusion protocol from
Ex. 1 for two processes, with a = 3, c1 = c2 = 1, d1 = 3,
d2 = 2. We compute the time elapse for the set S =
{x1 = x2 = 0}, with both processes in location wait . The
flow in the location is given by F = Flow ((wait ,wait)) =
{1 ≤ ẋ1 ≤ 3 ∧ 1 ≤ ẋ2 ≤ 2}, which translates in gener-
ator form to F = ({(1, 1), (3, 1), (3, 2), (1, 2)}, {}), see
Fig. 3(a). To apply the time elapse, the vertices of F
in the derivative space are reinterpreted as rays in the
state space, shown as dashed arrows in Fig. 3(b). These
rays are added to the generator representation of S =
({(0, 0)}, {}) and we obtain

S ↗ F = ({(0, 0}, {(1, 1), (3, 1), (3, 2), (1, 2)}).

Finally, one has to restrict the time elapse to the invari-
ant Inv((wait ,wait)) = {x1 ≤ 3, x2 ≤ 3}. The resulting
set Post t((wait ,wait)×S) = (S ↗ F)∩Inv ((wait ,wait))
is shown in Fig. 3(b).

Remark 2. The time elapse operator implemented in the
PPL (v0.9) computes the smallest convex set containing
S ↗ F . Strictly speaking, this is an overapproximation
as the actual set may be nonconvex. Consider S = {x =
0 ∧ y = 0} and F = {y > 0}. Then S ↗ F = {(x =
0∧y = 0)∨y > 0}, while the PPL returns S ↗PPL F =
{y ≥ 0}.

In the following example we compare the performance of
HyTech and PHAVer. The results indicate that the over-
head introduced by using a multiprecision number rep-
resentation is compensated by the efficiency of the PPL,
and improvements such as the shared passed and wait-
ing list. The comparison is limited to simple parameters
and systems to avoid overflow problems with HyTech.

Example 3. Consider the mutual exclusion protocol from
Ex. 1 for n processes, with a = 1, b = 4, ci = 1, di = 2.
The experimental results are shown for MEX1 with n =
1 to MEX5 with n = 5 in Table 1, as well as parametric
versions MEXP1–4 in which the allowed range of a and
b is computed. In these instances, PHAVer outperforms
HyTech for nontrivial systems. The downside is its mem-
ory consumption, which is about twice that of HyTech.
In the instance of a parametric analysis of an audio pro-
tocol AUDSP from [37], HyTech outperforms PHAVer.
The experiments in this paper were carried out on a
Pentium IV, 3.2 GHz with 1 GB RAM running Linux.

3.2 Overapproximation of Dynamics

To deal with non-LHA dynamics, we apply a simple vari-
ant of phase-portrait approximation [5]. This method uti-
lizes the fact that overapproximating any of the sets that
define an automaton, in particular Flow , results in an
overapproximation of its behavior. We can therefore ap-
ply our reachability algorithm to any hybrid automaton
by overapproximating it with LHA-style sets, and obtain
a conservative overapproximation of its reachable states.
Because the accuracy of the overapproximation depends
on the size of the invariant, the locations are adequatly
partitioned before applying this transformation, as will
be discussed in the next section.

Currently, this is implemented for affine dynamics,
which have the form Mẋ = Ax + b, or more precisely a
relaxed version thereof that may consist of inequalities.
We describe two methods for overapproximating them
with LHA-dynamics, i.e., for obtaining constant bounds
on the derivatives in the form of linear constraints. In
the following, we consider Flow to be given as relaxed

affine dynamics, i.e., a conjunction of constraints

aT
i ẋ + âT

i x ./i bi, (8)

where ai, âi ∈ Z
n, bi ∈ Z, ./i∈ {<,≤, =}, i = 1, . . . , m.

Projection Given a set of states S that constrains the
possible values of x, we can obtain bounds on the deriva-
tives by intersecting Flow with S and projecting onto the
derivatives:

Flowpr(S) =
(

Flow ∩ S|X∪Ẋ
)

y

Ẋ
. (9)

We may always choose S = Inv , but further refinement
is possible, as discussed below. PHAVer’s default time
elapse operator is obtained by substituting (9) for the
flow in (7):

Post t,pr(P) =
⋃

l∈loc(P)

l×(P (l) ↗ Flowpr(Inv(l))∩Inv(l).

(10)
When Flow is given as a conjunction of constraints of
the form (8) and S is given by linear constraints, (9)
involves only standard operations on polyhedra in the

Goran Frehse: PHAVer: Algorithmic Verification of Hybrid Systems past HyTech 7

Table 1. Tool performance, HyTech vs. PHAVer

HyTech PHAVer Reachable Set

Instance Time [s] Mem. [MB] Iter. Time [s] Mem. [MB] Iter. Loc. Poly.

MEX2 0.0 3.1 7 0.1 5.2 9 13 21
MEX3 0.7 6.0 17 1.0 10.3 15 39 139
MEX4 17.5 28.8 23 10.0 58.6 21 113 1169
MEX5 928.3 437.8 29 238.9 814.5 27 323 12001
MEX2P 0.1 4.5 12 0.2 5.9 9 16 37
MEX3P 10.5 27.4 23 2.9 17.9 19 64 564
MEX4P 2999.0 1660.6 34 114.0 443.1 29 256 12408
AUDSP 8.8 62.7 39 20.1 143.6 39 193 5849

space of X∪Ẋ , and is therefore straightforward to imple-
ment. Sometimes, Flowpr(S) can be prohibitively com-
plex, e.g., when S is iteratively refined, as discussed be-
low, or in abstraction-refinement schemes such as the
one in [9]. If this is the case, the following solution may
be advantageous.

Constraint-Based The following approach has the ad-
vantage that it results in the same number of constraints
as Flow , independent on how complex the invariant or
other restrictions might be. We assume that equalities
in (8) are modeled using conjuncts of pairs of inequali-
ties. We transform each constraint (8) into a linear con-
straint over Ẋ by finding a lower bound on âT

i x. If no
such bound exists, we drop the constraint entirely.

Given a set of states S that constrains the possible
values of x, let

p/q = inf
x∈S

âT
i x, p, q ∈ Z. (11)

If the infimum exists, the set of ẋ that satisfy (8) is con-
tained in the set defined by aT

i ẋ ./i bi−p/q. Multiplying
both sides with q yields the LHA-style constraint

qaT
i ẋ ./i qbi − p. (12)

Let Flow con(S) be obtained from Flow (S) by replacing
each constraint of the form (8) by its corresponding con-
straint (12) if the infimum in (11) exists, and otherwise
removing the constraint.

A one-to-one correspondence of the original and the
LHA-style constraints allows the user to specify the type
of constraints he wishes to obtain on the dynamics. E.g.,
let the dynamics be given by ẋ = f(x, y)∧ ẏ = g(x, y), f
and g being affine functions. Specifying the constraints
in this form in PHAVer results in rectangular LHA-style
constraints, i.e., of the form ẋ ∈ [., .] ∧ ẏ ∈ [., .]. Oc-
tagonal constraints, i.e., of the form ẋ ∈ [., .] ∧ ẏ ∈
[., .] ∧ ẋ − ẏ ∈ [., .] ∧ ẋ + ẏ ∈ [., .] can be obtained by
specifying ẋ = f(x, y) ∧ ẏ = g(x, y) ∧ ẋ − ẏ = f(x, y) −
g(x, y)∧ ẋ + ẏ = f(x, y)+ g(x, y). Octagonal constraints
are useful because they preserve some of the correlation

Fig. 4. Overapproximating affine dynamics with LHA dynamics

between variables, and thus may lead to drastically im-
proved accuracy.

As the following example shows, the constraint based
overapproximation can be very inaccurate, and does not
even have to be tight, i.e., touch the original set.

Example 4. Let Inv(l) = {xl ≤ x ≤ xu} and Flow (l) =
{ẋ ≤ ax+bu, ẋ ≤ −ax+b, ẋ ≥ ax+bl} as shown in Fig. 4.
With projection we obtain Flowpr(l) = {axl + bl ≤ ẋ ≤
(b−bu)/(2a)}. In the constraint-based approach, we com-
pute the infimum for each constraint separately, obtain-
ing Flow con(l) = {axl + bl ≤ ẋ ≤ −axl + b}. As Fig. 4 il-
lustrates, the overapproximation of the constraint-based
approach can be considerable.

Iterative Refinement The set of states S containing all
possible values of x is initially chosen to be the invariant.
Flowpr(Inv), respectively Flow con(Inv), the yields the
set of all derivatives possible inside this invariant, which
is independent from the set that is actually reachable.
We can further refine the set of derivatives – and the set
of reachable states – by restricting S to the set of states
that are reachable with Flowpr(Inv), possibly reiterat-
ing the process until convergence. This yields the follow-
ing fixed-point computation for the operator Post t(P),
where Post0

t,pr = P :

Postk+1
t,pr =

⋃

l∈loc(P)

l×(P (l) ↗ Flowpr(Postk
t,pr))∩Inv (l).

(13)

8 Goran Frehse: PHAVer: Algorithmic Verification of Hybrid Systems past HyTech

Note that Post1
t,pr = Post t,pr(P). We denote the fixed-

point of the above sequence as Post∞t,pr(P), and the cor-
responding result of the constraint-based operator with
Post∞t,con(P). The following example shall illustrate the
qualitative difference that a single iteration of (13) can
make.

Example 5. 2 Consider Flow (l) = {ẋ = y ∧ ẏ = 0} and
Inv ‘(l) = {−1 ≤ y ≤ 1}. With Flowpr(Inv) = l × {ẋ ∈
[−1, 1], ẏ = 0}, the timed successors of a set of states
P = l × {x = 0 ∧ y = 1} are Post t,pr(P) = l × {y = 1}.
The overapproximation of Flow with Flowpr results in
negative values of x being reachable, even though ẋ =
y = 1. Applying the fixed-point computation (13), we
obtain using Post1

t,pr = Post t,pr and Flowpr(Post1
t,pr) =

l×{ẋ = 1, ẏ = 0} the fixed-point Post2
t,pr(P) = l×{x ≥

0 ∧ y = 1}, which is equal to the actual reachable set
Post t(P).

In practise, only the first 2–3 iterations yield a significant
improvement, so PHAVer limits the number of iterations
to a user-defined value.

3.3 Partitioning Locations

When the dynamics are overapproximated as in the pre-
vious section, the error depends on the size of the in-
variant of the location. We partition each invariant into
sufficiently small parts with a recursive splitting oper-
ator. Each splitting cuts the invariant in two along a
hyperplane, and replaces the original location with two
copies, each assigned a part of the original invariant. The
hyperplanes for splitting are chosen from a user-defined
set. The splitting recursion terminates if the size of the
invariant or the spread of the derivatives fall below a
given threshhold. By using small enough partitions, one
is able to approximate the behavior of the original hybrid
automaton arbitrarily close [5]. Note that this requires
the introduction of the derivatives as auxiliary variables,
as will be discussed at the end of this section.

The splitting of a location consists of duplicating the
location, including incoming and outgoing transitions as
well as flow, invariant and initial states. The invariants
of the location duplicates may be restricted to subsets
as long as they cover the original invariants. Formally,
this corresponds to the following operation:

Definition 4 (Invariant split). (modified from [5] 3)
A split S for a hybrid automaton H maps each location
l to a finite set {S l

1, . . . ,S
l
k} of sets of valuations over X

such that there exists a finite cover Ol = {Ol
1, . . . , O

l
k}

of Inv(l) with S l
i = Inv(l)∩Ol

i for i = 1, . . . , k. The split

of H along S is the hybrid automaton split(H,S) =
(LocS , (X, C, O),Lab,EdgS , FlowS , InvS , InitS) with

2 Many thanks to R. J. M. Theunissen for originating the ex-
ample.

3 We do not require the cover to be open.

– LocS = {(l, S) | l ∈ Loc, S ∈ S(l)},
– EdgS = {((l, S), a, µ, (l′, S′)) | (l, a, µ, l′) ∈ Edg},
– FlowS((l, S)) = Flow (l),
– InvS((l, S)) = Inv(l) ∩ S, and
– InitS((l, S)) = Init(l) ∩ S.

The behavior of the split automaton HS is identical, i.e.,
bisimilar, to the behavior of the original automaton if the
cover O is open [5], or the dynamics are affine [12].

Recall that a hyperplane h is defined by an equation
aT

h x = bh, where the normal vector ah determines its
direction and the inhomogeneous term bh its position.
Let the slack of h in a location l be defined by

∆(ah) = sup
x∈Inv(l)

aT
h x − inf

x∈Inv(l)
aT

h x.

In PHAVer, we recursively split one location l at a time
along a hyperplane aT

h x = bh, i.e., we apply an invari-
ant split with S l

1 = {aT
h x ≤ bh}, S l

2 = {aT
h x ≥ bh}.

Note that only reachable locations are split. The user
provides a list of candidate normal vectors ah,i together
with a minimum and maximum value for the slack of
each hyperplane:

Cand = {(ah,1, ∆min,1, ∆max,1), . . . ,

(ah,m, ∆min,m, ∆max,m)}.

This allows the user to include expert knowledge by
choosing planes and location sizes suitable for the sys-
tem. A trivial choice for the hyperplanes are the direc-
tions of the axes. Let P be the set of reachable states at
the time of the splitting. The position bh of the hyper-
plane is chosen to be the center of the location, i.e.,

bh = (sup
x∈Inv(l)

aT
h x + inf

x∈Inv(l)
aT

h x)/2,

if both supremum and infimum exist. Otherwise, let

bh = ∆min + sup
x∈P

aT
h x, or bh = −∆min + inf

x∈P
aT

h x,

depending on which lies inside the invariant. In related
work, a method for positioning of the hyperplane based
on optimizing the set of derivatives was proposed in [12].

In each split, the best hyperplane is chosen accord-
ing to a number of criteria. We provide an overview of
the criteria, followed by a detailed description of the se-
lection process. In principle, each location is split un-
til the slack of every candidate hyperplane hi satisfies
∆(ah,i) ≤ ∆min,i. We account for the dynamics of the
system using the spatial angle that is spanned by the
derivatives in a location. Let the spread of a set of valu-
ations X be

^(X) = inf
x,y∈X

xT y/|x||y|.

The spread of the derivatives in a location l, constrained
to the states S is then

^deriv (l, S) = ^((Flow (l) ∩ S|X∪Ẋ)↓Ẋ).

Goran Frehse: PHAVer: Algorithmic Verification of Hybrid Systems past HyTech 9

The spread of the derivatives is used in two ways: The
partitioning of a location is stopped once the spread is
smaller than a given minimum ^min, and the constraints
are sorted according to the spread of the derivatives in
the location after the splitting. The slack ∆max,i may be
specified to split at least to that slack without regard to
^min.

For each splitting, the candidate hyperplanes aT
h x =

bh are sorted according to the following criteria:

1. slack

c1 =

{

∆(ah)/∆min,h if∆(ah) > ∆min,h,
∞ otherwise.

2. reachable states only on one side

c2 =

{

1 if ∃x, x′ ∈ P : aT x < b ∧ aT x′ > b
0 otherwise.

3. spread of the derivatives (discard constraint if a min-
imum spread ^min is reached and the slack is smaller
than ∆max,h)

c3 =

−^deriv (l, Inv) if ^deriv (l, Inv) ≥ ^min

∨ ∆(ah) > ∆max,h,
∞ otherwise.

4. derivative spread after the constraint is applied

c4 = −max{^deriv (l, {(l, x) ∈ Inv | aT
h x ≤ bh}),

^deriv (l, {(l, x) ∈ Inv | aT
h x ≥ bh})}.

By default, the candidate hyperplanes are sorted by eval-
uating the tuple (c1, c2, c3) lexicographically. The best
one is chosen that does not have a criterion evaluating to
∞. If no such hyperplane exists, the splitting recursion
terminates. Note that c3 can be deactivated by speci-
fying ^min = 1. When c4 is activated, the sorting is
according to (c4, c1, c2, c3).

According to [5], the overapproximation of a hybrid
automaton H with a linear hybrid automaton can be ar-
bitrarily close to the original if the partition size is cho-
sen sufficiently small. However, the splitting method in
[5] relies on splitting not only the invariant, but also the
flow predicate. This is necessary to approximate the flow
aribtrarily close: Consider, e.g., a nonconvex flow. Any
overapproximation by a convex flow will contain the con-
vex hull no matter how small the invariant is partitioned,
and can consequently not be arbitrarily close. When
splitting the invariant is not sufficient, one may intro-
duce the derivatives as auxiliary variables to implement
the method of [5] by invariant split. Let Y = {y1, . . . , yn}
be the auxiliary variables representing the derivatives.
The transformed automaton is H ′ = (Loc, (X ∪ Y, C ∪
Y, O),Lab,Edg ′, Flow ′, Inv ′, Init ′), where

– Edg ′ = {(l, a, µ′, l′) | (l, a, µ, l′) ∈→,
µ′ = µ|X∪Y ∪X′∪Y ′

},

– Flow ′(l) = Flow (l)|X∪Ẋ∪Y ∪Ẏ ∩ {
∧

i=1,...,n ẋi = yi},

– Inv ′(l) = Inv(l)|X∪Y , and
– Init ′(l) = Init(l)|X∪Y .

The auxiliary variables are not restricted in transitions,
invariants or initial states, and their derivatives are not
restricted in the flow. They do not modify the behavior of
the hybrid automaton except for the constraint ẋi = yi

in the flow, which has no effect on ẋi since yi is un-
restricted. However, splitting the invariant will now also
split the derivatives, therefore implementing the method
in [5].

3.4 Example: Navigation Benchmark

We illustrate the reachability analysis of PHAVer with a
navigation benchmark proposed in [38]. It models an ob-
ject moving in a plane, and it must be shown that a set of
bad states is not reachable, and that a set of target states
is eventually reached. It is a challenging 4-dimensional
system because of two integrators (turning velocity into
position), whose marginal stability contributes to the ac-
cumulation of errors.

The dynamics of the object is defined by “dersired”,
or equilibrium, velocities that depend on its position in
a map. The set of desired velocities is given by vd(i) =
(sin(iπ/4), cos(iπ/4))T , i = 0, . . . , 7, where i is attributed
to each unit square in the plane by a given map M . A
special symbol A denotes the set of target states, and B

denotes the set of forbidden states for the object. We
verified that the forbidden states are not reachable for
the instances shown in Fig. 5, whose maps are given by:

MNAV01−03 =

B 2 4
2 3 4
2 2 A

 , MNAV04 =

B 2 4
2 2 4
1 1 A

 .

The dynamics of the state vector (x1, x2, v1, v2)
T are

given by
(

ẋ
v̇

)

=

(

0 I
0 A

) (

x
v

)

−

(

0
A

) (

0
vd(i)

)

,

A =

(

−1.2 0.1
0.1 −1.2

)

.

The initial states for for NAV01–NAV03 are defined by
x0 ∈ [2, 3]× [1, 2], for NAV04 by x0 ∈ [0, 1]× [0, 1], and

v0,NAV01 ∈ [−0.3, 0.3]× [−0.3, 0],
v0,NAV02 ∈ [−0.3, 0.3]× [−0.3, 0.3],
v0,NAV03 ∈ [−0.4, 0.4]× [−0.4, 0.4],
v0,NAV04 ∈ [0.1, 0.5]× [0.05, 0.25].

As splitting constraints we use

Cand = {(v1, δ1,∞), (v2, δ2,∞)},

where appropriate δi were established by some trial-and-
error runs, and (c1) as splitting criterion. Note that x1,
x2 need not be partitioned, since they depend only on

10 Goran Frehse: PHAVer: Algorithmic Verification of Hybrid Systems past HyTech

Table 2. PHAVer performance, navigation benchmark

Automaton Reachable Set

Instance Time [s] Mem. [MB] Iter. Checks Loc. Trans. Loc. Poly. Con. Bits

NAV01 8.7 29.0 11 386 72 1123 45 386 20 62
NAV02 14.5 38.2 10 803 72 1126 45 803 20 33
NAV03 14.4 38.0 10 795 72 1126 45 795 20 33
NAV04 13.6 47.6 8 562 122 2057 85 562 18 32

v. The other analysis parameters were left at their de-
fault setting. While we need to specify bounds for the
analysis region, we can handle the unbounded case by
checking that the reachable state space is strictly con-
tained in the analysis region. All instances shown were
obtained with a-priori bounds of [−2, 2] on the velocities,
and the reachable velocities remained within an interval
[−1.1, 1.1], which confirms our a-priori bounds as valid.
Figure 5 shows the set of reachable states computed by
PHAVer as a result. For the instances NAV01–NAV04,
the analysis was fairly straightforward, with δi = 1.
Higher instances require a much higher level of accu-
racy, and lead to large numbers of polyhedra. Applying a
convex hull overapproximation would remedy this prob-
lem, but without complexity management the analysis
did not terminate. We present results after introduc-
ing comlpexity mananagement in the next section. In
comparison, for a predicate abstraction tool the follow-
ing times were reported in [39]: For NAV01–NAV03 34s,
153s (68MB) and 152s (180MB), respectively, on a Sun
Enterprise 3000 (4 x 250 MHz UltraSPARC) with 1 GB
RAM. In [13] it is reported that HSOLVER was not able
to show safety of instances similar to NAV01–NAV03.

4 Managing the Complexity of Polyhedra

In exact fixed-point computations with polyhedra, the
size of numbers in the formula as well as the number
of constraints typically increases unless the structure of
the hybrid system imposes boundaries, e.g., with resets
or invariants. To keep the complexity manageable, we
propose to simplify polyhedra in a strictly conservative
fashion by limiting the number of bits, i.e., the size of
coefficients, and the number of constraints. While show-
ing good performance in practice, both methods have
the disadvantage that the approximation error may be
unbounded, and is not localized. In practice, both sim-
plifications are applied when the number of bits or con-
straints exceeds a given threshold that is significantly
higher than the reduction level. The resulting hystere-
sis between exact computations and overapproximations
gives cyclic dependencies time to stabilize.

4.1 Limiting the Number of Bits

We consider a convex polyhedron in constraint repre-
sentation, i.e., given as the conjunction of constraints
aT

i x ./i bi, where ai is a vector of the coefficients aij ∈ Z,
i = 1, . . . , m, j = 1, . . . , n, ./i∈ {<,≤}, and inhomoge-
neous coefficients bi ∈ Z. We assume that the aij and bi

have no common factor and that there are no redundant
constraints. Note that we usually do not simplify equal-
ities to preserve the affine dimension, i.e., the inhabited
subspace, of the polyhedron, but they can be simpli-
fied by converting each equality into the conjunction of
two inequalities. The goal is to find, with as little over-
approximation as possible, a new constraint αT

i x ./i βi

that contains all solutions of aT
i x ./i bi, and whose coeffi-

cients αij , βi have less than z bits, i.e., |αij |, |βi| ≤ 2z−1.
Our approach is to reduce scale down the aij , and

then find a βi that makes the constraint conservative.
There is no a-priori estimate of how large βi will have to
be, so we obtain an initial estimate of a scaling factor,
and reduce it if it results in a βi that is too large. Be-
cause the new coefficients need to be integers, we need to
account for rounding errors. We can represent the new
coefficients as

αij = faij + rij ,

βi = fbi + ri,

with a scaling factor f > 0, rounding errors rij , |rij | ≤
0.5 and an unbounded error ri for the inhomogeneous
term. In this representation, our goal is to find a scaling
factor f that is close to 1 and results in a small error
ri. There is no a-priori bound on ri because it depends
on the new direction αi and the other constraints that
define the polyhedron.

We obtain an initial estimate of f based on the as-
sumption that βi is close to fbi, say the closest integer.
Since βi must be rounded upwards to guarantee conser-
vativeness, we get |ri| ≤ 1 as an optimistic estimate.
This gives us the following upper bounds for f :

f ≤ (2z − 3/2)/|aij|, and (14)

f ≤ (2z − 2)/|bi|. (15)

To predict the effects of rounding on the new coefficients
is difficult and would lead to a mixed integer linear pro-
gram. We employ a heuristic algorithm, shown in Fig. 6.

Goran Frehse: PHAVer: Algorithmic Verification of Hybrid Systems past HyTech 11

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1

x 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1

x 2

(a) NAV01

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1

x 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1

x 2

(b) NAV02

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1

x 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1

x 2

(c) NAV03

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1

x 2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1

x 2

(d) NAV04

Fig. 5. Reachable states in the x1, x2-plane (initial states darkest)

procedure LimitConstraintBits
Input: Polyhedron as a set of constraints

P = {aT
k x ./k bk|k = 1, . . . , m},

index i to constraint to be limited,
desired number of bits z

Output: new constraint αT
i x ./i bi

success := false;
f := min{(2z − 3/2)/|aij |, (2

z − 2)/|bi| | j = 1, . . . , n};
while ¬success do

for j = 1, . . . , n do αij := round(faij) od;

q := inf
x∈P

αT
i x ;

if αi = 0 or q = −∞ then abort fi;

βi := ceil(q);
if |βi| ≤ 2z − 1 then success := true
else f := min{f/2 − 3/(4|aij |), (2

z − 2)/|
βi| | j = 1, . . . , n} fi;

od.

Fig. 6. Limiting the number of bits of a constraint

Fig. 7. Limiting the number of bits of a constraint

Let round(x) be a function that returns the next inte-
ger between x and zero, and ceil(x) be a function that
rounds to the next larger integer. First, we estimate f
based on (14),(15), then we compute a new βi using lin-
ear programming. If βi has more than z bit, we decrease
f and start over. The procedure is repeated until all
αij = 0, in which case the problem is infeasible. Note
that even if it is feasible, the new polyhedron may not
be bounded because the reduced constraints may be par-
allel. Figure 7 illustrates the basic scheme. The normal
vector ai of the constraint, shown in (a), is approximated
by αi, as shown in (b). Linear programming yields the
inhomogeneous term q that makes the constraint tan-
gent to the polyhedron, as in (c). Rounding of q yields
βi, and the polyhedron outlined in (d).

12 Goran Frehse: PHAVer: Algorithmic Verification of Hybrid Systems past HyTech

4.2 Limiting the Number of Constraints

A set of symbolic states is described by a linear pred-
icate, the convex sub-predicates of which define con-
vex polyhedra, which in turn are described by a set of
constraints. The number of constraints usually increases
with the number of iterations of a fixpoint computation,
which forces us to limit this number to remain within a
computationally feasible complexity. This reduction has
been implemented in literature by means of, e.g., bound-
ing boxes [40], or oriented rectangular hulls [33]. Instead,
we propose to simply drop the least significant of the
constraints, as this seems a good compromise in terms of
accuracy and speed. In addition, the constraints in our
applications are, as a whole, invariant with respect to
the fixpoint computation. This invariance has a greater
chance of being preserved as good as possible if we keep
constraints instead of drawing up an entirely new set. As
with limiting the number of bits, we usually chose to not
limit equalities in order to preserve the affine dimension
of the polyhedron. If an equality is to be limited, it must
be replaced by two inequalities.

We measure the significance of a constraint based on
a criterion crit that measures the the difference between
the polyhedron with and without the constraint. Let P
be a set of linear constraints describing a convex poly-
hedron, and P \i = P \ {aT

i x ./i bi} be the polyhedron
without it’s ith constraint. Then the difference between
the points contained P and P \i is the polyhedron P¬i =
P \i∪{−aT

i x ./i−bi}, where (./i, ./i) ∈ {(<,≤), (≤, <)},
obtained by simply replacing the ith constraint with its
complement. It has less non-redundant constraints than
P and is therefore preferable in the formulations below.
We consider three methods:

1. volumetric: Let V (P) be the volume of the points
contained in P . Then crit = V (P \i)−V (P) = V (P¬i).
Requires P¬i to be bounded.

2. slack: Let bmax = maxx aT
i x s.t. x ∈ P¬i. Then

crit = (bmax − bi)/||ai||, i.e., the distance, measured
in the direction of the constraint, between the points
farthest apart in P¬i. Requires P¬i to be bounded
in the direction of ai.

3. angle: crit = −maxj 6=i aT
j ai. Measures the negative

cosine of the closest angle between the normal vector
of the ith constraint and all others.

Our goal is to select the z most important out of m
original constraints. It would be prohibitively expensive
to examine all

(

m
z

)

possible combinations of constraints.
Instead, we consider two heuristics:

1. deconstruction: Starting from the entire set of con-
straints, drop the m − z constraints with the least
effect according to crit .

2. reconstruction: Starting from an empty set of con-
straints, add the z constraints with the greatest effect
according to crit .

The criteria based on volume and slack require the initial
polyhedron to be bounded, for which one could use, e.g.,
the invariant of the location. The following example shall
illustrate the difference between volumetric and angle
criteria, and its potential unboundedness.

Example 6. Consider the polyhedron shown in Fig. 8(a).
It has 6 constraints A–F, whose angles with the neigh-
bors are noted in the graph. In a volume based decon-
struction with 5 constraints, constraint A is removed
since that causes the smallest change in volume. The re-
sulting polyhedron is shown hashed in Fig. 8(b). The an-
gle based reconstruction with 5 constraints results in the
shaded polyhedron in Fig. 8(b), where the constraints
are labeled in the order they are chosen: First, an arbi-
trary initial constraint is chosen, say constraint C. The
second choice is the constraint that has the largest an-
gle with C, i.e., that is most opposed to it. In this case,
this is constraint F, since it has an angle of 180◦ with
C. The third choice is the one that is most opposed to
both C and F, here constraint B because it has an angle
of 90◦ with both C and F. The fourth constraint is A,
with minimum angles of 45◦, and the fifth is D with a
minimum angle of 30◦. Figure 8(c) shows the reduction
to 4 constraints. Here the angle based method results in
an unbounded polyhedron because constraint D is not
chosen. An algorithm should take this possibility into
account and test for boundedness.

The construction method with an angle criterion was
the fastest in our experiments. The angle calculations
can be sped up by using a look-up table α(i, j) that maps
an angle to every pair of constraints. This yields an al-
gorithm of complexity O(nm2 + m3), shown in Fig. 9,
where C is the set of candidate constraints and H is
the set of chosen constraints. It includes a test that pre-
serves the boundedness of P . H is initialized with the
set of equalities, which are not reduced to preserve the
affine dimension of the polyhedron, and an arbitrary ini-
tial constraint. Here we choose the one with the small-
est coefficients. In a while-loop, the constraint is chosen
based on the best of the worst-cases, i.e., the smallest
angle with the constraints in H . Since aT

j ai is the co-
sine of the angle, choosing the smallest angle translates
into maximizing aT

j ai. The constraint is added to H and
removed from the candidates C, and the procedures is
repeated until |H | ≥ z and the boundedness of P implies
boundedness of H . This algorithm is in our implemen-
tation ∼1000× faster than a slack based deconstruction
for limiting 400 constraints down to 32 in 4 dimensions.

The following example shall illustrate that complex-
ity management is useful to induce termination, and
that the constraint-based overapproximation of dynam-
ics may be preferable when a projection-based overap-
proximation leads to prohibitively complex sets of states.
Still, the relationship between overapproximation method,
complexity and quick convergence is not a trivial one.

Goran Frehse: PHAVer: Algorithmic Verification of Hybrid Systems past HyTech 13

(a) Original with 6 constraints

(b) Reduced to 5 constraints

(c) Reduced to 4 constraints

Fig. 8. Example for limiting the number of constraints by vol-
umetric deconstruction (hashed) and angle based reconstruction
(shaded)

procedure LimitConstraintsByAngle
Input: Polyhedron P as a set of constraints

aT
i x ./i bi, i = 1, . . . , m,

desired number of constraints z
Output: Polyhedron H

for i = 1, . . . , m, j = 1, . . . , m, j > i do

α(i, j) := aT
i aj

od;

H := {aT
k x ./k bk | k = argmink(maxj |akj |)}∪

{aT
i x ./i bi| ./i∈ {=}};

C := P \ H;

while (|C| > 0 ∧ (|H | < z∨
(bounded(P) ∧ ¬bounded(H))) do

j = argminj (maxiα(i, j)) s.t.

aT
i x ./i bi ∈ H, aT

j x ./j bj ∈ C;

H := H ∪ {aT
j x ./j bj};

C := C \ {aT
j x ./j bj}

od.

Fig. 9. Reconstructing a polyhedron with a limited number of
constraints by angle prioritization

Example 7. Consider the navigation benchmark given
in Sect. 3.4. Instances NAV01–NAV04 can be analyzed
without complexity management, but the computed reach-
able set consists of a large number of polyhedra. This
can be remedied by including a convex hull operation
in the successor computation, for each location individ-
ually. This computation, however, does not terminate
as the solution converges towards nonrational numbers.
Limiting the number of bits remedies this problem, as
the results in Table 3 show. The constraints were lim-
ited to 24 bits, with a triggering threshold of 300, and to
48 constraints with a threshold of 96. This reduction cut
the computation time and memory in half, and reduced
the number of polyehdra by almost a factor of 20. This
should allow us to analyze instances of the navigation
benchmark that are larger. The analysis of NAV07, how-
ever, does not finish within reasonable time. The com-
puted polyhedra consist of up to 944 constraints at 311
bits. This is a result of using the projection based over-
approximation of the affine dynamics, which has the po-
tential to drastically increase number of constraints. If
instead we use the constraint based overapproximation
with constraints in the direction of v1 and v2, see NAV07
in the bottom half of Table 3, the analysis successfully
terminates after 25 s, using less than 40 constraints in
most interations. On the other hand, NAV04 does not
terminate when using constraint based overapproxima-
tion, and requires a smaller partition size to show that
the forbidden states are not reachable.

4.3 Example: Tunnel-Diode Oscillator Circuit

We present experimental results for a tunnel-diode oscil-
lator circuit taken from [26] with the parameters used in
[41]. We model the current IL through the inductor and
the voltage drop Vd of a tunnel diode in parallel with
the capacitor of a serial RLC circuit, which are in stable
oscillation for the given parameters. The state equations
are given by

V̇d = 1/C(−Id(Vd) + IL), (16)

İL = 1/L(−Vd − 1/G · IL + Vin), (17)

where C = 1 pF , L = 1 µH , G = 5 mΩ−1, Vin = 0.3 V ,
and the diode current

Id =

6.01V 3
d − 0.992V 2

d + 0.0545Vd

if Vd ≤ 0.055,
0.0692V 3

d − 0.0421V 2
d + 0.004Vd + 8.96 · 10−4

if 0.055 ≤ Vd ≤ 0.35,
0.263V 3

d − 0.277V 2
d + 0.0968Vd − 0.0112

if 0.35 ≤ Vd.

Following the procedure outlined in the previous section,
a piecewise affine envelope was constructed for the tun-
nel diode characteristic Id(V). We choose 32 intervals
for the range Vd ∈ [−0.1, 0.6] to yield sufficient accu-
racy and so obtain a piecewise affine model for (16). It

14 Goran Frehse: PHAVer: Algorithmic Verification of Hybrid Systems past HyTech

Table 3. PHAVer performance, navigation benchmark with convex hull overapproximations and complexity management

Automaton Reachable Set

Instance Time [s] Mem. [MB] Iter. Checks Loc. Trans. Loc. Poly. Con. Bits

Projection-based overapproximation of dynamics
NAV01 5.2 25.6 22 185 70 1090 43 43 30 308
NAV02 6.4 25.6 20 230 72 1126 45 45 42 282
NAV03 6.5 25.6 20 232 72 1126 45 45 48 290
NAV04 6.7 25.9 52 330 72 1116 54 54 18 32
NAV07a >250k ∼100.0 >11k >738k 224 4283 224 224 994 311
Constraint-based overapproximation of dynamics
NAV01 4.6 24.0 7 135 72 1126 45 45 16 33
NAV02 4.7 26.2 6 137 72 1126 45 45 16 37
NAV03 4.8 26.2 6 137 72 1126 45 45 16 40

NAV04b >1k ∼75.0 >100 >5k 220 4350 124 124 777 340
NAV07 24.9 85.5 32 898 220 4211 192 192 95 369

a no termination, computation aborted
b forbidden states only unreachable when partition size reduced from δi = 1 to δi = 0.5

is modeled as a hybrid automaton with Vd as an output-
and IL as an input-variable, and consists of 32 locations,
one for each interval. Equation (17) is affine, and is mod-
eled as a hybrid automaton with Vd as an input and a
single location. Both models are composed and analyzed
in PHAVer. Figure 10(a) shows the computed reachable
states for initial states given by Vd ∈ [0.42V, 0.52V],
IL = 0.6mA. It also shows the invariants (dashed) gener-
ated by the partitioning algorithm using the constraints
Cand = {(Vd, 0.7/128,∞), (IL, 1.5/128,∞)}, i.e., max.
128 partitions in both directions, and splitting criterion
(c3, c1) with ^min = 0.99. The analysis with PHAVer
takes 17.1s and 68.0MB RAM, with the largest coeffi-
cient taking up 2508 bits and at most 5 constraints per
polyhedron.

We now obtain bounds on the cycle time of the os-
cillator by composing the circuit model with a monitor
automaton. The cycle time is the maximum time it takes
any state to cross the threshold I = 0.6µA, V > 0.25V
twice. For the clocked circuit, the number of bits and
constraints grows rapidly and a more precise analysis,
such as shown in Fig. 10(b) is only possible with limits
on both. We compare the unlimited and limited analy-
sis for constraint candidates Cand = {(Vd, 0.7/64,∞),
(IL, 1.5/64,∞)} and using convex hull overapproxima-
tions for the flows. The bits are limited to 24 when
a threshold of 300 bits is reached, and the constraints
to 32 with a threshold of 200. Figures 11(a) and 11(b)
show a polynomial increase in the number of constraints,
and an exponential increase of the number of bits in
the new polyhedra found at each iteration. The anal-
ysis takes 1412 s (381 MB) when unlimited, and 90 s
(132 MB) when limited and yields the reachable states
shown in Fig. 10(b). The bounds for on the cycle time are
[12.75, 14.90]µs when unlimited. The relative error of the
limited analysis is 0.006% for the lower bound and 0.08%

for the upper bound. At a more than fifteenfold increase
in speed, the overapproximation is negligible and results
in a cycle time estimate that is practically identical. Note
that a comparison was only possible at the lowest level
of accuracy. Higher accuracy can not be achieved at all
without limiting due to an drastic increase in computa-
tion time.

In comparison with CheckMate [41], PHAVer is able
to analyze the circuit at higher accuracy, and obtains
results for parameters where CheckMate does not [8].

5 Conclusions

PHAVer, a new tool for verifying safety properties of
linear hybrid automata, provides infinite precision arith-
metic in a robust implementation, on-the-fly overapprox-
imation of affine dynamics, and supports compositional
and assume/guarantee-reasoning. To manage the com-
plexity of the underlying polyhedral computations, we
propose heuristics to conservatively overapproximate poly-
hedra by limiting the number of bits and constraints. Ex-
perimental results for a navigation benchmark and a tun-
nel diode circuit demonstrate the effectiveness of the ap-
proach, with PHAVer outperforming other current ver-
ification tools. The results indicate that the benefits of
exact polyhedral computations, such as exact containe-
ment testing, can outweigh the costs incurred by the
indispensible complexity management. Future research
will focus on accelerating convergence and termination,
e.g., using widening [36], and using the transition topol-
ogy to improve the search algorithm. PHAVer is available
at http://www.cs.ru.nl/~goranf/.

Acknowledgements. The author is most grateful for the nu-
merous inspiring discussions with Prof. Bruce Krogh, whose

http://www.cs.ru.nl/~goranf/

Goran Frehse: PHAVer: Algorithmic Verification of Hybrid Systems past HyTech 15

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Voltage Vd [V]

C
ur

re
nt

 I L
 [m

A
]

−0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Voltage Vd [V]

C
ur

re
nt

 I L
 [m

A
]

(a) Vd-IL-Plane, invariants dashed

(b) Vd and IL over time

Fig. 10. Reachable states of Tunnel Diode Circuit

insightful guidance was indispensable in this work, and to
Prof. Frits W. Vaandrager and Prof. Sebastian Engell for
their generous support and supervision. This research was
supported in part by the US ARO contract no. DAAD19-
01-1-0485, the US NSF contract no. CCR-0121547, and the
Semiconductor Research Corporation under task ID 1028.001.

Special thanks go to R.J.M. Theunissen, Gabriela Marin,
Laurent Doyen, Li Hong and Scott Little for bug reports and
helpful suggestions, and to Flavio Lerda for his invaluable
compilation scripts. Finally, a big thanks goes to the PPL
development team and in particular to Roberto Bagnara for
his wonderful help.

(a) Number of bits

(b) Number of constraints

Fig. 11. Clocked Tunnel Diode Circuit, exact (dashed) and with
limits on bits and constraints (solid)

References

1. Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-
Toi. HYTECH: A model checker for hybrid systems. Int.
Journal on Software Tools for Technology Transfer, 1(1–
2):110–122, December 1997.

2. Moshe Y. Vardi and Pierre Wolper. An automata-
theoretic approach to automatic program verification
(preliminary report). In LICS, pages 332–344. IEEE
Computer Society, 1986.

3. Thomas A. Henzinger. The theory of hybrid automata.
In Proc. 11th Annual IEEE Symposium on Logic in Com-
puter Science, LICS’96, New Brunswick, New Jersey, 27-
30 July 1996, pages 278–292. IEEE Computer Society
Press, 1996. An extended version appeared in Verifi-
cation of Digital and Hybrid Systems (M.K. Inan, R.P.
Kurshan, eds.), NATO ASI Series F: Computer and Sys-
tems Sciences, Vol. 170, Springer-Verlag, 2000, pp. 265-
292.

4. Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho.
Automatic symbolic verification of embedded systems.
IEEE Transactions on Software Engineering, 22:181–
201, 1996. A preliminary version appeared in the Pro-
ceedings of the 14th Annual Real-Time Systems Sympo-

16 Goran Frehse: PHAVer: Algorithmic Verification of Hybrid Systems past HyTech

sium (RTSS), IEEE Computer Society Press, 1993, pp.
2-11.

5. Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-
Toi. Algorithmic analysis of nonlinear hybrid systems.
IEEE Transactions on Automatic Control, 43(4):540–
554, 1998.

6. Goran Frehse, Zhi Han, and Bruce H. Krogh. Assume-
guarantee reasoning for hybrid i/o-automata by over-
approximation of continuous interaction. In Proc. 43rd
IEEE Conf. Decision and Control (CDC’04), December
14–17, 2004, Atlantis, Bahamas, 2004.

7. Goran Frehse. Compositional Verification of Hybrid
Systems Using Simulation Relations. PhD the-
sis, Radboud University Nijmegen, 2005. available at
http://webdoc.ubn.ru.nl/mono/f/frehse_g/compveofh.pdf .

8. Goran Frehse, Bruce H. Krogh, Rob A. Rutenbar, and
Oded Maler. Time domain verification of oscillator cir-
cuit properties. 153(3):9–22, 2006.

9. G. Frehse, B. H. Krogh, and R. A. Rutenbar. Verify-
ing analog oscillator circuits using forward/backward re-
finement. In Proceedings of the 9th Conference on De-
sign, Automation and Test in Europe (DATE 06). ACM
SIGDA, Munich, Germany, 2006.

10. D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda,
and R.R.H. Schiffelers. Formal verification of chi mod-
els using phaver. In I. Troch and F. Breitenecker, edi-
tors, Proc. MathMod 2006, Vienna, ARGESIM Reports,
February 2006.

11. Andreas Podelski and Silke Wagner. Model checking of
hybrid systems: From reachability towards stability. In
João P. Hespanha and Ashish Tiwari, editors, HSCC,
volume 3927 of Lecture Notes in Computer Science, pages
507–521. Springer, 2006.

12. Laurent Doyen, Thomas A. Henzinger, and Jean-
François Raskin. Automatic rectangular refinement of
affine hybrid systems. In Proc. FORMATS’05, volume
3829 of LNCS, pages 144–161. Springer, 2005.

13. I. Ben Makhlouf and S. Kowalewski. An evaluation of two
recent reachability analysis tools for hybrid systems. In
Proc. IFAC Conf. Analysis and Design of Hybrid Systems
(ADHS’06), 2006.

14. Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs,
Thomas A. Henzinger, Pei-Hsin Ho, Xavier Nicollin, Al-
fredo Olivero, Joseph Sifakis, and Sergio Yovine. The
algorithmic analysis of hybrid systems. Theoretical Com-
puter Science, 138(1):3–34, 1995. A preliminary version
appeared in the Proceedings of the 11th International
Conference on Analysis and Optimization of Systems:
Discrete-Event Systems (ICAOS), Lecture Notes in Con-
trol and Information Sciences 199, Springer-Verlag, 1994,
pp. 331-351.

15. Nancy A. Lynch, Roberto Segala, and Frits W. Vaan-
drager. Hybrid I/O automata. Information and Compu-
tation, 185(1):105–157, 2003. URL http://www.cs.kun.

nl/ita/publications/papers/fvaan/HIOA.html.

16. Darren D. Cofer, Eric Engstrom, Robert P. Gold-
man, David J. Musliner, and Steve Vestal. Applica-
tions of model checking at Honeywell Laboratories. In
Matthew B. Dwyer, editor, Model Checking Software, 8th
International SPIN Workshop, Toronto, Canada, May
19-20, 2001, Proceedings, volume 2057 of LNCS, pages
296–303. Springer, 2001.

17. Thomas A. Henzinger, Joerg Preussig, and Howard
Wong-Toi. Some lessons from the hytech experience.
In Proceedings of the 40th Annual Conference on Deci-
sion and Control (CDC’01), pages pp. 2887–2892. IEEE
Press, 2001.

18. Stefan Kowalewski, Olaf Stursberg, Martin Fritz, Holger
Graf, Ingo Hoffmann, Joerg Preussig, Manuel Remelhe,
Silke Simon, and Heinz Treseler. A case study in tool-
aided analysis of discretely controlled continuous sys-
tems: The two tanks problem. In Panos J. Antsak-
lis, Wolf Kohn, Michael D. Lemmon, Anil Nerode, and
Shankar Sastry, editors, Hybrid Systems V, volume 1567
of LNCS, pages 163–185. Springer, 1999.

19. Claire Tomlin. Verification of an air traffic manage-
ment protocol using hytech. Course Project for EE290A,
taught by Prof. T. A. Henzinger, Spring 1996, Depart-
ment of Electrical Engineering and Computer Sciences,
University of California at Berkeley, 1996.

20. Thomas A. Henzinger and Howard Wong-Toi. Using
HyTech to synthesize control parameters for a steam
boiler. In Formal Methods for Industrial Applications:
Specifying and Programming the Steam Boiler Control,
number 1165 in LNCS, pages 265–282. Springer Verlag,
1996.

21. Olaf Mller and Thomas Stauner. Modelling and verifica-
tion using linear hybrid automata - a case study. Mathe-
matical and Computer Modelling of Dynamical Systems,
6(1):71–89, 2000.

22. Roberto Bagnara, Elisa Ricci, Enea Zaffanella, and Patri-
cia M. Hill. Possibly not closed convex polyhedra and the
Parma Polyhedra Library. In Manuel V. Hermenegildo
and German Puebla, editors, Static Analysis: Proc. of
the 9th Int. Symposium, volume 2477 of LNCS, pages
213–229. Springer, Madrid, Spain, 2002.

23. Torbjörn Granlund and Kevin Ryde. The GNU Mul-
tiple Precision arithmetic library version 4.0, 2001.
http://www.swox.com/gmp/.

24. T. A. Henzinger, Pei-Hsin Ho, and H. Wong-Toi.
HYTECH: the next generation. In Proceedings of the
16th IEEE Real-Time Systems Symposium (RTSS ’95),
page 56. IEEE Computer Society, 1995.

25. Olaf Stursberg and Stefan Kowalewski. Approximating
switched continuous systems by rectangular automata.
In Proc. 5th European Control Conference, Karlsruhe,
1999.

26. Walter Hartong, Lars Hedrich, and Erich Barke. On dis-
crete modeling and model checking for nonlinear analog
systems. In Ed Brinksma and Kim Guldstrand Larsen,
editors, Computer Aided Verification, 14th International
Conference, CAV 2002,Copenhagen, Denmark, July 27-
31, 2002, Proceedings, volume 2404 of LNCS, pages 401–
413. Springer, 2002.

27. Thomas A. Henzinger, Benjamin Horowitz, Rupak Ma-
jumdar, and Howard Wong-Toi. Beyond HYTECH: Hy-
brid systems analysis using interval numerical methods.
In Nancy A. Lynch and Bruce H. Krogh, editors, Hybrid
Systems: Computation and Control, Third International
Workshop, HSCC 2000, Pittsburgh, PA, USA, March 23-
25, 2000, Proceedings, volume 1790 of LNCS, pages 130–
144. Springer, 2000.

28. Stefan Ratschan and Zhikun She. Safety verification of
hybrid systems by constraint propagation based abstrac-
tion refinement. In Manfred Morari and Lothar Thiele,

http://webdoc.ubn.ru.nl/mono/f/frehse_g/compveofh.pdf
http://www.swox.com/gmp/

Goran Frehse: PHAVer: Algorithmic Verification of Hybrid Systems past HyTech 17

editors, Proc. of the 8th International Workshop on Hy-
brid Systems: Computation and Control, number 3414 in
LNCS, pages 573–589. Springer, 2005.

29. B. I. Silva, O. Stursberg, B. H. Krogh, and S. Engell.
An assessment of the current status of algorithmic ap-
proaches to the verification of hybrid systems. In Proc.
40th Conference on Decision and Control (CDC’01), De-
cember 2001.

30. Howard Wong-Toi. Symbolic approximations for verify-
ing real-time systems, December 1994.

31. Jörg Preußig, Stephan Kowalewski, Howard Wong-Toi,
and Thomas A. Henzinger. An algorithm for the ap-
proximative analysis of rectangular automata. In Pro-
ceedings of the Fifth International Symposium on For-
mal Techniques in Real-Time and Fault-Tolerant Sys-
tems (FTRTFT), number 1486 in LNCS, pages 228–240.
Springer-Verlag, 1998.

32. Jörg Preußig. Formale Überprüfung der Korrektheit von
Steuerungen mittels rektangulärer Automaten. PhD the-
sis, Schriftenreihe des Lehrstuhls für Anlagensteuerung-
stechnik Band 4/2000, Universität Dortmund, Shaker
Verlag, 2000. (in German).

33. Olaf Stursberg and Bruce H. Krogh. Efficient represen-
tation and computation of reachable sets for hybrid sys-
tems. In Oded Maler and Amir Pnueli, editors, Hybrid
Systems: Computation and Control, 6th International
Workshop, HSCC 2003 Prague, Czech Republic, April 3-
5, 2003, Proceedings, volume 2623 of LNCS, pages 482–
497. Springer, 2003.

34. Rajeev Alur, Costas Courcoubetis, Thomas A. Hen-
zinger, and Pei-Hsin Ho. Hybrid automata: An algorith-
mic approach to the specification and verification of hy-
brid systems. In Robert L. Grossman, Anil Nerode, An-
ders P. Ravn, and Hans Rischel, editors, Hybrid Systems,
volume 736 of LNCS, pages 209–229. Springer, 1993.

35. Gerardo Lafferriere, George J. Pappas, and Sergio
Yovine. Symbolic reachability computation for families
of linear vector fields. Journal of Symbolic Computation,
32:231–253, 2001.

36. Nicolas Halbwachs, Yann-Erick Proy, and Patrick
Roumanoff. Verification of real-time systems using linear
relation analysis. Formal Methods in System Design: An
International Journal, 11(2):157–185, August 1997.

37. Pei-Hsin Ho and Howard Wong-Toi. Automated anal-
ysis of an audio control protocol. In Proc. Conf.
on Computer-Aided Verification, volume 939 of LNCS,
pages 381–394. Springer, Liege, Belgium, 1995.

38. Ansgar Fehnker and Franjo Ivancic. Benchmarks for hy-
brid systems verification. In Rajeev Alur and George J.
Pappas, editors, Hybrid Systems: Computation and Con-
trol, 7th International Workshop, HSCC 2004, Philadel-
phia, PA, USA, March 25-27, 2004, Proceedings, volume
2993 of LNCS, pages 326–341. Springer, 2004.

39. Franjo Ivancic. Modeling and Analysis of Hybrid Sys-
tems. PhD thesis, University of Pennsylvania, Philadel-
phia, PA, December 2003.

40. Alberto Bemporad and Manfred Morari. Verification
of hybrid systems via mathematical programming. In
Frits W. Vaandrager and Jan H. van Schuppen, edi-
tors, Hybrid Systems: Computation and Control, Sec-
ond International Workshop, HSCC’99, Berg en Dal,
The Netherlands, March 29-31, 1999, Proceedings, vol-
ume 1569 of LNCS, pages 31–45. Springer, 1999.

41. Smriti Gupta, Bruce H. Krogh, and Rob A. Rutenbar.
Towards formal verification of analog designs. In Proc.
IEEE Intl. Conf. on Computer-Aided Design (ICCAD-
2004), Nov. 7–11, 2004, San Jose CA (USA), 2004.

	Introduction
	Hybrid Automata with Controlled Variables
	Reachability Analysis in PHAVer
	Managing the Complexity of Polyhedra
	Conclusions

