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Abstract. Timed and weak timed simulation relations are often used to
show that operations on hybrid systems result in equivalent behavior or
in conservative overapproximations. Given that systems are frequently
designed and verified in a modular approach, it is desirable that this
relationship is compositional, which is not the case for hybrid systems
in general. We identify subclasses of linear hybrid automata that are
compositional with respect to timed, respectively weak timed simulation.

1 Introduction

Hybrid automata are notoriously hard to analyze, so they are often overapprox-
imated with hybrid automata of simpler dynamics, see [1,2,3] and references
therein. The proofs used to show that the constructed automata are indeed
conservative frequently involve timed simulation, or a weak variant that allows
unobservable transitions as long as they don’t change the variables. The analysis
is usually challenging even for the abstracted system, and increases exponentially
with the number of components and variables. Compositional reasoning is known
as a valuable tool to counter this problem. However, timed and weak timed simu-
lation are not compositional for hybrid automata with arbitrary dynamics. Con-
sequently, a successful compositional analysis of the abstracted system does not
imply safety of the original system when timed simulation was used in proving
conservativeness.

In this paper we identify classes of hybrid automata that are compositional
with respect to timed, respectively weak timed simulation. If such a class is used
to overapproximate a system, conservativeness is consequently guaranteed and
compositional reasoning valid. These results are directly applicable to strengthen
the overapproximation operators in [1,2,3] with respect to compositionality.

Related Work We use the hybrid automata in [4] with minor modifications.
We define a subset of the controlled variables as output variables, specify the
activities via their derivatives, include a set of initial states, and consider the
same controlled variables in all locations. The hybrid automata in [4] are known
to be compositional for trace inclusion [4], see [5] for applications. The controlled
variables are needed to prove compositionality. We add output variables to hide
internal (non-output) behavior, i.e., so we can compare automata whose output



variables behave identically while the internal workings may be different. More
sophisticated hybrid input/output-automata (HIOA) are proposed and studied
in detail in [6]. HIOA impose input-enabledness that we do not require, so the
hybrid automata in this paper are equivalent to the pre-HIOA of [6]. The stricter
I/O-distinction in [6] may be used to ensure some liveness properties; we only
consider safety. We use a compositional type of simulation from [6], which we
call trace simulation to set it apart from timed simulation.

Timed simulation is usually defined using labeled transition system (LTS)
semantics [7]. Our definition is directly based on runs of hybrid automata, but
is otherwise equivalent. In earlier work, we proposed semantic criteria for com-
positionality of timed simulation without giving an interpretation on the hybrid
automaton level, and not for weak timed simulation [8]. The framework used in
this paper presents a substantial improvement and simplification, and our previ-
ous results on compositionality and assume/guarantee-reasoning from [9,10] can
be transferred to it. For the sake of brevity, we provide mostly proof sketches.
Detailed proofs for most of the results (except those involving overlap-closure)
can be found in [10].

In the following section, we present our hybrid automata and their semantics.
In Sect. 3 we define trace and timed simulation, as well as their weak counter-
parts. In Sect. 4 we identify compositional subclasses for these types of simula-
tion. Finally, we draw some conclusions in Sect. 5.

2 Hybrid Automata

We use a standard hybrid automaton model and parallel composition operator
from [4], to which we add a subset of output variables. A variable is either an
uncontrolled variable (also called input), and can therefore change arbitrarily at
any time, or controlled. In parallel composition, controlled variables can not be
changed independently by other automata in the composition. These elements
are essential to compositionality [11]. A subset of the controlled variables are
output variables, which, together with the uncontrolled variables, define the ex-
ternally visible behavior of the automaton. Note that the uncontrolled variables
may be restricted in their derivatives, and can only change arbitrarily inside
the invariant. This allows us to model causal and noncausal coupling between
variables, which is useful, e.g., to model conservation laws.

Preliminaries Given a set X = {x1, . . . , xn} of variables, a valuation is a function
v : X → R. We use Ẋ to denote the set {ẋ1, . . . , ẋn} of dotted variables, and
X ′ to denote the set {x′

1, . . . , x
′
n} of primed variables. Let V (X ) denote the set

of valuations over X . The projection of v to variables X̄ ⊆ X is v↓X̄= {x →
v(x)|x ∈ X̄}. The embedding of a set U ⊆ V (X) into variables X̄ ⊇ X is
the largest subset of V (X̄) whose projection is in U , written as U |X̄ . When a
valuation u over X and a valuation v over X̄ agree, i.e., u↓X∩X̄= v↓X∩X̄ , we use
u t v to denote the valuation w defined by w↓X= u and w↓X̄= v. Arithmetic
operations on valuations are defined in the straightforward way. An activity over



X is a function f : R≥0 → V (X ). Let Acts(X ) denote the set of activities over
X . The derivative ḟ of an activity f is an activity over Ẋ, defined analogously to
the derivative in Rn. The extension of operators from valuations to activities is
done pointwise. Let constX(Y ) = {(v, v′)|v, v′ ∈ V (X), v↓Y = v′↓Y }. The convex
hull of a set of valuations S written as chull(S).

Definition 1 (Hybrid Automaton). (modified from [4]) A hybrid automaton
(HA) A = (Loc, (X, O, C),Lab,Edg ,Flow , Inv , Init) consists of:

– A finite set Loc called locations.
– A finite set called variables X , a subset C of X called controlled variables

and a subset O ⊆ C called output variables. Let I = X \ C be the input
variables and E = I∪O the external variables. A pair p = (l, v) of a location
and a valuation over X is a state of the automaton and the state space is
SH = Loc×V (X ). For a state p = (l, v) we define loc(p) := l and val(p) := v.
For a set of variables Y , let valY (p) := v↓Y .

– A finite set Lab of synchronization labels including the stutter label τ .
– A finite set Edg of edges called transitions. Each transition e = (l, a, µ, l′)

consists of a source, respectively target locations l, l′ ∈ Loc, a synchroniza-
tion label a ∈ Lab, and a jump relation µ ⊆ V (X)2. We require that for
every location l ∈ Loc there is a stutter transition (l, τ, constX(C), l) ∈ Edg.

– A set Flow ⊆ Loc × V (X ∪ Ẋ) called flows.
– A set Inv ⊆ Loc × V (X) called invariant.
– A set Init ⊆ Inv called initial states.

A class of hybrid automata of particular interest are linear hybrid automata
(LHA), since they can be analyzed using simple polyhedral computations [7].
LHA are defined as follows. A linear constraint over a set of variables X =
{x1, . . . , xn} is of the form

∑
i aixi ./ b, where ./ ∈ {<,≤}. A (convex) linear

predicate is a (conjunctive) boolean combination of linear constraints. A linear
hybrid automaton has invariants and initial states defined in each location by a
linear predicate over the variables, jump relations defined by a linear predicate
over X ∪ X ′, and flow valuations defined by convex linear predicates over Ẋ.

Definition 2 (Parallel Composition). [4] Hybrid automata H1, H2 are com-
patible if C1∩C2 = ∅, X1∩C2 ⊆ O2 and X2∩C1 ⊆ O1. The parallel composition
of compatible hybrid automata H1, H2 is the hybrid automaton H with

– Loc = Loc1 × Loc2,
– X = X1 ∪X2, C = C1 ∪ C2, O = O1 ∪ O2, Lab = Lab1 ∪ Lab2

– ((l1, l2), a, µ, (l′2, l
′
2)) ∈ Edg iff

• (l1, a1, µ1, l
′
1) ∈ Edg1 and (l2, a2, µ2, l

′
2) ∈ Edg2

• either a = a1 = a2, or a = a1 /∈ Lab2 and a2 = τ , or a1 = τ and
a = a2 /∈ Lab1,

• µ = {(v, v′)|(v↓Xi
, v′↓Xi

) ∈ µi};

– Flow (l1, l2) = Flow1(l1)|X∪Ẋ ∩ Flow2(l2)|X∪Ẋ ;
– Inv(l1, l2) = Inv1(l1)|X ∩ Inv2(l2)|X ;
– Init(l1, l2) = Init1(l1)|X ∩ Init2(l2)|X .
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Fig. 1. Compositional model of timing based mutual-exclusion protocol in [12]

Example 1. Consider the model of a timing based mutual-exclusion protocol
shown in Fig. 1. In every location l of Pi, there is a transition (l, τ, µ, l) with
µ = {(v, v′)|v(xi) = v′(xi), v(k), v′(k) ∈ R} (omitted from the figure). The
system is considered safe if there are never two or more processes in the critical
section at the same time. It is a compositional adaptation of the model given
in [12], and parameterized to n processes with time constants ci and di that
represent the minimal, respectively maximal, skew of their clocks. The processes
Pi have a controlled variable xi to model their local clock and an input variable k
that models a semaphore. Because none of the processes controls k, it is modeled
separately in an automaton S we call a shared variable model. S has k as a
controlled variable and fixes its derivative to zero. It gives the processes access
to k by synchronizing on transitions that wish to change the value of k. Note
that it does not restrict the change of k in these transitions.

Semantics We define the semantics of hybrid automata with runs, which we
construct from atomic runs that represent a period of elapsing time followed
by a (discrete) transition. The change of variables over time is described by
an admissible activity. An activity f(t) ∈ Acts(X) is called admissible over an
interval [0, δ] in a location l if δ = 0, or ∀t, 0 ≤ t ≤ δ : f(t) ∈ Inv(l), f(t)t ḟ(t) ∈



Flow (l). In weak runs, we consider τ -transitions that do not change the variables
as unobservable.

Definition 3 (Run). An atomic run σ = p
δ,f,a
−−−→ p′ consists of source and

target states p, p′, a duration δ ∈ R≥0, an activity f over X called witness and
a label a ∈ Lab such that

– p, p′ ∈ Inv,
– f is differentiable and admissible over [0, δ] in loc(p) and f(0) = val(p),
– there is a transition (loc(p), a, µ, loc(p′)) ∈ Edg with (f(δ), val(p′)) ∈ µ.

A run of a hybrid automaton H is a finite or infinite sequence

σ = p0

δ0,f0,a0
−−−−−→ p1

δ1,f1,a1
−−−−−→ p2 . . .

such that σi = pi
δi,fi,ai
−−−−−→ pi+1 is an atomic run for all i ≥ 0. For a finite run,

its length is the number of atomic runs in the sequence. A weak atomic run

σw = p
δ,f,a
−−−→→ p′ exists iff there is a finite run σ

σ = p0

δ0,f0,τ
−−−−→ p1

δ1,f1,τ
−−−−→ . . .

δn−2,fn−2,τ
−−−−−−−−→ pn−1

δn−1,fn−1,a
−−−−−−−−→ pn

such that
∑n−1

k=0
δk = δ and for all i,t, 0 ≤ i < n − 1, ti−1 ≤ t ≤ ti, holds

f(t) = fi(t − ti−1), with t−1 = 0 and ti =
∑i

k=0
δk for 0 ≤ i. A weak run is

defined analogously to a run as a sequence of weak atomic runs. A weak atomic
run with all states in the same location l is called unilocational, and denoted by

p
δ,f,a
−−−→→ l p′.

Remark 1. Due to the stutter transitions, there exists a run p
0,f,τ
−−−→ p in every

state p ∈ Inv and for every activity f with f(0) = val(p). To underline that the

activity is of no relevance, we may write p
0,·,τ
−−−→ p instead.

Remark 2. All except the last transition of a weak atomic run leave the variables
unchanged, since fi(ti − ti−1) = f(ti) = fi+1(ti − ti) for 0 ≤ i < n − 2.

3 Simulation Relations

To express that a hybrid automaton G is a valid abstraction of a hybrid automa-
ton H (or equivalently that H refines G) one can establish a simulation relation
over the product of their states. It relates a state in H to those in G that have
the same, or more, behavior. Two types of simulation are predominant in lit-
erature: trace simulation compares the exact trace between source and target
states, while timed simulation only considers how much time passed to get from
one to the other. Weak versions of simulation are defined over weak traces. They
are often used to show that a location with complex dynamics can be overap-
proximated by several locations with simpler dynamics that are connected with
τ -transitions, e.g., in [13]. To be consistent with compositionality, two hybrid
automata can only be compared if they have comparable inputs and outputs.
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Definition 4. H is comparable with G if XH = XG, LabH = LabG, CH ⊆ CG

and OH = OG.

Note that according to this definition G may use less inputs than H , but not
more.

Definition 5 (Trace Simulation). A relation R ⊆ SH × SG is a trace simu-
lation relation between comparable H and G iff for all (p, q) ∈ R, δ, f, a, p′,

p
δ,f,a
−−−→H p′ ⇒ ∃g, q′ : q

δ,g,a
−−−→G q′ ∧ (p′, q′) ∈ R ∧ ∀t : f(t)↓EG

= g(t)↓EG
.

We write H �t G iff there exists a trace simulation relation R such that InitH ⊆
R−1(InitG). R is called the witness to the simulation.

Definition 6 (Timed Simulation). A relation R ⊆ SH × SG is a timed sim-
ulation relation between comparable H and G iff for all (p, q) ∈ R, δ, f, a, p′,

p
δ,f,a
−−−→H p′ ⇒ ∃g, q′ : q

δ,g,a
−−−→G q′ ∧ (p′, q′) ∈ R ∧ f(0)↓EG

= g(0)↓EG
.

We write H �0 G iff there exists a timed simulation relation R such that InitH ⊆
R−1(InitG). R is called the witness to the simulation.

Timed simulation forces G to have an activity that matches in the source
and target states of an atomic run. It is, however, not guaranteed that H and G
take the same path in between, as the following example demonstrates.

Example 2 (Trace vs. timed simulation). Consider H and G shown in Fig. 2
with XH = XG = {x, y}, OH = OG = {x} (τ -transitions not shown). Recall
that restrictions on the activities of input y are allowed. H has only trajectories
in the form of straight lines, while G can nondeterministically chose any parabola
with nonzero curvature. Consequently, G can not exactly match the atomic runs
of H and the conditions for trace simulation are violated, i.e., H �t G. However,
for any given atomic run in H , G has an atomic run that, while not being
identical over all points in time, matches in the timed sense, i.e., source and
target states are equal and takes the same time to get from source to target.
In any atomic run that might follow, G can chose a new parabola with a new
curvature that matches in the timed sense. As result, H �0 G.
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ẏ = −1

τ

τ

(b) G

p p’

δ

x

y

0

(c) Run in H

p p�

δ0

δ = δ0 + δ1 + δ2

δ1

δ2δ1

δ2

x

y

0

(d) Run in G

Fig. 4. H is not timed simulated by G, but weakly timed simulated

Often it is useful to consider τ -transitions unobservable in the comparison.
This is achieved by looking at weak atomic runs instead of atomic runs:

Definition 7 (Weak Simulation). Weak trace (timed) simulation is defined
analogously to trace (timed) simulation over weak atomic runs, and denoted by
H �w

t G (H �w
0 G).

Weak atomic runs differ from atomic runs in two ways: The witnessing activity
only has to be piecewise differentiable instead of differentiable, and the location
can change during the period of time elapse. The following examples illustrate
how this reflects in the automata that match in weak simulation, but not in
simulation.

Example 3 (Weak trace simulation). Consider the LHA H and G shown in Fig. 3
with XH = CH = {x, y}, XG = CG = {x, z}, OH = OG = {x}. Consider the
run of H shown in Fig. 3(c). Since y is not an external variable, both can take
different activities with respect to y. G does not have any differentiable activity
that matches because the only ones that do, e.g., a parabola from p to p′, violate
the flow constraint |ż| ≤ 1. Consequently, H �t G. However, G does have a
two-piece activity that can be represented by a weak atomic run, see Fig. 4(d),
and H �w

t G.



Example 4 (Weak timed simulation). Consider the LHA H and G shown in
Fig. 4 with XH = XG = {x, y}, CH = CG = OH = OG = {x}. Without taking
τ -transitions, G can not match the activities in H , so H �0 G. However, H �w

0 G
because every transition in H can be matched by a concatenation of transitions
in G in which positive and negative change of y cancel each other out, as shown
in Fig. 4(d).

We define the following equivalence relation based on simulation:

Definition 8 (Bisimulation). A simulation relation R is a bisimulation re-
lation between H and G iff R is simulation relation for H ∼ G and R−1 is
a simulation relation for G ∼ H, where ∼∈ {�t,�0,�w

t ,�w
0 }. Bisimulation is

denoted with ∼=t,∼=0,∼=
w
t ,∼=w

0 depending on what relation was chosen for ∼.

The different types of simulation introduced in this section are ordered with
respect to how closely they distinguish behaviors of hybrid automata.

Proposition 1. Simulation relations satisfy the following partial order:

H �t G ⇒ H �0 G
⇓ ⇓

H �w
t G ⇒ H �w

0 G

It will become apparent in the next section that the closer a simulation
relation distinguishes behaviors, the larger is the class of hybrid automata for
which it is compositional.

4 Compositionality

We identify subclasses of hybrid automata for which simulation is compositional.
To do so we must show that the behavior of composed automata implies matching
behavior of their composed specifications. Zero-duration atomic runs match for
all the above types of simulation [8], so we can focus on continuous activities.

Definition 9. A relation ∼ over hybrid automata is compositional iff

H1 ∼ G1 ∧ H2 ∼ G2 ⇒ H1||H2 ∼ G1||G2.

We will also use the following equivalent formulation of compositionality:

Lemma 1. A preorder ∼ is compositional iff H ∼ G ⇒ H ||M ∼ G||M .

Compositionality is enforced by the fact that variables are controlled by at
most one automaton.

Example 5. Consider the mutual-exclusion protocol of Ex. 1. In a noncompo-
sitional model, such as the one in [12], the analysis of n processes yields that
P1|| . . . ||Pn is safe. However, this does not imply that P1|| . . . ||Pn||M is safe. M
could reset k at the wrong time and cause more than one process to enter the
critical section. In contrast, the compositional model does not allow M to change



k in any way that is not already contained in S. Any transitions that attempt this
will be blocked by the composition operator since it imposes that transitions of
M either synchronize with existing transitions or with τ -transitions, which have
the jump relation constX(C) and therefore leave k constant.

The simulation relations in this paper are preorders, which is easy to show
using proofs similar to those in [10]. Consequently, we can use Lemma 1 to show
compositionality.

Proposition 2. Trace and timed simulation, as well as their weak variants, are
preorders for comparable hybrid automata.

If H is trace simulated by G, the external part of any activity in H must
be matched exactly by an activity in G. Because M can inhibit only those
same external variables, any activity in H ||M entails a matching activity in G.
Compositionality is a direct consequence.

Proposition 3. Trace and weak trace simulation are compositional.

Proof. (Sketch) The compositionality of trace simulation was already shown in
[6], but not that of weak trace simulation. We extend this result to weak trace
simulation by showing that a weak atomic run in H ||M implies a weak atomic
run in G||M such that its target state is in the simulation relation. Our proof
follows the structure of the one in [6] and relies strongly on the presence of
stuttering steps. Let R0 be the witnessing simulation relation for H �w

t G. We
show that

R = {(((l, m), x), ((k, m), y)) | ((l, x↓XH
), (k, y↓XG

)) ∈ R0, x↓XM
= y↓XM

}

is a witness to H ||M �w
t G||M . A weak atomic run σH||M in H ||M can be

projected to weak atomic runs σH and σM in H , respectively M . Because G
weakly trace simulates H , σH implies that there exists a weak atomic run σG

in G with a matching activity and a matching jump at the end. Now σG and
σM can be padded to have τ -transitions at identical intervals. Since G and H
show the same external behavior in σG and σH , σG can be composed with the
run σM to yield a weak atomic run in G||M . Since the external variables in the
target states of σH||M and σG||M have the same values, the target states are
in R. This shows that R is a simulation relation. It is straightfoward to show
InitH||M ⊆ R−1(InitG||M ), which concludes the proof. ut

Timed simulation only forces G to have an activity that matches in the source
and target states of an atomic run. It is not guaranteed that H and G take the
same path in between, as the following example demonstrates.

Example 6 (Timed simulation and compositionality). Consider H and G shown
in Fig. 2. In Ex. 2 we showed that H �0 G. If timed simulation were compo-
sitional, Lemma 1 says that simulation should still hold if we compose both
sides with any K. Consider K from Fig. 5(a), with XK = CK = {y}. In G||K
the invariant y = 0 does not allow any timed transitions of nonzero duration,
while in H ||K time can elapse forever, as illustrated in Fig. 5. Consequently,
H ||K �0 G||K.
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Since timed simulation abstracts the exact activites away it is, in general, not
compositional. We now show that it is, however, compositional for LHA with
convex invariants. In the proof we use a lemma from [12], which states that if
there is any admissible activity, there is also a linear one:

Lemma 2. (adapted from [12]) Let l be a location of any linear hybrid automa-
ton with a convex invariant Inv(l), and v, v′ ∈ Inv(l) be any valuations inside
it. If there exists an activity f that is admissible in l over some interval [0, δ]
and f(0) = v, f(δ) = v′ then f ′(t) = v + t/δ(v′ − v) is an equally admissible
activity.

As a consequence of this lemma, whenever there are activities with identical
source and target states in LHA with convex invariants H and G, there is also
a linear activity that is admissible in both automata. From the existence of two
different activities we can thus infer the existence of a common activity, which
immediately leads to compositionality:

Proposition 4. Timed simulation is compositional for LHA with convex invari-
ants.

Proof. Timed simulation is compositional for compatible automata H, M if for

any atomic runs (k, u)
δ,f,τ
−−−→H (k′, u′) and (l, v)

δ,g,τ
−−−→M (l′, v′) with u↓XH∩XM

=
v↓XH∩XM

and u′↓XH∩XM
= v′↓XH∩XM

there is an admissible differentiable activ-
ity h in location (k, l) of H ||M with h(0)↓XH

= u, h(0)↓XM
= v and h(δ)↓XH

= u′,
h(δ)↓XM

= v′ [8]. If H, M are LHA with convex invariants, there exist, according

to Lemma 2, linear activities f ′ and g′ that witness (k, u)
δ,f ′,τ
−−−→H (k′, u′) and

(l, v)
δ,g′,τ
−−−→M (l′, v′). Since f ′↓XH∩XM

= g′↓XH∩XM
, the activity h defined by

h↓XH
= f ′, h↓XM

= g′ is differentiable and admissible in H ||M . ut

We will later discuss compositionality of LHA with nonconvex invariants using
weak simulation.

If one admits weak atomic runs in timed simulation, i.e., regards τ -transitions
as unobservable, compositionality is lost even for LHA. We show this with the
following counterexample.
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−2 ≤ ẏ ≤ 2

(a) K

x

y

0
p p�p p�

δδ

(b) Run in H ||K

x

y

0
p p�p p�

(c) No run in G||K

Fig. 6. Weak timed simulation for H, G from Fig. 4 is not compositional with K

Example 7 (Non-compositional LHA for weak timed simulation). Consider the
LHA H and G from Ex. 4, shown in Fig. 4. H �w

0 G because every atomic run
in H can be matched by a concatenation of atomic runs in G in which positive
and negative change of y cancel each other out. Now consider the composition
of H and G with K shown in Fig. 6(a), with XK = CK = {y}. For H ||K time
can elapse forever, while for G||K the invariant y = 0 does not allow any atomic
runs of nonzero duration, as illustrated in Fig. 6. Consequently, H ||K �w

0 G||K.

We now identify a class of hybrid automata for which weak timed simulation
is compositional. The alternation of τ -transitions with passing time allows an
automaton to asymptotically mimic any activity that is a convex piecewise com-
bination of admissible activities. Our compositional class is simply one for which
we know that all the activities that the automaton can mimic are actually admis-
sible, possibly in another location. The relevant τ -transitions in a weak atomic
run do not change the variables, see Remark 2. The mimicking must therefore
take place in the vicinity of the intersection of two invariants that are connected
with τ -transitions. We demand that any such mimicking can take place entirely
within one location, formally as follows:

Definition 10. A hybrid automaton H is overlap-closed if for any (l, u) there

is a δmax(l, u) such that (l, u)
δ,f,τ
−−−→→ (l′, u′) with δ ≤ δmax(l, u) implies

(i) a run (l, u)
δ,f,τ
−−−→→ l (l, u′)

0,·,τ
−−−→→ (l′, u′), or

(ii) a location k such that (l, u)
0,·,τ
−−−→→ (k, u)

δ,f,τ
−−−→→ k (k, u′)

0,·,τ
−−−→→ (l′, u′).

H is strongly overlap-closed if inf l,u δmax(l, u) > 0.

Remark 3. Note that any hybrid automaton is overlap-closed if it does not have
different locations connected by τ -transitions.

According to Lemma 2, LHA with convex invariants always have a linear ac-
tivity between two points of the same location. Combining this fact with the
assumption of overlap-closedness, we can conclude that if H �w

0 G, a weak run
in H is matched in G with a weak run witnessed by the same external activity.
From there it is straightforward to show compositionality as follows:



Proposition 5. Let H1, H2 be LHA and G1, G2 be strongly overlap-closed LHA
with convex invariants and bounded derivatives. If H1 �w

0 G1 and H2 �w
0 G2,

then H1||H2 �w
0 G1||G2.

Proof. (Sketch) Let R1, R2 be witnessing weak simulation relations for H1 �w
0

G1 and H2 �w
0 G2, respectively. We show that

R = {(((k1, k2), x), ((l1, l2), y)) | ((ki, x↓Hi
), (li, y↓Gi

)) ∈ Ri for i = 1, 2}

is a witnessing simulation relation for H1||H2 �w
0 G1||G2. The containment of

initial states in R follows straightforwardly from the containment in R1 and R2.
It remains to demonstrate that for any pair of states in R, a weak atomic run in
H1||H2 implies a matching weak atomic run in G1||G2 such that the target states

are again in R. A weak atomic run p
δ,f,α
−−−→→ p′ can be split in two: a run p

δ,f,τ
−−−→→ p′′

containing only τ -transitions that leave the variables unchanged (see Remark 2)

and a run p′′
0,f,α
−−−→→ p′ of zero duration. The definition of weak simulation for a

run of zero duration is the same as that of timed simulation, so with Prop. 4
we can deduce that the latter part satisfies compositionality. The rest of the
proof is therefore concerned with the former part of the run, which only includes
τ -transitions that do not change the variables.

Because the Hi and H are LHA, a weak atomic run in H1||H2 has a witnessing
run whose activity is piecewise linear [12]. We pad it with τ -transitions to obtain
a run

σH = r0

δ0,f0,τ
−−−−→ r1

δ1,f1,τ
−−−−→ . . .

δn−2,fn−2,τ
−−−−−−−−→ rn−1

δn−1,fn−1,τ
−−−−−−−−→ rn

with durations δj ≤ δmin for some arbitrarily small δmin > 0, and linear activities

f1. Every one of the atomic runs σj,H = rj

δj ,fj ,τ
−−−−→ rj+1 in σH projects in the

Hi onto corresponding runs σj,Hi
. Since Hi is weakly simulated by Gi, there

must be matching weak runs σw
j,Gi

, i.e., with the same valuations of the external
variables in the source and target state. Let δmin = inf l,u δmax(l, u) from Def. 10.
According to Def. 10, this implies that there is also matching weak run σ̄w

j,Gi
with

all time-elapse inside a single location. Because the Gi are LHA with convex
invariants, it follows from Lemma 2 that the linear activity between source and
target state is also admissible in that location, thus matching the one in Hi.

It remains to show that the runs in G1 and G2 compose to a run in G1||G2,
and that the target state of this run lies in R. Recall that the source and target
states of σj,Hi

and σ̄w
j,Gi

lie in Ri, which means they have the same values in the
shared external variables. The shared variables of H1 and H2 also have the same
values in the respective states, and due to comparability the same holds for the
shared variables of G1 and G2. By padding with τ -transitions, we can obtain
witnessing nonatomic runs for σ̄w

j,G1
and σ̄w

j,G2
that have the same length and

whose atomic runs have the same duration. Because all the nonzero activities
are linear, the source and target states still match. Consequently, the runs in G1

and G2 compose to a run in G1||G2. Because the target states of the runs in Hi

and Gi lie in Ri, the target states of the runs in H1||H2 and G1||G2 lie in R. ut
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ẋ = 1

ẏ = 1

y ≥ 0

c

ẋ = 1

−1 ≤ ẏ ≤ 1

y ≥ 0

b

ẋ = 1

−1 ≤ ẏ ≤ 1

y ./ 0

τ

τ

τ

Fig. 7. LHA G′, overlap-closed if ./ = ≥

Example 8 (Compositional LHA for weak timed simulation). 1 Consider the
LHA H from Ex. 4, shown in Fig. 4, and G′ from Fig. 7, with XG′ = {x, y},
CG′ = OG′ = {x}. G′ is overlap-closed for the sign ./ = ≥, and not overlap-
closed if ./ = >. In both cases H �w

0 G′ because every atomic run in H can be
matched by a concatenation of atomic runs in G in which positive and negative
change of y cancel each other out. Now consider the composition of H and G′

with K shown in Fig. 6(a), with XK = CK = {y}. In G′||K with ./ = ≥, there
are silent transitions to location c, where time can elapse forever, and conse-
quently H ||K �w

0 G′||K. If ./ = >, there is no run from the initial location a to
location c in G′||K, because the invariant of location b is empty. Consequently,
H ||K �w

0 G′||K.

For weak runs, trace simulation has the advantage over timed simulation because
it is compositional for any hybrid automata. In [1], timed simulation was used to
show that the invariant of a hybrid automaton can be partitioned into arbitrarily
small parts with a splitting operation that does not modify the behavior. This is
useful in many applications, e.g., to transform nonconvex into convex invariants,
or to overapproximate the automaton with one of simpler dynamics [1]. The
splitting operation is defined as follows:

Definition 11 (Invariant split). (modified from [1]) An (open) split S for a
hybrid automaton H maps each location l to a finite set {S l

1, . . . ,S
l
k} of sets of

valuations over X such that there exists a finite (open) cover Ol = {Ol
1, . . . , O

l
k}

of Inv(l) with S l
i = Inv(l) ∩ Ol

i for i = 1, . . . , k. The split of H along S is the
hybrid automaton split(H,S) = (LocS , (X, C, O),Lab,→S , FlowS , InvS , InitS)
with

– LocS = {(l, S) | l ∈ Loc, S ∈ S(l)},
– →S= {((l, S), a, µ, (l′, S′)) | (l, a, µ, l′) ∈→},
– FlowS((l, S)) = Flow (l), InvS((l, S)) = Inv(l)∩S, InitS((l, S)) = Init(l)∩S.

We rephrase the following results of [1] and [3] using weak trace simulation, thus
expanding their applicability to the context of compositional reasoning.

1 Thanks to the anynomous reviewer who inspired the example.



Proposition 6. For any H, H ∼=w
t split(H,S) if S is an open split or the

admissible activities of H are analytic functions.

Proof. In [1], it is shown that H ∼=w
0 split(H,S) if S is an open split. While timed

simulation is used formally, the corresponding proof shows that the activities
match identically over time. It is therefore straightforward to strengthen the
result to weak trace bisimulation. In [3] it is shown, based on the results of [1],
that the split does not have to be open if the admissible activities of H are
analytic functions. ut

The condition of analytic activities applies, e.g., to LHA, or hybrid automata
with affine dynamics [3], whose flows are defined by conjunctions of linear con-
straints over X ∪ Ẋ.

5 Conclusions

Timed and weak timed simulation are often used to show equivalence and ab-
straction between hybrid automata. We identify the following subclasses of lin-
ear hybrid automata (LHA) for which these relations are compositional: LHA
with convex invariants for timed simulation, and strongly overlap-closed LHA
with convex invariants and bounded derivatives for weak timed simulation. An
advantage of timed simulation relations is that for many LHA they can be com-
puted, e.g., with PHAVer [9,8,2]. In addition, LHA can overapproximate any
hybrid automata arbitrarily close [1]. Using the above results we can overap-
proximate with a compositional subclass of LHA, and thus apply compositional
and assume/guarantee-reasoning to arbitrary hybrid automata.

On the downside, timed simulation is not compositional in general. Weak
trace simulation, which is compositional for hybrid automata with arbitrary
dynamics, can sometimes be used instead. E.g., one may substitute it for weak
timed simulation in the proofs of [3,1] without having to change any essential
parts of the proofs. The result is a notion of equivalence that is stronger per se
and compositional. In future work we will identify subclasses for which timed
simulation implies trace simulation.
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