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Preface

This volume contains the informal proceedings of the 10th International Work-
shop on Rewriting Logic and its Applications (WRLA 2014),held on April 5th
and 6th 2014 in Grenoble, France.

Rewriting logic (RL) is a natural model of computation and an expressive se-
mantic framework for concurrency, parallelism, communication, and interaction.
It can be used for specifying a wide range of systems and languages in various
application fields. It also has good properties as a metalogical framework for
representing logics. In recent years, several languages based on RL (ASF+SDF,
CafeOBJ, ELAN, Maude) have been designed and implemented. The aim of the
workshop is to bring together researchers with a common interest in RL and its
applications, and to give them the opportunity to present their recent works,
discuss future research directions, and exchange ideas. The previous meetings
were held on Asilomar (USA) 1996, Pont-a-Mousson (France) 1998, Kanazawa
(Japan) 2000, Pisa (Italy) 2002, Barcelona (Spain) 2004, Vienna (Austria) 2006,
Budapest (Hungary) 2008, Paphos (Cyprus) 2010, and Tallinn (Estonia) 2012.

Typically, the topics of interest include (but are not restricted to):

– foundations and models of RL;

– languages based on RL, including implementation issues;

– RL as a logical framework;

– RL as a semantic framework, including applications of RL to

• object-oriented systems,

• concurrent and/or parallel systems,

• interactive, distributed, open ended and mobile systems,

• specification of languages and systems;

– use of RL to provide rigorous support for model-based software engineering;

– formalisms related to RL, including

• real-time and probabilistic extensions of RL,

• rewriting approaches to behavioral specifications,

• tile logic;

– verification techniques for RL specifications, including

• equational and coherence methods,

• verification of properties expressed in first-order, higher-order, modal
and temporal logics,

• narrowing-based analysis and verification;

– comparisons of RL with existing formalisms having analogous aims;

– application of RL to specification and analysis of

• distributed systems,

• physical systems.
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The last editions of WRLA were held as a satellite event of the European
Joint Conferences on Theory & Practice of Software (ETAPS). This year edition
is a satellite event of ETAPS 2014.

The revised versions of the contributions selected to be presented at the
workshop are included in this informal proceedings. Each contribution was re-
viewed by at least three Program Committee members. This volume also includes
the abstracts of four invited speakers: Francisco Durán from the Universidad de
Málaga, Spain, Alberto Lluch-Lafuente from the IMT Institute for Advanced
Studies Lucca, Italy, Peter Ölveczky from the University of Oslo, Norway, and
Cesare Tinelli from the University of Iowa, USA. We would like to thank them
for having accepted our invitation.

We would also like to thank all the members of the Program Committee and
all the referees for their careful work in the review process. Finally, I express
our gratitude to all members of the local organization of ETAPS 2014 and the
Easychair system, whose work has made the workshop possible.

March 2014 Santiago Escobar
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On the composition of
graph-transformation-based DSL definitions

Francisco Durán

Department of Computer Science, University of Málaga
duran@lcc.uma.es

Abstract. Model-driven engineering (MDE) is an increasingly popular
approach to systems development. However, its two main ingredients,
namely domain-specific languages (DSLs) and model transformations
currently lack of the appropriate formal background as to allow their
complete development. DSLs are particularly interesting because they
allow encoding domain-knowledge into a modelling language and enable
full code generation and analysis based on high-level models. Moreover,
as a result of the domain-specificity of DSLs, there is a need for many
such languages, which means that their use only becomes economically
viable if the development of new DSLs can be made efficient. We present
results on the modularity of DSLs whose behaviour is specified through
in-place model transformations. Specifically, we present a formal frame-
work of morphisms between graph-transformation systems (GTSs) that
allow us to define a novel technique for conservative extensions of such
DSLs. We illustrate the use of some of these results in the context of the
modular specification of non-functional properties of systems. We apply
our approach for the specification and monitoring of non-functional prop-
erties using generic observers DSLs, which can be used to analyse the
required non-functional properties of the system with the guarantee of
not changing its behaviour. The approach has been used for the definition
of a modular, model-based partial reimplementation of one well-known
analysis framework, namely the Palladio Architecture Simulator.



Can we efficiently check concurrent programs
under relaxed memory models in Maude?

Alberto LLuch-Lafuente

IMT Institute for Advanced Studies, Italy
alberto.lluch@imtlucca.it

Abstract. Relaxed memory models offer suitable abstractions of the ac-
tual optimizations offered by multi-core architectures and by compilers
of concurrent programming languages. Using such abstractions for veri-
fication purposes is challenging in part since they introduce yet another
source of high non-determinism, thus contributing to the state explo-
sion problem. In the last years several techniques have been proposed
to mitigate those problems so to make verification under relaxed mem-
ory models feasible. I would like to present some of those techniques
and to discuss if and how those techniques can be adopted in Maude or
Maude-based verification tools.



Real-Time Maude and its Applications

Peter Ölveczky

Department of Informatics, University of Oslo, Norway
peterol@ifi.uio.no

Abstract. Real-Time Maude extends the rewriting-logic-based Maude
system to support the executable formal modeling and analysis of real-
time systems. Real-Time Maude is characterized by its general and ex-
pressive, yet intuitive, specification formalism, and offers a spectrum of
formal analysis methods, including: rewriting for simulation purposes,
search for reachability analysis, and both untimed and metric tempo-
ral logic model checking. Real-Time Maude is particularly suitable for
specifying real-time systems in an object-oriented style, and its flexible
formalism makes it easy to model different forms of communication.
This modeling flexibility, and the usefulness of Real-Time Maude for
both simulation and model checking, has been demonstrated on ad-
vanced state-of-the-art applications, including both distributed proto-
cols of different kinds as well as industrial embedded systems. Further-
more, Real-Time Maude’s expressiveness has also been exploited for
defining the formal semantics of a number of modeling languages for
real-time/embedded systems. Real-Time Maude thereby provides formal
model checking capabilities for these languages.
This tutorial gives an overview of Real-Time Maude and some of its
applications, and mentions some future research challenges.



Extending SMT solving with constrained
deduction and rewrite rules

Cesare Tinelli

Department of Computer Science, The University of Iowa
cesare-tinelli @ uiowa.edu

Abstract. SMT solvers are very effective at reasoning about ground for-
mulas over a variety of theories such as linear arithmetic, the theory of
equality, of arrays, of bit bit vectors, and so on. Their high performance
with respect to other kinds of automated provers is achieved by building
in specialized reasoning techniques for these theories. To reason about
non-built-in theories users of SMT solvers must provide as input quan-
tified formulas axiomatizing those theories, as with general-purpose the-
orem provers. Unfortunately, combining built-in theory reasoning with
quantifier reasoning is extremely challenging, both in principle and in
practice. As a result, SMT solvers accepting quantified formulas rely on
heuristic, and generally incomplete, techniques for generating selected
ground instances of those formulas. As an alternative to this approach,
we present an abstract framework for extending SMT solvers with user-
specified guarded rewrite rules and deduction rules for reasoning about
non-built-in symbols. These rules, which are guarded by constraints over
the built-in theories, are similar in spirit to Constraint Handling Rules
in Logic Programming and to the recently introduced Logically Con-
strained Term Rewriting Systems. In concrete, the framework allows one
to fully integrate a powerful rewrite/deduction engine inside the general
DPLL(T) architecture used by most SMT solvers. We conjecture that in
several cases, especially for problems coming for program verification, us-
ing this approach to extend built-in theories is more effective in practice
than relying on quantified axioms and heuristic quantifier instantiation.
We will present initial experimental evidence supporting this claim ob-
tained from a first implementation of our framework within the CVC4
SMT solver.
This is joint work with Andrew Reynolds and Franois Bobot.



Conditional Narrowing Modulo in Rewriting
Logic and Maude?

Luis Aguirre, Narciso Mart́ı-Oliet, Miguel Palomino, and Isabel Pita

Facultad de Informática, Universidad Complutense de Madrid, Spain
{luisagui, narciso, miguelpt, ipandreu}@ucm.es

Abstract. This work studies the relationship between verifiable and
computable answers for reachability problems in rewrite theories with an
underlying membership equational logic. These problems have the form
(∃x̄)s(x̄) →∗ t(x̄), with x̄ some variables, or a conjunction of several of
these subgoals. A calculus that solves this kind of problems has been
developed and proved correct. Given a reachability problem in a rewrite
theory, this calculus can compute any normalized answer that can be
checked by rewriting, or a more general one. Special care has been taken
in the calculus to keep membership information attached to each term,
using this information whenever possible.

Keywords: Maude, narrowing, reachability, rewriting logic, unification,
membership equational logic

1 Introduction

Rewriting logic is a computational logic that has been around for more than
twenty years [Mes90], whose semantics [BM06] has a precise mathematical mean-
ing allowing mathematical reasoning for property proving, providing a more flex-
ible framework for the specification of concurrent systems. It turned out that it
can express both concurrent computation and logical deduction, allowing its ap-
plication in many areas such as automated deduction, software and hardware
specification and verification, security, etc. One important property of rewrit-
ing logic is reflection [CM96]. Intuitively, reflection means representing a logic’s
metalevel at the object level, allowing the definition of strategies that guide rule
application in an object-level theory.

Reachability problems have the form (∃x̄)s(x̄) →∗ t(x̄), with x̄ some vari-
ables, or a conjunction of several of these subgoals. They can be solved by model
checking methods for finite state spaces. A technique known as narrowing [Fay78]
that was first proposed as a method for solving equational goals (unification), has
been extended to cover also reachability goals [MT07], leaving equational goals
as a special case of reachability goals. In recent years the idea of variants of a
term has been applied to narrowing. A strategy for order-sorted unconditional

? Research supported by MINECO Spanish project StrongSoft (TIN2012–39391–C04–
04) and Comunidad de Madrid program PROMETIDOS (S2009/TIC-1465).



rewrite theories known as folding variant narrowing [ESM12], which computes
a complete set of variants of any term, has been developed by Escobar, Sasse
and Meseguer, allowing unification modulo a set of equations and axioms. The
strategy terminates on any input term on those systems enjoying the finite vari-
ant property, and it is optimally terminating. It is being used for cryptographic
protocol analysis [MT07], with tools like Maude-NPA [EMM05], termination al-
gorithms modulo axioms [DLM+08], and algorithms for checking confluence and
coherence of rewrite theories modulo axioms, such as the Church-Rosser (CRC)
and the Coherence (ChC) Checkers for Maude [DM12].

This work explores narrowing for membership conditional rewrite theories,
going beyond the scope of folding variant narrowing which works on order-sorted
unconditional rewrite theories. A calculus that computes answers to reachability
problems in membership conditional rewrite theories has been developed and
proved correct with respect to idempotent normalized answers.

The work is structured as follows: in Section 2 all needed definitions and prop-
erties for rewriting and narrowing are introduced. Section 3 introduces the first
part of the narrowing calculus, the one that deals with equational unification.
Section 4 introduces the part of the calculus dealing with reachability and its
proof of correctness. Section 5 shows the calculus at work. In Section 6, related
work, conclusions and current lines of investigation for this work are presented.
An extended version of this paper, with all the missing proofs, can be found at
http://maude.sip.ucm.es/cnarrowing/, together with a previous version of
this work with transformation rules and a prototype.

2 Preliminaries

We assume familiarity with rewriting logic [BM06]. There are several language
implementations of rewriting logic, including Maude [CDE+07]. Rewriting logic
is parameterized by an underlying equational logic. In Maude’s case this logic is
membership equational logic [Mes97].

2.1 Tower of Hanoi example

Throughout this paper the Tower of Hanoi puzzle will be used as a motivating
example to explain the definitions in a less abstract way. We have Rods a, b and
c, and Disks 1, 2, 3 and 4 which can slide onto any Rod. We call a Rod with zero
or more stacked Disks (written juxtaposed) a Tower. If smaller Disks are always
stacked on top of bigger Disks we have a ValidTower (abbreviated VT). A set
of valid towers (written separated by commas) is a State (abbreviated St). A
move between a Pair of towers (written separated by a − symbol) is defined by
the rules: 1) only one Disk may be moved at a time, 2) each move consists of
taking the upper Disk from one Tower and placing it on top of another Tower,
and 3) Disk X may be placed on top of Disk Y only if X is smaller than Y
(written X < Y = t, where t is the true Boolean value). The goal of the puzzle
is to reach a desired State from a given initial State.



2.2 Membership equational logic

A membership equational logic (Mel) signature [BM06] is a triple Σ = (K,Ω, S),
with K a set of kinds, Ω = {Σw;k}(w;k)∈K∗xK a many-kinded algebraic signature,
and S = {Sk}k∈K a K-kinded family of disjoint sets of sorts. For simplicity, we
only allow overloading of operators whenever the result belongs in the same kind.
The kind of a sort s is denoted by [s]. The sets TΣ,s, TΣ(X)s, TΣ,k and TΣ(X)k
denote, respectively, the set of ground Σ-terms with sort s, the set of Σ-terms
with sort s over the set X of sorted variables, the set of ground Σ-terms with
kind k and the set of Σ-terms with kind k over the set X of sorted variables.
We write TΣ , TΣ(X) for the corresponding term algebras. vars(t) ⊆ X denotes
the set of variables in t ∈ TΣ(X).

In the Tower of Hanoi puzzle, Σ = (K,Ω, S) is: K={TS, P, D, B},
Ω={·D TS;TS, ,TS TS;TS , −TS TS;P, moveP;P, <D D;B}, S={STS, SP, SD, SB}, SD={Disk},
STS={Rod, VT, Tower, St}, SP={Pair}, SD={Disk}, SB={Boolean}.
{a, b, c}, {1, 2, 3, 4}, and {t} are the atoms with sort Rod, Disk, and Boolean

respectively.
Positions in a term t: we represent the root of t as ε and the other positions

as strings of nonzero natural numbers in the usual way, considering t as a tree.
The set of positions of a term is written Pos(t). t|p is the subtree below position
p. t[u]p is the replacement in t of the subterm at position p with term u.

A substitution σ : Y → TΣ(X) is a function from a finite set of sorted vari-
ables Y ⊆ X to TΣ(X) such that σ(y) has the same or lower sort as that of
the variable y ∈ Y (s1 ≤ s2, formally defined in the next paragraph). Substi-
tutions are written as σ={x1 7→t1, . . ., xn 7→tn} where Dom(σ)={x1, . . ., xn} and
Ran(σ)=

⋃n
i=1 vars(ti). The identity substitution is id . The restriction of σ to

a set of variables V is σ|V . Composition of two substitutions is denoted by σσ′.
For substitutions σ and σ′ where Dom(σ)∩Dom(σ′)=∅, we denote their union
by σ ∪ σ′.

A Mel theory [BM06] is a pair (Σ, E), where Σ is a Mel signature and
E is a finite set of Mel sentences, either conditional equations or conditional
memberships of the forms:

(∀X) t=t′ if
∧
i

Ai, (∀X) t:s if
∧
i

Ai

for t, t′ ∈ TΣ(X)k and s ∈ Sk, the latter stating that t is a term of sort s,
provided the condition holds, and each Ai can be of the form t=t′, t:s or t:=t′ (a
matching equation). Matching equations are treated as ordinary equations, but
they impose a limitation in the syntax of admissible Mel theories, as we will
see. We also admit unconditional sentences in E . Order-sorted (sugared) notation
s1 ≤ s2 can be used instead of (∀x:[s1]) x:s2 if x:s1. An operator declaration
f : s1 × · · · × sn → s corresponds to declaring f at the kind level and giving
the membership axiom (∀x1:[s1], . . . , xn:[sn]) f(x1, . . . , xn):s if

∧
1≤i≤n xi:si.

Given a Mel sentence φ, we denote by E ` φ that φ can be deduced from E
using the rules in Figure 1, where = can be either = or := as explained before
[BM12]. The rules of Figure 1 specify a sound and complete calculus. A Mel



t ∈ TΣ(X)

(∀X)t = t
Reflexivity

(∀X)t = t′

(∀X)t′ = t
Symmetry

(∀X)t1 = t2(∀X)t2 = t3
(∀X)t1 = t3

Transitivity
(∀X)t′:s (∀X)t=t′

(∀X)t:s
Membership

f ∈ Σk1···kn,k (∀X)ti=t
′
i ti, t

′
i∈TΣ(X)ki , 1≤i≤n

(∀X)f(t1, . . . , tn) = f(t′1, . . . , t
′
n)

Congruence

((∀X)A0 if
∧
iAi)∈E θ:X→TΣ(Y ) (∀Y )Aiθ

(∀Y )A0θ
Replacement

Fig. 1. Deduction rules for membership equational logic.

theory (Σ, E) has an initial algebra, denoted by TΣ/E , whose elements are the
equivalence classes [t]E ⊆ TΣ of ground terms identified by the equations in E .

The Mel theory for the Tower of Hanoi puzzle consists of Σ = (K,Ω, S) and
the following set E of Mel sentences where we omit the universal quantifiers:

X : St if X : VT; X : Tower if X : VT; X : St if X : Rod; X : Tower if X : Rod;
X : St if X : Rod; X : VT if X : Rod; XY : Tower if X : Disk ∧ Y : Tower;
X,Y : St if X : St ∧ Y : St; X,Y = Y,X; (X,Y ), Z = X, (Y, Z);
X − Y : Pair if X : Tower ∧ Y : Tower; X − Y = Y −X;
X < Y : Boolean if X : Disk ∧ Y : Disk; XR : VT if X : Disk ∧R : Rod;
XY T : VT if X : Disk ∧ Y : Disk ∧ T : Tower ∧X<Y = t ∧ Y T : Vt;
1 < 2 = t; 1 < 3 = t; 1 < 4 = t; 2 < 3 = t; 2 < 4 = t; 3 < 4 = t;
move(XT −R) = T −XR if X : Disk ∧ T : Tower ∧R : Rod;
move(XT − Y T ′) = T −XY T ′ if X : Disk ∧ Y : Disk ∧ T : Tower ∧
∧ T ′ : Tower ∧ X < Y = t; move(X) : Pair if X : Pair.

A single Disk stacked on a Rod is always a ValidTower. For multiple Disks,
we compare them recursively. The operator move distinguishes between two
cases: if one Tower is empty, i.e. a Rod, then we can stack any Disk on it;
else the sizes of the top Disks on each Tower must be compared (<) and we can
stack the smaller one on top of the other.

2.3 Rewriting logic

A rewrite theory R = (Σ, E , R) consists of a Mel theory (Σ, E) together with a
finite set R of conditional rewrite rules each of which has the form

(∀X) l→ r if
∧
i

pi=qi ∧
∧
j

wj :sj ∧
∧
k

lk → rk,

where l, r are Σ-terms of the same kind and = can be either = or :=. Rewrite
rules can also be unconditional.

Such a rewrite rule specifies a one-step transition from a state t[lθ]p to the
state t[rθ]p, denoted by t[lθ]p →1

R t[rθ]p, provided the condition holds. The
subterm t|p is called a redex.



t ∈ TΣ(X)

(∀X)t→ t
Reflexivity

(∀X)t1 → t2, (∀X)t2 → t3
(∀X)t1 → t3

Transitivity

f ∈ Σk1···kn,k (∀X)ti → t′i ti, t
′
i∈TΣ(X)ki , 1≤i≤n

(∀X)f(t1, . . . , tn)→ f(t′1, . . . , t
′
n)

Congruence

((∀X) l→ r if
∧
i

pi=qi ∧
∧
j

wj :sj ∧
∧
k

lk → rk)∈R

θ:X→TΣ(Y )
∧
i E ` (∀Y )piθ=qiθ

∧
j E ` (∀Y )wjθ:sj

∧
k(∀Y )lkθ → rkθ

(∀Y )lθ→rθ Replace

Fig. 2. Deduction rules for rewrite theories.

In the example, R has as only element the conditional rewrite rule:
D,E → F,G if D : Tower∧E : Tower∧F −G := move(D−E)∧F : Tower∧G :
Tower.

F and G are new variables on the right side of the rule. They are instantiated
by matching on the conditional part of the rule.

The inference rules in Figure 2 for rewrite theories can infer all possible
computations in the system specified by R [BM12]. We can reach a state v from
a state u if we can prove R ` u→ v.

The relation →1
R/E on TΣ(X) is =E ◦ →1

R ◦ =E . →1
R/E on TΣ(X) induces a

relation→1
R/E on TΣ/E(X), the equivalence relation modulo E , by [t]E →1

R/E [t′]E

iff t →1
R/E t

′. The transitive (resp. transitive and reflexive) closure of →1
R/E is

denoted →+
R/E (resp. →∗R/E). We say that a term t is →R/E -irreducible (or just

R/E-irreducible) if there is no term t′ such that t→1
R/E t

′.

A rewrite rule l → r if cond , is sort-decreasing if for each substitution σ,
we have that for any sort s if lσ ∈ TΣ(X)s and (cond)σ is verified implies
rσ ∈ TΣ(X)s. A Σ-equation t = t′ is regular if Var(t) = Var(t′). It is sort-
preserving if for each substitution σ, we have tσ ∈ Tσ(X)s implies t′σ ∈ Tσ(X)s
and vice versa.

A substitution is called E-normalized (or normalized) if xσ is E-irreducible
for all x ∈ V .

The relation→1
R/E is terminating if there are no infinite rewriting sequences.

The relation →1
R/E is operationally terminating if there are no infinite well-

formed proof trees. The relation →1
R/E is confluent if whenever t→∗R/E t

′ and

t→∗R/E t
′′, there exists a term t′′′ such that t′→∗R/E t

′′′ and t′′→∗R/E t
′′′. In a con-

fluent, terminating, sort-decreasing, membership rewrite theory, for each term
t ∈ TΣ(X), there is a unique (up to E-equivalence) R/E-irreducible term t′ ob-
tained by rewriting to canonical form, denoted by t →!

R/E t
′, or t ↓R/E when t′

is not relevant, which we call canR/E(t).



2.4 Executable rewrite theories

For a rewrite theory R = (Σ, E , R), whether a one step rewrite t →1
R/E t′

holds is undecidable in general. We impose additional conditions, similar to
those required for functional and system modules in Maude, under which we can
decide if t→1

R/E t
′ holds. We decompose E into a disjoint union E ∪ A, with A

a set of equational axioms (such as associativity, and/or commutativity, and/or
identity). We define the relation→1

E,A on TΣ(X) as follows: t→1
E,A t

′ if there is
a position ω ∈ Pos(t), an equation l = r if cond ∈ E, and a substitution σ such
that t|ω =A lσ (A-matching), (cond)σ is satisfied, and t′ = t[rσ]ω. The relation
→1
R,A is similarly defined. We define→1

R∪E,A as→1
R,A ∪ →1

E,A. A rewrite theory
R = (Σ,E ∪ A,R) is executable if each kind k in Σ is nonempty, E, A, and R
are finite and the following conditions hold:

1. E and R are admissible [CDE+07]. Then we have a deterministic 3-CTRS
[Ohl02]. Any new variable in the conditions will be instantiated by matching.
New variables are distinguished in Maude by using a := symbol instead of =
in the condition. They appear on the left terms of these matching equations.
Conditions in deterministic 3-CTRS’s must be solved in left to right order.

2. Equality modulo A is decidable and there exists a finite matching algorithm
modulo A.

3. The equations in E are sort-decreasing, and terminating and confluent mod-
ulo A when we consider them as oriented rules, where →1

E/A is defined in

the same way as we did for →1
R/E .

4. →E,A is coherent with A, i.e., ∀t1, t2, t3 we have t1 →+
E,A t2 and t1 =A t3

implies ∃t4, t5 such that t2 →∗E,A t4, t3 →
+
E,A t5 and t4 =A t5 [MT07].

t1 →+
E,A t2 →∗E,A t4

A A

t3 −→+
E,A t5

5. →R,A is E-consistent with A, i.e., ∀t1, t2, t3 we have t1 →R,A t2 and t1 =A t3
implies ∃t4 such that t3 →R,A t4 and t2 =E t4. Also →R,A is E-consistent
with →E,A, i.e., ∀t1, t2, t3 we have t1 →R,A t2 and t1 →∗E,A t3 implies ∃t4, t5
such that t3 →∗E,A t4 and t4 →R,A t5 and t2 =E t5. In both cases the →R,A

rewriting steps from t3 and t4 must be performed with the same rule that
was applied to t1 [MT07].

t1 →R,A t2

A E

t3 →R,A t4

(a) E-consistency of→R,A with A

t1 −→R,A t2

↓∗E,A E

t3 →∗E,A t4 →R,A t5

(b) E-consistency of →R,A with →E,A

Technically, what coherence means is that the weaker relation→1
E,A becomes

semantically equivalent to the stronger relation →1
E/A, so we can decide t→1

R/E



t′ by finding t′′ such that canE,A(t)→1
R t
′′ and canE,A(t′) =A canE,A(t′′), which

is decidable, since the number of rules is finite and A-matching is decidable and
finite.

Under these conditions we can implement →R/E on terms using →R∪E,A
[MT07]. This lemma links →R/E with →E,A and →R,A. Patrick Viry gave a
proof for unsorted unconditional rewrite theories [Vir94], which can easily be
lifted to our membership conditional case.

Lemma 1. Let R = (Σ, E , R) be an executable rewrite theory, that is, it has
all the properties specified in Section 2.4. Then t1 →R/E t2 if and only if
t1 →∗E,A→R,A t3 for some t3 =E t2.

The rewrite theory for the Tower of Hanoi puzzle is executable if we decompose
E in the following way: the set A has as elements the associative equation and
the commutative equations in E ; the set E has as elements the rest of equations
and all memberships in E , and we add to R the following rule needed for E-
consistency:
D,E, S → F,G, S if D : Tower∧E : Tower∧S : State∧ F−G := move(D−E) ∧
∧F : Tower ∧G : Tower.

2.5 Unification

Given a rewrite theory R = (Σ, E , R), a Σ-equation is an expression of the form
t = t′ where t, t′ ∈ TΣ(X)s for an appropriate s. The E-subsumption preorder
�E on TΣ(X)s is defined by t �E t′ if there is a substitution σ such that
t =E t

′σ. For substitutions σ, ρ and a set of variables V we define σ|V �E ρ|V if
there is a substitution η such that σ|V =E (ρη)|V . Then we say that ρ is more
general than σ with respect to V . When V is not specified, we assume that
V = Dom(σ) = Dom(ρ) and we say that ρ is more general than σ.

A system of equations F is a conjunction of the form t1 = t′1 ∧ . . . ∧ tn = t′n
where for 1 ≤ i ≤ n, ti = t′i is a Σ-equation. We define Var(F ) =

⋃
i Var(ti) ∪

Var(t′i). An E-unifier for F is a substitution σ such that tiσ =E t
′
iσ for 1 ≤ i ≤ n.

For V = Var(F ) ⊆W , a set of substitutions CSUW
E (F ) is said to be a complete

set of unifiers modulo E of F away from W if

– each σ ∈ CSUW
E (F ) is an E-unifier of F ;

– for any E-unifier ρ of F there is a σ ∈ CSUW
E (F ) such that ρ|V �E σ|V ;

– for all σ ∈ CSUW
E (F ), Dom(σ) ⊆ V and Ran(σ) ∩W = ∅.

An E-unification algorithm is complete if for any given system of equations
it generates a complete set of E-unifiers, which may not be finite. A unification
algorithm is said to be finite and complete if it terminates after generating a
finite and complete set of solutions.

2.6 Reachability goals

Given a rewrite theory R = (Σ, E , R), a reachability goal G is a conjunction of
the form t1 →∗ t′1 ∧ . . . ∧ tn →∗ t′n where for 1 ≤ i ≤ n, ti, t

′
i ∈ TΣ(X)si for



appropriate si. We define Var(G) =
⋃
i Var(ti) ∪ Var(t′i). A substitution σ is a

solution of G if tiσ →∗R/E t
′
iσ for 1 ≤ i ≤ n. We define E(G) to be the system of

equations t1 = t′1 ∧ . . . ∧ tn = t′n. We say σ is a trivial solution of G if it is an
E-unifier for E(G). We say G is trivial if the identity substitution id is a trivial
solution of G.

For goals G : t1 →∗ t2 ∧ . . .∧ t2n−1 →∗ t2n and G′ : t′1 →∗ t′2 ∧ . . .∧ t′2n−1 →∗
t′2n we say G =E G

′ if ti =E t
′
i for 1 ≤ i ≤ 2n. We say G→R G

′ if there is an odd
i such that ti →R t′i and for all j 6= i we have tj = t′j . That is, G and G′ differ
only in one subgoal (ti → ti+1 vs t′i → ti+1), but ti → t′i, so when we rewrite ti
in G to t′i we get G′. The relation →R/E over goals is defined as =E ◦ →R ◦ =E .

2.7 Narrowing

Let t be a Σ-term and W be a set of variables such that Var(t) ⊆ W . The
R,A-narrowing relation on TΣ(X) is defined as follows: t  p,σ,R,A t′ if there
is a non-variable position p ∈ PosΣ(t), a rule l → r if cond in R, properly

renamed, such that Var(l) ∩ W = ∅, and a unifier σ ∈ CSUW ′

A (t|p = l) for
W ′ = W ∪ Var(l), such that t′ = (t[r]p)σ and (cond)σ holds. Similarly E,A-
narrowing and R ∪ E,A-narrowing relations are defined.

2.8 Associated rewrite theory

Any executable Mel theory (Σ,E∪A) has a corresponding rewrite theory RE =
(Σ′,A, RE) associated to it [DLM+08]: we add a fresh new kind Truth with a
constant tt to Σ, and for each kind k ∈ K an operator eq : k k → Truth. >
represents a conjunction of any number of tt ’s. There are rules eq(x:k, x:k)→ tt
for each kind k ∈ K. For each conditional equation or membership in E the set
RE has a conditional rule or membership of the form

t→ t′ if A•1 ∧ . . . ∧A•n t:s if A•1 ∧ . . . ∧A•n

where if Ai is a membership then A•i=Ai, if Ai ≡ ti:=t′i then A•i is t′i→ti, and if
Ai ≡ t=t′ then A•i is eq(t, t′)→tt .

Systems of equations in (Σ,E ∪ A) with form G ≡
∧m
i=1(si = ti) become

reachability goals in RE of the form
∧m
i=1 eq(si, ti) → tt . A substitution σ is a

solution of G if there are derivations for
∧m
i=1(siσ = tiσ), or

∧m
i=1 eq(siσ, tiσ)

rewrites to >.
The inference rules for membership rewriting in RE are the ones in Figure 3,

adapted from [DLM+08, Fig. 4, p. 12], where the rules are defined for context-
sensitive membership rewriting.

3 Conditional narrowing modulo unification

Narrowing allows us to assign values to variables in such a way that a reachability
goal holds. We implement narrowing using a calculus that has the following
properties:



t1 →1 t2, t2 → t3
t1 → t3

Transitivity
t→1 t′, t′ : s

t : s
Subject Reduction

t =A t
′

t→ t′
Reflexivity

ti →1 t′i
f(t1, . . . , ti, . . . , tn)→1 f(t1, . . . , t′i, . . . , tn)

Congruence

t→ t′ if A•1 . . . A
•
n ∈ RE and u =A tσ

A•1σ . . . A
•
nσ

u→1 t′σ
Replacement

t : s if A•1 . . . A
•
n ∈ RE and u =A tσ

A•1σ . . . A
•
nσ

u : s
Membership

Fig. 3. Inference rules for membership rewriting.

1. If σ is an R/E-normalized idempotent solution for a reachability goal G, the
calculus can compute a more general answer σ �E σ′ for G.

2. If the calculus computes an answer σ for G, then σ is a solution for G.

That is, we want to compute a complete set of answers for G, a set that includes
a generalization of any possible solution for G, with respect to R/E-normalized
substitutions.

We are going to split this task into two subtasks: first we will solve the part
of the calculus that deals with unification; second, we will solve the part that
deals with reachability.

3.1 Calculus rules for unification

We assume we are working with an executable rewrite theory named M . We
refer to the set of equations and memberships in M as E, to the set of rules as
R and to the set of axioms as A. We also assume that we have an A-unification
algorithm that returns a CSU for any pair of terms.

A unification equation is a term s:S = t:T , which is a shorthand for the
system of equations s = t ∧ s = XS ∧ t = YT (we will also write s = t, s:S,
t:T ). This means that we intend to unify s and t, with resulting sorts S and
T respectively. A unification goal is a sequence (understood as conjunction) of
unification equations.

Admissible goals, or simply goals, are any sequence of s:S=t:T , s:S:=t:T ,
s:S→t:T , s:S→1t:T and t:T . Any condition in an equation, of the form s=t or
s:=t is turned into an admissible goal by adding inferred sorts to it. If any term
s is a variable or a constant, we use the sort of s as inferred sort. If the term is
of the form f(s̄), we use the kind of any membership for f .

Our calculus is defined by the following set of inference rules derived from
those in Figure 3. The first two rules, [u] and [x], transform equational problems
into rewriting problems modulo axioms, rule [u] playing the part of the added
rules eq(x:k, x:k) → tt in the associated rewrite theory; rule [n] describes one
step of unification narrowing where the conditions on the applied rule are turned



into subgoals and the instantiated right side of the rule (rθ) is required to have
a sort which is a common subsort of S and T ; rule [t] allows us to apply several
unification narrowing steps; rule [i] decomposes a term allowing rule [n] to be
applied to any subterm of it; rule [r] allows instantiation of variables on unificable
terms; rule [m1] solves the membership problem for variables, and rules [s] and
[m2] for the rest of terms, using the membership conditions in E:

– [u] unification
s:S = t:T,G′

s:S′ → XS′ :S′, t:S′ → XS′ :S′, G′

where XS′ fresh variable, S′ ≤ S, S′ ≤ T .

– [x] matching
s:S := t:T,G′

t:S′ → s:S′, G′

where S′ ≤ S, S′ ≤ T .

– [n] narrowing
s:S →1 X:T,G′

((c, )X:S′, G′)ρθ

where s is not a variable, (c)eq l=r (if c) ∈ E has fresh variables,

S′ ≤ S, S′ ≤ T , θ ∈ CSUA(s = l), ρ={X 7→ r}.

– [t] transitivity
s:S → t:T,G′

s:S′ →1 XS′ :S′, XS′ :S′ → t:S′, G′

where XS′ fresh variable, S′ ≤ S, S′ ≤ T .

– [i] imitation
f(s̄:S̄):S →1 X:T,G′

G′θ, si:Si →1 X ′Si
:Si, Xθ:S′, G′′θ

with X/∈Var(s), θ = {X 7→ f((s1, . . ., si−1, X
′
Si

:Si, si+1, . . ., sn))},
X ′Si

fresh variable, S′ ≤ S, S′ ≤ T .

– [r] removal of equations
s:S → t:T,G′

(G′, s:S′, G′)θ

with θ ∈ CSUA(s = t), S′ ≤ S, S′ ≤ T

– [s] subject reduction
s:S,G′

s:[S]→1 XS :S,G′

XS fresh variable.



– [m1] membership
XS :T,G′

(G′)θ

where θ = {XS 7→ X ′S′} with X ′S′ fresh variable and S′ ≤ S, S′ ≤ T .

– [m2] membership
s:S,G′

((c, )G′)θ

where (c)mb t:T (if c) is a fresh variant, with T ≤ S, of a (conditional)

membership in E, and θ ∈ CSUA(s = t).

From a unification equation u a derivation is made applying rules of the calculus.
If the derivation ends in the empty goal, denoted by �, then the composition
of the substitutions used on each derivation step, restricted to those variables
appearing in u, is a computed answer for u.

Theorem 1. The calculus for unification is sound and weakly complete.

That is, given a unification goal G, if G ∗σ � then Gσ can be derived, so σ is a
solution for G in →E/A, and if ρ is an E/A-normalized idempotent answer of G
(Gρ→∗E/A >), then there is ρ′ idempotent, with ρ�A ρ

′, such that G ρ′ �.

4 Reachability by conditional narrowing

Conditional narrowing relies on conditional unification. As we have used the
symbol → in the calculus rules for unification, we will use a different symbol
⇒ in the calculus rules for reachability. Our goal, given a reachability problem∧
i si:Si ⇒ ti:Ti, is to find a solution σ (ground or not) such that

∧
i siσ:Si ⇒R/E

tiσ:Ti. For executable rewrite theories this is equivalent to
∧
i siσ:Si ⇒R∪E,A∧

i tiσ:Ti. These new calculus rules deal with the  R,A part. Narrowing, we
call it replacement here, takes place only at position ε of terms, thanks to new
transitivity and imitation calculus rules.

Reachability goals are any sequence (understood as conjunction) of subgoals
of the form s:S ⇒ t:T . Admissible goals, or simply goals, are now extended to be
any sequence of s:S⇒t:T , s:S⇒1t:T , s:S=t:T , s:S→t:T , s:S→1t:T , s:S→1t:T ,
s:S:=t:T and t:T . If the calculus derives the empty goal from a reachability goal
G with a substitution σ, then σ is a computed answer for G.

As for unification, any reachability subgoal in our calculus of the form of
s:S ⇒(1) t:T is equivalent to the admissible goal s⇒(1) t, s:S, t:T .

4.1 Calculus rules for reachability

Reachability by conditional narrowing is achieved using the calculus rules pre-
sented in Section 3, extended with the following calculus rules, based on the
deduction rules for rewrite theories in Figure 2. Rule [X] solves reachability
problems by unification; rule [R] applies one step of reachability narrowing; rule



[T ] enables reachability narrowing modulo and multiple steps of reachability nar-
rowing. It is a direct consequence a 1 ; rule [I] allows us to imitate narrowing
at non root term positions, replacing the rewriting rule for congruence, that can
now be achieved by transitivity and imitation. Recall that narrowing steps for
reachability (⇒1), which are generated by rule [T ], impose no sort within the
given kind on the right side of the step:

– [X] reflexivity
s:S ⇒ t:T,G′

s:S = t:T,G′

– [R] replacement
s:S ⇒1 X[S]:[S], G′

(s:S, (c, ), G′)ρθ

where s is not a variable, (c)rl l⇒ r (if c) is a fresh variant of a (conditional)

rule in R, ρ = {X[S] 7→ r}, θ ∈ CSUA(s = l).

– [T ] transitivity

s:S ⇒ t:T,G′

s:S → X ′S :S,X ′S :S ⇒1 X ′′[S]:[S], X ′′[S]:[S]⇒ t:T,G′

where X ′S and X ′′[S] are fresh variables.

– [I] imitation
f(s̄:S̄):S ⇒1 X[S]:[S], G′

si:Si ⇒1 X ′Si
:Si, f(s̄:S̄):S,G′θ

where X[S] /∈vars(s), θ = {X[S] 7→ f((s1, . . ., X
′
Si

:Si, . . ., sn))}, X ′Si
fresh variable.

From a reachability goal r a derivation is made applying rules of the calculus.
Each application of the reflexivity rule generates a unification equation. These
unification equations as well as any generated membership goals must be solved
using the calculus rules for unification. If the derivation ends with an empty goal,
written�, then the composition of the substitutions used on each derivation step,
restricted to those variables appearing in r, is a computed answer for r.

Theorem 2. The calculus for reachability is sound and weakly complete.

That is, given a reachability goal G, if G ∗σ � then Gσ can be derived, so σ is
a solution for G in →R/E , and if θ is an R/E-normalized idempotent answer for
a reachability problem G in →R/E , then there is σ idempotent, with θ �E σ,
such that G ∗σ �.

Proof. We prove correctness of the calculus for reachability with respect to R/E-
normalized (equivalently R ∪E,A) idempotent substitutions for the executable
rewrite theory R = (Σ, E , R) in →R/E .

1. Soundness: By structural induction on the calculus rule for reachability ap-
plied.



2. Completeness: We prove that for R/E-normalized idempotent answers ⇒1

solves →1
R,A reachability problems and ⇒ solves →∗R/E reachability prob-

lems, according to [MT07, Theorem 3] and Lemma 1. Then it follows that
if θ is an R/E-normalized idempotent answer for a reachability problem G
in →R/E , then there is σ idempotent, with θ �E σ, such that G  ∗σ �.
Inferred sorts are treated as in the proof of completeness of the calculus for
unification (see extended version). We don’t show the inferred sorts here.
(a) We prove that if sρ→1

R,A t then s⇒1 t′  ∗σ �, with ρ�Eσ and t�E t′.
By definition there is a position p in sρ, a rule l→r if c ∈ R and a
matching θ such that sρ|p=lθ, cθ can be derived and t ≡ (sρ)[rθ]p.
By the same reasoning we used for the completeness of the calculus for
unification, p must be a nonvariable position in s. Otherwise ρ would not
be R/E-normalized. From s⇒1 X, by imitation we can reach position p,
turning our reachability problem into s|p ⇒1 Xp with η={X 7→ s[Xp]p}.
Applying replacement, as sρ|p=lθ, there is σ(≡ ρ′∪θ′) ∈ CSUA(sρ|p=l),
with ρ�E ρ′, θ �E θ′ and t′ ≡ Xησ ≡ (sρ′)[rθ′]p.
It is important to remember, again, that ACU-coherence completion al-
lows A-unification of the left term of the ACU-coherence completed ver-
sion of the rule, l, with the whole sρ|p whenever the original left term l
can be A-unified with some subterm of a recombination of sρ|p.

(b) We prove that if sρ →∗R/E tρ, ρ is a solution, then s ⇒ t  ∗σ �, with
ρ�E σ. We distinguish two cases:
– Reflexive case: sρ =E tρ. Then s⇒t  [X] s=t  ∗σ �, with ρ �E σ

by correctness of the calculus for unification.
– Rest of the cases. According to [MT07, Lemmas 7 and 8] and the

Lemma in Section 2.4 it suffices to show that ( ∗E,A R,A)+ =E is
implemented by ⇒. This is done in the transitivity rule

s:S ⇒ t:T,G′

s:S → X ′S :S,X ′S :S ⇒1 X ′′[S]:[S], X ′′[S]:[S]⇒ t:T,G′

s:S → X ′S implements ∗E,A as proved in the calculus for unification.

X ′S :S ⇒1 X ′′[S]:[S] implements R,A as proved in the previous point.

X ′′[S]:[S] ⇒ t:T allows iteration (the + part) through several uses of
the transitivity rule ending with the =E part through the use of the
reflexivity rule, which is the only rule that enables us to exit the loop
generated by the transitivity rule.
Finally, correct typing is ensured because s:S and t:T are included
as conditions.

5 Example

As an example of our calculus we use the specification of the Tower of Hanoi puz-
zle in Section 2 and the reachability problem (3T 0

T , b, c):S ⇒ (a, b, T 1
T ):S, where

from a State composed of one Tower with Disk 3 on top of it and two Towers



with Rods b and c alone respectively we want to reach a State composed of two
Towers with Rods a and b alone respectively and another Tower. The subindex of
each variable means its type (sort or kind) and we write D,R, V, T, P, S instead
of Disk, Rod, ValidT, Tower, Pair, State for readability.:

1. (3T 0
T , b, c):S ⇒ (a, b, T 1

T ):S  [T ]

Transitivity decomposes reachability into several rewriting narrowing steps.

2. (3T 0
T , b, c):S → X1

S :S,X1
S :S ⇒1 X2

[S]:[S], X2
[S]:[S]⇒ (a, b, T 1

T ):S

 [r],{T 0
T 7→a,X1

S 7→(3a,b,c)} T
0
T is instantiated through rule [r].

3. (3a, b, c):S, (3a, b, c):S ⇒1 X2
[S]:[S], X2

[S]:[S]⇒ (a, b, T 1
T ):S

We focus on the first subgoal.

4. (3a, b, c):S  [m2],S1
[S]
,S2

[S]
:S if S1

[S]
:S

∧
S2
[S]

:S,{S1
[S]
7→(3a,b),S2

[S]
7→c}

5. c:S, (3a, b):S  . . .

6. 3a:S  [m2],X[D]R[R]:V if X[D]:D
∧
R[R]:R,{X[D] 7→3,R[R] 7→a}. OK because V ≤ S.

7. 3:D, a:R  . . . similar to previous steps. First subgoal finished.

8. (3a, b, c):S ⇒1 X2
[S]:[S], X2

[S]:[S]⇒ (a, b, T 1
T ):S. We focus on the first subgoal.

9. (3a, b, c):S ⇒1 X2
[S]:[S] [R],D[T ],E[T ],X[S]→F[T ],G[T ],X[S] if

D[T ]:T∧E[T ]:T∧X[S]:S∧F[T ]:T∧G[T ]:T∧F[T ]−G[T ]:=move(D[T ]−E[T ]),

θ={D[T ] 7→3a,E[T ] 7→c,X[S] 7→b},ρ={X2
[S]

:[S]7→F[T ],G[T ],X[S]} Narrowing step.

10. (3a, b, c):S, 3a:T, c:T, b:S, (F[T ] −G[T ]):[P ] := move(3a− c):[P ]  . . .

11. F[T ] −G[T ]:[P ] := move(3a− c):[P ] [x]

12. move(3a− c):[P ]→ F[T ] −G[T ]:[P ] [t]

Transitivity decomposes unification into several unification narrowing steps.

13. move(3a− c):[P ]→1 Y[P ]:[P ], Y[P ]:[P ]→ F[T ] −G[T ]:[P ] [n],

move(X[D]T[T ]−R[R])=T[T ]−X[D]R[R] if X[D]:D
∧
T[T ]:T

∧
R[R]:R,

θ={X[D] 7→3,T[T ] 7→a,R[R] 7→c},ρ={Y[P ] 7→T[T ]−X[D]R[R]}

Unification narrowing step. Y[P ] is instantiated to a ground term.

14. a− 3c:[P ], 3:[D], a:[T ], c:[R], a− 3c:[P ]→ F[T ] −G[T ]:[P ]  . . .

15. a− 3c:[P ]→ F[T ] −G[T ]:[P ]  [r],θ1={F[T ] 7→a,G[T ] 7→3c} Removal of equations.

16. a− 3c:[P ] . . . We omit this and go back to the second subgoal on step 8.

17. (a, 3c, b) : [S]⇒ (a, b, T 1
T ):S  [X] . . .

18. (a, 3c, b) : S → XS :S, (a, b, T 1
T ):S → XS :S  [r],{XS 7→(a,3c,b)}

19. (a, 3c, b) : S, (a, b, T 1
T ):S → (a, 3c, b):S  . . .

20. (a, b, T 1
T ):S → (a, 3c, b):S  [r],{T 1

T 7→3c} T
1
T is instantiated through rule [r].

21. (a, b, 3c) : S  . . .�

From the substitutions in steps 2 and 20 the answer {T 1
T 7→ 3c, T 0

T 7→ a} is
computed. The calculus has found the solution (3a, b, c):S ⇒ (a, b, 3c):S which
is an instance of the given reachability problem (3T 0

T , b, c):S ⇒ (a, b, T 1
T ):S.



6 Related work, conclusions and future work

A classic reference in equational conditional narrowing modulo is the work of
Bockmayr [Boc93]. The topic is addressed here for Church-Rosser equational
CTRS with empty axioms, but non terminating axioms (like ACU) are not al-
lowed. Non conditional narrowing modulo order-sorted equational logics is cov-
ered by Meseguer and Thati [MT07], the reference for recent development in this
area, which is actively being used for cryptographic protocol analysis. This work
is partially based on the work of Viry [Vir94] where R/E rewriting is defined in
terms of R,A and E,A for unsorted rewrite theories. Another topic addressed by
the present work, membership equational logic, is defined by Meseguer [Mes97].
An equivalent rewrite system for Mel theories is presented by Durán, Lucas et al.
[DLM+08], allowing unification by rewriting. Strategies, which also play a main
role in narrowing, have been studied by Antoy, Echahed and Hanus [AEH94].
Their needed narrowing strategy, for inductively sequential rewrite systems, gen-
erates only narrowing steps leading to a computed answer. Recently Escobar,
Sasse and Meseguer [ESM12] have developed the concepts of variant and folding
variant, a narrowing strategy for order-sorted unconditional rewrite theories that
terminates on those theories having the finite variant property. As an extension
to rewrite theories Bruni and Meseguer [BM06] have defined generalized rewrite
theories that support context-sensitive rewriting, thus allowing rewrites only on
certain positions of terms.

In this work we have developed a narrowing calculus for unification in mem-
bership equational logic and a narrowing calculus for reachability in rewrite
theories with an underlying membership equational logic. The main features in
these calculi are that they make use of membership information whenever pos-
sible, reducing the state space, and also that they only allow steps leading to
a different state, no mutual cancelling steps are allowed. The calculi have been
proved correct. This work is part of a bigger effort where we attempt to explore
the possibilities of performing conditional narrowing with constraint solvers. A
transformation for rules and goals that will make both calculi strongly complete
is under study. Strong completeness of reachability for topmost rewrite theories,
Russian dolls configurations and linear theories are also under study. Finally,
decidability of the calculus for unification in the case of operationally terminat-
ing [LM09] Mel theories with a finitary and complete A-unification algorithm,
using the required strategy for deterministic 3-CTRS’s of solving subgoals from
left to right, is being studied.

Our current line of investigation also intends to study the extension of the
calculi to handle constraints and their connection with external constraint solvers
for domains such as finite domains, integers, Boolean values, etc., that could
greatly improve the performance of any implementation. We also plan on the
extension of the calculi, adding support for generalized rewrite theories. Better
strategies that may help reducing the state space will also be studied. All the
improvements will have new sets of transformation rules that will allow their
implementation on Maude.
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P. Samarati, R. Küsters, and J. C. Mitchell, editors, FMSE, pages 1–12.
ACM, 2005.

[ESM12] S. Escobar, R. Sasse, and J. Meseguer. Folding variant narrowing and opti-
mal variant termination. The Journal of Logic and Algebraic Programming,
81(7-8):898–928, 2012.

[Fay78] M.J. Fay. First-order Unification in an Equational Theory. University of
California, 1978.

[LM09] S. Lucas and J. Meseguer. Operational termination of membership equa-
tional programs: the order-sorted way. Electr. Notes Theor. Comput. Sci.,
238(3):207–225, 2009.

[Mes90] J. Meseguer. Rewriting as a unified model of concurrency. In J.C.M. Baeten
and J.W. Klop, editors, CONCUR ’90 Theories of Concurrency: Unification
and Extension, volume 458 of Lecture Notes in Computer Science, pages
384–400. Springer, 1990.

[Mes97] J. Meseguer. Membership algebra as a logical framework for equational
specification. In Francesco Parisi-Presicce, editor, WADT, volume 1376 of
Lecture Notes in Computer Science, pages 18–61. Springer, 1997.

[MT07] J. Meseguer and P. Thati. Symbolic reachability analysis using narrowing
and its application to verification of cryptographic protocols. Higher-Order
and Symbolic Computation, 20(1-2):123–160, 2007.

[Ohl02] E. Ohlebusch. Advanced topics in term rewriting. Springer, 2002.
[Vir94] P. Viry. Rewriting: An effective model of concurrency. In C. Halatsis, D. G.

Maritsas, G. Philokyprou, and S. Theodoridis, editors, PARLE, volume 817
of Lecture Notes in Computer Science, pages 648–660. Springer, 1994.



Language Definitions as Rewrite Theories

Andrei Arusoaie1, Dorel Lucanu1, Vlad Rusu2, Traian-Florin Şerbănuţă1,3,
Andrei Ştefănescu4, and Grigore Roşu4

1 Alexandru Ioan Cuza University, Iaşi, Romania
2 Inria Lille Nord Europe, France

3 University of Bucharest, Romania
4 University of Illinois at Urbana-Champaign, USA

Abstract. K is a formal framework for defining the operational seman-
tics of programming languages. It includes software tools for compiling K
language definitions to Maude rewrite theories, for executing programs
in the defined languages based on the Maude rewriting engine, and for
analyzing programs by adapting various Maude analysis tools. A recent
extension to the K tool suite is an automatic transformation of language
definitions that enables the symbolic execution of programs, i.e., the exe-
cution of programs with symbolic inputs. In this paper we investigate the
theoretical relationships between K language definitions and their trans-
lations to Maude, between symbolic extensions of K definitions and their
Maude encodings, and how the relations between K definitions and their
symbolic extensions are reflected on their respective representations in
Maude. These results show, in particular, how analyses performed with
Maude tools can be formally lifted up to the original language definitions.

1 Introduction

K [11] is a framework for formally defining the semantics of programming lan-
guages. The current version of K includes options that have Maude [3] as a back-
end: the K compiler transforms any K definition into a Maude module; then, the
K runner uses Maude to run or analyze programs in the defined language.

Recently, K has been extended with symbolic execution support [2]. Briefly,
a K language definition is automatically transformed into a symbolic-language
definition, such that the concrete executions of programs using the symbolic defi-
nition are symbolic executions of programs using the original language definition.
The transformation amounts to incorporating path conditions in program con-
figurations, and to changing the language’s semantic rules so that they match on
symbolic configurations and that they automatically update the path conditions.

Symbolic executions are called feasible if their path conditions are satisfiable.
Two results relating concrete and symbolic program executions are proved in [2]:
coverage, saying that for each concrete execution there is a feasible symbolic one
taking the same path on the program; and precision, saying that for each feasible
symbolic execution there is a concrete one taking the same program path.

In this paper we propose two ways of representing K language definitions
in Maude: a faithful representation and an approximate one. We then study
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coverage
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encoding

coverage

precision

approx.
encoding

Fig. 1. Faithful vs. Approximate representations

the relationships between K language definitions (including the symbolic ones,
obtained by the above-described transformation) and their representations in
Maude. We also show how the coverage and precision results, which relate a
language L and its symbolic extension Ls, are reflected on their respective rep-
resentations in Maude. These results show, in particular, how (symbolic) analyses
performed with Maude tools on the (faithful and approximate) Maude represen-
tations of languages can be lifted up to the original language definitions. The
various results that we have obtained are graphically depicted in the diagrams
from Figure 1 (dashed arrows show the results proved in the paper). In the
faithful encoding, each semantic rule of the language definition L is translated
into a rewrite rule of the rewrite theory R(L). Equations are only introduced
in order to express equality in the data domain. The resulting rewrite theory
is proved to be executable by Maude, and the transition system generated by
the language definition is shown to be isomorphic to the one generated by the
rewrite theory. Some variations of this encoding are also discussed, all of which
satisfy the executability and faithfulness properties. As a consequence, both pos-
itive and negative results of reachability analyses, obtained on rewrite theories
(i.e., by using the Maude search command) also hold on the original language
definitions. Moreover, all symbolic reachability analysis results obtained on the
rewrite-theory representation R(Ls) of a symbolic language Ls also hold on
the rewrite-theory representation R(L) of the language L. The latter property
is analoguous to the results obtained in [10], where rewriting modulo SMT is
shown to be related to (usual) rewriting in a sound and complete way.

For nontrivial language definitions, the faithful encoding is not very practi-
cal, because it typically generates a huge state-space that is not amenable to
reachability analysis. This is why we introduce approximate representations of
language definitions as two-layered rewrite theories. These approximations are
obtained by splitting the semantic rules of the language into two sets, called lay-
ers, such that the first layer forms a terminating rewrite system. The one-step
rewriting in such a theory is obtained by computing an irreducible form w.r.t.
rules from the first layer (according to a given strategy), and then applying a
rule from the second layer.

In an (approximating) two-layered rewrite theory R(L), only a subset of the
executions of programs in the original language L are represented. The conse-
quence is that only positive results of reachability analyses on the two-layered
rewrite theories can be lifted up to the corresponding language definitions. In
addition, to reduce the state-space to be explored, the approximate encoding of
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a language by a two-layered rewrite theory can also be seen as the output of
a compiler that solves some semantic choices left by the language definition at
compile-time. For example, in C, the order in which the operands of addition
are evaluated is a compile-time choice. By turning the operand-evaluation rules
into first-layer rules, and by letting Maude automatically execute these rules
in various orders according to certain strategies, one can reproduce the various
design compile-time choices for the evaluation of arguments.

We note that approximating two-layered rewrite theories have some limita-
tions: only the coverage property relating the language definition L to its sym-
bolic version Ls also holds on their respective approximate encodings theories;
the precision property holds only in some restricted cases. However, the precision
property between the approximate symbolic encoding R(Ls) and the language
definition L always holds. Hence, one can trace symbolic reachability analyses
(performed on R(Ls)) back to programs in L, and also (in some restricted cases)
to the representation of programs in R(L), which, as discussed above, can be
seen as compiled programs where some semantic choices are left to the compiler.

Organisation. In Section 2 we present our working examples, which are two
programs belonging to the CinK kernel of C++, which was specified in K [7].
A partial description of the K definition for CinK is included. In Section 3 we
introduce a formal notion of a language-definition framework, which allows us to
make our approach independent of the K language definitional framework and
to abstract away some particular implementation details of K. For the same rea-
son, we will be using rewrite theories (instead of their implementations as Maude
modules) for the encodings of language definitions. We also briefly present the
language-independent symbolic execution approach [2] and recap some essential
notions related to the executability of rewrite theories.

Section 4 presents the faithful and the approximate representations of lan-
guage definitions into a rewrite theory and the various relations between them
(graphically depicted in Figure 1). Section 5 presents the applications of these
representations to the compilation of K language definitions as Maude modules.
Finally, Section 6 presents conclusions and related work.

2 Running Example

Our running example is CinK [7], a kernel of the C++ programming language.
The K definition of CinK can be found on the K Framework Github reposi-
tory: http://github.com/kframework/cink-semantics. As any K definition,
it consists of the language syntax, given using a BNF-style grammar, and of its
semantics, given using rewrite rules on configurations. In this paper we only ex-
hibit a small part of the K definition of CinK, whose syntax is shown in Figure 2.
Some of the grammar productions are annotated with K-specific attributes.

A major feature of C++ expressions is that given by the “sequenced before”
relation [1], which defines a partial order over the evaluation of subexpressions.
This can be easily expressed in K using the strict attribute to specify an eval-
uation order for an operation’s operands. If the operator is annotated with the

3
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Exp ::= Id | Int
| ++ Exp [strict , prefinc]
| -- Exp [strict , predec]
| Exp / Exp [strict(all(context(rvalue))), divide]
| Exp + Exp [strict(all(context(rvalue))), plus]
| Exp > Exp [strict(all(context(rvalue)))]

Stmt ::= Exps ; [strict ]
| {Stmts}
| while (Exp)Stmt
| return Exp ; [strict(all(context(rvalue)))]
| if (Exp)Stmt else Stmt [strict(1 (context(rvalue)))]

Fig. 2. CinK syntax

strict attribute then its operands will be evaluated in a nondeterministic or-
der. For instance, all the binary operations are strict. Hence, they may induce
non-determinism in programs because of possible side-effects in their arguments.

Another feature is given by the classification of expressions into rvalues and
lvalues. For instance, in the expression x = x + 2 the first occurrence of x is
an lvalue whereas the second one is an rvalue. The arguments of binary oper-
ations are evaluated as rvalues and their results are also rvalues, while, e.g.,
both the argument of the prefix-increment operation and its result are lvalues.
The strict attribute for such operations has a sub-attribute context for wrap-
ping any subexpression that must be evaluated as an rvalue. Other attributes
(funcall , divide, plus,minus, . . . ) are names associated to each syntactic produc-
tion, which can be used to refer them.

TheK framework uses configurations to store program states. A configuration
is a nested structure of cells, which typically include the program to be executed,
I/O streams, values for program variables, and other additional information. The
configuration of CinK (Figure 3) includes the 〈〉k cell containing the code that
remains to be executed, which is represented as a list of computation tasks
C1 y C2 y . . . to be executed in the given order. Computation tasks are
typically statements and expression evaluations. The memory is modeled using
two cells 〈〉env (which holds a map from variables to addresses) and 〈〉state (which
holds a map from addresses to values). The configuration also includes a cell
for the function call stack 〈〉stack and another one 〈〉return for the return values of
functions.

〈 〈$PGM〉k 〈·〉env 〈·〉store 〈·〉stack 〈·〉return 〉cfg
Fig. 3. CinK configuration

When the configuration is initialised at runtime, a CinK program is loaded in the
〈〉k cell, and all the other cells remain empty. A K rule is a topmost rewrite rule
specifying transitions between configurations. Since usually only a small part of
the configuration is changed by a rule, a configuration abstraction mechanism is
used, allowing one to only specify the parts transformed by the rule. For instance,
the (abstract) rule for addition, shown in Figure 4, represents the (concrete) rule

〈〈I1 + I2 y C〉k〈E〉env〈S〉store〈T 〉stack〈V 〉return〉cfg
⇒⇒⇒
〈〈I1 +Int I2 y C〉k〈E〉env〈S〉store〈T 〉stack〈V 〉return〉cfg
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I1:Int + I2:Int ⇒⇒⇒ I1 +Int I2 [plus]
I1:Int / I2:Int ⇒⇒⇒ I1 /Int I2 requires I2 6=Int 0 [division]
if( true ) St:Stmt else _⇒⇒⇒ St [if-true]
if( false ) _ else St:Stmt ⇒⇒⇒ St [if-false]
while( B:Exp ) St :Stmt ⇒⇒⇒ if( B ){ St while( B ) St else {}} [while]
V :Val ;⇒⇒⇒ · [instr-expr ]
〈++lval( L:Loc )⇒⇒⇒ lval( L ) ···〉k〈··· L 7→ (V :Int ⇒⇒⇒ V +Int 1) ···〉store [inc,memw ]
〈--lval( L:Loc )⇒⇒⇒ lval( L ) ···〉k〈··· L 7→ (V :Int ⇒⇒⇒ V −Int 1) ···〉store [dec,memw ]
〈〈lval( L:Loc )= V :Val ⇒⇒⇒ V ···〉k〈··· L 7→ _⇒⇒⇒ V ···〉store ···〉cfg [update,memw ]
〈〈$lookup( L:Loc )⇒⇒⇒ V ···〉k〈··· L 7→ V :Val ···〉store ···〉cfg [lookup,memr ]
{ Sts:Stmts }⇒⇒⇒ Sts [block ]

Fig. 4. Subset of rules from the K semantics of CinK

where +Int is the mathematical operation for addition. Note that the ellipses
in a cell (e.g., 〈 ···〉k) represent the part of the cell not affected by the rule.

The rule for division has a side condition which restricts its application.
The conditional statement if has two corresponding rules, one for each possible
evaluation of the condition expression. The rule for the while loop performs
an unrolling into an if statement. The increment and update rules have side
effects in the 〈〉store cell, modifying the value stored at a specific address. Finally,
the reading of a value from the memory is specified by the lookup rule, which
matches a value in the 〈〉store and places it in the 〈〉k cell. The auxiliary construct
$lookup is used, e.g., when a program variable is evaluated as an rvalue.

In addition to these rules (written by the K user), the K framework automat-
ically generates so-called heating and cooling rules, which are induced by strict
attributes. We show only the case of division, which is strict in both arguments:

A1 / A2⇒⇒⇒ rvalue(A1) y � / A2 (1)
A1 / A2⇒⇒⇒ rvalue(A2) y A1 / � (2)

rvalue(I1) y � / A2⇒⇒⇒ I1 / A2 (3)
rvalue(I2) y A1 / �⇒⇒⇒ A1 / I2 (4)

where � is a special symbol, destined to receive the result of an evaluation.
We shall be using the following two programs in the sequel. The program

counter in Figure 5 is nondeterministic; nondeterminism arises from the unde-
fined evaluation order for the arguments of the + operation and from the side-
effects in its arguments. The program log in the same figure is a symbolic one

int counter = 1;
int inc() {

return ++counter;
}
int dec() {

return --counter;
}
int main() {

return inc() + dec();
}

int main() {
int k, x;

x = A:Int; //A:Int is a symbolic value
k = 0;
while (x > 0) {

++k;
x = x / 2;

}
}

a) The program counter b) The program log

Fig. 5. Two C++ programs
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because A:Int is a symbolic value, which can denote any integer value. When it
is completed the variable k holds blog2(A)c where b_c denotes the integer part
of a real number. In Section 5 we show how the behaviours of these programs
can be analysed using our encodings of the CinK language as Maude programs.

3 Background

3.1 The Ingredients of a Language Definition
In this section we identify the ingredients of language definitions in an algebraic
and term-rewriting setting. The concepts are explained on the K definition of
CinK. We assume the reader is familiar with the basics of algebraic specification
and rewriting. A language L can be defined as a triple (Σ, T ,S), consisting of:
1. A many-sorted algebraic signature Σ, which includes at least a sort Cfg for

configurations and a sort Bool for constraint formulas. For the sake of pre-
sentation, we assume in this paper that the constraint formulas are Boolean
terms built with a subsignature ΣBool ⊆ Σ including the Boolean constants
and operations. Σ may also include other subsignatures for other data sorts,
depending on the language L (e.g., integers, identifiers, lists, maps, . . . ). Let
ΣData denote the subsignature of Σ consisting of all data sorts and their
operations. We assume that the sort Cfg and the syntax of L are not data,
i.e., they are defined in Σ \ ΣData. Let TΣ denote the Σ-algebra of ground
terms and TΣ,s denote the set of ground terms of sort s. Given a sort-wise
infinite set of variables Var , let TΣ(Var) denote the free Σ-algebra of terms
with variables, TΣ,s(Var) denote the set of terms of sort s with variables,
and var(t) denote the set of variables occurring in the term t.

2. A ΣData-model D, which interprets the data sorts and operations. For conve-
nience, we assume that Dd ⊂ Σd for each data sort d, i.e., the constants are
elements of the corresponding signature. Let T , T (D) denote the free Σ-
model generated by D. The satisfaction relation ρ |= b between valuations ρ
and constraint formulas b ∈ TΣ,Bool(Var) is defined by ρ |= b iff ρ(b) = Dtrue .
For simplicity, we write true, false, 0, 1 . . . instead of Dtrue ,Dfalse ,D0,D1, . . ..

3. A set S of rewrite rules. Each rule is a pair of the form l∧∧∧b⇒⇒⇒ r, where l, r ∈
TΣ,Cfg(Var) are the rule’s left-hand-side and right-hand-side, respectively,
and b ∈ TΣ,Bool(Var) is the condition. The formal definitions for rules and
for the transition system defined by them are given below.

Remark 1. For the sake of presentation, here we consider only "pure" language
definitions, where the semantics is given only by semantic rules between configu-
rations. Some definitions may include additional functions defined by equations.
For such cases the language definition may additionally include a set of axioms
A0, e.g., associativity and/or commutativity of some functions, and a set of equa-
tions E0. Then the model T is the free algebra modulo A0∪E0. We believe that
the approach presented in this paper can be extended to these more involved
definitions, but this requires more investigation and is left for future work.

We now formally introduce the notions required for defining semantic rules.
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Definition 1 (pattern [12]). A pattern is an expression of the form π ∧∧∧ b,
where π ∈ TΣ,Cfg(Var) is a basic pattern and b ∈ TΣ,Bool(Var). If γ ∈ TCfg and
ρ :Var → T then we write (γ, ρ) |= π ∧∧∧ b iff γ = ρ(π) and ρ |= b.

A basic pattern π defines a set of (concrete) configurations, and the condi-
tion b gives additional constraints these configurations must satisfy.
Remark 2. The above definition is a particular case of a definition in [12]. There,
a pattern is a first-order logic (FOL) formula with configuration terms as sub-
formulas. In this paper we keep the conjunction notation from FOL but separate
basic patterns from constraints. Note that FOL formulas can be encoded as terms
of sort Bool, where the quantifiers become constructors. The satisfaction relation
|= is then defined, for such terms, like the usual FOL satisfaction.

We identify basic patterns π with patterns π ∧∧∧ true. Sample patterns are
〈〈I1 + I2 y C〉k〈Env〉env〉cfg and 〈〈I1 / I2 y C〉k〈Env〉env〉cfg ∧∧∧ I2 6=Int 0.
Definition 2 (rule, transition system). A rule is a pair of patterns of the
form l ∧∧∧ b⇒⇒⇒ r (note that r is in fact the pattern r ∧∧∧ true). Any set S of rules
defines a labelled transition system (TCfg ,⇒S) such that γ α

=⇒S γ
′ iff there exist

α , (l∧∧∧ b⇒⇒⇒ r) ∈ S and ρ : Var → T such that (γ, ρ) |= l∧∧∧ b and (γ′, ρ) |= r.

We write γ ⇒S γ
′ when there exists α ∈ S such that γ α

=⇒S γ
′, and denote

by ⇒+
S the transitive closure of ⇒S .

3.2 Symbolic Execution

We briefly recap our approach to symbolic execution from [2]. The main idea is
to automatically generate a new definition (Σs, T s,Ss) for a language Ls from
a given definition (Σ, T ,S) of a language L. The new language Ls has the same
syntax, and its semantics extends L’s data domains with symbolic values and
adapts the semantical rules of L to deal with the new domains.

Let V s denote an infinite, data sort-wise set of symbolic values, disjoint from
Var and from symbols in Σ. The data algebra is extended to Ds, which is the
algebra of ground terms over the signature ΣData(V s). The signature Σs extends
Σ with the symbolic values V s as constants, a new sort Cfgs and a constructor
_ ∧∧∧ _ : Cfg × Bool → Cfgs. The model T s is defined as being the free Σs-
model generated by Ds, similarly to how T is built over D. The ground terms
π ∧∧∧ φ ∈ T s

Cfgs are called symbolic configurations. Let [[π ∧∧∧ φ]] denote the set of
concrete configurations {γ | (∃ρ) (γ, ρ) |= π ∧∧∧ φ}.

Thanks to the rule transformation procedure presented in [2], we make with-
out loss of generality the assumption that the basic patterns in left-hand sides of
rules do not contain operations on data, and the rules are left-linear. Concrete
semantic rules l∧∧∧ b⇒⇒⇒ r ∈ S are then systematically transformed into rules

l∧∧∧ ψ⇒⇒⇒ r ∧∧∧ (ψ ∧ b) (5)

where ψ ∈ Var is a fresh variable of sort Bool playing the role of a path condition.
This means that symbolic rules are applied like concrete rules, except for the
fact that the current path condition ψ is enriched with the rule’s condition b.
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Then, the symbolic execution of L programs is the concrete execution of
the corresponding Ls programs, i.e., the application of the rewrite rules in the
semantics of Ls. Building the definition of Ls amounts to extending the signature
Σ to a symbolic signature Σs, extending the Σ-algebra T to a Σs-algebra T s,
and turning the concrete rules S into symbolic rules Ss. The transition system
(T s

Cfgs ,⇒Ss) is defined using Definitions 1, 2 applied to Ls. In [2] it is proved
that the symbolic transition system forward-simulates the concrete one, and that
the concrete transition system backward-simulates the symbolic one. These two
results then imply the naturally expected properties of symbolic execution.

Theorem 1 (Coverage [2]). For every concrete execution γ0
α1=⇒S γ1

α2=⇒S

· · · αn=⇒S γn
αn+1
=⇒S · · · there is a symbolic execution π0∧∧∧ φ0

α1=⇒Ss π1∧∧∧ φ1
α2=⇒Ss

· · · αn=⇒Ss πn ∧∧∧ φn
αn+1
=⇒Ss · · · such that γi ∈ [[πi ∧∧∧ φi]] for i = 0, 1, . . ..

A symbolic configuration π ∧∧∧ φ ∈ T s
Cfgs is satisfiable if there is a valuation

ϑ : V s → D such that ϑ |= φ (which is equivalent to [[π ∧∧∧ φ]] 6= ∅). We call a
symbolic execution feasible if all its configurations are satisfiable.

Theorem 2 (Precision [2]). For every feasible symbolic execution π0∧∧∧φ0
α1=⇒Ss

π1 ∧∧∧ φ1
α2=⇒Ss · · · αn=⇒Ss πn ∧∧∧ φn

αn+1
=⇒Ss · · · there is a concrete execution

γ0
α1=⇒S γ1

α2=⇒S · · ·
αn=⇒S γn

αn+1
=⇒S · · · such that γi ∈ [[πi ∧∧∧ φi]] for i = 0, 1, . . ..

3.3 Rewrite Theories

A rewrite theory [3]R = (Σ,E∪A,R) consists of a signatureΣ, a set of equations
E, a set of axioms A, e.g., associativity, commutativity, identity or combinations
of these, and a set of rewrite rules R of the form l → r if b, where l and r
are terms with variables and b is a term of sort Bool. We are only interested in
rewrite theories R that are executable [9], i.e., (Σ,E ∪A,R) where:

1. there exists a matching algorithm modulo A;
2. (Σ,E∪A) is ground Church-Rosser and terminating moduloA (the equations
E are seen here as rewrite rules oriented from left to right). Thus, each ground
term t has a canonical form canE/A(t) that is unique modulo the axioms A;

3. R is ground coherent w.r.t. E modulo A [13]: for all t, t1 ∈ TΣ with t→R/A t1
there is t2 ∈ TΣ s.t. canE/A(t)→R/A t2 and canE/A(t1) =A canE/A(t2).

The relation →R/A denotes the one-step rewriting relation defined by apply-
ing a rule from R modulo axioms A: u →R/A v iff there are terms u′, v′, a rule
l→ r if b in R, position p in u′, and substitution σ such that u =A u

′, v =A v
′,

u′|p = σ(l), v′ = u[σ(r)]p, and σ(b) =A true. We use t|p to denote the subterm
of t at position p, and t[u]p to denote the term obtained from t by replacing the
subterm at position p with u.

The rewriting relation →R defined by an executable rewrite theory R is:
t1 →R t2 iff canE/A(t1) →R/A t′2 and canE/A(t

′
2) = t2. This is equivalent to

→R/(E∪A) due to confluence and coherence. We write t1
α−→R t2 to emphasise

that α , (l→ r if b) ∈ R is applied in the rewriting step canE/A(t1)→R/A t
′
2.
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4 Translating Language Definitions into Rewrite Theories

This section includes the main contribution of the paper. We introduce two en-
codings of language definitions as rewrite theories: a faithful encoding and an
approximate encoding. Since the symbolic extension of a language is also a lan-
guage definition, we automatically get encodings of both concrete languages and
their symbolic extensions. We investigate how the properties relating a language
definition and its symbolic extension are reflected on their respective encodings.

4.1 Faithful Encoding

Definition 3 (faithful encoding). Let L = (Σ, T ,S) be a language definition.
The faithful encoding of L is R(L) = (Σ,E ∪A,R), where

– A = ∅;
– for each operation f in ΣData and d1, . . . , dn ∈ D of corresponding sorts, E

includes an equation f(d1, . . . , dn) = Df (d1, . . . , dn);
– R = S, where each rule l∧∧∧ b⇒⇒⇒ r ∈ S becomes a rewrite rule l→ r if b ∈ R.

Theorem 3. Let L = (Σ, T ,S) be a language definition. Then R(L) is an
executable rewrite theory satisfying γ α

=⇒S γ
′ iff γ α−→R(L) γ

′, for all γ, γ′ ∈ TCfg .

Remark 3. The construction of the rewrite theory R(L), with data domain D ⊆
ΣData defined by the set of equations E given in Definition 3, corresponds to the
data domains D being builtin sorts in the Maude terminology. A builtin sort is a
sort that is not built algebraically but one that, for efficiency reasons, is directly
implemented in code (C++ code in the case of Maude). For example, natural
numbers are specified by the equational specification 0 : Nat, s : Nat → Nat,
but using the resulting unary-notation for them would be highly inefficient. This
is why natural numbers are implemented as builtins. The construction R(L)
can, however, be extended to accomodate non-builtin sorts, i.e., sorts that are
defined as the initial model of a finite set of equations E′ that are confluent and
terminating modulo a set A of axioms. For this, it is enough to ensure that E′∪E
is also confluent and terminating modulo A - where E is the set of equations given
in the proof of Theorem 3. This typically happens, as E and E′ refer to different
sorts - the builtin ones for the former, and the non-builtin ones for the latter. If
this is the case then the proof of the ground coherence property in Theorem 3
still holds, because it only depends on E′ ∪ E being confluent and terminating
modulo A, not on the particular form of the equations. The proof of faithfulness
of the encoding remains the same. This observation is important, since it ensures
that we obtain executable Maude rewrite-theories R(L) for languages-definitions
L whose data are specified using either builtin sorts or non-builtin sorts. The
faithfulness of the encoding then ensures that all results of reachability analyses
(either positive or negative) performed on R(L), e.g., obtained using Maude’s
search command, also hold on L.

The symbolic extension of a language definition can be encoded as a rewrite
theory as well. Let Ls = (Σs, T s,Ss) be the symbolic extension of L = (Σ, T ,S).
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Recall that Σs is Σ extended with the constructor of symbolic configurations
_∧∧∧_ and with the symbolic values V s seen as constants. The symbolic configu-
rations are ground terms π∧∧∧φ ∈ T s

Cfgs . If R(Ls) = (Σs, E ∪A,R) is the faithful
encoding given by Theorem 3, then E = A = ∅ because the data algebra Ds we
considered is the ΣData(V s)-algebra of the ground terms built over D and V s.
Recall that we assumed that D ⊆ Σ ⊆ ΣData(V s).

The relationship between a language definition L and its symbolic extension
Ls can be now reflected at the level of the encodings R(L) and R(Ls). A sym-
bolic configuration π∧∧∧ φ consists of a configuration ground term π (of sort Cfg)
and a formula ground term φ (of sort Bool). The constants V s play the role of
logical variables, and the definition of satisfiability for patterns extends to their
representations as symbolic configurations. Moreover, the notion of feasible ex-
ecution in R(Ls) is defined similarly to how it is defined for Ls. The following
two results are direct consequences of Theorems 3, 1, and 2.

Corollary 1 (Coverage for Encoding Rewrite Theories). For every con-
crete execution γ0

α0−→R(L) γ1
α2−→R(L) · · ·

αn−−→R(L) γn
αn+1−−−→R(L) · · · there

is a symbolic execution π0 ∧∧∧ φ0
α1−→R(Ls) π1 ∧∧∧ φ1

α2−→R(Ls) · · ·
αn−−→R(L) πn ∧∧∧

φn
αn+1−−−→R(Ls) · · · such that γi ∈ [[πi ∧∧∧ φi]] for i = 0, 1, . . ..

Corollary 2 (Precision for Encoding Rewrite Theories). For every fea-
sible symbolic execution π0 ∧∧∧ φ0

α1−→R(Ls) π1 ∧∧∧ φ1
α2−→R(Ls) · · ·

αn−−→R(L) πn ∧∧∧
φn

αn+1−−−→R(Ls) · · · there is a concrete execution γ0
α0−→R(L) γ1

α2−→R(L) · · ·
αn−−→R(L)

γn
αn+1−−−→R(L) · · · such that γi ∈ [[πi ∧∧∧ φi]] for i = 0, 1, . . ..

The faithful encoding thus enjoys nice theoretical properties, but it has a limited
practical value when we consider actual K definitions of nontrivial languages:

– The heating and cooling rules, which are symmetric to each other, may lead
to infinite rewritings;

– The generated state space may be very large, even for small programs.

Therefore in the next section we introduce a new kind of rewrite theories that
under-approximate K definitions in order to be more efficient in practice.

4.2 Approximate Encoding

There are currently two proposals for obtaining abstractions of the rewrite theo-
ries: equational abstraction [9] or transforming some semantical rules into equa-
tions [6]. The former amounts to basically deriving a new definition, where the
new model T is the quotient of the original one, usually requiring substantial
input from the user, which is something we would like to avoid.

The latter might not be suitable for language definitions in general because,
semantically, it would equate elements that are supposed to be distinct in T .
Consider a language construct randBool with two rules: randBool => true
and randBool => false. Assume now we want to analyze a program which
uses randBool, but who fails to satisfy a given property regardless of whether
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randBool transits to true or to false. In this case it might beneficial to collapse
the state space by considering only one of the cases; however, if we transform the
two rules above into equations, this will semantically identify true and false in
T , collapsing much more of the state space than desirable. An additional oper-
ational concern is that transforming certain rules into equations might destroy
coherence and/or confluence, thus falling out of the executability requirements.

Two-layered rewrite theories, introduced below, allow us to preserve the ben-
efits of the techniques above (state space reduction, efficient execution), while
avoiding their semantical consequences (unnecessary collapse of states in the
semantical model T ).

Definition 4. A two-layered rewrite theory is a tuple R = (Σ,E ∪ A, 1R ∪
2R, ε), where (Σ,E ∪ A, 1R ∪ 2R) is an executable rewrite theory, E ∪ 1R is
ground terminating modulo A, and ε : TΣ → TΣ is a function that, for any
t ∈ TΣ, returns an element in the set of (E ∪ 1R)/A-irreducible terms {t′ ∈
TΣ | t →!

(E∪1R)/A t′} (which is nonempty precisely because E ∪ 1R is ground
terminating modulo A). The one-step rewrite relation�R is defined by t1 �R t2
iff ε(t1)→2R/A t

′
2 and canE/A(t′2) =A t2.

Examples of two-layered rewrite theories are shown in Section 5.

Theorem 4. Let L = (Σ, T ,S) be a language definition and R(L) = (Σ,E ∪
A, 1R ∪ 2R, ε) be a two-layered rewrite theory with (Σ,E ∪A, 1R ∪ 2R) built as
in Definition 3 but where the set of rules is partitioned into two subsets 1R and
2R and E ∪ 1R is terminating modulo A. If γ �R(L) γ

′ then γ ⇒+
S γ′.

We say that R(L) is an approximate encoding of L.

Corollary 3 (precision for approximate encoding). Let L = (Σ, T ,S) be
a language definition and R(Ls) = (Σ,E ∪ A, 1R ∪ 2R, ε) be an approximate
encoding of Ls. For each feasible symbolic execution π0∧∧∧φ0 −→Rs π1∧∧∧φ1 −→R(Ls)

· · · −→R(Ls) πn ∧∧∧ φn −→R(Ls) · · · there is a concrete execution in L: γ0 =⇒+
S

γ1 =⇒+
S · · · =⇒+

S γn =⇒+
S · · · such that γi ∈ [[πi ∧∧∧ φi]] for i = 0, 1, . . ..

An interesting and practically relevant question is whether the coverage/preci-
sion relationships between L and Ls can be reflected on the level of the approx-
imate encodings as two-layered rewrite theories. To investigate these relation-
ships, we have to find a way to define an approximate two-layered rewrite theory
R(Ls) that extends a given approximate two-layered rewrite theory R(L). A
first attempt is to define R(Ls) = (Σs, E ∪ A, 1Rs ∪ 2Rs, εs) from R(L) in the
same way Ls is obtained from L, but this is not enough to have a coverage-like
result. The program log in Figure 5 is deterministic and terminating for each
ϑ(A) ∈ Int . So we may execute any instance of it with an approximate encoding
R having no second-layer rules, i.e., 2R = ∅. If 2Rs = ∅, then 1Rs is non termi-
nating because there is an infinite execution corresponding to the case when the
value of the program variable X in the current configuration is always greater
than zero. Another problem is to specify how the strategy ε is extended to εs.
Since it is hard to give general definitions for these questions, we opted for a
particular solution that can be implemented in Maude.
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Definition 5 (symbolic approximate encoding). Let Ls = (Σs, T s,Ss) be
the symbolic extension of L = (Σ, T ,S) and R(L) = (Σ,E ∪ A, 1R ∪ 2R, ε) an
approximate encoding of L. We assume that there is a total order relation ≺ over
1R such that:
1. the rewrite t→!

(E∪1R)/A ε(t) uses the minimal rule from 1R w.r.t. ≺ when-
ever such a rule is applicable;

2. if α is unconditional and α′ is conditional then α ≺ α′.
We let the approximated encoding of Ls be R(Ls) = (Σs, E ∪A, 1Rs ∪ 2Rs, εs):

– 1Rs = {αs | α ∈ 1R, α unconditional};
– 2Rs = {αs | α ∈ 1R, α conditional} ∪ {αs | α ∈ 2R};
– αs≺s α′s iff α ≺ α′;
– εs uses the minimal rule from 1Rs w.r.t. ≺s.

Theorem 5 (coverage for approximate rewrite theories). Let L = (Σ, T ,S)
be a language definition and R(L) = (Σ,E ∪ A, 1R ∪ 2R, ε) be an approximate
encoding of L. For every concrete execution γ0 −→R(L) γ1 −→R(L) · · · −→R(L)

γn −→R(L) · · · there is a symbolic execution π0 ∧∧∧ φ0 −→+
R(Ls) π1 ∧∧∧ φ1 −→

+
R(Ls)

· · · −→+
R(Ls) πn ∧∧∧ φn −→

+
R(Ls) · · · such that γi ∈ [[πi ∧∧∧ φi]] for i = 0, 1, . . ..

However, the precision relationship between R(L) and R(Ls) does not hold
in general. The reason is that 1Rs has fewer rules than 1R and hence the
representative-selection strategy εs is weaker than ε. Therefore there are no
guarantees that the concrete execution given by Corollary 3 will be the same
with that chosen by the strategy ε. If the strategy εs is the "isomorphic image"
of ε via the transformation • 7→ •s, then the precision result holds:

Theorem 6 (precision for approximate rewrite theories). Let L = (Σ, T ,S)
be a language definition and R(L) = (Σ,E ∪ A, 1R ∪ 2R, ε) be an approx-
imated encoding of L such that 1R includes only unconditional rules (hence
1Rs = {αs | α ∈ 1R}). For every feasible symbolic execution π0 ∧∧∧ φ0 −→R(Ls)

π1∧∧∧φ1 −→R(Ls) · · · −→R(Ls) πn∧∧∧φn −→R(Ls) · · · there is a concrete one γ0 −→R(L)

γ1 −→R(L) · · · −→R(L) γn −→R(L) · · · such that γi ∈ [[πi ∧∧∧ φi]] for i = 0, 1, . . ..

5 Implementing the K Framework in Maude

The current implementation of the K framework uses Maude as a rewrite engine.
In [4], the framework, at that time called K-Maude, was presented as an extension
of Maude consisting in several meta-transformations which gradually translate
K modules into executable Maude modules. In the current version of K we use
a compiler for language definitions where each of these meta-transformations
is actually a separate compilation step. Through compilation, K definitions are
translated into Maude rewrite theories which are then used for running/analysing
programs. The main components of a K definition are the syntax declarations,
the configuration and the K (rewrite) rules. To these, the tool adds automatically
the rules generated from strictness annotations (e.g. heating/cooling rules 1-4).
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This entire work is concerned with how the set of rules is compiled into a
two-layered rewrite theory, which is then encoded into Maude by using equations
for the first-layer rules and rewrite rules for the second-layer rules. By default,
all K rules are translated into (conditional) equations (i.e. 1R = S and 2R =
∅). This behavior can be altered by specifying (at compile time) that certain
rules are to be considered transitions, which will trigger their transformation
into (conditional) rewrite rules in the resulting Maude module. When using K,
one must pass the rule name as an argument for the -transition option at
compilation time:

$ kompile cink.k –transition "division"

The above command specifies the rule division as a transition; thus, the rule
for division is included in 2R. By this command we express our intent that the
tool considers the rule for division as a transition when exploring an execution’s
transition system. By making it a rewrite rule in Maude, we can explore the
nondeterminism generated by the rule when using Maude’s search command.

Another source of non-determinism arises from strictness annotations. When
the strict attribute is given to some syntactical construct, the tool chooses by
default an arbitrary, fixed order to evaluate its arguments. This optimisation
has the side effect of possibly losing behaviours due to missed interleavings.
Some of these missed interleavings can be restored using the –superheat option.
This option is used to instruct the K tool to exhaustively explore all the non-
deterministic evaluation choices for the strictness of a language construct.

Once we know which rules are transitions and which are not, we can easily
deduce the two sets 1R and 2R, and thus we obtain the executable rewrite theory
R(L) as discussed in Section 4. The following example shows how one can explore
more behaviours by specifying second-layer rules at compile time. If we compile
the language definition of CinK without any options, then running the program
counter (Figure 5) will result in a single solution, where the return value is either
1 (when the tool first evaluates dec() and then inc()) or 3 (when it evaluates
inc() before dec()). However, if we set the operation plus as superheat:

$ kompile cink –superheat "plus"

then we obtain both solutions, because the heating rule for addition can be
applied in two ways and the option tells the tool to explore them both.

The symbolic transformations discussed in Section 3.2 are implemented as
compilation steps in the K compiler [2]. The tool uses the same translation
to Maude discussed above in order to obtain the rewrite theory R(Ls). An
important step in this process is that conditional rules whose conditions cannot
be reduced to true are compiled as transitions, that is, they are included in
2R. When performing search in Maude, these rules are essential in exploring all
the execution paths, thereby ensuring the Coverage (Theorem 5) property. Note
that none of the symbolic transformations applied by the tool to the language
definition changes the initial semantics of the language.

The implementation uses a slightly modified version of Maude which includes
a hook to the Z3 SMT solver [5] and a corresponding operation called checkSat.
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It receives as argument an SMTLib string, which is sent to the solver to check its
satisfiability. The result returned by the solver is propagated back through the
hook to Maude as a string, so checkSat can return “sat”, “unsat”, or “unknown”. In
practice, our tool uses checkSat to reduce the search space by slicing unfeasible
execution paths, which is very important in preserving the precision property.
To obtain R(Ls) from a K definition one uses the symbolic backend as follows:

$ kompile cink –backend symbolic

This command applies the symbolic transformations, moves the appropriate rules
in 2R, and generates the rewrite theory R(Ls). Using R(Ls) one can execute
programs using either concrete or symbolic values. However, running programs
with symbolic values may lead to infinite loops when the loop conditions contain
symbolic values. In such cases one can bound the number of execution paths:

$ krun log.imp –search –bound 3 -cIN=".List" -cPC="true"

This executes log (Figure 5) symbolically, until a number of 3 solutions is found.
Each solution consists in a result configuration and a formula which constitutes
the path condition. The symbolic values are represented as fresh variables with
a specific sort (e.g. A:Int). These can also be passed as input at the command
line of the tool as arguments of the -cIN parameter. Users can also set the initial
path condition using the -cPC option. During the symbolic execution the tool
applies a rule only if the next state is feasible: the current path condition and
the new conditions imposed by the application of the rule are not “unsat”.

6 Conclusion and Related Work

We presented some results that relate language definitions to different kinds
of rewrite theories, which encode the language definitions both faithfully and
approximately. The results show how (symbolic) analyses performed on a rewrite
theory are reflected on the corresponding language definition. The general results
are applied to the current implementation of K language definitions in Maude.

The faithful encoding ofK language definitions as rewrite theories is relatively
simple but the resulting theory is not efficient in practice. Therefore we extended
the notion of rewrite theory in order to work with under-approximations of the
language definitions (and implicitly of the rewrite theories). The approximating
theories are more efficient and flexible – the user has the freedom to work with
various levels of approximations –, but their use for program analysis must be
done with care because they do not preserve all the behavioural properties. The
coverage/precision results proved in this paper can help the user in correctly
assessing which analyses hold on which representations.

Related Work The first tool supporting K [4] was written in Maude’s meta-
level, as a series of transformations translating K definitions into Maude pro-
grams. Then, the K compiler became a more complex tool that translates a K
definition into an intermediate language, which is used to generate code for var-
ious backends, including Maude. The tool and the semantics of K definitions is
described in [8]. The programming-language definition framework presented in
this paper (Section 3) is a specialised case of that definition.
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The coverage and precision properties, which relate the faithful rewrite-
theory encoding of a language and of that language’s symbolic version, are
analogous to the soundness and completeness results in [10], which relate usual
rewriting and rewriting modulo SMT. An interesting alternative to defining sym-
bolic execution as executions in a transformed language (as we do it in [2]) would
be to compile a language into a rewriting modulo SMT Maude module.

Our construction of two-layered rewrite theories has some similarities with
equational abstractions [9] and with the state-space reduction techniques ob-
tained by transforming rules into equations presented in [6]. However, our first-
layer rewrite rules do not equate states as Maude equations do; their semantics
is that of transformation, not of equality. Therefore these rules do not have to
satisfy the executability and property-preservation requirements of [9,6].
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Abstract. Interprocedural slicing is a technique applied on programs
with procedures and which relies on how the information is passed at
procedure call/return sites. Such a technique computes program slices
(i.e. program fragments restricted w.r.t. a given criterion). The existing
approaches to interprocedural slicing exploit the particularities of the
underlying language semantics in order to compute program slices. In
this paper we propose a generic technique for the problem interprocedural
slicing. More specific, our approach takes as input a language semantics
(given as a rewriting-logic specification) and infers some particularities
of it which are further used to compute the program slices.

Keywords: slicing, semantics, Maude, debugging

1 Introduction

Complex software systems are built in a modular fashion where modularity is im-
plemented with functions and procedures in imperative languages, with classes
and interfaces in object-oriented programming, with modules in declarative-style
programming, or other means of organizing the code. Besides its structural char-
acteristic, the modularity also carries semantic information. For example, the
modules could be parameterized by types and values (e.g. the generic classes
of Java and C#, the template classes of C++, the parameterized modules of
Maude and Ocaml) or could have specialized usability (e.g. abstract classes in
object-oriented languages or functors in functional programming languages).

It is preferable, for efficiency and accuracy reasons, that the modular char-
acteristics of a system are preserved during its development and are used for
its analysis. As such, it is advisable to integrate the development and the anal-
ysis of a system. One possible solution for this integration is to use a formal
executable framework such as rewriting logic [10]. The integration methodology
proposed by rewriting logic starts with a formal executable semantics of the
programming language used for the system development. The formal executable
semantics provides the set of all concrete executions, for any program correctly
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C03-01) and Comunidad de Madrid program PROMETIDOS (S2009/TIC-1465).
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constructed w.r.t. the language syntax and for all possible input data. Next,
the notion of a concrete execution could be extended to an abstract execution—
seen as a program execution with an analysis tool. This is due to the fact that
the abstractions and, implicitly, abstract executions are representations of sets
of concrete program executions. One particular abstraction is the program slic-
ing [21], which computes safe program fragments (also called slices) w.r.t. a
specified set of variables. A complex variant of program slicing, called interpro-
cedural slicing, preserves the modularity of the underlying program and exploits
how the program data is passed between the program modules.

Program slicing [21] computes all the program statements that might affect
the value of a variable v at a program point of interest, p. The variable v (or a set
of variables) is called slicing criterion. The slicing result is standardly computed
by incrementally discovering the data dependencies and adding to the slice the
statements containing variables dependent of some element in the slicing crite-
rion. The standardized approaches to slicing consider a particular programming
language and work around its particularities. We aim to generalize these ap-
proaches by giving the slicing method in a generic fashion, using as premises the
programming language semantics specification. Namely, we infer specific partic-
ularities of the language from the semantics specification of the language and use
these particularities for the analysis method. For example, in our previous work
from [14] we discover side-effect language constructs (i.e., constructs triggering
data-store changes) which we further use for intraprocedural program slicing.
In the current work we make a step forward and describe an interprocedural
slicing method which we use to identify which are the slicing prerequisites, i.e.,
the semantics entities that we need to infer in order to claim generality of the
slicing w.r.t. the language semantics. We identify these prerequisites as being
context-updates constructs and parameter passing patterns, besides the already
settled side-effect constructs from [14]. Next, we explain the terminology used.

Interprocedural slicing is the slicing method applied on programs with proce-
dures where the slice is computed for the entire program by taking into account
the procedure calls/returns. The main problem that arises in interprocedural
slicing, comparing to e.g., intraprocedural slicing, is related to the fact that the
procedure calls/returns may be analyzed with a too coarse abstraction. Usu-
ally, the coarse abstraction relies only on the call graph without taking into
account the context changes occurring during a procedure call/return. By con-
text changes we refer to the instantiation of the local variables during and after a
procedure execution and we name the procedure call/return language constructs
as context-update constructs. By parameter passing pattern we understand the
manner in which some variables get to traverse the context-updates.

In this paper we extend our previous work on generic slicing from [14] from
intraprocedural to interprocedural generic slicing. Hence, we consider given a
language semantics S, and we use intraproceudral slicing to construct the inter-
procedural method of slicing S-programs (i.e., programs written in the language
specified by S, i.e., well-formed terms in S). We consider S to be a rewriting
logic theory [10] which is executable and benefits of tool support via the Maude



Towards a Formal Semantics-Based Technique for Interprocedural Slicing 3

system [2], an implementation of the rewriting logic framework. We use this
study of the interprocedural program slicing to identify the which are the pre-
requisites of a generic slicing. Namely, along studying the interprocedural slicing
we identify these prerequisites as being the context-updates together with pa-
rameter passing. This technique is concretized with an implementation into a
generic semantics-based slicing tool developed in Maude, but for the moment
the prerequisites are given manually. Hereafter, we give more details about the
settings of our interprocedural S-program slicing.

Firstly, we consider S to be from the family of imperative and object-oriented
languages. Many constructs in these languages use the notion of scope which
delimits pieces of program, e.g., the loops or function bodies. These types of
scoping information are explicitly represented and manipulated in the rewriting
logic definitions of C [3] or Java [4]. We use here, as a case study for S, an
extension of the WHILE language [7] in which we introduce variable scoping
(i.e., homonymous variables behave differently w.r.t. the current scope). We call
this extension WhileF which is a simple imperative language with conditions
and loops, enriched with constructs like functions and local variables.

Secondly, the program slicing step of our technique receives as input both
context-update and side-effect information hence the relatively simple slicing
step in [14] is subject to heavy changes. For one, it is necessary to address the
representability of the derived context-update constructs w.r.t. the interprocedu-
ral program slicing. Namely, a combined representation of context-update and
side-effect constructs could be terms denoting generic skeletons for procedure
summaries—a succinct representation of the procedure behavior w.r.t. its input
variables, as introduced in [17] and advanced in [5]. Our approach is comple-
mentary to it, because it creates language-specific representations of summaries,
based on the specific manipulation of context-updates in the formal semantics.

Finally, the interprocedural slicing proposed here has the following status
w.r.t. the Maude implementation: Our work in [14] containing the meta-analysis
for side-effect constructs and the intraprocedural slicing is already prototyped
in Maude. For the current work, we defined WhileF (see the source at http:

//maude.sip.ucm.es/slicing/) and we set the interprocedural slicing to work
with the context-updates, side-effects, and intraprocedural slicing. However, the
meta-analysis producing context-updates is, at the moment, at conceptual level,
being used as an hand-given input. It also remains to implement the proce-
dure summaries which improve the accuracy of the slicing result as well as the
procedure parameter passing pattern extraction.

Related work. Program slicing is a program analysis technique which computes
safe program slices (i.e., sequences of program statements) w.r.t. a given criteria
(i.e., sets of variables of interest). Program slicing addresses a wide range of ap-
plications from code parallelization [19] to program testing [6], debugging [18],
and static analysis [9,8]. We note first that our work resides at the intersection
of standard program analysis and rewriting logic. As such, we organize the re-
lated work presentation in two categories: (A) standard slicing as defined in the
already classical program analysis and (B) rewriting logic from the perspective

http://maude.sip.ucm.es/slicing/
http://maude.sip.ucm.es/slicing/
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of its preexistent analysis tools and its programming languages semantics spec-
ifications. We use this section to better localize our work rather than to give
a direct comparison with other researches. The reasons for this setting are: (1)
even though program slicing is relatively well established in program analysis, in
rewriting logic is rather a new topic; (2) other work on slicing in rewriting logic
apply on model checking counterexamples rather than programs while other pro-
gram analysis tools for language semantics specifications in rewriting logic target
other topics, e.g., testing and debugging.

(A) Program slicing was introduced in [21] where, for a given program with pro-
cedures, a limited form of context information (i.e., procedure call location) is
used to compute the program slices. The approach resembles an on-demand pro-
cedure inlining, using a backward propagation mechanism. The results of [21] are
backward program slices. Moreover, multiple procedure calls are included in the
computed slice without distinguishing between them w.r.t. their intra-procedural
information. Our proposed approach takes into consideration the context-update
constructs (as extracted from the formal semantics) and produces forward slices
(via term slicing on the program term). Moreover, the context-update constructs
induce the symbolic procedure summaries as in [17,8,5]. A procedure summary is
a compact representation of the procedure behavior, parameterized by its input
values and, in our proposed framework, is derived from the context-update con-
structs and intraprocedural slicing. The interprocedural slicing is explicit in [8]
and implicit in [17,5] and sets the support for interprocedural program analyses.
Next we compare our work with the underlying interprocedural slicing algorithm
of each of the three aforementioned approaches.

The work in [17] uses a data-flow analysis to represent how the informa-
tion is passed between procedure calls. It is applied on a restricted class of
programs—restricted by a finite lattice of data values—, while the underlying
program representation is a mix of control-flow and call graphs. In comparison,
our approach considers richer context information (as in [8]) while working on a
term representation of a program. Hence, we have an implicit representation of
the control-flow and call graphs. The work in [5] keeps the same working struc-
tures but addresses the main data limitation of [17]. As such, the procedure
summaries are represented as sets of constraints on the input/output variables.
The underlying interprocedural slicing algorithm of [5] is more refined than our
approach just because of the sharper representation of context information. Our
approach requires a specialized data abstraction on top of the interprocedural
slicing procedure—this is one of our proposed developments. We follow closely
the work in [8] which introduces a new program representation for interprocedu-
ral slicing. This is a mix program graph with explicit representation (as special-
ized nodes and edges) of context information and the interprocedural slicing is
computed on this program representation. In comparison, our approach does not
require the explicit context representation but uses term matching (in the second
part of the algorithm) to distinguish between different context. We present [8]
more details in Section 2. What separates our approach from the three afore-
mentioned techniques is that we work with a formal executable semantics, in
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the rewriting logic framework. This means, on one hand, that the results of our
slicing algorithm are correct w.r.t. the language specification and, on the another
hand, that the slicing algorithm is generic (as the slicing information is extracted
by meta-processing the formal semantics).

(B) In the rewriting logic environment there are several existing approaches
towards program debugging, testing, and analysis. The work in [12] presents an
approach to generate test cases similar to the one presented here namely, both
use the formal specifications of the languages semantics to extract information
about programs written in these languages. In this case, the semantic rules are
used to instantiate the state of the variables used by the given program by using
narrowing. In this way, it is possible to compute the values of the variables
required to traverse all the statements in the program, the so called coverage.
Similarly, in [13] is presented an approach to perform declarative debugging of
programming languages defined by either their big-step or small-step semantics.
It describes a generic way to build the proof trees for the execution of programs
in such a way that, given some information from the user, it can locate the
function responsible for the error.

The recent work in [1] proposes a first slicing technique of rewriting logic com-
putations. It takes as input an execution trace—the result of executing Maude
model checker tools—and computes dependency relations using a backward trac-
ing mechanism. While they perform dynamic slicing by executing the semantics
for an initial given state, we propose a static approach that is centered around
the rewriting logic theory of the language specification. Moreover, our main tar-
get application is not counterexamples or execution traces of model checkers,
but programs executed by the particular semantics.

The proposed technique follows our previous work on language-independent
program slicing in rewriting logic environment [14]. Actually, the implementa-
tion of the current work is an extension of the slicing tool from [14]. Both ap-
proaches share the methodology steps: (1) the initial meta-analysis of S and (2)
the program analysis conducted over the S-programs. Namely, in [14] we use the
classical WHILE language augmented with side-effect constructs (assignments
and read/write statements) to exemplify (1) the inference of the set of side-effect
language constructs in S and (2) the program slicing as term rewriting.

As a semantical framework, Maude [2] and rewriting logic [10] have been used
to specify the semantics of several languages, such as LOTOS [20], CCS [20],
Java [4], or C [3]. These researches, as well as several other efforts to describe
a methodology to represent the semantics of programming languages in Maude,
led to the rewriting logic semantics project [11]—which presents a comprehensive
compilation of these works—and to the development of K [16]—a tool built upon
a continuation-based technique that provides mechanisms to (i) ease language
definitions and (ii) translate these definitions into Maude which comes with its
“for free” analysis tools—. Our interest in these semantics consists in using
them as benchmarks to validate different meta-analyses as, e.g., the context-
update inference. First, we plan to limit our approach to those semantics directly
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implemented in Maude, but we would like to further extend our attention to the
semantics implemented in K and automatically interpreted in Maude.

The rest of the paper is organized as follows: Section 2 introduces some
foundations of slicing, while Section 3 describes our proposed interprocedural
slicing algorithm pivoting on an example. In Section 4 we conclude and present
some lines for future work.

2 Preliminaries

Program slicing, as introduced in [21], is a program analysis technique which
computes all the program statements that might affect the value of a variable
v at a program point of interest, p. It is a common setting to consider p as the
last instruction of a procedure or the entire program. Hence, without restricting
the proposed methodology, here we consider slices of the entire program.

A classification of program slicing techniques identifies intraprocedural slicing
when the method is applied on a procedure body and interprocedural slicing
when the method is applied across procedure boundaries. The key element of a
methodology for interprocedural slicing is the notion of context (i.e. the values of
the function/procedure parameters). Next, we elaborate on how context-aware
program slicing produces better program slices than a context-forgetful one.

Let us consider, in Fig. 1, the program from [8], written as an WhileF program
term, upon which we present subtleties of interprocedural slicing. We start the
slicing with the set of variables of interest {z}.

The first method, in [21], resembles an on-demand inlining of the necessary
procedures. In the example in Fig. 1, the variable {z} is an argument of procedure
Add call in Inc, hence, the sliced body of Add is included in the slice of Inc. Note
that, when slicing the body of Add, z is replaced by a hence, the slicing of Add
deems {a} and {b} as relevant. The return statement of procedure Inc is paired
with the call to Inc, in the body of A so the variable {y} becomes relevant for
the computed slice. When the algorithm traces the source of the variable y, it
finds the second call to Add in the body of A (with the arguments x and y) and
includes it in the program slice. When tracing the source of x and y, it leads
to include the entire body of procedure Main (through the variables sum and i,
which are used by the assignments and calls of Main). Using this method, the
program slice w.r.t. the set of variables of interest - {z}, is the original program,
as in Fig. 1. This particular slice is a safe over-approximation of a more precise
one (which we present next) because the method relies on a transitive-closure—
fixpoint computation style where all the variables of interest are collected at the
level of each procedure body. As such, the body of procedure Add is included
twice in the computed slice.

The second approach in [8] exploits, for each procedure call, the available
information w.r.t. the program variables passed as arguments (i.e., the existing
context before the procedure call). Again, in the example in Fig. 1, the variable
z is an argument of procedure Add hence, upon the return of Add, its body
is included in the slice. However, because of the data dependencies between
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function Main (){
sum := 0;
Local i;
i := 1;
while i < 11 do

call A (sum, i)
}

function A (x, y) {
call Add (x, y);
call Inc (y)
}
function Add (a, b) {
a := a + b

}

function Inc (z) {
Local i;
i := 1;
call Add (z, i)
}

Fig. 1. A WhileF program Px with procedures Main, A, Add, and Inc.

variables a and b (with a using an unmodified value of b) only the variable a is
collected and further used in slicing. Next, upon the return statements of Add
and then Inc, the call of Inc in A (with parameter y) is included in the slice.
Note that the call to Add from A (with parameters x and y) is not included in
the slice because it does not modify the context (i.e., the variables of interest
at the call point in A). As such, the slicing algorithm collects only the second
parameter of procedure A, and following the call to A in Main, it discovers i as
the variable of interest (and not sum as it was the case of the previous method).
Hence, the sliced A with only the second argument is included in the computed
slice. Consequently, the variable sum from Main is left outside the slice. The
result is presented in Fig. 2.

function Main (){
Local i;
i := 1;
while i < 11 do

call A (i)
}

function A (y) {
call Inc (y)
}
function Add (a, b) {
a := a + b

}

function Inc (z) {
Local i;
i := 1;
call Add (z, i)
}

Fig. 2. The result of a context-dependent interprocedural analysis for Px.

Any analysis that computes an interprocedural slice works with the control-
flow graph—which captures the program flow at the level of procedures— and the
call graph—which represents the program flow between the different procedures—
. To improve the precision of the computed program slice, it is necessary for the
analysis to use explicit representations of procedure contexts (as special nodes
and transitions). This is the case of the second method which relies on a program
representation called system dependence graph.

3 Semantics-based Interprocedural Slicing

We present in this section the algorithm for our interprocedural slicing approach,
and illustrate it with an example. Then, we describe a Maude prototype execut-
ing the algorithm for semantics specified in Maude.
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3.1 Program slicing as term slicing

In [14] we show how to extract the set of side-effect language instructions SE
from the semantics specification S and how to use SE for an intraprocedural
slicing method. In the current work we focus on describing the interprocedural
slicing method which is built on top the intraprocedural slicing result from [14].

The programs written in the programming language specified by S are de-
noted as p. By program variables we understand subterms of p of sort Var . If we
consider the subterm relation as 4, we have v 4 p where v is a program variable.

We consider a slicing criterion sc to be a subset of program variables which
are of interest for the slice. We denote by SC the slicing criterion sc augmented
with data flow information that is collected along the slicing method. Hence, SC

is a set of pairs of program variables of form
x
v, v′, denoting that v depends on

v′, or just variables v, denoting that v is independent.

We assume as given the set of program functions Fp defining the program
p. We claim that Fp can be inferred from the term p, given the S-sorts defining
functions, variables, and instruction sequences. We base this claim on the fact
that p is formed, in general, as a sequence of function definitions hence its se-
quence constructor can be automatically identified from S. Also, we denote by
getFnBody(f,Fp) the matching of the body of function f in the set Fp. Note
that getFnBody(f,Fp) 4 Fp.

Furthermore, we denote the method computing the intraprocedural slicing as
$(B,SC, SE), where B is the code, i.e., the body of some function f in p. Obvi-
ously, we have B 4 p. The result of $(B,SC, SE) is a term SC :: fn〈fn(fp]){fs}〉
where SC is the data flow augmented slicing criterion, fn ∈ FunctionName is a
function identifier, and fs is the slice computed for fn. Meanwhile fp] is the list
of fn’s formal parameters fp filtered by SC , i.e., all the formal parameters not
appearing in SC are abstracted to a fixed additional variable ].

Now we give a brief explanation on how the intraprocedural slicing $ works.
We say that a program subterm modifies a variable v if the top operator is in
SE and v appears as a leaf in a specific part of the subterm (e.g., the variable
v appears in the first argument of _:=_, or in Local_). When such a subterm
is discovered by $ for a slicing variable then the slicing criterion is updated by
adding the variables producing the side-effects (e.g., all variables v′ in the second

argument of _:=_) and the data flow relations
x
v, v′. We call fs a skeleton subterm

of B and we denote this as fs - B.

In Fig. 3 we give the slicing method, termSlicing, which receives as input
the slicing criterion sc, the set of program functions Fp, and the set of side-
effect and context-updates syntactic constructs, SE and CU , respectively. The
output is the set of sliced function definitions slicedFnSet together with the
obtained data flow augmented slicing criterion dfsc. Note that Fp, SE , and CU
are assumed to be precomputed based on the programming language semantics
specification S. The algorithm for inferring SE is given in [14, Section 4]. The
algorithm for inferring CU goes along the same lines as the one for SE and it is
based on the automatic discovery of stack structures used in S for defining the
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programming language commands. For example, in WhileF the only command
inducing context-updates is Call_(_) instruction. In the current work we assume
CU given in order to focus on the interprocedural slicing as term slicing method.
However, we claim that termSlicing is generic w.r.t. S since Fp, SE , and CU
can be automatically derived from S.

termSlicing is a fixpoint iteration which applies the current data-flow-
augmented slicing criterion over the function terms in order to discover new
skeleton subterms of the program that comply with the slicing criterion. The
protocol of each iteration step is to take each currently sliced function and slice
down and up in the call graph. In other words, the intraprocedural slicing is ap-
plied on every called function (i.e., goes down in the call graph) and every calling
function (i.e., goes up in the call graph).

Technically, termSlicing relies on incrementally building the program slice
in the workingSet variable and the data flow augmented slicing criterion, dfsc.
This process has two phases: the initialization of the workingSet and dfsc (lines
0-6) and the loop implementing the fixpoint (lines 7-39).

The initialization part computes the slicing seed for the fixpoint by inde-
pendently applying the intraprocedural slicing $( , , ) with the slicing criterion
sc for each function in the program p. The notation A∪=B (line 3) stands
for “A becomes A ∪ B” where ∪ is the set union. Similarly, A ]= B (line 4)
is the union of two data dependency graphs. Namely, A ] B is the set union
for graph edges filtered by the criterion that if a variable v is independent
in A but dependent in B (i.e., there exists an edge x, with v on one of the
ends) then the independent variable v is eliminated from A ] B. For exam-
ple, the initialization step applied on the program in Fig. 1 produces the fol-
lowing workingSet ′: z :: Inc〈Inc(z){Call Add(z, ])}〉, ∅ :: Main〈Main(){}〉, ∅ ::
A〈A(], ]){}〉, ∅ :: B〈B(], ]){}〉, ∅ :: Add〈Add(], ]){}〉.

The fixpoint-loop (lines 7-39) discovers the call graph in an on-demand fash-
ion using the context-update set CU which directs the fixpoint-iteration towards
applying the slicing on the called/calling function. As such, when a context-
update (i.e., Call_(_) in the semantics of WhileF) is encountered in the cur-
rent slice, we proceed to slice the called function (lines 10-19). Next, when a
context-update of the currently considered functions is encountered, we proceed
again to slice the calling function (lines 20-29). Each time we update the current
data-flow-augmented slicing criterion and the slice of the current function (lines
30-36). We iterate this process until the skeleton subterm of every function is
reached, i.e., workingSet is stable. Note that the stability of workingSet induces
the stability of dfsc, the data flow augmented slicing criterion.

We now describe in more details each of the three parts of the fixpoint-loop:
the called (lines 10-19), the calling (lines 20-29), and the current (lines 30-36)
functions. The called and calling parts have a similar flow with slight differences
in the operators used. They can be summarized as:

SC ]= SC fnbfnCalled filtered$(fnCalled ,v) fnCalledcfn

SC ]= SC fndfnCalling filtered$(fnCalling ,w) fnCallingefn
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termSlicing
Input: sc,Fp,SE ,CU
Output: slicedFnSet , dfsc
0 workingSet ′ := ∅; dfsc := ∅;
1 for all fn(args){fnBody} ∈ Fp do
2 SCinit :: fn〈fnInitSlice〉 := $(fnBody , {x ∈ sc | x 4 fs or x 4 args}, SE);
3 workingSet ′ ∪= {SCinit :: fn〈fnInitSlice〉};
4 dfsc ]= SCinit ;
5 od
6 workingSet := ∅;
7 while workingSet 6= workingSet ′ do
8 workingSet := workingSet ′;
9 for all SC :: fn〈fnSlice〉 ∈ workingSet do
10 wsFnCalled := ∅;
11 for all Call ∈ CU for all Call fnCalled 4 fnSlice do

12 fnCldSC := SC fnbfnCalled ;
13 for all fnCldSCPrev :: fnCalled〈 〉 ∈ workingSet do
14 if fnCldSC v fnCldSCPrev then break;
15 fnCldBd := getFnBody(fnCalled ,Fp);
16 fnCldSCNew :: fnCalled〈fnCldSlice〉 := $(fnCldBd , fnCldSC , SE);
17 wsFnCalled ∪= {fnCldSCNew :: fnCalled〈fnCldSlice〉};
18 SC ]= fnCldSCNew fnCalledcfn ;
19 od
20 wsFnCalling := ∅;
21 for all Call ∈ CU for all fnCalling ∈ Fp s.t. Call fn 4 fnCalling do

22 fnClgSC := SC fndfnCalling ;
23 for all fnCallingSCPrev :: fnCalling〈 〉 ∈ workingSet do
24 if fnClgSC w fnCallingSCPrev then break;
25 fnClgBd := getFnBody(fnCalling ,Fp);
26 fnClgSCNew :: fnCalling〈fnClgSlice〉 := $(fnClgBd , fnClgSC , SE);
27 wsFnCalling ∪= {fnClgSCNew :: fnCalling〈fnClgSlice〉};
28 SC ]= fnClgSCNew fnCallingefn ;
29 od
30 fnBd := getFnBody(fn,Fp);
31 SCNew :: fn〈fnSliceNew〉 := $(fnBd , SC, SE);
32 dfsc ]= SCNew ;
33 for all Call ∈ CU for all Call fnCalled 4 fnSliceNew do
34 if :: fnCalled〈 {}〉 ∈ wSetFnCalled then
35 fnSliceNew := erraseSubterm(Call fnCalled , fnSliceNew)
36 od
37 workingSet ′ d= {SCNew :: fn〈fnSliceNew〉} d wsFnCalled d wsFnCalling ;
38 od
39 od
40 slicedFnSet := get〈〉Content(workingSet)

Fig. 3. Program slicing as term slicing algorithm.

where fn is the name of the current function, fnCalled is the name of a functions
called from fn, and fnCalling is the name of a function which is calling fn.
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The operators b and c stand for the abstraction of the slicing criterion
downwards in the calling graph from fn into fnCalled and back, respectively.
The abstraction fnbfnCalled pivots on the actual parameters of fnCalled and,
based on patterns of function calls, it maps the actual parameters of fnCalled
from the current environment SC :: fn into the environment of fnCalled . The
abstraction fnCalledcfn renders the reverse mapping from the (sliced) called en-
vironment back into the current one. Similarly for d and e operators which
perform the abstraction upwards in the call graph from fn to fnCalling , pivot-
ing on the parameters of fn. For example, for program Px from Fig. 1 we have
x
z, i InvbAdd

x
a, b AddcInc

x
z, i and

x
z, i IncdA

x
y, ]=y AeInc

x
z, i. For the current work,

the only pattern of function calls that we have experimented is the complete list
of call-by-reference parameters; we plan to experiment with others in the future.

The operator filtered$(fnC , rel) (lines 13-17 and 23-27) is a filtered slicing of
fnC , where the filter is a relation between the current abstraction of SC and
previously computed slicing criterions for the called/calling function fnC . We
say that SC v SCPrev if SC is a subgraph of SCPrev such that there is no edge
x
v, v′ in SCPrev such that v is a node in SC and v′ is a function parameter which
is not in SC . This means that SC has no additional dependent data v′ among
the function parameters that should participate to the current slicing criterion.
Meanwhile, SC w SCPrev is defined as SCPrev v SC due to the fact that now
the sense in the dependency graph is reversed and so the slicing criterion in the
calling function (SCPrev) is the one to drive the reasoning. Hence, if the filter
relation is true then the new slice is not computed anymore (lines 14 and 24)
because the current slicing criterion is subsumed in the previous computation.

Finally, in lines 30-36 we compute a new slice for the current function fn
from which we eliminate any context-update subterm Call fnCalled for which
the currently computed slice of fnCalled has an empty body (lines 33-36). In
line 37 we collect all the slices computed at the current iteration in workingSet ′.
Note that d operator is an abstract union which first computes the equivalence
class of slices for each function, based on the graph inclusion of the data-flow-
augmented slicing criterion, and then performs the union of the results.

Recall that, in Section 2, we describe two interprocedural slicing methods
presented in [21] and [8], being the second more precise than the first one. In
our approach the difference is based solely on the data flow relation we use for
$. Hence, we can distinguish two types of termSlicing: the näıve one where the
data flow relations are ignored and the savvy one which collects and uses data
flow relations. Note that the data flow relation is currently assumed as given but
we plan to investigate the automatic inference of the data flow relation from S.

For example, the iterations of the savvy termSlicing for the program PX in
Fig. 4 and the slicing criterion {z} are listed in Fig. 5. Namely, in the first boxed
rows the slicing criterion {z} is applied on FPX to produce the skeleton subterms
used as the fixpoint seed. Hence, the fixpoint seed contains one nonempty skele-
ton as z appears only in Inc. Note that i—the second parameter of Call Add—is
abstracted to ] as no data dependency is currently determined for it.
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Main () {
sum := 0;
Local i, j;
i := 1; j := − 1;
While i < 11 Do

Call A (sum, i);
Call B (sum, j);
Call A (sum, j)

}

A (x, y) {
If x > 1 Then

Call Add(x, y);
Call Inc (y)

}
B (x, y) {
If x > 0 Then

Call B(x + y, y)
}

Add (a, b) {
a := a + b

}
Inc (z) {
Local i, j;
i := 1; j := i;
Call Add (z, i);
Call Inc (j)
}

Fig. 4. PX—the extension of the WhileF program Px.

In the second box of rows we consider the slicing criterion for Inc—the
only one nonempty from the seed—and we iterate the fixpoint for it. The first
row deals with the (only) called function appearing in Inc’s skeleton, namely
Add(z, ]). Note that the slicing criterion z is abstracted downwards in the call
graph so the slicing criterion becomes a, the first formal parameter of Add. The
slice of Add with {a} as slicing criterion is showed in the third column while

the slicing criterion becomes
x
a, b, i.e., a depends on b. Because b is a formal

parameter, it gets abstracted back in Inc as Add’s actual parameter i. Hence,

the updated criterion used in Inc is
x
z, i and it is used for the calling function

A, in the second row, and also for the recursive call to Inc itself, in the third
row. In these rows, the slicing criterion is abstracted upwards in the call graph
and the formal parameter z becomes y in A and j in Inc. Meanwhile i is ruled
out (becomes ]) because it is not a parameter and hence it is not relevant in a
calling function. The fourth row shows the computation of Inc’s skeleton based

on the current slicing criterion
x
z, i. Furthermore, upon performing the abstract

union d at the end of the fixpoint iteration, then Inc’s skeleton is Inc(z){. . . }.

The fixpoint iteration continues in the third box by adding to the slice the
function Main due to the upward phase (since Main contains a call to A). The
upward parameter substitution of y from A is i in Main and the slice of Main
is updated in the third row. Note that the � in all the other rows signifies the
reach of the break in lines 14 or 24 in termSlicing and stands for “nothing
to be done.” The fourth box contains the final step of the fixpoint when there
is nothing else changed in workingSet ′ (i.e., all the rows contain � in the last
column). Hence, for the example in Fig. 4 we obtain the slice in Fig. 2 with the
only difference that the sliced Inc is now the entire Inc from Fig. 4 (due to the
newly added assignment “j:=i” ).

termSlicing terminates because there exists a finite set of function skeleton
subterms, a finite set of data flow graphs, a finite set of edges in the call graph
for each function, and any loop in the call graph is solved based on the data flow
graph ordering. Moreover, termSlicing produces a valid slice because it exhaus-
tively saturates the slicing criterion. However, the obtained slice is not minimal
due to the skeletons union d. Still, there is a consistent difference between the
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Slicing Function Computed slice

variables contexts (identified subterms)

z :: > >bInc z→ z Incc> Inc(z) {Call Add(z, ])}
>bMain ] = ∅ Mainc>, . . . Main(){}, A(], ]){}, B(], ]){}, Add(], ]){}

z ::Inc IncbAdd a→
x
a, b AddcInc

x
z, i Add(a, b) {a := a + b}

x
z, i::Inc IncdA

x
y, ]→

x
y, ] AeInc

x
z, i A(], y) {Call Inc(y)}

x
z, i::Inc IncdInc

x
j, ]→

x
j, i InceInc

x
z, i Inc(]){Local i, j; i:=1; j:=i; Call Add(], i); Call Inc(j)}

x
z, i::Inc

x
z, i→

x
z, i Inc(z){Local i; i:=1; Call Add(z, i)}

y :: A AbAdd b v
x
a, b::Add AddcA y �

y :: A AbInc(z v
x
z, i::Inc) InccA y �

y :: A AdMain i→ i MaineA y Main(){Local i;i:=1;While i<1 Do Call A(], i)}

y :: A y = y :: A �
x
a, b::Add AdddInc(

x
z, i w

x
z, i::Inc) InceAdd y �

x
a, b::Add AdddA(

x
x, y w y :: A)AeAdd y �

x
a, b::Add

x
a, b=

x
a, b::Add �

x
z, i::Inc IncbAdd(

x
a, b v

x
a, b::Add) AddcInc y �

x
z, i::Inc IncdA(

x
y, ] w y :: A)AeInc y �

x
z, i::Inc

x
z, i=

x
z, i::Inc �

y :: A AbAdd(b v
x
a, b::Add) AddcA y �

y :: A AbInc(z v
x
z, i::Inc) InccA y �

y :: A AdMain(i w i :: Main)MaineA y �

y :: A y = y :: A �
x
a, b::Add AdddInc(

x
z, i w

x
z, i::Inc) InceAdd y �

x
a, b::Add AdddA(

x
x, y w y :: A)AeAdd y �

x
a, b::Add

x
a, b=

x
a, b::Add �

x
z, i::Inc IncbAdd(

x
a, b v

x
a, b:: Add) AddcInc y �

x
z, i::Inc IncdA(

x
y, ] w y :: A)AeInc y �

x
z, i::Inc

x
z, i=

x
z, i::Inc �

i :: Main MainbA(y v y ::A) AcMain i �

i :: Main MainbB(] v ∅ ::B) BcMain i �

i :: Main i = i :: Main �

Fig. 5. Program slicing as term slicing - the fixpoint iterations.
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näıve and the savvy methods. In order to achieve a better degree of minimality
we have to apply abstractions on the data-flow-augmented slicing criterion.

3.2 System description

We briefly present in this section our prototype which is implemented in Maude[2].
The source code is available at http://maude.sip.ucm.es/slicing/. A key
distinguishing feature of Maude is its systematic and efficient use of reflection
through its predefined META-LEVEL module [2, Chapter 14]. We have used these
features to implement a tool that receives a set of definitions, a sort where the
computations take place, and a set of slicing variables. However, the current pro-
totype has a number of limitations. First, it follows the näıve approach which
generates bigger slices in general. However, the savvy method requires only a
change in the structure of the slicing criterion (from set of variables to depen-
dency relation between variables). Note also that, although our aim is to build a
generic tool, the current version relies on some assumptions. Namely, the func-
tion definitions are put together by means of an associative operator, and each
definition contains the function name, the parameters, and the body, in this or-
der. Finally, the user has to give also the rules responsible for context-update
while the parameter passing operators b c and d e are particularized here
to an all-parameters-ordered-pass-by-reference pattern.

To use the tool we have to introduce ESt, the sort for the mapping between
variables and values, and RWBUF, the sort for the read/write buffer. Similarly, we
indicate that CallF is the rule for context-update:

Maude> (set side-effect sorts ESt RWBUF .)

ESt RWBUF selected as side effect sorts.

Maude> (set context-update rules CallF .)

CallF selected as context-update rules.

We can now start the slicing process by indicating that Statement is the sort
for instructions, myFuns is a constant standing for the definition of the functions
Main, A, Add, and Inc, and z is the slicing variable. The tool displays the relevant
variables and the sliced code for each function as:

Maude> (islice Statement with defs myFuns wrt z .)

The variables to slice ’Inc are {z}

’Inc(z){_ ;_ ; Call ’Add(z,_)}

...

4 Concluding Remarks and Ongoing Work

The formal language definitions based on the rewriting logic framework sup-
port program executability and create the premises for further development of
program analyzers. In this paper we have presented a generic algorithm for inter-
procedural slicing based on results of meta-level analysis of the language seman-
tics. In summary, the slicing prerequisites are: side-effect and context-update

http://maude.sip.ucm.es/slicing/
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language constructs with data flow information for the side-effect constructs
and parameter passing patterns for the context-update constructs. The actual
program slicing computation, presented in the current work, is done through
term slicing and is meant to set the aforementioned set of prerequisites. This
work complements the recent advances in semantics-constructed tools for de-
bugging [15], automated testing [12], and program analysis [14].

From the prototype point of view, we plan to improve it by adding the savvy
slicing method which increases the precision of the slicing result. We also plan to
investigate the automatic inference of the newly identified slicing prerequisites,
i.e., meta-analysis for context-updates deduction and parameter passing pattern
inference. Alos, we have to further develop the already existing side-effect ex-
traction with data flow information. Finally, we aim to develop the method for
language semantics defined in Maude but also in K [16].
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Abstract. The linear temporal logic of rewriting (LTLR) is a simple
extension of LTL that adds spatial action patterns to the logic, expressing
that an action described by a rewrite rule has been performed. Although
the theory and algorithms of LTLR for finite-state model checking are
well-developed [2], no theoretical foundations have yet been developed
for infinite-state LTLR model checking. The main goal of this paper is
to develop such foundations for narrowing-based LTLR model checking.
A key theme in this paper is the systematic relationship, in the form
of a simulation with remarkably good properties, between the concrete
state space and the symbolic state space. A related theme is the use of
additional state space reduction methods, such as folding and equational
abstractions, that can in some cases yield a finite symbolic state space.

1 Introduction

This paper further develops previous efforts to use rewriting logic and narrowing
to perform symbolic model checking of infinite-state systems. Those efforts have
gradually increased the expressiveness of the properties that can be verified, first
focusing on reachability analysis [16] and then expanding the range to general
LTL formulas [1,6]. It is by now clear that state-based temporal logics are not
expressive enough to deal with properties involving events, such as message
sends and receives; and that the temporal logic of rewriting [14] is a perfect
match—at the level of property specification—for rewriting logic—at the level of
system specification—so that both can be used seamlessly as a tandem for model
checking. For finite-state systems, the authors have developed model checkers
that demonstrate the power and usefulness of this tandem of logics [2]. The
question asked and positively answered in this paper is: can properties of a
rewrite theory R expressed in the linear temporal logic of rewriting (LTLR) [14]
be model checked symbolically by narrowing under reasonable assumptions?

The answer to this question is nontrivial, because of a difficulty which can
be best explained by briefly recalling how narrowing-based reachability analysis
and LTL model checking are performed for a rewrite theory R. For reachability
analysis, any non-variable term t, symbolically denoting a typically infinite set
of concrete state instances, can be narrowed to try to reach an instance of a goal
pattern term g. However, for LTL model checking, not all such terms t denote



states in the symbolic state space. The reason is that LTL formulas have a set
AP of state propositions, but for a symbolic term t such propositions may not be
defined: different term instances of t may satisfy different state propositions. The
solution proposed in [1,6] is to specialize t to most general instances t1, . . . , tn for
which all state propositions in AP are either true or false. If the equations defining
such propositions have the finite variant property, this can be done by variant
narrowing [1,6]. Therefore, narrowing-based LTL model checking symbolically
explores the state space of all such AP-instantiated symbolic terms.

Suppose that we now want to perform not just LTL model checking but
symbolic LTLR model checking, and that our formula ϕ involves both state
propositions in AP and spatial action patterns. For example, a spatial action
pattern l(θ) can appear in ϕ, stating that a rule l : q −→ r has been performed
with an instantiation that further specializes the substitution θ. As part of the
model checking verification of ϕ we may reach a symbolic state t where we need
to check whether the action specified by l(θ) can be performed. This check will
succeed if t can be narrowed with a rule l and a substitution σ such that θ is an
instance of σ. However, σ can be incomparable to θ in general; that is, σ may
have instances for which this property holds, and other instances for which it
definitely fails. This is analogous to the lack of AP-instantiation discussed above
for narrowing-based LTL model checking. Let ACT be the set of spatial action
patterns we are using, so that, say, l(θ) ∈ ACT . Our problem is that the symbolic
transitions in the LTLR state space need to be ACT -instantiated.

Lack of ACT -instantiations is a subtler problem than lack of AP-instantiation.
After all, state propositions in AP are equationally defined as Boolean predicates
in both their positive and negative cases, so that variant narrowing can automate
AP-instantiation. The problem of ACT -instantiation has to do with effectively
characterizing the negative cases in which an action pattern does not hold. This
turns out to be closely related to the problem of computing complement patterns
of a pattern term; e.g., for a pattern l(θ), terms u1, . . . , uk such that any ground
term is an instance of exactly one term in the set {l(θ), u1, . . . , uk}. Not all terms
have such complements. For example, for an unsorted singnature with constant 0,
unary s, and free binary f , the term f(x, x) has no such complements. However,
effective methods have been developed to check when a term t has complements
and to compute them, e.g., [8,9,12]. Under appropriate assumptions, they can
provide a method to solve the ACT -instantiation problem.

Having identified conditions under which the state space for narrowing-based
LTRL model checking can be built, the rest of the paper develops the theoretical
foundations of narrowing-based LTLR model checking. A key theme in such
foundations is the systematic relationship between concrete and symbolic states.
This takes the form of a simulation relation from concrete to symbolic states
that preserves both state propositions and spatial action patterns. A related
theme is the use of additional state space reduction methods, such as folding
and equational abstractions, that can in some cases yield a finite symbolic state
space. How these foundations can be used in practice to prove nontrivial LTLR
properties of infinite-state systems is illustrated with a running example.



2 Preliminaries

Rewriting Logic. An order-sorted signature is a triple Σ = (S,≤, Σ) with
poset of sorts (S,≤) and operators Σ = {Σw,k}(w,k)∈S∗×S typed in (S,≤). The
set TΣ(X )s denotes the set of Σ-terms of sort s over X an infinite set of S-sorted
variables, and TΣ,s denotes the set of ground Σ-terms of sort s. We assume that
TΣ,s 6= ∅ for each sort s in Σ. Positions in a term t represent tree positions when
t is parsed as a tree, and the replacement in t of a subterm at a position p by
another term u is denoted by t[u]p. A substitution σ : X → TΣ(X ) is a function
that maps variables to terms of the same sort, and is homomorphically extended
to TΣ(X ) in a natural way. The domain of σ is a finite subset dom(σ) ⊆ X , where
σx = x for any x /∈ dom(σ). The restriction of σ to Y ⊆ X is the substitution
σ|Y such that σ|Y (x) = σ(x) if x ∈ Y , and σ|Y (x) = x otherwise.

A rewrite theory is a formal specification of a concurrent system [13]. To
apply narrowing-based methods, we consider unconditional order-sorted rewrite
theories R = (Σ,E,R), where: (i) (Σ,E) is an equational theory with Σ an
order-sorted signature and E a set of equations, specifying the system’s states
as the initial algebra TΣ/E (i.e., each state is an E-equivalence class [t]E ∈ TΣ/E
of ground terms); and (ii) R is a set of rewrite rules of the form l : q −→ r
with label l and Σ-terms q, r ∈ TΣ(X )s, specifying the system’s transitions as a
one-step rewrite t[l(θ)]p : [t[θq]p]E −→R [t[θr]p]E from a state [t[θq]p]E ∈ TΣ/E
containing a substitution instance θq to the state [t[θr]p]E ∈ TΣ/E in which θq
has been replaced by θr, where t[l(θ)]p is called a one-step proof term.

We also require R = (Σ,E,R) being topmost for narrowing-based methods.
That is, there is sort State at the top of one of the connected component of (S,≤)
such that: (i) for each rule l : q −→ r ∈ R, both q and r have the top sort State;
and (ii) no operator in Σ has State or any of its subsorts as an argument sort.
This ensures that all rewrites with rules in R must take place at the top of the
term. In practice, many concurrent systems, including object-oriented systems
and communication protocols, can be specified by topmost rewrite theories [16].

We can associate to R a corresponding Kripke structure for LTL model
checking. A Kripke structure is a 4-tuple K = (S,AP,L,−→K) with S a set of
states, AP a set of atomic state propositions, L : S → P(AP) a state-labeling
function, and −→K ⊆ S×S a total transition relation in which every state s ∈ S
has a next state s′ ∈ S with s −→K s′. A state proposition is defined as a term
of sort Prop, whose meaning is defined by equations using the auxiliary operator
_|=_ : State Prop→ Bool. By definition, p ∈ TΣ/E,Prop is satisfied on a state [t]E
iff (t |= p) =E true. We assume that sort Bool has two constants true and false
with true 6=E false and any t ∈ TΣ,Bool is provably equal to either true or false.

Definition 1. Given R = (Σ,E,R) and a set AP ⊆ TΣ/E,Prop defined by E, the
corresponding Kripke structure is K(R)AP = (TΣ/E,State,AP,LE ,−→R),1 where
LE([t]E) = {p ∈ AP | (t |= p) =E true}.
1 Since −→R needs to be total, we also assume that R is deadlock-free. Note that R
can be easily transformed into an equivalent deadlock-free theory [15].



Linear Temporal Logic of Rewriting. The linear temporal logic of rewriting
(LTLR) is a state/event extension of LTL with spatial action patterns [2]. An
LTLR formula ϕ may include spatial action patterns δ1, . . . , δn as well as state
propositions p1, . . . , pm, and therefore may describe properties involving both
states and events. Given a set of state propositions AP and a set of spatial
action patterns ACT , the syntax of LTLR is defined by ϕ ::= p | δ | ¬ϕ | ϕ ∧ ϕ |
©ϕ | ϕUϕ, where p ∈ AP and δ ∈ ACT . Other operators can be defined by
equivalences, e.g., 3ϕ ≡ true Uϕ and �ϕ ≡ ¬3¬ϕ.

Spatial action patterns describe properties of one-step rewrites by defining a
set of matching one-step proof terms. For example, a pattern l describes that a
rule with label l is applied, and a pattern l(θ) describes that a rule with label l
is applied and the related variable instantiation is a further instantiation of the
substitution θ [2,14]. In a similar way that state propositions of LTL are defined
by equations, the matching relation |= between a one-step proof term γ and a
spatial action pattern δ can be defined by equations using the auxiliary operator
_|=_ : ProofTerm Action→ Bool, where γ |= δ ⇐⇒ (γ |= δ) =E true.

The semantics of an LTLR formula is defined on a labeled Kripke structure
(LKS), an extension of a Kripke structure with transition labels [2,3]. An LKS
is a 5-tuple K̄ = (S,AP,L,ACT ,−→K̄) with S a set of states, AP a set of state
propositions, L : S → P(AP) a state-labeling function, ACT a set of spatial
action patterns, and −→K̄ ⊆ S ×P(ACT )× S a total labeled transition relation.
A path (π, α) is a pair of functions π : N → S and α : N → P(ACT ) such
that π(i) α(i)−−−→K̄ π(i + 1), and (π, α)k denotes the suffix of (π, α) beginning at
position k such that (π, α)k = (π ◦ sk, α ◦ sk) with s the successor function.

We can associate to a rewrite theory R a corresponding LKS K̄(R)AP,ACT for
LTLR model checking, provided that the state propositions AP and the spatial
action patterns ACT are defined by its equations.

Definition 2. Given a rewrite theory R = (Σ,E,R), sets AP ⊆ TΣ/E,Prop and
ACT ⊆ TΣ/E,Action defined by E, the corresponding LKS is

K̄(R)AP,ACT = (TΣ/E,State,AP,LE ,ACT ,−→K̄(R)AP,ACT
),

where LE([t]E) = {p ∈ AP | (t |= p) =E true}, and [t]E A−−→K̄(R)AP,ACT
[t′]E iff

γ : [t]E −→R [t′]E and A = {δ ∈ ACT | (γ |= δ) =E true}.

Given an LTLR formula ϕ and an initial state s0 ∈ S, the satisfaction relation
K̄, s0 |= ϕ holds iff for each path (π, α) of K̄ beginning at s0, the path satisfaction
relation K̄, (π, α) |= ϕ holds, which is defined inductively as follows:

– K̄, (π, α) |= p iff p ∈ L(π(0))
– K̄, (π, α) |= δ iff δ ∈ α(0)
– K̄, (π, α) |= ¬ϕ iff K̄, (π, α) 6|= ϕ
– K̄, (π, α) |= ϕ ∧ ϕ′ iff K̄, (π, α) |= ϕ and K̄, (π, α) |= ϕ′

– K̄, (π, α) |=©ϕ iff K̄, (π, α)1 |= ϕ
– K̄, (π, α) |= ϕUϕ′ iff ∃k ≥ 0. K̄, (π, α)k |= ϕ′, ∀0 ≤ i < k. K̄, (π, α)i |= ϕ.



0 ; 0 ; [0,idle]
{enabled.wake(0)}

s ; 0 ; [0,crit(0)]
{in.crit(0)}

s s ; s ; [0,wait(s)]
∅

s ; 0 ; [0,wait(0)]
∅

s ; s ; [0,idle]
{enabled.wake(0)} ...

{wake(0)}
∅

∅
{wake(0)}

Fig. 1. A path from 0 ; 0 ; [0,idle] in the LKS K̄(R)AP,ACT for the bakery protocol.

Example. We present a topmost rewrite theory R specifying Lamport’s bakery
protocol for mutual exclusion (adapted from [1,6]), and its corresponding LKS
K̄(R)AP,ACT . Each state of the system has the form

n ; m ; [i1, d1] . . . [in, dn],

given by the operator _; _; _ : Nat Nat ProcSet → State, where n is the current
number in the bakery’s number dispenser, m is the number currently being
served, and the [i1, d1] . . . [in, dn] are a set of customer processes, each with a
name il and in a mode dl. A mode can be idle (not yet picked a number), wait(n)
(waiting with number n), or crit(n) (being served with number n). The behavior
is specified by the following topmost rewrite rules in the Maude language:

rl [wake]: N ; M ; [I,idle] PS => s N ; M ; [I,wait(N)] PS .
rl [crit]: N ; M ; [I,wait(M)] PS => N ; M ; [I,crit(M)] PS .
rl [exit]: N ; M ; [I,crit(M)] PS => N ; s M ; [I,idle] PS .

where natural numbers are modeled as multisets of s with the multiset union
operator __ (empty syntax) and the empty multiset 0 (e.g., 0 = 0, and 3 = s s s).

We are interested in verifying the liveness property “process 0 is eventually
served,” under the fairness assumption “if process 0 can eventually pick a number
forever, it must pick a number infinitely often,” expressed as the LTLR formula

(32enabled.wake(0)→ 23wake(0))→ 3in.crit(0),

where the spatial action pattern wake(0) holds if the wake rule is applied for
process 0 (i.e., the variable I in the wake rule is matched to the term 0), the
state proposition enabled.wake(0) holds in a state where process 0 is idle, and
the state proposition in.crit(0) holds in a state where process 0 is being served
(see [1] for the mutual exclusion property).

For the set of state propositions AP = {in.crit(0), enabled.wake(0)} and the
set of spatial action patterns ACT = {wake(0)}, we can construct the related
LKS K̄(R)AP,ACT for the bakery protocol specification R. For example, given
the initial state 0 ; 0 ; [0,idle], we obtain the infinite path in Figure 1 within
K̄(R)AP,ACT that contains an infinite number of different states. Notice that
this system is infinite-state since: (i) the counters n and m are unbounded; and
(ii) the number of customer processes is unbounded.



3 Narrowing-based LTLR Model Checking

Narrowing [10,11] generalizes term rewriting by allowing free variables in terms
and by performing unification instead of matching. An E-unifier of t = t′ is
a substitution σ such that σt =E σt′ and dom(σ) ⊆ vars(t) ∪ vars(t′), and
CSUE(t = t′) denotes a complete set of E-unifiers in which any E-unifier ρ of
t = t′ has a more general substitution σ ∈ CSUE(t = t′), i.e., (∃η) ρ =E η ◦ σ.
We assume that there exists a finitary E-unification procedure to find a finite
complete set CSUE(t = t′) of E-unifiers (e.g., there exists a finitary E-unification
procedure if E has the finite variant property as explained in [5,7]).

Definition 3. Given a topmost rewrite theory R = (Σ,E,R), each rewrite rule
l : q −→ r ∈ R specifies a topmost narrowing step t  l,σ,R t′ (or t  R t′) iff
there exists an E-unifier σ ∈ CSUE(t = q) such that t′ = σr.

For LTL model checking we can associate to R = (Σ,E,R) a corresponding
logical Kripke structure N (R)AP [6]. The states of N (R)AP are AP-instantiated
elements of TΣ/E(X )

State
and its transitions are specified by  R. A state of

N (R)AP is not a concrete state, but a state pattern t(x1, . . . , xn) with logical
variables x1, . . . , xn, representing the set of all concrete states [θt]E that are its
ground instances. Such a logical Kripke structure N (R)AP can be considered as
an abstraction of the concrete system K(R)AP ; i.e., for an LTL formula ϕ and
a state pattern t, N (R)AP , [t]E |= ϕ implies (∀θ : X → TΣ) K(R)AP , [θt]E |= ϕ.
Generalizing such narrowing-based LTL model checking, this section presents
narrowing-based LTLR model checking for infinite-state systems.

One-Step Proof Terms for Narrowing. Spatial action patterns for rewriting
define their matching one-step proof terms, representing the corresponding one-
step rewrites. For a topmost rewrite theory R = (Σ,E,R), one-step proof terms
have the form l(θ), indicating that a rule l : q −→ r ∈ R has been applied with a
substitution θ (at the top position of the term), where dom(θ) ⊆ vars(q)∪vars(r).

In order to define spatial action patterns for narrowing steps, we also need
to have an appropriate notion of one-step proof terms for narrowing. Consider a
topmost narrowing step t  l,σ,R t′ using a rule l : q −→ r. Intuitively, the rule
label l and the restriction of the substitution σ to the variables in the rule2 give
the one-step proof term for the narrowing step t l,σ,R t′.

Definition 4. Given a topmost rewrite theory R = (Σ,E,R), for a topmost
narrowing step t  l,σ,R t′ using a rule l : q −→ r, its one-step proof term is
given by l(σ|vars(q)∪vars(r)), often denoted by l(σl).

The following lemma implies that a one-step proof term l(σl) for narrowing
faithfully captures its corresponding one-step proof terms l(θ) for rewriting, in
the sense that θ =E η ◦ σl for some substitution η. This lemma is adapted from
the soundness and completeness results of topmost narrowing in [16].
2 Since one-step proof terms for rewriting only contain variables in rules, we restrict
one-step proof terms for narrowing in the same way.



Lemma 1. Given a topmost rewrite theory R = (Σ,E,R), for a non-variable
term u and a substitution ρ, assuming no variable in u appears in the rules R,
(∃t′, θ) l(θ) : ρu −→R t′ iff (∃u′, σ, η) u  l,σ,R u′ ∧ ρ|vars(u) =E (η ◦ σ)|vars(u),
where θ =E (η ◦ σ)|dom(θ) and t′ =E ηu′.

Proof. (⇒) Suppose that l(θ) : ρu −→R t′ for a topmost rule l : q −→ r, where
dom(θ) ⊆ vars(q) ∪ vars(r). Then, θq =E ρu and t′ = θr. Since no variable
in u appears in l : q −→ r, we have dom(θ) ∩ vars(u) = ∅. Thus, we can
define the substitution θ ∪ ρ|vars(u) with domain dom(θ) ∪ vars(u) such that
(θ ∪ ρ|vars(u))|dom(θ) = θ and (θ ∪ ρ|vars(u))|vars(u) = ρ|vars(u). Since θ ∪ ρ|vars(u)
is an E-unifier of q = u, there exist substitutions σ ∈ CSUE(u = q) and η′

satisfying (θ ∪ ρ|vars(u))|vars(q)∪vars(u) =E η′ ◦ σ with domain vars(q) ∪ vars(u).
Therefore, u  l,σ,R u′ for u′ = σr. Next, let η be the extended substitution
such that ηx = η′x if x ∈ vars(q) ∪ vars(u), and ηx = θx otherwise. Then,
ρ|vars(u) =E (η ◦ σ)|vars(u) and θ =E (η ◦ σ)|dom(θ), since dom(θ) ∩ vars(u) = ∅
and dom(θ) ⊆ vars(q) ∪ vars(r). Furthermore, t′ = θr =E (η ◦ σ)r = ηu′.
(⇐) Suppose that u  l,σ,R u′ and ρ|vars(u) =E (η ◦ σ)|vars(u). Then, for a
topmost rule l : q −→ r, σ ∈ CSUE(u = q) and u′ = σr. Since σu =E σq and
(vars(q)∪ vars(r))∩ vars(u) = ∅, we have l(σ|vars(q)∪vars(r)) : σu −→R u′. Thus,
we have l(η ◦ σ|vars(q)∪vars(r)) : (η ◦ σ)u −→R ηu′, where (η ◦ σ)u =E ρu, since
rewrites are stable under substitutions. ut

Equational Definition of State/Event Predicates. The semantics of a
spatial action pattern can be defined by means of equations using the auxiliary
operator _|=_ : ProofTerm Action → Bool [2]. By definition, δ ∈ TΣ/E,Action is
matched to a one-step proof term γ iff (γ |= δ) =E true. For a topmost rewrite
theory R, a one-step proof term l(θ) can be represented as a term

{′l : ′x1\θx1 ; . . . ; ′xm\θxm}

of sort ProofTerm using the operator {_:_} : Qid Substitution → ProofTerm,
where ′l, ′x1, . . . ,

′xm are quoted identifiers of sort Qid and ′x1\θx1; . . . ; ′xm\θxm
is a semicolon separated set of variable assignments. For the bakery example, a
topmost narrowing step from the term N ; N ; [0,idle] by the wake rule gives
the one-step proof term {’wake : ’N \ N ; ’M \ N ; ’I \ 0 ; ’PS \ none}.

For narrowing-based model checking we further require that there exists a
finitary E-unification procedure. If a spatial action pattern δ is identified by a
one-step proof term pattern uδ (i.e., (γ |= δ) =E true iff γ is an instance of uδ),3
and if uδ has complement patterns u1, . . . , uk (i.e., any ground one-step proof
term is an instance of exactly one term in {uδ, u1, . . . , uk}), then δ can be defined
by the equations: uδ |= δ = true, u1 |= δ = false, . . . , uk |= δ = false. Since
the right-hand sides are all constants, these equations have the finite variant
property, and therefore they provide a finitary E-unification algorithm [5,7]. This
method can also be applied for “pattern-like” state propositions (see below).
3 Many spatial action patterns, including l and l(θ), are identified in this way [2,14].



As mentioned in the introduction, effective methods have been developed to
check when a term t has complements and to compute such complement patterns,
not only in the free case [12], but also modulo AC and modulo permutative
theories [8,9]. Therefore, for unconditional rewrite theories with axioms B such
as those used in [8,9,12], we can determine if a one-step proof term pattern uδ
of δ has complements, compute such complement patterns, and define pattern
satisfaction of δ by equations. For example, consider the spatial action pattern
wake(0) in the bakery example. The positive case can be defined by the following
equation, where SUBST is a variable of sort Substitution:
eq {’wake : ’I \ 0; SUBST} |= wake(0) = true .

For the negative cases, wake(0) does not hold when the rule label is not ’wake
or the value of ’I is not 0. Therefore, they can be defined by the complement
patterns of 0 and ’wake as follows.

eq {’wake : ’I \ s J ; SUBST} |= wake(0) = false .
eq {’crit : SUBST} |= wake(0) = false .
eq {’exit : SUBST} |= wake(0) = false .

The use of order-sorted signatures can greatly facilitate the existence of com-
plement patterns that may not exist in an unsorted setting. For example, the
unsorted term y + 0 + 0 for a signature with a constant 0, a unary s, and an
AC symbol + is shown not to have complements in [8], but can be easily shown
to have complements when the signature is refined to an order-sorted signature.
We illustrate this greater ease of computing complements by using the state
propositions in.crit(0) and enabled.wake(0), whose positive cases are defined by
the following equations, where PS is a variable of sort ProcSet:
eq N ; M ; [0,crit(K)] PS |= in.crit(0) = true .
eq N ; M ; [0,idle] PS |= enabled.wake(0) = true .

In order to define the negative cases we need to find the complement patterns
for [0,crit(K)] PS and [0,idle] PS. Using subsort relations, we can define
sort ModeIdleWait for idle and wait(n), ModeWaitCrit for wait and crit(n), and
ProcSet{N0Nat} for a set of processes with non-zero identifiers as follows:4

subsorts ModeIdle ModeWait < ModeIdleWait < Mode .
subsorts ModeWait ModeCrit < ModeWaitCrit < Mode .
subsorts N0Nat < Nat .
subsorts Proc{N0Nat} < ProcSet{N0Nat} Proc < ProcSet .

The negative cases for the above state propositions can then be defined by the
following equations, where the variable DIW has sort ModeIdleWait, DWC has sort
ModeWaitCrit, and NZPS has sort ProcSet{N0Nat}:
eq N ; M ; [0,DIW] NZPS |= in.crit(0) = false .
eq N ; M ; [0,DWC] NZPS |= enabled.wake(0) = false .

4 Generally, to define the negative cases for k ∈ N, we can define k + 2 subsorts
Nat0, . . . ,Natk,NkNat of sort Nat, where NkNat denotes a number greater than k.



N ; N ; [0,idle]
{enabled.wake(0)}

s N ; N ; [0,crit(N)]
{in.crit(0)}

s s N ; s N ; [0,wait(s N)]
∅

s N ; N ; [0,wait(N)]
∅

s N ; s N ; [0,idle]
{enabled.wake(0)} ...

{wake(0)}
∅

∅
{wake(0)}

Fig. 2. A path from N ; N ; [0,idle] in the LKS K̄(R)AP,ACT for the bakery protocol.

Narrowing-based LKS. For a set AP = {p1, . . . , pn} of state propositions and
a set ACT = {δ1, . . . , δm} of spatial action patterns defined by E, we can also
associate to a topmost rewrite theory R = (Σ,E,R) a corresponding narrowing-
based logical LKS N̄ (R)AP,ACT . Each state of N̄ (R)AP,ACT is a term in which the
truth of every state proposition is decided into either true or false. A transition
of N̄ (R)AP,ACT is specified by using a topmost narrowing step  R, but further
instantiated into possibly several transitions so that the truth bi of each state
proposition pi, where 1 ≤ i ≤ n, and the truth bn+j of each spatial action pattern
δj , where 1 ≤ j ≤ m, are decided into true or false.

Definition 5. Given a topmost rewrite theory R = (Σ,E,R), and finite sets
AP = {p1, . . . , pn} ⊆ TΣ/E,Prop and ACT = {δ1, . . . , δm} ⊆ TΣ/E,Action defined by
its equations E, the narrowing-based logical LKS is

N̄ (R)AP,ACT = (N(R)AP ,AP,LE ,ACT ,−→N̄ (R)),

where LE([t]E) = {p ∈ AP | (t |= p) =E true}, and:
– [t]E ∈ N(R)AP iff [t]E ∈ TΣ/E(X )

State
− X , and for every p ∈ AP, either

(t |= p) =E true or (t |= p) =E false.
– [t]E A−−→N̄ (R) [t′]E iff there exist a term u, a substitution ζ, and Boolean

values b1, . . . , bn+m ∈ {true, false} such that

t l,σ,R u ∧ t′ = ζu, ∧ A = {δ ∈ ACT | (ζ(l(σl)) |= δ) =E true} ∧
ζ ∈ CSUE

(∧
1≤i≤n(u |= pi) = bi ∧

∧
1≤j≤m(l(σl) |= δj) = bn+j

)
For the bakery example, given the logical initial state N ; N ; [0,idle], we obtain
within the logical LKS N̄ (R)AP,ACT the infinite path in Figure 2, which captures
an infinite number of concrete paths in the concrete LKS K̄(R)AP,ACT starting
from each ground instance of N ; N ; [0,idle].

A narrowing-based LKS N̄ (R)AP,ACT captures any behavior of the related
concrete LKS K̄(R)AP,ACT , in terms of a simulation relation. In the following
definition we extend the usual notion of a simulation for Kripke structures to
one for LKSs, which also takes into account spatial action patterns.

Definition 6. Given two LKS K̄i = (Si,AP,Li,ACT ,−→K̄i
), i = 1, 2, a binary

relation H ⊆ S1 × S2 is a simulation from K̄1 to K̄2 iff: (i) if s1Hs2, then
L1(s1) = L2(s2), and (ii) if s1Hs2 and s1

A−−→K̄ s′1, there exists s′2 ∈ S2 such
that s′1Hs′2 and s2

A−−→K̄ s′2. A simulation H is a bisimulation iff H−1 is also a
simulation, and is total iff for any s1 ∈ S1 there exists s2 ∈ S2 such that s1Hs2.



As expected, if an LKS K̄2 simulates K̄1, then each infinite path in K̄1 has a
corresponding path in K̄2, as shown in the following lemma.

Lemma 2. Given a simulation H from an LKS K̄1 to K̄2, if s1Hs2, then for
each path (π1, α) of K̄1 beginning at s1, there exists a corresponding path (π2, α)
beginning at s2 such that π1(i)H π2(i) for each i ∈ N.

Proof. We construct π2 by induction. Let π2(0) = s2. Clearly, π1(0)H π2(0).
Next, suppose that π1(k)H π2(k) for some k ∈ N. Since π1(k)H π2(k) and
π1(k) α(k)−−−−→K̄ π1(k + 1), there exists a state s′2 such that π1(k + 1)H s′2 and
π2(k) α(k)−−−−→K̄ s′2. Then, we choose π2(k + 1) = s′2. ut

Suppose that s1
0Hs

2
0 for a simulation H from K̄1 to K̄2. If there exists a coun-

terexample (π1, α1) in K̄1 starting from s1
0, then by the above lemma, there

exists a corresponding counterexample (π2, α2) in K̄2 starting from s2
0 such that

L1(π1(i)) = L2(π2(i)) and α1(i) = α2(i) for each i ∈ N. Therefore:

Corollary 1. Given a simulation H from an LKS K̄1 to K̄2, if s1
0Hs

2
0, then for

any LTLR formula ϕ, K̄2, s
2
0 |= ϕ implies K̄1, s

1
0 |= ϕ. In particular, if H is a

bisimulation, then K̄2, s
2
0 |= ϕ iff K̄1, s

1
0 |= ϕ.

For a narrowing-based LKS N̄ (R)AP,ACT , each logical state is clearly related
to a concrete state in K̄(R)AP,ACT in terms of the E-subsumption relation. The
E-subsumption t 4E t′ holds iff there exists a substitution σ with t =E σt′,
meaning that t′ is more general than t modulo E.

Lemma 3. Given a topmost rewrite theory R = (Σ,E,R) and sets AP and
ACT defined by E, 4E is a total simulation from K̄(R)AP,ACT to N̄ (R)AP,ACT .

Proof. Suppose that [t]E A−−→K̄(R) [t′]E and t 4E u for u ∈ N(R)AP . Given
AP = {p1, . . . , pn} and ACT = {δ1, . . . , δm}, fix b1, b2, . . . , bn+m ∈ {true, false}
such that bi =E (t′ |= pi) for 1 ≤ i ≤ n and bn+j =E (l(θ) |= δj) for 1 ≤ j ≤ m.
By definition, there is an one-step rewrite l(θ) : t −→R t′. By Lemma 1, there is
a narrowing step u l,σ,R u′ such that t′ =E ηu′ and θ =E (η ◦ σ)|dom(θ). Thus,
there exists ζ ∈ CSUE(

∧
1≤i≤n(u′ |= pi) = bi ∧

∧
1≤j≤m(l(σl) |= δj) = bn+j).

By definition, [u]E A−−→N̄ (R) [ζu′]E . Notice that
∧

1≤i≤nη
(
(u′ |= pi) =E bi

)
and∧

1≤j≤mη
(
(l(σl) |= δj) =E bn+j

)
. Therefore, η 4E ζ, and t′ =E ηu 4E ζu′. ut

By Corollary 1, this lemma implies that any LTLR formula ϕ satisfied in a
narrowing-based LKS N̄ (R)AP,ACT from a logical state t is also satisfied in the
concrete LKS K̄(R)AP,ACT from each ground instance of t.

In general, 4E is not a bisimulation between K̄(R)AP,ACT and N̄ (R)AP,ACT .
For the bakery example, although 0 ; 0 ; [I,wait(0)] 4E N ; M ; PS1 holds,
there exists the transition N ; M ; PS1

{wake(0)}−−−−−−−→N̄ (R) s N ; M ; PS2 [0,wait(N)],
in N̄ (R)AP,ACT with the substitution PS1\ PS2 [0,idle], but no corresponding
transition exists from 0 ; 0 ; [I,wait(0)] in K̄(R)AP,ACT . However, any finite
path in N̄ (R)AP,ACT can be instantiated to a corresponding concrete path in
K̄(R)AP,ACT (e.g., the above transition can be instantiated as the transition
0 ; 0 ; [0,idle] {wake(0)}−−−−−−−→K̄(R) s ; 0 ; [0,wait(0)] in K̄(R)AP,ACT).



Lemma 4. For a finite path u1
A1−−→N̄ (R) · · ·

An−1−−−−→N̄ (R) un of N̄ (R)AP,ACT ,
there is t1 A1−−→K̄(R) · · ·

An−1−−−−→K̄(R) tn in K̄(R)AP,ACT with ti 4E ui, 1 ≤ i ≤ n.

Proof. Since u1
A1−−→N̄ (R) u2, by definition, there are substitutions σ1 and ζ1

such that u1  l1,σ1,R u′2 by a topmost rule l1 : q1 → r1 ∈ R and u2 = ζ1u
′
2.

Since σu1 =E σq1 and u2 = ζ1u
′
2 = (ζ1 ◦ σ1)r1, (ζ1 ◦ σ1)u1 −→R u2. Similarly,

(ζ2 ◦ σ2)u2 −→R u3, etc. By composing them, (ζn−1 ◦ σn−1 ◦ · · · ◦ ζ2 ◦ σ2 ◦ ζ1 ◦
σ1)u1 −→R · · · −→R (ζn−1◦σn−1)un−1 −→R un. Let ρ be a ground substitution
instantiating every variable in the path. Then, (ρ◦ζn−1◦σn−1◦· · ·◦ζ2◦σ1)u1 −→R
· · · −→R (ρ ◦ ζn−1 ◦ σn−1)un−1 −→R ρun gives the desired path. ut

Recall that counterexamples of safety properties are characterized by finite
sequences [4]. Therefore, the above lemma guarantees that N̄ (R)AP,ACT does
not generate spurious counterexamples for safety properties, since any finite
counterexample in N̄ (R)AP,ACT has a corresponding real counterexample in
K̄(R)AP,ACT . Together with Corollary 1 and Lemma 3, we have:

Theorem 1. Given a topmost rewrite theory R = (Σ,E,R), and finite sets AP
and ACT defined by E, for a safety LTLR formula ϕ and a pattern t ∈ N(R)AP:
N̄ (R)AP,ACT , [t]E |= ϕ ⇐⇒ (∀θ : X → TΣ) K̄(R)AP,ACT , [θt]E |= ϕ.

4 Abstract Narrowing-based LTLR Model Checking

A narrowing-based LKS N̄ (R)AP,ACT often has an infinite number of logical
states (e.g., Figure 2). For narrowing-based LTL model checking, the paper [1]
has proposed two abstraction methods to reduce an infinite narrowing-based
Kripke structure, namely, folding abstractions and equational abstractions. This
section extends those abstraction techniques to narrowing-based LTLR model
checking for trying to reduce an infinite narrowing-based LKS to a finite one.

Folding Abstractions. Given a transition system A = (A,−→A) with a set
of states A and a transition relation −→A ⊆ A2, we can reduce it by collapsing
each state a into a previously seen state b, while traversing A from a set of initial
states I ⊆ A, whenever b is more general than a according to a folding relation
a 4 b [6]. For a set of states B ⊆ A, let PostA(B) = {a ∈ A | ∃b ∈ B. b −→A a}
(i.e., the successors of B) and Post∗A(B) =

⋃
i∈N(PostA)i(B).

Definition 7. Given A = (A,−→A) and a folding relation 4 ⊆ A2, the folding
abstraction of A from I ⊆ A is Reach4A(I) = (Post∗A4(I), −→Reach4

A(I)), where:
Post∗A4(I) =

⋃
i∈N PostiA4(I) and −→Reach4

A(I)=
⋃
i∈N −→

4
A,i such that:

Post0
A4(I) = I, −→4

A,0= ∅,

Postn+1
A4 (I) = {a ∈ PostA(PostnA4(I)) | ∀l ≤ n ∀b ∈PostlA4(I). a 64 b},

−→4
A,n+1 = {(a, a′) ∈ PostnA4(I)×

⋃
0≤i≤n+1

PostiA4(I) | ∃b ∈ PostA(a). b 4 a′}.



N ; N ; [0,idle][s,idle]
{enabled.wake(0)}

s N ; N ; [0,idle][s,wait(N)]
{enabled.wake(0)}

s N ; N ; [0,idle][s,crit(N)]
{enabled.wake(0)}

s N ; N ; [0,wait(N)][s,idle]
∅

s s N ; N ; [0,wait(s N)][s,wait(N)]
∅

s s N ; N ; [0,wait(s N)][s,crit(N)]
∅

s N ; N ; [0,crit(N)][s,idle]
{in.crit(0)}

s s N ; N ; [0,wait(N)][s,wait(s N)]
∅

s s N ; N ; [0,crit(N)][s,wait(s N)]
{in.crit(0)}

∅

{wake(0)}

∅

{wake(0)}

∅

{wake(0)}

∅
∅

∅

∅

∅

∅

∅

∅

Fig. 3. A folding abstraction for the bakery protocol using the folding relation 4E ,
where a double-headed arrow denotes a “folded” transition.

For the bakery example, using the E-subsumption 4E as a folding relation, we
have the finite folding abstractionReach4E

N̄ (R)AP,ACT
({N ; N ; [0,idle][s,idle]})

of N̄ (R)AP,ACT from the initial state N ; N ; [0,idle][s,idle] in Figure 3.
If a folding relation 4 is a total simulation from A to A, then Reach4A(I)

simulates the reachable subsystem ReachA(I) = (Post∗A(I),−→A ∩Post∗A(I)2)
that only contains reachable states from I (i.e., 4 is a total simulation from
ReachA(I) to Reach4A(I)) [1]. Indeed, 4E for a topmost rewrite theory R is
a total simulation from N̄ (R)AP,ACT to N̄ (R)AP,ACT (which can be proved
in a similar way to Lemma 3). Therefore, 4E defines a total simulation from
ReachN̄ (R)AP,ACT

(I) to Reach4E

N̄ (R)AP,ACT
(I). Consequently, by Corollary 1:

Theorem 2. For an LTLR formula ϕ and a pattern t ∈ N(R)AP, we have that
Reach4E

N̄ (R)AP,ACT
({[t]E}), [t]E |= ϕ implies N̄ (R)AP,ACT , [t]E |= ϕ.

For the bakery example, the liveness property 3in.crit(0) under the fairness
assumption 32enabled.wake(0) → 23wake(0) holds in the folding abstraction
Reach4E

N̄ (R)AP,ACT
({N ; N ; [0,idle][s,idle]}) of Figure 3, because any infinite

paths continuously staying in the first row violate the fairness assumption. Hence,
this property is also satisfied for any related concrete system.

Equational Abstractions. In general, a folding abstraction of a narrowing-
based LKS is not finite. For the bakery example, there exists an infinite path
within the folding abstraction from N ; N ; [0,idle] IS in Figure 4, which keeps
incrementing the number of processes with instantiations. To further reduce an
infinite logical state space, we can apply equational abstractions to eventually
obtain a finite abstract narrowing-based LKS for LTLR model checking.

Given a rewrite theory R = (Σ,E,R), by adding a set of equations G such
that true 6=E∪G false, we define an equational abstraction R/G = (Σ,E ∪G,R)
[15]. It specifies the quotient abstraction N̄ (R/G)AP,ACT by the equivalence
relation ≡G on states, namely, [t]E ≡G [t′]E iff t =E∪G t′. Provided that a set of



N ; N ; [0,idle] IS
{enabled.wake(0)}

s s s N ; N ; [0,wait(N)][I1,wait(s N)][I2,wait(s s N)] IS2
∅

s N ; N ; [0,wait(N)] IS
∅

...

s s N ; N ; [0,wait(N)][I1,wait(s N)] IS1
∅

{wake(0)}
id

∅
IS/IS1[I1, idle] ∅

IS1/IS2[I2, idle]

Fig. 4. An infinite path in the folding abstraction for the bakery protocol with an
unbounded number of processes, where IS stands for a set of idle processes.

state propositions AP and a set of spatial action patterns ACT are defined by E,
the condition true 6=E∪G false ensures that any two states with t =E∪G t′ satisfy
the same set of state propositions. Similarly, any two one-step proof terms with
l(σl) =E∪G l′(σl′) satisfy the same set of spatial action patterns.

Similar to the cases of LTL model checking [1,15], an equational abstraction
N̄ (R/G)AP,ACT simulates the narrowing-based LKS N̄ (R)AP,ACT .

Lemma 5. Given a topmost rewrite theory R = (Σ,E,R), finite sets AP and
ACT defined by E, and a set G of equations, if true 6=E∪G false, then there exists
a total simulation from N̄ (R)AP,ACT to N̄ (R/G)AP,ACT .

Proof. Let HG = {([t]E , [t]E∪G) | t ∈ N(R)AP}. Suppose that [t]E A−−→N̄ (R) [t′]E
and t =E∪G u. By definition, there are σ and ζ such that t  l,σ,R t′′ by a
rule l : q −→ r ∈ R and t′ = ζt′′, where σ ∈ CSUE(t = q), t′′ = σr, and
ζ ∈ CSUE(

∧
1≤i≤n(t′′ |= pi) = bi ∧

∧
1≤j≤m(l(σl) |= δj) = bn+j) for some

b1, . . . , bn+m ∈ {true, false}, given AP = {p1, . . . , pn} and ACT = {δ1, . . . , δm}.
Since σ ∈ CSUE(t = q), ∃σ′ ∈ CSUE∪G(u = q) such that σ =E∪G σ′. Then,
u  l,σ′,R/G u′ using the same rule l : q −→ r, where u′ = σ′r =E∪G σr = t′′.
Notice that (t′′ |= pi) =E∪G (u′ |= pi) and (l(σl) |= δj) =E∪G (l(σ′l) |= δj).
Thus, ∃ζ ′ ∈ CSUE∪G(

∧
1≤i≤n(u′ |= pi) = bi ∧

∧
1≤j≤m(l(σ′l) |= δj) = bn+j)

with ζ =E∪G ζ ′. Thus, [u]E∪G A−−→N̄ (R/G) [ζ ′u′]E∪G, where ζ ′u′ =E∪G ζt′′ = t′.
Since true 6=E∪G false, [t′]E and [ζ ′u′]E∪G satisfy the same state propositions.
Therefore, HG is a total simulation from N̄ (R)AP,ACT to N̄ (R/G)AP,ACT . ut

For the bakery example, by adding the following equations that collapses
extra waiting processes with non-zero identifiers, where ICPS denotes a set of
idle or crit processes, and WP3 denotes zero or at most three wait processes:

eq [NZ,D] = [D] . –- remove non-zero identifiers
eq s s s N M ; M ; ICPS WP3 [wait(s N M)] [wait(s s N M)]
= s s N M ; M ; ICPS WP3 [wait(s N M)] .

we have the folded abstract narrowing-based LKS in Figure 5, provided with the
extra spatial action pattern wake that holds if the wake rule is applied.



s N ; N ; IS [0,crit(N)]
{in.crit(0)}

s s N ; N ; IS
[0,crit(N)][wait(s N)]

{in.crit(0)}

N ; N ; IS [0,idle]
{enabled.wake(0)}

s N ; N ; IS [0,wait(N)]
∅

s s N ; N ; IS
[0,wait(N)][wait(s N)]

∅

s N ; N ; IS
[0,idle][crit(N)]
{enabled.wake(0)}

s s N ; N ; IS
[0,wait(s N)][crit(N)]

∅

s s s N ; N ; IS [0,wait(s N)]
[crit(N)][wait(s s N)]

∅

s N ; N ; IS
[0,idle][wait(N)]
{enabled.wake(0)}

s s N ; N ; IS
[0,wait(s N)][wait(N)]

∅

s s s N ; N ; IS [0,wait(s N)]
[wait(N)][wait(s s N)]

∅

s s N ; N ; IS [0,idle]
[crit(N)][wait(s N)]
{enabled.wake(0)}

s s s N ; N ; IS [0,wait(s s N)]
[crit(N)][wait(s N)]

∅

s s s s N ; N ; IS
[0,wait(s s N)][crit(N)]
[wait(s N)][wait(s s s N)]

∅

s s N ; N ; IS [0,idle]
[wait(N)][wait(s N)]
{enabled.wake(0)}

s s s N ; N ; IS [0,wait(s s N)]
[wait(N)][wait(s N)]

∅

s s s s N ; N ; IS
[0,wait(s s N)][wait(N)]
[wait(s N)][wait(s s s N)]

∅

∅

{wake} {wake}

∅

{
wake,
wake(0)

}

{wake}

{wake}

∅

{wake}

∅

{
wake,
wake(0)

}

{wake}

∅

{wake}

∅

{wake}

∅

∅ {
wake,
wake(0)

}

{wake}

∅

{wake} {wake}

∅

∅ {
wake,
wake(0)

}{wake} ∅

{wake} {wake}

∅

∅ {
wake,
wake(0)

}{wake} ∅

{wake} {wake}

∅

Fig. 5. An folded equational abstraction for the bakery protocol.

We can easily see that there is a counterexample of the property 3in.crit(0)
under 32enabled.wake(0)→ 23wake(0) in which the wake rule is continuously
applied forever, which is impossible if there is a finite number of processes.
Assuming the extra fairness assumption 23¬wake, the property 3in.crit(0) is
now satisfied since any infinite paths staying in the first column forever violate
32enabled.wake(0) → 23wake(0), and any paths staying in a self loop forever
violate 23¬wake. Consequently, under the fairness assumptions, 3in.crit(0) is
satisfied for an unbounded number of processes.

5 Related Work and Conclusions

A number of infinite-state model checking methods have been developed based
on symbolic and abstraction techniques; see [1,6] for an overview and comparison
with narrowing-based model checking. To the best of our knowledge, our work
proposes the first symbolic model checking method to verify LTLR properties
of infinite-state systems. For finite-state systems the paper [2] presents various
model checking algorithms for LTLR properties. LTLR is a sublogic of TLR∗
that generalizes the state-based logic CTL∗ (see [14] for related work). On the
topic of complement patterns, the most closely related work is [8,9,12]. We plan
to use their ideas, as well as ongoing work by Skeirik and Meseguer on the
concept of B-linear terms in order-sorted signatures, which are pattern terms
whose syntactic structure guarantees the existence of complements modulo B, to
automate the full equational definition of satisfaction of spatial action patterns.



In conclusion, this work should be understood as a contribution that increases
the expressive power of infinite-state model checking methods. Specifically, the
expressive power of narrowing-based infinite-state model checking has been ex-
tended form LTL to LTLR, allowing temporal properties that can use both state
predicates and action patterns. This extension is nontrivial because of the need
for building a symbolic transition system where states are AP-instantiated and
transitions are ACT -instantiated. All the necessary theoretical foundations are
now in place for embarking into a future implementation of a narrowing-based
LTLR model checker in Maude in the spirit of the similar LTL tool described
in [1]. As done in [1], for the LTLR tool we will be able to rely on the exten-
sive body of work on efficient LTLR model checking algorithms described in
[2]. Beyond these goals, the integration of constraints and SMT solving within
the planned narrowing-based LTLR model checker, as well as the study of more
flexible “stuttering” AP/ACT -simulations, are also exciting possibilities.
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Abstract. We address the problem of modelling and verifying contract-
oriented systems, wherein distributed agents may advertise and stipulate
contracts, but — differently from most other approaches to distributed
agents — are not assumed to always behave “honestly”. We describe an
executable specification in Maude of the semantics of CO2, a calculus
for contract-oriented systems [6]. The honesty property [5] characterises
those agents which always respect their contracts, in all possible execu-
tion contexts. Since there is an infinite number of such contexts, honesty
cannot be directly verified by model-checking the state space of an agent
(indeed, honesty is an undecidable property in general [5]). The main
contribution of this paper is a sound verification technique for honesty.
To do that, we safely over-approximate the honesty property by abstract-
ing from the actual contexts a process may be engaged with. Then, we
develop a model-checking technique for this abstraction, we describe an
implementation in Maude, and we discuss some experiments with it.

1 Introduction

Contract-oriented computing is a software design paradigm where the interaction
between clients and services is disciplined through contracts [6,4]. Contract-
oriented services start their life-cycle by advertising contracts which specify their
required and offered behaviour. When compliant contracts are found, a session is
created among the respective services, which may then start interacting to fulfil
their contracts. Differently from other design paradigms (e.g. those based on the
session types discipline [10]), services are not assumed to be honest, in that they
might not respect the promises made [5]. This may happen either unintentionally
(because of errors in the service specification), or because of malicious behaviour.

Dishonest behaviour is assumed to be automatically detected and sanctioned
by the service infrastructure. This gives rise to a new kind of attacks, that
exploit possible discrepancies between the promised and the actual behaviour. If
a service does not behave as promised, an attacker can induce it to a situation
where the service is sanctioned, while the attacker is reckoned honest. A crucial
problem is then how to avoid that a service results definitively culpable of a
contract violation, despite of the honest intentions of its developer.

In this paper we present an executable specification in Maude [9] of CO2, a
calculus for contract-oriented computing [4]. Furthermore, we devise and imple-
ment a sound verification technique for honesty. We start in § 2 by introducing a



new model for contracts. Borrowing from other approaches to behavioural con-
tracts [8,5], ours are bilateral contracts featuring internal/external choices, and
recursion. We define and implement in Maude two crucial primives on contracts,
i.e. compliance and culpability testing, and we study some relevant properties.

In § 3 we present CO2 (instantiated with the contracts above), and an exe-
cutable specification of its semantics in Maude. In § 4 we formalise a weak notion
of honesty, i.e. when a process P is honest in a given context, and we implement
and experiment with it through the Maude model checker.

The main technical results follow in § 5, where we deal with the problem
of checking honesty in all possible contexts. To do that, we start by defining
an abstract semantics of CO2, which preserves the transitions of a participant
A[P ], while abstracting those of the context wherein A[P ] is run. Building upon
the abstract semantics, we then devise an abstract notion of honesty (α-honesty,
Def. 11), which neglects the execution context. Theorem 5 states that α-honesty
correctly approximates honesty, and that — under certain hypotheses — it is
also complete. We then propose a verification technique for α-honesty, and we
provide an implementation in Maude. Some experiments have then been carried
out; quite notably, our tool has allowed us to determine the dishonesty of a
supposedly-honest CO2 process appeared in [5] (see Ex. 5).

Because of space limits, we make available online the proofs of all our state-
ments, as well as the Maude implementation, and the experiments made [2].

2 Modelling contracts

We model contracts as processes in a simple algebra, with internal/external
choice and recursion. Compliance between contracts ensures progress, until a
successful state is reached. We prove that our model enjoys some relevant prop-
erties. First, in each non-final state of a contract there is exactly one participant
who is culpable, i.e., expected to make the next move (Theorem 1). Furthermore,
a participant always recovers from culpability in at most two steps (Theorem 2).

Syntax. We assume a finite set of participant names (ranged over by A,B, . . .)
and a denumerable set of atoms (ranged over by a, b, . . .). We postulate an
involution co(a), also written as ā, extended to sets of atoms in the natural way.
Def. 1 introduces the syntax of contracts. We distinguish between (unilateral)
contracts c, which model the promised behaviour of a single participant, and
bilateral contracts γ, which combine the contracts advertised by two participants.

Definition 1. Unilateral contracts are defined by the following grammar:

c, d ::=
⊕

i∈I ai ; ci
∣∣ ∑

i∈I ai . ci
∣∣ ready a.c

∣∣ rec X. c
∣∣ X

where (i) the index set I is finite; (ii) the “ready” prefix may appear at the
top-level, only; (iii) recursion is guarded.

Bilateral contracts γ are terms of the form A says c | B says d, where
A 6=B and at most one occurrence of “ready” is present. The order of unilateral
contracts in γ is immaterial, i.e. A says c | B says d ≡ B says d | A says c.
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An internal sum
⊕

i∈I ai ; ci allows to choose one of the branches ai ; ci, to
perform the action ai, and then to behave according to ci. Dually, an external
sum

∑
i∈I ai . ci allows to wait for the other participant to choose one of the

branches ai . ci, then to perform the corresponding ai and behave according to
ci. Separators ; and . allow for distinguishing singleton internal sums a ; c from
singleton external sums a . c. Empty internal/external sums are denoted with 0.
We will only consider contracts without free occurrences of recursion variables X.

Example 1. An online store A has the following contract: buyers can iteratively
add items to the shopping cart (addToCart); when at least one item has been
added, the client can either cancel the order or pay; then, the store can accept
(ok) or decline (no) the payment. Such a contract may be expressed as cA below:

cpay = pay .
(
ok ; 0 ⊕ no ; 0

)
cA = addToCart . (rec Z. addToCart . Z + cpay + cancel . 0)

Instead, a buyer contract could be expressed as:

cB = rec Z.
(
addToCart ; Z ⊕ pay ; (ok . 0 + no . 0)

)
The Maude specification of the syntax of contracts is defined as follows:

sorts Atom UniContract Participant AdvContract BiContract
IGuarded EGuarded IChoice EChoice Var Id RdyContract .

subsort Id < IGuarded < IChoice < UniContract < RdyContract .
subsort Id < EGuarded < EChoice < UniContract < RdyContract .
subsort Var < UniContract .

The sorts IGuarded and EGuarded represent singleton internal/external sums,
respectively, while IChoice and EChoice are for arbitrary internal/external sums.
Id represents empty sums, and it is a subsort of internal and external sums
(either singleton or not). RdyContract if for contracts which may have a top-level
ready , while AdvContract is a unilateral contract advertised by some participant.

op -_ : Atom -> Atom [ctor] .
eq - - a:Atom = a:Atom .
op 0 : -> Id [ctor] .
op _._ : Atom UniContract -> EGuarded [frozen ctor] .
op _;_ : Atom UniContract -> IGuarded [frozen ctor] .
op _+_ : EChoice EChoice -> EChoice [frozen comm assoc id: 0 ctor] .
op _(+)_ : IChoice IChoice -> IChoice [frozen comm assoc id: 0 ctor] .
op ready _._ : Atom UniContract -> RdyContract [frozen ctor] .
op rec _._ : Var IChoice -> UniContract [frozen ctor] .
op rec _._ : Var EChoice -> UniContract [frozen ctor] .
op _ says _ : Participant RdyContract -> AdvContract [ctor] .
op _ | _ : AdvContract AdvContract -> BiContract [comm ctor] .

The operator - models the involution on atoms, with eq - - a:Atom = a:Atom.
The other operators are rather standard, and they guarantee that each UniContract

respects the syntactic constraints imposed by Def. 1.

Semantics. The evolution of bilateral contracts is modelled by
µ−→→, the smallest

relation closed under the rules in Fig. 1 and under ≡. The congruence ≡ is

3



A says (a ; c⊕ c′) | B says (ā . d+ d′)
A says a−−−−−→→ A says c | B says ready ā.d [IntExt]

A says ready a. c | B says d
A says a−−−−−→→ A says c | B says d [Rdy]

Fig. 1. Semantics of contracts (symmetric rules for B actions omitted)

the least relation including α-conversion of recursion variables, and satisfying
rec X. c ≡ c{rec X. c/X} and

⊕
i∈∅ ai ; ci ≡

∑
i∈∅ ai . ci. The label µ = A says a

models A performing action a. Hereafter, we shall consider contracts up-to ≡.
In rule [IntExt], participant A selects the branch a in an internal sum, and

B is then forced to commit to the corresponding branch ā in his external sum.
This is done by marking that branch with ready ā, while discarding all the other
branches; B will then perform his action in the subsequent step, by rule [Rdy].

In Maude, the semantics of contracts is an almost literal translation of that in
Fig. 1 (except that labels are moved to configurations). The one-step transition
relation is defined as follows:

crl [IntExt]: A says a ; c (+) c’ | B says b . d + d’
=> {A says a} A says c | B says ready b . d if a = - b .

rl [Rdy]: A says ready a.c | B says d => {A says a} A says c | B says d .

Compliance. Two contracts are compliant if, whenever a participant A wants to
choose a branch in an internal sum, then participant B always offers A the op-
portunity to do it. To formalise compliance, we first define a partial function rdy
from bilateral contracts to sets of atoms. Intuitively, if the unilateral contracts
in γ do not agree on the first step, then rdy(γ) is undefined (i.e. equal to ⊥).
Otherwise, rdy(γ) contains the atoms which could be fired in the first step.

Definition 2 (Compliance). Let the partial function rdy be defined as:

rdy
(
A says

⊕
i∈I

ai ; ci | B says
∑
j∈J

bj . cj
)

= {ai}i∈I
if {ai}i∈I ⊆ {b̄j}j∈J

and (I = ∅ =⇒ J = ∅)

rdy(A says ready a.c | B says d) = {a}

Then, the compliance relation ./ between unilateral contracts is the largest rela-
tion such that, whenever c ./ d:

(1) rdy(A says c | B says d) 6= ⊥
(2) A says c | B says d

µ−→→ A says c′ | B says d′ =⇒ c′ ./ d′

Example 2. Let γ = A says c | B says d, where c = a ; c1 ⊕ b ; c2 and d =
ā . d1 + c̄ . d2. If the participant A internally chooses to perform a, then γ will
take a transition to A says c1 | B says ready ā.d1. Suppose instead that A
chooses to perform b, which is not offered by B in his external choice. In this

case, γ 6 A says b−−−−−→→. We have that rdy(γ) = ⊥, which does not respect item (1) of
Def. 2. Therefore, c and d are not compliant.

4



We say that a contract is proper if the prefixes of each summation are pairwise
distinct. The next lemma states that each proper contract has a compliant one.

Lemma 1. For all proper contracts c, there exists d such that c ./ d.

Def. 2 cannot be directly exploited as an algorithm for checking compliance.
Lemma 2 gives an alternative, model-checkable characterisation of ./ .

Lemma 2. For all bilateral contracts γ = A says c | B says d:

c ./ d ⇐⇒ (∀γ′. γ −→→∗ γ′ =⇒ rdy(γ′) 6= ⊥)

In Maude, the compliance relation is defined as suggested by Lemma 2. The
predicate isBottom is true for a contract γ whenever rdy(γ) = ⊥. The operator <>
used below allows for the transitive closure of the transition relation. The relation
c |X| d is implemented by verifying that the contract A says c | B says d satisfies
the LTL formula 2¬ isBottom. This is done through the Maude model checker.

eq <{l} g> |= isBottom = is rdy(g) eq bottom .
op _|X|_ : UniContract UniContract -> Bool .
eq c |X| d = modelCheck(<A says c | B says d>, [] ~isBottom) == true .

Example 3. Recall the store contract cA in Ex. 1. Its Maude version is:

op Z : -> Var .
ops addToCart pay ok no cancel : -> Atom .
ops CA CPay CB : -> UniContract .
eq CPay = pay . (- ok ; 0 (+) - no ; 0) .
eq CA = addToCart . (rec Z . addToCart . Z + CPay + cancel . 0) .

Instead, the Maude implementation of the buyer contract cB in Ex. 1 is:

eq CB = rec Z . ( - addToCart ; Z (+) - pay ; (ok . 0 + no . 0)) .

We can verify with Maude that CA and CB are not compliant:

red CA |X| CB .
result Bool: false

The problem is that CB may choose to pay even when the cart is empty. We can
easily fix the buyer contract as follows, and then obtain compliance:

red CA |X| (- addToCart ; CB) .
result Bool: true

Culpability. We now tackle the problem of determining who is expected to make
the next step for the fulfilment of a bilateral contract. We call a participant A
culpable in γ if she is expected to perform some actions so to make γ progress.

Definition 3. A participant A is culpable in γ (A ˙ȧγ in symbols) iff γ
A says a−−−−−→→

for some a. When A is not culpable in γ we write A ˙ ˙̀ γ.

Theorem 1 below establishes that, when starting with compliant contracts,
exactly one participant is culpable in a bilateral contract. The only exception
is A says 0 | B says 0, which represents a successfully terminated interaction,
where nobody is culpable.
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Theorem 1. Let γ = A says c | B says d, with c ./ d. If γ −→→∗ γ′, then either
γ′ = A says 0 | B says 0, or there exists a unique culpable in γ′.

The following theorem states that a participant is always able to recover from
culpability by performing some of her duties. This requires at most two steps.

Theorem 2 (Contractual exculpation). Let γ = A says c | B says d. For all
γ′ such that γ −→→∗ γ′, we have that:

(1) γ′ 6−→→ =⇒ A ˙ ˙̀ γ′ and B ˙ ˙̀ γ′

(2) A ˙ȧγ′ =⇒ ∀γ′′.γ′ −→→ γ′′ =⇒

{
A ˙ ˙̀ γ′′, or

∀γ′′′.γ′′ −→→ γ′′′ =⇒ A ˙ ˙̀ γ′′′

Item (1) of Theorem 2 says that, in a stuck contract, no participant is culpa-
ble. Item (2) says that if A is culpable, then she can always exculpate herself in
at most two steps, i.e.: one step if A has an internal choice, or a ready followed
by an external choice; two steps if A has a ready followed by an internal choice.

We specify culpability in Maude as follows. The formula {l} g |= --A-->> is
true whenever g has been reached by some transitions of A. The participant A is
culpable in g, written A :C g, if g satisfies the LTL formula O --A-->> (where O is
the “next” operator of LTL). This is verified through the Maude model checker.

op --_->> : Participant -> Prop .
eq {A says a} g |= -- A ->> = true .
eq {l} g |= -- A ->> = false [owise] .
op _ :C _ : Participant BiContract -> Bool .
eq A :C g = modelCheck(g, O -- A ->>) == true .

3 Modelling contracting processes

We model agents and systems through the process calculus CO2 [3], which we
instantiate with the contracts introduced in § 2. The primitives of CO2 allow
agents to advertise contracts, to open sessions between agents with compliant
contracts, to execute them by performing some actions, and to query contracts.

Syntax. Let V andN be disjoint sets of session variables (ranged over by x, y, . . .)
and session names (ranged over by s, t, . . .). Let u, v, . . . range over V ∪N , and
u,v range over 2V∪N .

Definition 4. The syntax of CO2 is given as follows:

Systems S ::= 0
∣∣ A[P ]

∣∣ s[γ]
∣∣ S | S

∣∣ (u)S
∣∣ {↓u c}A

Processes P ::=
∑
i πi.Pi

∣∣ P | P
∣∣ (u)P

∣∣ X(u)

Prefixes π ::= τ
∣∣ tell ↓u c

∣∣ dou a
∣∣ askuφ
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commutative monoidal laws for | on processes and systems

A[(v)P ] ≡ (v)A[P ] Z | (u)Z′ ≡ (u)(Z | Z′) if u 6∈ fv(Z) ∪ fn(Z)

(u)(v)Z ≡ (v)(u)Z (u)Z ≡ Z if u 6∈ fv(Z) ∪ fn(Z) {↓s c}A ≡ 0

Fig. 2. Structural equivalence for CO2 (Z,Z ′ range over systems or processes).

Systems are the parallel composition of participants A[P ], delimited systems
(u)S, sessions s[γ] and latent contracts {↓u c}A. A latent contract {↓x c}A rep-
resents a contract c (advertised by A) which has not been stipulated yet; upon
stipulation, the variable x will be instantiated to a fresh session name. We as-
sume that, in a system of the form (u)(A[P ] | B[Q]) | · · · ), A 6= B. We denote
with K a special participant name (playing the role of contract broker) such that,
in each system (u)(A[P ] | · · · ), A 6= K. We allow for prefix-guarded finite sums of
processes, and write π1.P1 +π2.P2 for

∑
i∈{1,2} πi.Pi, and 0 for

∑
∅ P . Recursion

is allowed only for processes; we stipulate that each process identifier X has a

unique defining equation X(x1, . . . , xj)
def
= P such that fv(P ) ⊆ {x1, . . . , xj} ⊆ V,

and each occurrence of process identifiers in P is prefix-guarded. We will some-
times omit the arguments of X(u) when they are clear from the context.

Prefixes include silent action τ , contract advertisement tell ↓u c, action exe-
cution dou a, and contract query asku φ (where φ is an LTL formula on γ). In
each prefix π 6= τ , u refers to the target session involved in the execution of π.

In Maude, we translate the syntax of CO2 almost literally. Here we just show
the sorts used; see [2] for the full details.

sorts System Process Prefix SessionName SessionVariable SessionIde
GuardProc Sum IdeVec ProcIde ParamList .

subsort SessionName < SessionIde < IdeVec .
subsort Qid < SessionVariable < SessionIde < IdeVec .
subsort GuardProc < Sum < Process .
subsort SessionIde < ParamList .

The sort SessionIde is a super sort of both SessionVariable and SessionName.
Session variables can be of sort Qid; session names can not. Sort IdeVec models
sets of SessionIde (used as syntactic sugar for delimitations), while ParamList

models vectors of SessionIde (used for parameters of defining equations).

Semantics. The CO2 semantics is formalised by the relation
µ−→ in Fig. 3, where

µ ∈ {A :π | A 6=K}∪{K : fuse}. We will consider processes and systems up-to the
congruence relation ≡ in Fig. 2. The axioms for ≡ are fairly standard — except
the last one: it collects garbage terms possibly arising from variable substitutions.

Rule [Tau] just fires a τ prefix. Rule [Tell] advertises a latent contract {↓x c}A.
Rule [Fuse] finds agreements among the latent contracts: it happens when there
exist {↓x c}A and {↓y d}B such that A 6= B and c ./ d. Once the agreement is
reached, a fresh session containing γ = A says c | B says d is created. Rule [Do]
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A[τ.P + P ′ | Q]
A: τ−−−→ A[P | Q] [Tau]

A[tell ↓u c.P + P ′ | Q]
A: tell ↓uc−−−−−−→ A[P | Q] | {↓u c}A [Tell]

c ./ d γ = A says c | B says d σ = {s/x,y} s fresh

(x, y)(S | {↓x c}A | {↓y d}B)
K: fuse−−−−→ (s)(Sσ | s[γ])

[Fuse]

γ
A says a−−−−−→→ γ′

A[dos a.P + P ′ | Q] | s[γ]
A: dos a−−−−−→ A[P | Q] | s[γ′]

[Do]

γ ` φ
A[asks φ.P + P ′ | Q] | s[γ]

A: asks φ−−−−−→ A[P | Q] | s[γ]
[Ask]

X(u)
def
= P A[P{v/u} | Q] | S µ−→ S′

A[X(v) | Q] | S µ−→ S′ [Def]
S

µ−→ S′

S | S′′ µ−→ S′ | S′′ [Par]

S
A: π−−−→ S′

(u)S
A: delu(π)−−−−−−→ (u)S′

[Del] where delu(π) =

{
τ if u ∈ fnv(π)

π otherwise

Fig. 3. Reduction semantics of CO2 .

allows a participant A to perform an action in the session s containing γ (which,
accordingly, evolves to γ′). Rule [Ask] allows A to proceed only if the contract γ
at session s satisfies the property φ. The last three rules are mostly standard. In
rule [Del] the label π fired in the premise becomes τ in the consequence, when
π contains the delimited name/variable. This transformation is defined by the
function delu(π), where the set fnv(π) contains the free names/variables in π. For

instance, (x)A[tell ↓x c.P ]
A: τ−−−→ (x) (A[P ] | {↓x c}A). Here, it would make little

sense to have the label A : tell ↓x c, as x (being delimited) may be α-converted.

Implementing in Maude the semantics of CO2 is almost straightforward [19];
here we show only the main rules (see [2] for the others). Rule [Do] uses the tran-
sition relation => on bilateral contracts. Rule [Ask] exploits the Maude model
checker to verify if the bilateral contract g satisfies the LTL formula phi. Rule
[Fuse] uses the operator |X| to check compliance between the contracts c and d,
then creates the session s[A says c | B says d] (with s fresh), and finally ap-
plies the substitution {s / x}{s / y} (delimitations are dealt with as in Fig. 3).

crl [Do] : A[do s a . P + P’ | Q] | s[g] => {A : do s a} (A[P | Q] | s[g’])
if g => {A says a} g’ .

crl [Ask] : A[ask s phi . P + P’ | Q] | s[g] => {A : ask s phi} A[P | Q]
if g |- phi .

crl [Fuse] : (uVec , vVec) ({x c}A | {y d}B | S) => {K : fuse}
(s , vVec) (s[A says c | B says d] | S{s / x}{s / y})
if uVec == (x , y) / c |X| d / s := fresh(0 , S) .

8



4 Honesty

A remarkable feature of CO2 is that it allows for writing dishonest agents which
do not keep their promises. Intuitively, a participant is honest if she always
fulfils her contractual obligations, in all possible contexts. Below we formalise
the notion of honesty, by slightly adapting the one appeared in [3]. Then, we
show how we verify in Maude a weaker notion, i.e. honesty in a given context.

We start by defining the set OA
s (S) of obligations of A at s in S. Whenever

A is culpable at some session s, she has to fire one of the actions in OA
s (S).

Definition 5. We define the set of atoms OA
s (S) as:

OA
s (S) =

{
a | ∃γ, S′ . S ≡ s[γ] | S′ and γ A says a−−−−−→→

}
We say that A is culpable at s in S iff OA

s (S) 6= ∅.

The set of atoms RDA
s (S) (“Ready Do”) defined below comprises all the

actions that A can perform at s in one computation step within S (note that, by
rule [Del], if s is a bound name then RDA

s (S) = ∅). The set WRDA
s (S) (“Weak

Ready Do”) contains all the actions that A may possibly perform at s after a
finite sequence of transitions of A not involving any do at s.

Definition 6. For all S, A and s, we define the sets of atoms:

RDA
s (S) =

{
a | ∃S′ . S A: dos a−−−−−→ S′

}
WRDA

s (S) =
{
a | ∃S′ . S A: 6=dos−−−−−→∗S′ ∧ a ∈ RDA

s (S′)
}

where we write S
A: 6=dos−−−−−→ S′ if ∃π. S A: π−−−→ S′ ∧ ∀a. π 6= dos a.

A participant is ready if she can fulfil some of her obligations. To check if A
is ready in S, we consider all the sessions s in S involving A. For each of them,
we check that some obligations of A at s are exposed after some steps of A not
preceded by other dos of A. A[P ] is honest in a given system S when A is ready
in all evolutions of A[P ] | S. Then, A[P ] is honest when she is honest in all S.

Definition 7 (Honesty). We say that:

1. S is A-free iff it has no latent/stipulated contracts of A, nor processes of A
2. A is ready in S iff S ≡ (u)S′ ∧ OA

s (S′) 6= ∅ =⇒ WRDA
s (S′)∩OA

s (S′) 6= ∅
3. P is honest in S iff ∀A : (S is A-free ∧ A[P ] | S −→∗ S′) =⇒ A is ready in S′

4. P is honest iff, for all S, P is honest in S

We have implemented items 2 and 3 of the above definition in Maude (item
4 is dealt with in the next section). CO2 can simulate Turing machines [5],
hence reachability in CO2 is undecidable, and consequently WRD, readiness
and honesty are undecidable as well. To recover decidability, we then restrict to
finite state processes: roughly, these are the processes with neither delimitations
nor parallel compositions under process definitions.

In Maude we verify readiness in a session s by searching if A can reach (with
her moves only), a state which allows for a dos a move, for some a.
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op ready? : Participant SessionName System Module -> Bool .
eq ready?(A,s,S,M:Module) = metaSearch(M:Module, upTerm(< S > A s),

’<_>__[’S1:System , upTerm(A) , upTerm(s)],
’S1:System => ’‘_‘_[’l:SLabel,’S2:System] /\
’_:_[upTerm(A),’do__[upTerm(s),’a:Atom]] := ’l:SLabel,
’*, unbounded, 0 ) =/= failure .

We start the search from the term < S > A s, whose meta-representation is ob-
tained through the upTerm function. The search is performed according to the
A-solo semantics of CO2 (see Definition 10), which blocks all do at s. This is
done by the operator < > . Then, we look for reachable systems S1 where A can
fire a do at s. If the search succeeds, ready? returns true. Note that if A has
no obligations at s in S, ready? returns false — uncoherently with Def. 7. To
correctly check readiness, we define the function ready (see [2]), which invokes
ready? only when OA

s(S) 6= ∅.
Verifying honesty in a context is done similarly. We use metaSearch to check

that A is ready in all reachable states. The operator < > gives the CO2 semantics.

op search-honest-ctx : Participant System Module -> ResultTriple? .
eq search-honest-ctx(A,S,M:Module) = metaSearch(M:Module, upTerm(< S >),
’<_>[’S:System], ’ready[upTerm(A), ’S:System,’S:System, upTerm(M:Module)]
= ’false.Bool, ’*, unbounded, 0) .

op honest-ctx : Participant System Module -> Result .
ceq honest-ctx (A , S , M:Module) = true
if search-honest-ctx (A , S , M:Module) == failure .

ceq honest-ctx (A , S , M:Module) = downTerm (T:Term , < (0).System > )
if {T:Term,Ty:Type,S:Substitution} := search-honest-ctx (A,S,M:Module) .

Example 4. A travel agency A queries in parallel an airline ticket broker F and a
hotel reservation service H in order to organise a trip for some user U. The agency
first requires U to pay, and then chooses either to commit the reservation or to
issue a refund (contract CU). When querying the ticket broker (contract CF), the
agency first receives a quotation, and then chooses either to commit and pay the
ticket, or to abort the transaction. The contract CH between A and H is similar.

eq CU = pay . (commit ; 0 (+) refund ; 0) .
eq CF = ticket . ( commitF ; payF ; 0 (+) abortF ; 0) .
eq CH = hotel . ( commitH ; payH ; 0 (+) abortH ; 0) .

In addition to the contracts above, the agency should respect the following con-
straints: (a) the agency refunds U only if both the transactions with F and H

are aborted; (b) A pays the ticket and the hotel reservation only after it has
committed the transaction with U; (c) either both the transactions with F or
H are committed, or they are both aborted. A possible specification in Maude
respecting the above constraints is given by the following process P:

eq P = ( xu , xf , xh ) ( tell xu CU . do xu pay .
( (tell xf CF . PF) | (tell xh CH . PH) | PU ) ) .

eq PF = do xf ticket . (do xh commitH . 0 + do xf abortF . 0) .
eq PH = do xh hotel . (do xf commitF . 0 + do xh abortH . 0) .

eq PU = ask xh ([] ~ payH) . do xu refund . 0 +
t . do xu commit . (do xf payF . 0 | do xh payH . 0) .
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The process P first opens a session with U, and then advertises the contracts CF

and CH, and in parallel executes PU. The process PF gets the ticket quotation, then
either commits the hotel reservation, or aborts the flight reservation. Dually, PH
gets the hotel quotation, then either commits the flight reservation, or aborts the
hotel reservation. Note that the two choices in PF and PH ensure that constraint
(c) above is satisfied: e.g., if PF fires the commitH (resp. abortF) prefix, the abortH

(resp. commitF) branch in PH is disabled, and only commitF (resp. abortH) can be
selected. The process PU checks if a refund is due to U. When the atom payH is
no longer reachable in session xh, the ask passes, and the refund is issued. This
guarantees constraint (a). In the τ -branch, PU commits the transaction with U,
and then proceeds to pay both F and H. This satisfies constraint (b). Note that
it may happen that PU chooses to commit even when CF or CH are not stipulated.
Although this behaviour is conceptually wrong, it does not affect honesty. Indeed,
honesty does not consider the domain-specific constraints among actions (e.g.
(a), (b), (c) above), but only that the advertised contracts are respected.

We have experimented the function honest-ctx by inserting P in some con-
texts S where all the other participants U, F and H are honest (see [2] for details).
The Maude model checker has correctly determined that P is honest in S.

red honest-ctx(A , S , [’TRAVEL-AGENCY-CTX]) .
rewrites: 53950741 in 38062ms cpu (38058ms real) (1417429 rewrites/second)
result Bool: true

Even though we conjecture that P is honest (in all contexts), we anticipate
here that the verification technique proposed in § 5 does not classify P as honest.
This is because the analysis is (correct but) not complete in the presence of
ask: indeed, the precise behaviour of an ask is lost by the analysis, because it
abstracts from the contracts of the context.

5 Model checking honesty

We now address the problem of automatically verifying honesty. As mentioned
in § 1, this is a desirable goal, because it alerts system designers before they
deploy services which could violate contracts at run-time (so possibly incurring
in sanctions). Since honesty is undecidable in general [5], our goal is a verification
technique which safely over-approximates honesty, i.e. it never classifies a process
as honest when it is not. The first issue is that Def. 7 requires readiness to
be preserved in all possible contexts, and there is an infinite number of such
contexts. To overcome this problem, we present below an abstract semantics of
CO2 which preserves the honesty property, while neglecting the actual context
where the process A[P ] is executed.

The definition of the abstract semantics of CO2 is obtained in two steps.
First, we provide the projections from concrete contracts/systems to the abstract
ones. Then, we define the semantics of abstract contracts and systems, and we
relate the abstract semantics with the concrete one. The abstraction is always
parameterised in the participant A the honesty of which is under consideration.

The abstraction αA(γ) of a bilateral contract γ = A says c | B says d
(Definition 8 below) is either c, or ctx .c when d has a ready .
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Definition 8. For all γ, we define the abstract contract αA(γ) as:

αA(A says c | B says d) =

{
c if d is ready-free

ctx a.c if d = ready a.d′

We now define the abstraction αA of concrete systems, which just discards
all the components not involving A, and projects the contracts involving A.

Definition 9. For all A, S we define the abstract system αA(S) as:

αA(A[P ]) = A[P ] αA(s[γ]) = s[αA(γ)] αA({↓x c}A) = {↓x c}A
αA(S | S′) = αA(S) | αA(S′) αA((u)S) = (u)(αA(S)) αA(S) = 0, otherwise

Abstract semantics. For all participants A, the abstract LTSs
`−→→A and

µ−→A on
abstract contracts and systems, respectively, are defined by the rules in Fig. 4.
Labels ` are atoms, with or without the special prefix ctx — which indicates
a contractual action performed by the context. Labels µ are either ctx or they
have the form A : π, where A is the participant in −→A, and π is a CO2 prefix.

Rules for abstract contracts (first row in Fig. 4) are simple: in an internal
sum, A chooses a branch; in an external sum, the choice is made by the context;
in a ready a.c the atom a is fired. The rightmost rule handles a ready in the con-
text contract. For abstract systems, some rules are similar to the concrete ones,
hence we discuss only the most relevant ones. Rule [α-Do] involves the abstract
transitions of contracts. The behaviour of abstract systems also considers context
actions, labelled with ctx . If c ` φ, then the ask φ passes, indepedently from the
context (rule [α-Ask]). If c 6` ¬φ, then the ask φ may pass or not, depending and
the context (rule [α-AskCtx]). Rule [α-Fuse] says that a latent contract of A may
always be fused (the context may choose whether this is the case or not). The
context may also decide whether to perform actions within sessions ([α-DoCtx]).
Unobservable context actions are modelled by rules [α-Ctx] and [α-DelCtx].

To check if A[P ] is honest, we must only consider those A-free contexts not
already containing advertised/stipulated contracts of A. Such systems will al-
ways evolve to a system which can be split in two parts: an A-solo system SA

containing the process of A, the contracts advertised by A and all the sessions
containing contracts of A, and an A-free system Sctx .

Definition 10. We say that a system S is A-solo iff one of the following holds:

S ≡ 0 S ≡ A[P ] S ≡ s[A says c | B says d] S ≡ {↓x c}A
S ≡ S′ | S′′ where S′ and S′′ A-solo S ≡ (u)S′ where S′ A-solo

We say that S is A-safe iff S ≡ (s)(SA | Sctx ), with SA A-solo and Sctx A-free.

The following theorems establish the relations between the concrete and the
abstract semantics of CO2. Theorem 3 states that the abstraction is correct, i.e.
for each concrete computation there exists a corresponding abstract computa-
tion. Theorem 4 states that the abstraction is also complete, provided that a
process has neither ask nor non-proper contracts.
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a ; c⊕ c′ a−→→A ctx ā.c a . c+ c′
ctx : ā−−−→→A ready a. c ready a. c

a−→→A c ctx a.c
ctx : a−−−→→A c

c
a−→→A c

′

A[dos a.P + P ′ | Q] | s[c] A: dos a−−−−−→A A[P | Q] | s[c′]
[α-Do]

s fresh

(x)(S̃ | {↓x c}A)
ctx−−→A (s)(s[c] | S̃{s/x})

[α-Fuse]

c ` φ
A[asks φ.P + P ′ | Q] | s[c] A: asks φ−−−−−→A A[P | Q] | s[c]

[α-Ask]

c 6` ¬φ
A[asks φ.P + P ′ | Q] | s[c] ctx−−→A A[P | Q] | s[c]

[α-AskCtx]

c
ctx−−→→A c

′

s[c]
ctx−−→A s[c

′]
[α-DoCtx] S

ctx−−→A S [α-Ctx]
S̃

ctx−−→A S̃′

(u)S̃
ctx−−→A (u)S̃′

[α-DelCtx]

Fig. 4. Abstract LTSs for contracts and systems (full set of rules in [2]).

Theorem 3. For all A-safe systems S, and for all concrete traces η:

S
η−→∗S′ =⇒ ∃η̃ : αA(S)

η̃−→A
∗αA(S′)

Furthermore, if η is A-solo and S is ask-free, then η = η̃.

Theorem 4. For all ask-free abstract system S̃ with proper contracts only:

S̃ −→A
∗ S̃′ =⇒ ∃S, S′ A-safe. αA(S) = S̃ ∧ S −→∗ S′ ∧ αA(S′) = S̃′

The abstract counterparts of Ready Do, Weak Ready Do, and readiness are
defined as expected, by using the abstract semantics instead of the concrete
one (see [2] for details). The notion of honesty for abstract systems, namely
α-honesty, follows the lines of that of honesty in Def. 7.

Definition 11 (α-honesty). We say that P is α-honest iff for all S̃ such that
A[P ] −→A

∗ S̃, A is ready in S̃.

The main result of this paper follows. It states that α-honesty is a sound
approximation of honesty, and — under certain conditions — it is also complete.

Theorem 5. If P is α-honest, then P is honest. Conversely, if P is honest,
ask-free, and has proper contracts only, then P is α-honest.

In Maude, we implement abstract semantics for system and contracts for one-
step transitions. We obtain their transitive closure, discarding labels, with the
operator < >. The function ready in search-honest computes abstract readiness.
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op search-honest : Process Module -> ResultTriple? .
eq search-honest(P , M:Module) = metaSearch(M:Module, upTerm(< A[P] >),

’<_>[’S:System], ’ready[’S:System,’S:System, upTerm(M:Module)]
= ’false.Bool, ’*, unbounded, 0) .

op honest : Process Module -> Result .
ceq honest (P, M:Module) = true if search-honest (P,M:Module) == failure .
ceq honest (P, M:Module) = downTerm (T:Term , < (0).System > )

if {T:Term, Ty:Type, S:Substitution} := search-honest (P , M:Module) .

Honesty is checked by searching for states such that A is not ready. If the
search fails, then A is honest. As in § 4, this function is decidable for finite
state processes, i.e. those without delimitation/parallel under process definitions.
The following example shows a process which was erroneously classified as honest
in [5]. The Maude model checker has determined the dishonesty of that process,
and by exploiting the Maude tracing facilities we managed to fix it.

Example 5. A store A offers buyers two options: clickPay or clickVoucher. If a
buyer B chooses clickPay, A requires a payment (pay) otherwise A checks the va-
lidity of the voucher with V, an online voucher distribution system. If V validates
the voucher (ok), B can use it (voucher), otherwise (no) B must pay. We specify
in Maude the contracts CB (between A and B) and CV (between A and V) as:

eq CB = clickPay . pay . 0 +
clickVoucher . (- reject ; pay . 0 (+) - accept ; voucher . 0) .

eq CV = ok . 0 + no . 0 .

We can specify in Maude a CO2 process for A as follows:

eq P = (x)(tell x CB . (do x clickPay . do x pay . 0 +
do x clickVoucher . ((y) tell y CV . Q))) .

eq Q = do y ok . do x - accept . do x voucher . 0 +
do y no . do x - reject . do x pay . 0 + R .

eq R = t . (do x - reject . do x pay . 0) .

Variables x and y in P correspond to two separate sessions, where A respectively
interacts with B and V. The advertisement of CV causally depends on the stip-
ulation of the contract CB, because A must fire clickVoucher before tell y CV.
In process Q the store waits for the answer of V: if V validates the voucher (first
branch), then A accepts it from B; otherwise (second branch), A requires B to pay.
The third branch R allows A to fire a τ action, and then reject the voucher. The
intuition is that τ models a timeout, to deal with the fact that CV might not be
stipulated. When we check the honesty of P with Maude, we obtain:

red honest(P , [’STORE-VOUCHER]) .
rewrites: 31649 in 72ms cpu (77ms real) (439545 rewrites/second)
result TSystem: < ($ 0,$ 1)(A[do $ 0 - reject . do $ 0 pay . (0).Sum] |
$ 0[- accept ; voucher . 0(+)- reject ; pay . 0] | $ 1[ready ok . 0]) >

This means that the process P is dishonest: actually, the output provides a state
where A is not ready. There, A must do ok in session y ($1), while A is only ready
to do a -reject at session x ($0). This problem occurs when the branch R is
chosen. To recover honesty, it suffices to replace R with the following process R’:

eq R’ = t . (do x - reject . do x pay . 0 | (do y no . 0 + do y ok . 0)) .
red honest(P’ , [’STORE-VOUCHER]) .
rewrites: 44009 in 32ms cpu (30ms real) (1375195 rewrites/second)
result Bool: true
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6 Conclusions

We have described an executable specification in Maude of a calculus for contract-
oriented systems. This has been done in two steps. First, we have specified a
model for contracts, and we have formalised in Maude their semantics, and the
crucial notions of compliance and culpability (§ 2). This specification has been
exploited in § 3 to implement in Maude the calculus CO2 [4]. Then, we have
considered the problem of honesty [5], i.e. that of deciding when a participant
always respects the contracts she advertises, in all possible contexts (§ 4). Writ-
ing honest processes is not a trivial task, especially when multiple sessions are
needed for realising a contract (see e.g. Ex. 4 and Ex. 5). We have then devised
a sound verification technique for deciding when a participant is honest, and we
have provided an implementation of this technique in Maude (§ 5).

Related work. Rewriting logic [12] has been successfully used for more than two
decades as a semantic framework wherein many different programming models
and logics are naturally formalised, executed and analysed. Just by restricting to
models for concurrency, there exist Maude specifications and tools for CCS [17],
the π-calculus [16], Petri nets [15], Erlang [14], Klaim [18], adaptive systems [7],
etc. A more comprehensive list of calculi, programming languages, tools and
applications implemented in Maude is collected in [13].

The contract model presented in § 2 is a refined version of the one in [5], which
in turn is an alternative formalisation of the one in [8]. Our version is simpler
and closer to the notion of session behaviour [1], and enjoys several desirable
properties. Theorem 1 establishes that only one participant may be culpable in
a bilateral contract, whereas in [5] both participants may be culpable, e.g. in
A says a ; c | B says ā ; d. In our model, if both participants have an internal
(or external) choice, then their contracts are not compliant, whereas e.g. a.c
and ā.d (both external choices) are compliant in [5,8] whenever c and d are
compliant. The exculpation property established by Theorem 2 is stronger than
the corresponding one in [5]. There, a participant A is guaranteed to exculpate
herself by performing (at most) two consecutive actions of A, while in our model
two any actions (of whatever participant) suffice.

As far as we know, the concept of contract-oriented computing (in the mean-
ing used in this paper) has been introduced in [6]. CO2, a contract-agnostic calcu-
lus for contract-oriented computing, has been instantiated with several contract
models — both bilateral [5,3] and multiparty [11,4]. Here we have instantiated
it with the contracts in § 2. A minor difference w.r.t. [5,3,11] is that here we no
longer have fuse as a language primitive, but rather the creation of fresh sessions
is performed non-deterministically by the context (rule [Fuse]). This is equiva-
lent to assume a contract broker which collects all contracts, and may establish
sessions when compliant contracts are found. In [5], a participant A is consid-
ered honest when, in each possible context, she can always exculpate herself by
a sequence of A-solo moves. Here we require that A is ready (i.e. some of her
obligations are in the Weak Ready Do set) in all possible contexts, as in [3]. We
conjecture that these two notions are equivalent. In [3] a type system has been
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proposed to safely over-approximate honesty. The type of a process P is a func-
tion which maps each variable to a channel type. These are behavioural types (in
the form of Basic Parallel Processes) which essentially preserve the structure of
P , by abstracting the actual prefixes as “non-blocking” and “possibly blocking”.
The type system relies upon checking honesty for channel types, but no actual
algorithm is given for such verification, hence type inference remains an open
issue. In contrast, here we have directly implemented in Maude a verification
algorithm for honesty, by model checking the abstract semantics in § 5.
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Abstract. Relational approaches to represent and solve MDPs exploit
structure that is inherent to modelled domains in order to avoid or at
least reduce the impact of the curse of dimensionality that proposi-
tional representations suffer from. By explicitly reasoning about rela-
tional structure, policies that lead to specific goals can be derived on a
very general, abstract level; thus, these policies are valid for numerous
domain instantiations, regardless of the particular objects participating
in it. This paper describes the encoding of relational MDPs in terms
of rewrite theories by encoding non-deterministic domain dynamics as
rewrite rules. Narrowing is employed to solve these relational MDPs sym-
bolically. Resulting abstract value functions are simplified through state
subsumption, which is realized by matching abstract state terms.

1 Introduction

The framework of Markov decision processes (MDPs) allows to model domains
with non-deterministic action outcomes and arbitrary reward functions, thus
serving well for modelling problems of sequential decision making under uncer-
tainty [1]. Various exact and approximate techniques to solve MDPs exist, such
as value iteration, policy iteration and modified policy iteration [2]. Given a re-
ward specification (i.e. system goals), a solution of a MDP can be computed that
is either a value function mapping states to their corresponding expected values
(according to the reward function of the MDP) or a policy mapping states to
actions that are maximizing the expected reward as the policy is executed.

Algorithms for solving MDPs suffer from the curse of dimensionality [3],
rendering them infeasible for large-scale domains. To overcome this problem,
effort has been made to exploit inherent structure of domains by employing
factored or relational, first-order representations of states and actions instead
of propositional ones, allowing to represent structured problem domains more
concisely. Thus, computation becomes feasible also for larger domains, but the
additional complexity that arises from structured domain representations has to
be taken into account when solving the according MDP [4,5,6].

Rewriting logic is a formal logical framework that lends itself naturally to
modelling non-deterministic and concurrent domains on a symbolic level [7,8].

? This work has been partially funded by the EU project ASCENS, 257414.
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It provides support for formally specifying structured domains through modu-
larization and object-orientation, as well as explicit sorting and sub-sorting. As
a reflective logical framework, it also provides formal definitions to operations
on the meta-level, as for example introduction or renaming of variables, which
are viable operations for symbolic programming in general, and for symbolic
dynamic programming in particular. In rewriting logic, logical deduction and
program execution are considered equal, a fact that lead to the implementation
of the language Maude that allows to execute formal specifications given in
rewriting logic straightforwardly [9].

Rewriting logic offers a straightforward approach to specify the nondetermin-
istic nature of MDPs through the use of rewrite rules and their corresponding
semantics. Also, the concepts of matching and narrowing offer powerful and effi-
cient approaches to relate symbolic terms to each other, thus allowing to model
and execute abstract state subsumption and regression on the first-order level.
This paper describes the specification of relational MDPs in rewriting logic, and
how matching [10] and narrowing [11,12] can be employed to solve them us-
ing first-order abstraction and avoiding propositionalization. In particular, this
paper introduces a model-based dynamic programming algorithm for relational
MDPs that employs first-order reasoning and computes exact solutions with the
following properties:

– It operates on explicitly sorted state representations, allowing domain spec-
ifications to define sort hierarchies and operation polymorphism.

– The Bellman backup is performed regressive; only goal-relevant abstract
states are constructed and evaluated.

– Given a particular reward function, the resulting value function (and the
corresponding policy) are optimal w.r.t. reward function and domain model
regardless of any particular state an agent finds itself in.

– Constants are only introduced where they are goal-relevant. Thus, reasoning
and regression are performed on the first-order level wherever possible.

– The combined state-action space is factored, leading to concise results.

– Partial goal specifications are supported.

The formalization of the algorithm as a rewrite theory directly provides a
specification of a corresponding Maude program; thus, an implementation of
the algorithm is provided as well.

This paper is outlined as follows: Section 2 discusses in more detail value
iteration to solve MDPs exactly as well as the rewriting logic framework and the
concepts of matching and narrowing. Section 3 describes how relational MDPs
can be encoded in terms of a rewrite theory and how rewriting logic concepts
can be used to solve these relational MDPs symbolically. Section 4 discusses an
example to illustrate the approach described in this paper. Finally, section 5
compares the approach to related work, summarizes the results described in this
paper and hints at possibilities for further research.
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2 Preliminaries

This section introduces the MDP framework (section 2.1) and value iteration as
well as rewriting logic and the concepts of rewriting and narrowing (section 2.2).

2.1 MDPs and Value Iteration

Definition 1. A Markov decision process (MDP) is a tuple (S,A, T, γ,R) with
S a set of states, A a set of actions, T : S × A × S → R a transition function,
γ ∈ [0; 1] a discount factor and R : S → R a reward function.1

Definition 2. A relational MDP employs a representation for S and A that
allows for existential quantification of first-order variables and establishment of
relations between domain objects (see e.g. [13]).

A tuple as given in definiton 1 specifies the non-deterministic, discrete time
dynamics of a domain in terms of a transition system. The transition function T
encodes the probability that executing an action a ∈ A in a particular state s ∈ S
will result in a state s′ ∈ S; note that s and s′ may be equal, indicating absence
of an action effect. The discount factor γ reflects how much an agent prefers
immediate over long-term rewards; the smaller γ is chosen, the more immediate
rewards will impact behaviour of an agent acting according to the MDP. The
reward function defines incentives that are given to the agent in particular states;
in other words, it specifies which states are valuable to achieve.

Definition 3. A value function V : S → R maps states to values. The value of
a state s ∈ S is the reward gained in s plus the expected discounted future reward
when acting greedily w.r.t. V .

Definition 4. A policy π : S → A maps states to actions. An agent acting
according to a policy π executes action π(s) when being in state s.

Solving a MDP means to compute either a value function V mapping states
to expected values w.r.t. the given reward function R, or to provide a policy π
that maps states in S to actions in A that are going to maximize the expected
reward of an agent acting according to π. In both cases, the solution of the MDP
can be used by an agent to determine which action to execute in which state in
order to gather as much reward as possible in the long run.

V (s) = R(s) + γmax
a∈A

(∑
s′∈S

T (s, a, s′)V (s′)

)
(1)

Equation (1) shows the Bellman equation [3], that defines the actual value
for each state in an MDP according to the transition function T and the reward

1 Rewards may also be specified action-wise, R : S × A × S → R. The approach
to value iteration discussed in section 3 could be extended to also deal with this
representation.
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function R. The general idea is that the value of a state is the sum of the reward
this state will expose to the agent and the expected discounted future reward
when moving on to the next state by executing an action that is assumed to be
optimal w.r.t. the value function V .

Vi+1(s)← R(s) + γmax
a∈A

(∑
s′∈S

T (s, a, s′)Vi(s
′)

)
(2)

For an MDP that has n states, this would result in n equations, one for
each state, with n unknowns. As the max-operation is non-linear, solving these
equations is problematic. To this end, Bellman proposed an iterative approach,
called value iteration. Equation (2) shows the iteration step known as Bellman
backup. Value iteration is guaranteed to converge to the optimal solution [3].
The value function V can be arbitrarily initialized, a common approach is to set
V0(s) = R(s). Iteration is performed until |Vi+1(s)−Vi(s)| < ε(1−γ)/γ for each
state s ∈ S and a given error bound ε ∈ R. This ensures that the maximum
difference of Vi+1 to the real value function V is smaller than ε for all states [2].

2.2 Rewriting Logic

Rewriting logic is suited towards the formal specification of non-deterministic,
concurrent systems. System states are encoded in user-definable terms that are
constructed from specified operations that can be enhanced with axioms like as-
sociativity, commutativity or idempotency. System dynamics are then described
in terms of so-called rewrite rules, that allow to specify non-deterministic and
concurrent behaviour.

The core element to describe systems in rewriting logic are rewrite theories,
i.e. tuples of the form (Σ,E∪A,R), where Σ contains sorts and operations that
are used to construct state terms, E is a set of equations that define equivalence
classes for these terms, A is a set of axioms like associativity, commutativity or
idempotency specified for operations in Σ, and R is a set of rewrite rules that
define the system dynamics. A rewrite theory represents a transition system,
where states are terms in Σ, and rewrite rules in R define state transitions.

A central concept in rewriting logic is matching, which is performed modulo
axioms and with extensions (denoted by :=Ax). Consider an infix operation ◦
being associative and commutative, i.e. rendering terms constructed by means
of ◦ into a multiset. Then, for example, the term a ◦ b matches modulo axioms
with extensions the term a ◦ c ◦ b, as the latter has the same equivalence class as
the term a ◦ b ◦ c (due to commutativity) and a ◦ b is a subterm of a ◦ b ◦ c.

While state terms in Σ specify the static representation of a system, its
dynamics are formalized in terms of rewrite rules. Those are of the form

label : t → t′ if Conditions

where t and t′ are terms of the same kind and may contain free sorted vari-
ables. If t matches modulo axioms with extensions a given subject term, the



Value Iteration for Relational MDPs in Rewriting Logic 5

subject term’s matched portions are rewritten to t′. A rule’s label may be omit-
ted. Rewrite rules can optionally be conditional, in which case rewriting only is
applied if all conditions evaluate to true. Conditions can occur in four different
forms:

1. Sort or kind tests, denoted s : Sort.

2. Equational conditions constrain variable values through an equation u = u′.
Equality is computed according to E ∪A of the rewrite theory.

3. Matching conditions u := u′ that constrain the syntactic structure of a
variable in t (modulo axioms). Matching conditions can be used to define
locally scoped variables (if u is a free variable not occurring in t).

4. Rewrite conditions u → u′, that evaluate to true if u′ can be derived by
rewriting u according to rewrite rules in R. Free variables not occurring in t
may be introduced in u′.

As a rule may match different portions of a subject term, this representation
of system dynamics offers a natural way to model concurrency by rewriting a
term on various positions simultaneously according to one or multiple rewrite
rules. On the other hand, non-determinism is expressed if (partially or com-
pletely) overlapping portions of a subject term match one or more rewrite rules,
i.e. if different applications of rewrite rules are possible without being applicable
concurrently. In this case, a subject term evolves non-deterministically in any
possible way. For example, consider the rewrite rules (i) : a → a′, (ii) : a → a′′

and (iii) : b → b′. Then, the term a ◦ b can be rewritten to a′ ◦ b′ by applying
rules (i) and (iii), and also to the form a′′ ◦ b′ (using rules (ii) and (iii)).

While rewriting treats variables in a rewriting problem universally quanti-
fied, i.e. answering a problem of the form ∀x : t(x)→? t

′(x), a technique called
narrowing deals with corresponding problems where variables are treated exis-
tentially, i.e. ∃x : t(x)→? t

′(x), representing symbolic reachability problems. To
answer queries of this form, instead of matching rules and subject terms as in
rewriting, they are unified in order to perform narrowing, meaning that vari-
ables in both terms may be instantiated to achieve syntactic term unification.
I.e., when narrowing, rewrite rules are applied if (one or more subterms of) the
subject term can be unified with a rule’s lefthand side. Note that, when nar-
rowing, righthand sides of rewrite rules may contain variables not specified in
their lefthand side, allowing rewrite rules to introduce fresh variables. For an
in-depth discussion of rewriting logic and the concepts of matching, rewriting
and narrowing see for example [9].

3 Value Iteration for Relational MDPs in Rewriting
Logic

This section discusses how to encode relational MDPs in rewriting logic and how
to solve these MDPs symbolically using the concepts of matching and narrowing.
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3.1 Relational MDPs in Rewriting Logic

In order to perform symbolic value iteration, a relational representation of the
underlying MDP has to be specified. To this end, a relational MDP (S,A, T, γ,R)
is encoded as a rewrite theory (Σ,E ∪ A,R). To avoid representation of states
in a propositional manner, relations between domain objects can be specified,
providing a symbolic representation of states and actions. This allows for a con-
cise representation of MDPs even when there is a big number of domain objects.
Also, as will be shown in section 3.2, a relational MDP can be solved completely
symbolically, only grounding variables where this is relevant for goal reachability.

Domain objects are simply represented by corresponding sorts. Properties
and relations of theses objects that change due to domain dynamics are encoded
by parametrizable fluents representing truth values of properties of a particular
state, which are encoded by a corresponding sort fluent. Subsorts of flu-
ent can be specified as necessary to further structure the state space, allowing
to restrict fluent variables to particular domain objects, for which sorts can also
be specified in Σ. Negation of fluents (i.e. the explicit absence of a particular
state property) is represented by an operation ¬ : fluent → fluent. The
state space is constructed in terms of a sort state with fluent < state by
an associative and commutative operation ∧ : state × state → state that is
representing logical conjunction. A constant false is defined for sort state to
denote constraint violations, and ¬F ∧ F = false for all F ∈ fluent.

State terms that are syntactically constructed in this way may still con-
tain semantic inconsistencies. Semantic constraints (e.g. state invariants) can be
specified in terms of confluent and terminating equations that reduce states that
violate constraints to false. States that violate constraints (e.g. state invariants)
will be completely reduced to false: S ∧ false = false for all S ∈ state.

The set of equivalence classes of state terms can then be considered the set
S of states of a relational MDP. Note that each equivalence class may render
different instances of state terms equal according to their relational structure,
thus providing a representation of abstract first-order states.

Primitive actions executable by agents are encoded by a parametrizable sort
action. Equivalence classes on action-terms then form the set of actions A of
a relational MDP. As for state terms, free variables are allowed in action terms.
The action space is thus raised to an abstract level that allows to exploit its
relational structure, especially when taking into account relations between state
and action space, e.g. if state and action terms share free variables.

Example 1. Consider a signature with sorts truck, box and city and the sorts
fluent, state and action as above. One can then for example define a fluent
boxOn : box×truck→ fluent. Consider e.g. fluents truckIn and boxIn defined
similarly. Then truckIn(t, c) ∧ boxOn(b, t) ∧ boxIn(b′, c) is a state-term in Σ. 2

2 The following notational conventions are introduced, unless stated otherwise: Low-
ercase letters represent terms (that may contain free variables), uppercase letters
represent free variables. In particular, t, t′, T, T ′ ∈ truck, b, b′, B ∈ box and
c, c′, C, C′ ∈ city represent constants and free variables denoting domain objects;
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An action representing a truck loading a box can be defined by an operation
load : truck× box→ action. Then, load(t, b) is an action-term in Σ.

The fact (i.e. state constraint) that a truck can only be in one city at a time
can be specified by a conditional equation truckIn(T,C) ∧ truckIn(T,C ′) ∧ S =
false if C 6= C ′.

To encode the relation of states, actions (e.g. an optimal action in a particular
state) and any corresponding values (e.g. a state’s probability to be reached or
its expected value), a sort sav-tuple is defined to represent state-action-value
tuples (SAV-Tuples) of the form (s, a, v). When either a or v are omitted, the
relation is valid for all actions or values, respectively. Note that SAV-tuples may
relate state and action terms that share variables, consider for example a SAV-
tuple (s(x ∪ y), a(y ∪ z), v) where state and action share the variables y. Thus,
SAV-tuples allow to exploit structure of the combined state-action space.

To model the transition function T of a MDP, a rewrite rule can be defined
for any transition T(s, a, s′) = p to specify this transition in a rewrite theory:

(s, a)→ (s′, p) .

In order to match or unify a subject SAV-tuple with the rule’s lefthand side
in Maude, s and s′ have to include a free variable of sort state (e.g. s ∧ S).
This encoding also explicitly shows the solution to the frame problem [14].

If executing an action a in a state s exposes non-deterministic outcomes,
the according transitions of T can be encoded in terms of disjunctive rewrite
rules (with

∑
pi = 1; and considering ∨ as disjunctive constructor for sets of

SAV-tuples):

(s, a)→ (s′1, p1) ∨ (s′2, p2) ∨ ... ∨ (s′n, pn) .

The state terms s and the s′i can be considered as pre- and postconditions
of action a. This representation of domain dynamics provides a solution to the
frame problem [14], avoiding the necessity to specify all parts of the state that
remain unchanged by action execution.

Example 2. Consider action load from example 1. If a truck executing this action
succeeds to load a box (supposing the truck is in the same city as the box) with a
probability of 0.9, and fails to load it with a probability of 0.1, these transitions
are expressed in terms of the following rewrite rule:

(truckIn(T,C) ∧ boxIn(B,C) ∧ S, load(T,B))→
(truckIn(T,C) ∧ boxOn(B, T ) ∧ S, 0.9)

∨ (truckIn(T,C) ∧ boxIn(B,C) ∧ S, 0.1) .

An MDP’s reward function R is represented in terms of an operation mapping
states to values and appropriate equations, e.g. reward(boxIn(b, c) ∧ S) = 1.0.
Reward is considered to be zero for all other states.

s, s′, s′i ∈ state and a, a′ ∈ action represent state and action terms, S ∈ state
denotes a free state variable; p, pi, v, v

′ ∈ R3 denote probabilities of transitions and
values of states, respectively.
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3.2 Symbolic Value Iteration

This section discusses how to perform symbolic value iteration in order to solve
relational MDPs specified as described in section 3.1, thus providing a relational
representation of a value function and policy that is optimal w.r.t. a given reward
function. This requires definition of a regression operation, summation of values
for non-deterministic action effects, maximization of regressed states to optimal
actions, and value discounting as well as reward distribution.

Regression through Narrowing. According to the definition of value iteration as
in equation (2), the value of executing an action a in a state s is computed
according to the values of the states that are reachable from s when performing
a. When recalling the specification of a relational MDP from section 3.1, the
set of states is the set of equivalence classes over state terms. Many of those
terms may describe states from which a particular goal state (that will provide
a reward to an agent) is not reachable at all according to the rewrite rules from
the MDP specification, thus it is necessary to identify state-terms from which a
goal is reachable. Also, actions have to be instantiated with appropriate variables
related to these states in order to factor the action space properly. In order to
only compute the value for the states and actions that are relevant for goal
reachability, these state-action terms are computed backwards from a given goal
(i.e. a given value function). This backward construction is called regression.

To allow for regressive induction of state-action space abstractions from given
goal states, rewrite rules that specify domain dynamics are transformed into
regressive rewrite rules. The key idea is to define for a given state from which
preceding states it can be reached by execution of a particular action, and with
what probability this action will lead to the given state. The value of the reached
state is then used to compute values of preceding states according to transition
probabilities.

Consider a relational MDP (S,A, T, γ,R), a value function V : S → R, and
a rewrite theory (Σ,E ∪ A,R) encoding the MDP as outlined in section 3.1.
Then, the regressive specification for the dynamics of an action can be given by
inverting the (possibly disjunctive) rewrite rule in R that specifies an effect for
this action (which is of the form (s, a)→ (s′1, p1) ∨ ... ∨ (s′n, pn)) for each of the
effects specified in its righthand side, i.e. for each i ∈ [1, ..., n]:

(s′i, V (s′i))→ (s, a, V (s′i) ∗ pi ∗ γ) .

Example 3. Consider the rewrite rule for action load from example 2. Consid-
ering V ∈ float already encoding the value for particular abstract states, the
regressive rewrite rules for action load are:

(truckIn(T,C) ∧ boxOn(B, T ) ∧ S, V )→
(truckIn(T,C) ∧ boxIn(B,C) ∧ S, load(T,B), V ∗ 0.9 ∗ γ) .

(truckIn(T,C) ∧ boxIn(B,C) ∧ S, V )→
(truckIn(T,C) ∧ boxIn(B,C) ∧ S, load(T,B), V ∗ 0.1 ∗ γ) .
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For value iteration, this representation of domain dynamics serves two pur-
poses. First, it allows to compute from a given value function V all abstract (i.e.
relational) states from which a particular state s′ ∈ Domain(V ) is reachable by
narrowing (for a single step) a SAV-tuple (s′, v) with v = V (s′) according to
the inverted rewrite rules of a rewrite theory encoding a MDP. Note that this
narrowing step produces a set of SAV-tuples (s, a, v ∗ p ∗ γ) that also encode the
action a that, when executed in state s, would result in state s′ with probability
p. Second, with regard to value iteration as in equation (2), this narrowing step
resembles computation of γ ∗ T (s, a, s′)Vi(s

′) when computing Vi+1(s).
As narrowing is employed, variable grounding is (only) applied where nec-

essary (i.e. where relevant to the reachable state s′) through unification of the
state that is currently regressed with the lefthand sides of rewrite rules specifying
domain dynamics. Also, if the state to be regressed misses any action postcon-
ditions, these are induced to regressed state terms by unification if the subject
term to be regressed and action effect rules’ lefthand sides contain a free state
variable (i.e. are of the form s ∧ S). Thus, also partially specified goal states
can be regressed. If system goals are specified in V0 (e.g. by instantiating V0
with a set of SAV-tuples (s,R(s)), thus resembling the MDP’s reward function
R), narrowing exactly grounds variables and induces fluents that are relevant
for an optimal policy w.r.t. these goals. Note that regression may lead to states
that contain inconsistencies. States that violate constraints (see section 3.1) will
subsequently be ignored by further computation.

Summation of Non-Deterministic Action Effects. Regressing the SAV-tuples of
a given value function computes a set of SAV-tuples (s, a, v) denoting the states
s from which the states in the value function domain can be reached through
execution of action a. While v already incorporates transition probabilities and
known state values, it does not yet take into account that an action may have
multiple outcomes.

In equation (2), this fact is addressed by the summation of expected values
of all states that are reachable by execution of a particular action a, weighted by
transition probabilities. Given the set of SAV-tuples as computed by regression,
this summation can be performed in a rewrite theory in terms of an equation:

(s, a, v) ∨ (s, a, v′) = (s, a, v + v′) .

Maximization through Abstract State Subsumption. After regressing the set of
SAV-tuples encoding all states and actions that lead to abstract states in the do-
main of the current value function (taking into account non-deterministic action
effects), it has to be ensured that only optimal actions for each abstract state
remain in the new value function Vi+1. This is achieved by only keeping in the
set of SAV-tuples those elements that exhibit the maximal value that is gained
through action execution for each possible state. As states are relational, they
may overlap or even subsume other states completely. To deal with subsumption,
the concept of matching can directly be employed to model state subsumption,
as a more general term matches a more concrete one.
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Definition 5. A state s subsumes a state s′ iff the state term of s matches
modulo axioms with extension the state term of s′.

For maximization over the set of actions, a state s′ with value v′ is removed
from the regressed set of SAV-tuples if it is subsumed by another state s with
greater or equal value v ≥ v′:

(s, a, v) ∨ (s′, a′, v′) = (s, a, v) if s :=Ax s
′ ∧ v ≥ v′ .

Example 4. The state boxOn(B, T ) subsumes boxOn(b, t), as the former, more
general term matches the latter. Note that, as matching is performed with exten-
sion when testing for subsumption, for example the state boxOn(b, t) subsumes
boxOn(b, t) ∧ boxOn(b′, t′).

Now consider (boxOn(b, t)∧S, a, 1.0) and (boxOn(B, T )∧S, a′, 2.0) being SAV-
tuples in the set to be maximized. In this case, it is clearly preferable to execute
action a′ when any box is on any truck, because the expected value of this action
is 2.0. Thus, the former tuple can be dropped for further computation.

Finally, consider (boxOn(b, t) ∧ S, a, 3.0) and (boxOn(B, T ) ∧ S, a′, 2.0) being
maximized. Then the former should not be dropped, as action a is preferable
if exactly box b is on truck t; otherwise, if another box or another truck are
involved, action a′ should be executed. Both tuples are necessary to deduce this
behaviour.

Value Iteration & Decision List Policies. To complete a value iteration step
according to equation (2) after performing maximization, the currently gained
reward for all states in the set of SAV-tuples has to be distributed according to
the MDP’s reward function R.

New SAV-sets resembling a relational MDP’s value function are iteratively
constructed by abstract state regression, summation of state values taking into
account non-deterministic action effects, maximization of expected value for
states and actions, discounting and reward distribution. For each iteration i, the
resulting SAV-set exactly resembles Vi+1 in value iteration according to equa-
tion (2) for all s ∈ S from which states in the domain of Vi are reachable. States
that are not covered by the set are assigned a value of zero, thus the SAV-set
can be considered a function. Iteration stops if for all (s, a, v) ∈ Vi+1 there exists
a (s, a, v′) ∈ Vi such that |v − v′| < ε(1− γ)/γ for a given error bound ε ∈ R.

The resulting SAV-set representing the converged optimal value function V
(with an error bounded by ε) can then be interpreted as a decision list, sorted
by values of the SAV-tuples it contains; thus, overlapping and subsuming states
are dealt with. An agent can then traverse the list elements, checking whether
its current situation matches with a state term from one of the SAV-tuples in
the list. If so, it should execute the action of the particular SAV-tuple. This way,
the agent will always execute the action that has the maximal expected reward
in the current state. I.e., the decision list resembles a policy π : S → A for the
MDP that was solved with the presented algorithm, considering π(s) = a ⇔
(s, a, v) ∈ V ∧ ∀(s, a′, v′) ∈ V : v ≥ v′ and π(s) being any action (e.g. noop) if
6 ∃ a, v : (s, a, v) ∈ V .
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4 Example

Consider the boxworld domain [4] where trucks have to deliver boxes to par-
ticular cities. Trucks can load a box if they are in the same city, unload a box if
they loaded it before, and they can drive from one city to another. All actions
succeed with a probability of 0.9, otherwise, they have no effect. Sorts for domain
objects are defined as in example 1. Note the explicit specification of an action
noop, indicating absence of action execution in a particular state.

Constants:
op box : → box. op city : → city .

Relations:
op boxOn : box × truck → fluent . op boxIn : box × city → fluent .
op truckIn : truck× city→ fluent .

Actions:
op load : truck × box → action . op unload : truck × box → action .
op driveTo : truck× city→ action . op noop :→ action .

Variables:
vars T : truck, B : box, C, C ′ : city, S : state .

Constraints:
ceq boxOn(B, T ) ∧ boxOn(B, T ′) = false if T 6= T ′ .
ceq boxIn(B,C) ∧ boxIn(B,C ′) = false if C 6= C ′ .
ceq truckIn(T,C) ∧ truckIn(T,C ′) = false if C 6= C ′ .
eq boxOn(B, T ) ∧ boxIn(B,C) = false .

Effects:
[noop] : (S,noop)→ (S, 1.0) .
[load] : (truckIn(T,C) ∧ boxIn(B,C) ∧ S, load(T,B))→

(truckIn(T,C) ∧ boxOn(B, T ) ∧ S, 0.9)
∨ (truckIn(T,C) ∧ boxIn(B,C) ∧ S, 0.1) .

[unload] : (truckIn(T,C) ∧ boxOn(B, T ) ∧ S, unload(T,B))→
(truckIn(T,C) ∧ boxIn(B,C) ∧ S, 0.9)
∨ (truckIn(T,C) ∧ boxOn(B, T ) ∧ S, 0.1) .

[driveTo] : (truckIn(T,C) ∧ S, driveTo(T,C ′))→
(truckIn(T,C ′) ∧ S, 0.9)
∨ (truckIn(T,C) ∧ S, 0.1) .

From this specification, regression operators for action effects can be compiled
as shown in example 3. Consider a reward function giving a reward of 1.0 to all
states subsumed by boxIn(box, city) ∧ S, and zero reward to all other states.
The initial SAV-set V0 to be iteratively refined then consists of only one SAV-
tuple (boxIn(box, city) ∧ S, 1.0). Note that this goal does not explicitly include
a complete postcondition of any of the actions specified for the domain. Fluents
that are relevant for an optimal value function will be induced by narrowing
when performing regression.

Considering γ = 0.9, regressing and discounting V0 as discussed in section 3.2
yields the following SAV-set. Note the relations (i.e. fluents) and fresh variables
induced to the SAV-tuples by narrowing when unifying the SAV-tuple to be
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regressed with effect rules’ lefthand sides. Also note the regression to states that
introduce relations for objects that are not relevant for goal reachability, but
correctly deduced from the domain specification. These states are subsequently
subsumed by the goal state when performing maximization.

1. (boxIn(box, city) ∧ S, noop, 0.9)

2. (boxIn(box, city) ∧ truckIn(T, city) ∧ S, load(T, box), 0.09)

3. (boxIn(box, city) ∧ truckIn(T,C) ∧ S, driveTo(T,C ′), 0.09)

4. (boxIn(box, city) ∧ truckIn(T,C ′) ∧ S, driveTo(T,C), 0.81)

5. (boxOn(box, T ) ∧ truckIn(T, city) ∧ S, unload(T, box), 0.81)

6. (boxIn(box, city) ∧ boxIn(B,C) ∧ truckIn(T,C) ∧ S, load(T,B), 0.09)

7. (boxIn(box, city) ∧ boxIn(B,C) ∧ truckIn(T,C) ∧ S, load(T,B), 0.81)

8. (boxIn(box, city) ∧ boxOn(B, T ) ∧ truckIn(T,C) ∧ S, unload(T,B), 0.09)

9. (boxIn(box, city) ∧ boxOn(B, T ) ∧ truckIn(T,C) ∧ S, unload(T,B), 0.81)

Value summation due to non-deterministic effects is applied to SAV-tuples 3
and 44, 5 and 6 as well as 7 and 8. Maximization then removes all SAV-tuples
but 1 and 5 (as tuple 1 subsumes all but tuple 5 and has a higher value). Finally,
reward distribution leads to the following SAV-set for V1.

1. (boxIn(box, city) ∧ S, noop, 1.9)

2. (boxOn(box, T ) ∧ truckIn(T, city) ∧ S, unload(T, box), 0.81)

With ε = 0.05, subsequent iterations yield the following result; it can be
interpreted as a decision list sorted by value in order to be employed as an
optimal policy by an agent. By matching a particular state the agent finds itself
in with the states in the list from top to bottom, the optimal action (that yields
the highest expected reward when executed in the situation at hand) can be
determined.

1. (boxIn(box, city) ∧ S, noop, 9.95)

2. (boxOn(box, T ) ∧ truckIn(T, city) ∧ S, unload(T, box), 8.85)

3. (boxOn(box, T ) ∧ truckIn(T,C) ∧ S, driveTo(T, city), 7.17)

4. (boxIn(box, C) ∧ truckIn(T,C) ∧ S, load(T, box), 6.38)

5. (boxIn(box, C) ∧ truckIn(T,C ′) ∧ S, driveTo(T,C), 5.16)

5 Conclusion

This section discusses related approaches, summarizes symbolic value iteration
in rewriting logic and hints at further research possibilities.

4 Note that summation of values for non-deterministic effects as outlined in sec-
tion 3.2 would not apply for SAV-tuples 3 and 4, as their states expose different
variable names. Careful variable renaming or replacing syntactic equality by cross-
subsumption of states when summing non-deterministic effects cure this issue.



Value Iteration for Relational MDPs in Rewriting Logic 13

5.1 Related Work

The first successful approach to solve MDPs with value iteration completely on
the symbolic level was achieved by Symbolic Dynamic Programming (SDP) [4].
It uses the situation calculus [15] to represent first-order MDPs, thus allowing
for full first-order logic quantifications for variables. While the situation cal-
culus is a very expressive specification language, the frame problem has to be
addressed explicitly in the specification of domain dynamics, in contrast to spec-
ifications in rewriting logic. Another difference of SDP to the approach presented
in this paper is that dynamics are defined in a regressive manner and per fluent
(in terms of so-called successor state axioms) and not per action, thus diverging
from modern software design paradigms as for example object-orientation, where
dynamics are typically defined in terms of operations. As a consequence, compi-
lation of regressive successor state axioms from progressive, operation-oriented
specifications becomes a complex transformation. Also, because of the complex-
ity of regressed state formulas, consistency checking and simplification is a very
complex task. Even if these tasks are manageable automatically in theory, the
authors of SDP only reported on a preliminary implementation that illustrated
their approach, but simplification of regression results was applied manually.

The fluent calculus [16] can be considered a progressive counterpart to the
situation calculus as it represents states as associative-commutative terms of
fluents. First-order value iteration for the fluent calculus (FOVIA) [17,5] can be
performed in a fully automated manner due to restricted expressivity of the fluent
calculus when compared to the situation calculus, as only existential quantifica-
tion of variables is allowed. As in the presented approach, FOVIA uses a notion of
state subsumption that allows for simplification of regressed symbolic value func-
tions. FOVIA also uses AC1-unification to regress states to their predecessors,
but this unification procedure is not parametrizable with an equational theory as
when using narrowing, thus restricting expressivity for MDPs that can be solved
with FOVIA. Also, the algorithm cannot natively deal with reward states that
include a particular number of resources, like e.g. boxIn(B,C) ∧ boxIn(B′, C),
as this formula reduces to boxIn(B,C) when quantifying variables existentially
in first order logic. As rewriting logic employs membership equational logic, re-
ward states exposing this structure can be natively dealt with employing the
presented approach to solve relational MDPs with rewriting logic. Finally, the
specification of relational MDPs in terms of rewrite theories allows for incorpo-
ration of rewriting logic features as for example sort-hierarchies, polymorphism,
object-oriented system representation or meta-level operations [9].

In previous work, rewriting logic has been employed to implement action pro-
gramming in rewriting logic [18]. There are two main distinctions to symbolic
value iteration: First, though also dealing with uncertainty, action programming
does not necessarily depend on MDPs as domain model. Second, action pro-
gramming in rewriting logic is progressive, expanding possible world dynamics
from an initial state. On the contrary, value iteration is a regressive task.
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5.2 Summary

This paper discussed the representation of relational MDPs in rewriting logic
and how to use the concepts of matching and narrowing to solve them symbol-
ically, resulting in advantages regarding computational effort and expressivity
when compared to propositional solution techniques. To this end, states were
represented as associative-commutative fluent terms containing variables for do-
main objects. A regression operator was introduced by exploiting the capabilities
of narrowing, allowing for symbolic computation and instantiation of variables
to particular objects where this is goal-relevant. As narrowing unifies goal-states
and rule specifications, goal-relevant properties of the state space are also in-
duced automatically, thus allowing for computation of optimal value-functions
for only partially specified goals. Simplification of the resulting symbolic value
function was performed through state subsumption, which was realized by sym-
bolically matching associative-commutative state terms. By relating variables in
state and action terms, both state and action space are partitioned properly.

As the specified rewrite theory directly implies a Maude program, an im-
plementation was straightforward.5 The approach was illustrated using the im-
plementation on an example.

5.3 Further Work

As rewriting logic is also intended to model concurrent systems, it would be
interesting to leverage the presented symbolic value iteration technique with
rewriting logic representations and concepts of concurrency to be able to deal
with multi-agent domains, incorporating specification of parallel, eventually col-
laborative actions and agent behaviour synchronization.

Recently, a generalization algorithm for rewrite theories has been intro-
duced [19]. This technique could be used to learn the domain dynamics from
perception samples gathered by an agent operating in an unknown environment.
Generalization could be employed to deduce a MDP’s transition function in
terms of rewrite rules that resemble the observed dynamics of a system, thus
refining at run-time a potentially restricted or incorrect design-time specifica-
tion. Gathered knowledge could subsequently be used to optimize an agent’s
behaviour by solving a learned MDP at run-time.
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Abstract. Maude-NPA is a narrowing-based model checker for analysing
cryptographic protocols in the Dolev-Yao model modulo equations. Cur-
rently, Maude-NPA relies on a strand-based notation that, while very
precise, is less familiar to users of the Alice-Bob notation, and is rather
difficult to read and write. Therefore, we propose a new language, called
the Maude Protocol Specification Language(Maude-PSL). The Maude-
PSL extends the Alice-Bob notation with the following additional pieces
of information: how each principal interprets the messages it sends and
receives, the information each principal is assumed to know at the start
of the protocol execution, and the information the principal should know
after execution. The Maude-PSL also simplifies Maude-NPA syntax for
specifying intruder capabilities and attack states. The semantics of the
language is defined as a translation into the strand-based model using
rewriting logic, providing a formal grounding in a well understood model
of cryptographic protocols.

1 Extended Abstract

Throughout the history of the formal analysis of cryptographic protocols, there
has been a tension between readability and precision. On the one hand, there is
the message-passing paradigm, also referred to as the Alice-Bob notation. In the
message-passing paradigm, we define a protocol globally as a numbered sequence
of message communications. We write each step using the notation A → B : M ,
which says that A sends the message M to B. This approach gives us a clear
understanding of how the protocol is supposed to behave. However, this notation
is meant to be read by experts in cryptographic protocol analysis, and relies on
a variety of implicit assumptions, and the expertise of the readers to keep things
simple. Unfortunately, this can lead to ambiguities. For example, consider the
protocol step A → B : enc(K,M) where A is sending a message M encrypted
with key K to B. This single step could mean either that B has the key K,
and decrypts enc(K,M), or that B does not have K, in which case B cannot
interpret the message and simply passes it on to a third party.

In order to address this problem, various role-based approaches have been
developed, which endeavor to be more precise than the Alice-Bob notation. In a



role-based approach, we define a protocol locally by specifying the actions taken
by each principal at each step of the protocol. For example, each principal may
have a sequence of messages that it sends and receives. We may also specify a set
of tests that the principal performs on each received message. This type of ap-
proach specifies exactly what is happening at each step of the protocol. However,
this approach also tends to obscure the intended behavior of the protocol. As
a result, we run the risk of specifying a protocol that does not actually express
what we have in mind.

In an effort to have the best of both worlds, we propose a new input lan-
guage for Maude-NPA (a symbolic model checker for verifying cryptographic
protocols, see [1]): the Maude Protocol Specification Language (Maude-PSL).
The Maude-PSL extends the Alice-Bob notation with additional information
typically specified in role-based specification methodologies. In particular, we
split each message into two forms: the version of the message understood by the
sender, and the version understood by the receiver. For example, consider the
following toy protocol:

1. A → S : enc(K,M)
2. S → B : enc(K,M)

where enc(K,M) is the encryption of message M with key K, which is known
only by A and B. In the Maude-PSL, we write

1. A → S : enc(K,M) ` N
2. S → B : N ` enc(K,M ′)

where enc(K,M) is the version of the message enc(K,M) as seen by A (since
A built the message). Since S does not know K, S cannot decrypt the message.
Therefore, all S knows is that he/she has received some message N from A,
which he/she then forwards to B. Meanwhile, because B knows the key K,
B can decrypt the message N . Therefore, B knows that the message he/she
receives from S is the encryption of some message M ′ with the key K. This is
an improvement over the current specification language for Maude-NPA, which
requires the user to manually translate the protocol into a strand-based notation
that is fairly distant from the Alice-Bob notation in which protocols are typically
formulated.

The Maude-PSL allows us to specify the information that each role should
know before and after a session of the protocol. This is not supplied by Maude-
NPA, but can be useful in formulating possible attacks, composing the protocol
with another protocol, and understanding the protocol’s purpose.

The Maude-PSL possesses a flexible, Maude-based syntax for specifying the
term structure, type structure, and algebraic properties of a protocol. The se-
mantics of the language is defined as a translation into the strand-based model
(see [2]) using rewriting logic, providing a formal grounding in a well understood
model of cryptographic protocols.

The Maude-PSL can be found at http://maude.cs.uiuc.edu/tools/Maude-
NPA/Maude-PSL
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Abstract. OMG’s Business Process Model and Notation (BPMN) stan-
dard provides an informal specification of a technology-independent mod-
elling language for designing business processes. However, BPMN models
may include structural issues that hinder their design. In this paper, we
propose a formal characterization and semantics specification of well-
formed BPMN processes in rewriting logic using Maude with a focus
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specification adheres to the BPMN standards and enables model checking
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with the CMMI Configuration Management process area is presented.

Keywords: BPMN, Maude, compliance, LTL model checking

1 Introduction

Business processes (BPs) can be modelled using different notations, using either
formal or informal representations. From a Computer Science point of view,
formal modelling languages are more reliable and verifiable, while from a busi-
ness point of view, non-technical users usually prefer to use graphical modelling
languages due to their accessibility. The Business Process Model and Notation
(BPMN) is a widely-used notation for modelling BPs in the early stages of sys-
tems life cycle. According to the OMG [1], 72 implementations of the BPMN
are reported for known businesses (for example, Oracle). There are a number of
issues with the BPMN standards that allow for ambiguity and unstructured BP
models [2, 3, 4]: (1) the unclear semantics of different BPMN elements makes
it possible to end up with incompatible interpretations for designing, analyzing
and using BP models [2], (2) the formalization and use of data objects is under-
represented, although they are considered as resources (e.g. [3, 4, 5, 6]), (3)
according to the standards, conditions affecting flow divergence are defined as
part of the transition flow connecting other objects, while gateways can accom-
modate these conditions and their evaluation as part of their logical behaviour.
These issues can be handled and/or avoided using our proposed approach by
providing more strict requirements for well-formed BPMN models. In this work,
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a relevant excerpt of BPMN elements that is used regularly3 is formalized in
Maude [8] and the notion of well-formed BPMN processes is introduced and
applied in order to guarantee some convenient structural properties.

The proposed formalization provides a mechanism to formalize data objects
and the effect of business rules on their state according to contextual conditions
and/or dependency relationships. Moreover, we propose a novel mechanism to
represent and evaluate guard conditions in decision gateways. Our formalization
proposes a new implementation for inclusive OR merge gateways that allow syn-
chronization and prevent deadlocks, which may occur in other approaches (e.g.
[3, 9, 6]). The formalization introduced in this paper uses Maude [8], as the for-
malization language. In addition to the expressiveness of its underlying logic for
concurrent systems, Maude allows for defining formal executable specifications
for other languages, or formalisms. Moreover, Maude has a verification toolkit
(e.g. Maude LTL Model Checker [10]) which can be used to formally analyse and
verify the models in Maude with respect to different LTL properties [8]. This
makes the tandem formed by rewriting logic [11] and its Maude implementation
a very convenient setting for formalizing BPMN models. The paper is organized
as follows: an overview of BPMN, Maude and the example used throughout the
paper are presented in Section 2. Section 3 presents the proposed formalization
of a subset of the BPMN syntax in Maude. This is followed by the notion of well-
structured and well-formed BPMN processes. Then we propose the behaviour
specifications for BPMN elements in Section 5 followed by proposing a compli-
ance checking approach using Maude LTL model checker in Section 6. Section 7
presents the related work, conclusions and future work.

2 Preliminaries

This section provides a brief idea about the tools and notions we use afterwards;
i.e. BPMN and Maude, as well as introducing the example used throughout
the paper. BPMN is a standard modelling notation for representing BPs in the
design phase of systems development. BPMN 2.0 has five main categories of
elements: flow nodes, connecting flow elements, swimlanes, data and artefacts.
We focus on an excerpt of the BPMN elements which is graphically represented
in Fig. 1. The BPMN main elements are the flow nodes (i.e. activities, events,
gateways), connecting flows (e.g. sequence flows, associations), the data objects,
and artefacts (e.g. text annotations used in Fig. 1 to mark other elements).

Definition 1. (BPMN Model) A BPMN Model O is a tuple (OS, FO, A, E,
G, DO, T , SF , MF , ASSC, TS, SP , ES, EI , EE, ANDgates, XORgates,
ORgates), where:

– OS = FO∪DO; i.e. OS is the set of flow objects FO and data objects DO,
– FO = A ∪E ∪G; i.e. FO is the set of activities A, events E, and gateways

G,

3 The BPMN 2.0 [1] defines 50 constructs and their attributes. However, less than
20% of its vocabulary is used regularly in designing BP models [7].
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– A = TS ∪ SP ; i.e. A is the set of tasks TS and sub-processes SP ,
– E = ES ∪EI ∪EE; i.e. E is the set of start events ES , intermediate events

EI and end events EE,
– G = ANDgates∪XORgates∪ORgates; i.e. G is the set of AND gateways

ANDgates, XOR gateways XORgates, and OR gateways ORgates,
– T = SF ∪MF ∪ASSC; i.e. T is the set of connecting objects ”transitions”

of sequence flow SF , message flow MF and associations ASSC.

Maude is a high-performance term rewriting engine that provides support for
both equational and rewriting logic specification and programming of concurrent
systems in particular [8]. The specifications in Maude are executable theories in
rewriting logic [11], which is a flexible logical framework for expressing a wide
range of concurrency models and distributed systems [10]. A Maude’s functional
module is a theory R=(Σ,E) in membership equational logic (MEL), where the
algebraic signature Σ is a set of declarations of sorts, subsorts and function
symbols and E is the set of conditional equations t = t′ if cond and conditional
membership axioms t : s if cond stating that the term t has sort (i.e., data type)
s when cond holds. A Maude’s system module M specifies a rewrite theory R =
(Σ,E ∪A, φ,R) where (Σ,E ∪A) is the membership equational theory specified
by the signature equational attributes and equations and membership statements
in the module, A is a set of axioms, so that both the equations E and the rules
R are applied modulo the axioms A, φ is the function specifying the frozen
arguments of each operator in Σ (c.f [8]), and R is a set of rewrite rules which
may be conditional (i.e., crl [Label] : t ⇒ t′ if Cond). The rules describe all the
local transitions (i.e., state changes) in the system. In addition, Maude represents
the functions as operators, i.e. opf :s1...sn->s where f is the function name,
s1...sn are the arguments sorts and s is the result (function) sort. Maude uses
functions reduce to reduce the terms to its canonical form using the equations
and function rewrite to execute the specifications through the equations and
rules to reach a canonical form of the term with its resulting sort. In this paper,
we use Maude system modules which include the BPMN syntax specifications
as operators and equations as well as the semantics specifications as rewrite
rules. Specifically we are encoding BPMN elements as objects (oi) using Maude
general representation of objects [12] (<OID:CID|AS>), where OID is the object
identifier, CID is the corresponding class identifier, and AS is the set of object’s
attributes.

In order to give a better explanation of the proposed formalization, we intro-
duce an example in Fig. 1 which will be used throughout the paper. It represents
a process model called Release Baseline, a subprocess of the Configuration Man-
agement (CM) system, where a configuration item (CI) is an entity designated
for one or more related work products such as tangible assets (e.g. hardware)
and intangible assets (e.g. software, OS) [13]. A collection of CIs that are used
in a project or a company may be baselined whenever they are sufficiently sta-
ble, enabling a more strict control for changing them. In the process Release
baselines, authorization is checked in order to modify the baselines using the
document Authorization List. If the authorization is granted, a change request



4 N. El-Saber and A. Boronat

Release
Baseline

Make baseline
available to read

Retrieve CI

Choose CR Open CR

YES

NO

Authorized?

       CR

CIs doc.

Baseline Baseline

e1
Check 

Authorization

a1

Authorization
List

e 2

Document 
used CI

CIs doc.

Change CI Close CR

CR

       CR
MoreCRs?

MoreCRs?

YES

YES

NO

NO

g2

YES

NO

authorized
       CR?

CRg1

t1

d1

g9

ActivityEvent

Gateway

DataObject

g3

g4

g5
g8

t2

t3

t4

a2

t5

t6

d3

Fig. 1. Release Baseline Process - BPMN representation

(CR) is chosen and it is opened to implementation (open CR). While a specific
CR is open, the related CI is retrieved, changed, and documented before the CR
is closed. If there is more than one CR waiting, the same procedure is repeated
until no more CRs are left in the process. After that the baseline is released
and made available to the stakeholders. We are assuming the process has one
(Authorization List), one configuration item (CI doc), three change requests
(CR-1, CR-2, CR-3) and one (Baseline) data objects.

3 BPMN Abstract Syntax

In this section we propose a formal syntax for BPMN elements and an algebraic
representation in Maude. Object identifiers (OID) for activities, events, gateways,
data objects and connecting transitions are represented by the symbols: (ai,
ei, gi, di, ti where i ∈ N). The CID identifies the object’s type by using pre-
defined operators of the main sorts; such as (task) for task activity, (aforkgate)
for an AND fork gateway. Each BPMN element has the sort Object, and a
process, which is a set of these objects, is of sort ObjectSet. The relations is
represented by means of sub-sorting relation (subsort Object < ObjectSet).
Hence, a process state is the term representing the set of objects in an ObjectSet.
In Fig. 1, event (e1), task (a1), data object (d3), and AND fork gateway (g2)
are examples of BPMN objects. In the proposed formalization, these objects are
represented as follows:

< e1 : starteEvent | eventType : start ; in : notrans ; out : t 1 >,

< a1 : task | name : "Check Authorization" ; in : t 1 ; out : t 2 >,

< d3 : dataObject | name : "CR" ; linkedObject : a 2 ; status : open >,

< g2 : aforkgate | in : t 4 ; out : (t 5,t 6) >

The attributes of each object represent its properties, e.g., attribute name for
String name of the object, and attribute status for the pre-defined status of
the data object (e.g., open). The relations between the objects in the process
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are implicitly represented in the object itself using attributes in and out which
contain the transition identifiers for the input flow (from the predecessor(s)) and
output flow (to the successor(s)) respectively. The transitions connect the objects
and represented by unique transitions (of sort TransSymbol) and notrans is the
identity element. The data object d3 should be linked to an activity to use it
(i.e., attribute linkedObject).

op name‘:_ : String -> Attribute .

ops in‘:_ out‘:_ : TransSymbol -> Attribute .

op linkedObject‘:_ : ActivitySymbol -> Attribute .

BPMN gateways are modelled as constructor operators of type GateCid (e.g,
aforkgate, xsplitgate, omergegate). The terms split/fork are used for diver-
gence (e.g. g2 in Fig. 1) and join/merge to refer to the combination of two or
more parallel or alternative paths into one path respectively (e.g. g9 in Fig. 1).
For the decision gateways (XOR and OR), to control the divergence, a guard is
defined as part of the gateway itself (i.e. attribute). In this paper we will present
guards with one single expression for each output flow, however, the guard syntax
can be extended to represent a larger class of expressions. The guard is linked to
a transition which is marking the branch it should follow. Therefore, the guard is
a set of pairs, where each pair contains the guard expression and the associated
transition. The first part of the pair is an Expression, and the second part is
the associated TransSymbol linking the succeeding flow. The Expression has
the form (Var opSymbol Val), where the Var is the variable name defined by
the modeller, the Val is the (Number or String) value assigned to the variable,
and the opSymbol is one of logical comparison symbols (<=,>=,<,>) for less than
or equal, greater than or equal, less and greater than with numeric values and
(==,=/=) equal or not equal for numeric or String values. The operator ( , ) is
used to define this in Maude. The associativity and commutativity properties of
the guard expression is captured by the operator . while noexp is the guard
identity element.

op (_,_) : Expression TransSymbol -> Gexp .

op noexp : -> Gexp .

op _._ : Gexp Gexp -> Gexp [ctor assoc comm id: noexp] .

The guard of gateway g1 in Fig. 1 is represented as (Authorized?=="YES",

t4).(Authorized?=="NO",t3). There is a value (control value) which is com-
pared with the guard values (i.e. YES, NO). This value is entered by the modeller
and modelled as an attribute controlValues of sort CV. The operator that
puts together the control values is (op controlValues‘: : CV -> Attribute

[ctor assoc comm id:noCV]). The syntax proposed above still allows for defin-
ing spaghetti design of BPs, making their formalization tedious and error prone.
Hence, in the next section, a list of structural and well-formedness properties is
introduced.
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4 Well-Formed BPMN Processes

We introduce a set of useful functions which are used later in the formal defini-
tions. Function | |, defined as (| | : set → N), takes a set and returns the number
of its elements. Functions Oid and Cid are defined as (Oid : Object → OID)
and (Cid : Object → CID) to return the object identifier and the class identifier
for an input object. Functions in and out are defined as (in : Object → T ) and
(out : Object → T ), where T is the set of connecting flows defined in Definition
1. They return the input and output transition flows for an object. Function
eventType is defined as (eventType : Object → TypeofEvent), where it returns
the value of the eventType attribute in an event object. Function itsSplit re-
turns the relevant split gateway object’s identifier for a given merge gateway
object, and is defined as (itsSplit : Object → OID). Finally function preds re-
turns the set of object predecessors starting from an input object until the start
event (or a boundary exception event) is reached (defined as preds : Object
ObjectSet → ObjectSet) and succs returns the set of object successors starting
from the input object until the end event is reached (defined as succs : Object
ObjectSet → ObjectSet). The following requirements, extracted from [1], are
introduced in order to obtain a structured BPMN processes in Definition 2. In
particular, (1) start and exception events have no incoming flows and have one
outgoing flow, (2) an end event has no outgoing flows and has one incoming flow,
(3) a process that has an end event, should have a start event.

Definition 2. (Well-Structured Process) A well-structured business process
S-BPMN = OS iff : (1) ∀oi ∈ OS (Cid(oi) ∈ {startEvent,exception} →
(|in(oi)| = 0 ∧ |out(oi)| = 1)), (2) ∀oi ∈ OS (Cid(oi) = endEvent → |in(oi)| =
1 ∧ |out(oi)| = 0), and (3) ∀oi ∈ OS (Cid(oi) = endEvent → ∃oj ∈ OS
(Cid(oj) = startEvent)).

Based on that, a BP model can have more than one start/end event, a split
gateway without a corresponding merge gateway, a gateway to have multiple
incoming and outgoing transitions at the same time, which considered ambigu-
ity representation, and causes many structural and semantic problems in the
models. Our formalization provides a more precise definition for the accepted
models; i.e. the well-formed BPMN models (adapted from [6]). A well-formed
BP is a well-structured BP which satisfies the following properties: (1) a process
have one start event and one end event, (2) activities and non-exception inter-
mediate events have one input and one output transitions, (3) fork and decision
gateways have one input transition and at least two output transitions, (4) join
and merge gateways have one output transition and at least two transitions as
inputs, (5) except for exception events, each split gateway has a corresponding
merge gateway from the same type, forming a block in the model. Exception ob-
jects attached to an activity boundary split the flow and then the flow is merged
with the normal flow using an XOR merge gateway, and (6) every object is in
a connected path from the start or an exception event to the end event. This is
formalized in the following definition.
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Definition 3. (Well-formed BPMN model): A well-structured BPMN pro-
cess (S-BPMN) is a Well-Formed Model (W-BPMN) iff

1. ∃oi ∈ OS (Cid(oi) = startEvent → ∄oj ∈ OS (Cid(oj) = startEvent) ∧
i 6= j, and ∃oi ∈ OS (Cid(oi) = endEvent → ∄oj ∈ OS (Cid(oj) =
endEvent)∧ i 6= j, (function wfstartend),

2. ∀oi ∈ A∪EI\exception (∃tn, tm ∈ T (in(oi) = tn∧ in(oi) = tm∧ tn 6= tm 6=
notrans), (functions wfException,wfActivities),

3. ∀oi ∈ OS (Cid(oi) ∈ {ANDfork,XORsplit,ORsplit} → |in(oi)| = 1 ∧
|out(oi)| > 1), (function wfGates),

4. ∀oi ∈ OS (Cid(oi) ∈ {ANDjoin,XORmerge,ORmerge} → |in(oi)| > 1 ∧
|out(oi)| = 1), (function wfGates),

5. The gateways block structure: (function wfGates),
(a) ∀oi ∈ OS (Cid(oi) = aforkgate → ∃oj ∈ OS (Cid(oj) = ajoingate ∧

itsSplit(oj) = Oid(oi)))∧
(b) ∀oi ∈ OS (Cid(oi) = xsplitgate → ∃oj ∈ OS (Cid(oj) = xmergegate

∧ itsSplit(oj) = Oid(oi)))∧
(c) ∀oi ∈ OS (Cid(oi) = osplitgate → ∃oj ∈ OS (Cid(oj) = omergegate

∧ itsSplit(oj) = Oid(oi)))∧
(d) ∀oi ∈ OS (eventType(oi) = exception → ∃oj ∈ OS (Cid(oj) =

xmergegate ∧ itsSplit(oj) = Oid(oi))), and
6. ∀oi ∈ OS(∃oj , ok ∈ OS (((Cid(oj) = startEvent ∨ eventType(oj) =

exception) ∧ Cid(ok) = endEvent) → (oj ∈ preds(oi, OS) ∧ ok ∈ succs
(oi, OS))), (function wfpath).

In point (5), gateways are required to be designed as a block in the model,
i.e. each split gateway should have an accompanying merge gateway of the same
type. A block has only one entrance point and one exit point, e.g. the split
gateway input flow and the merge gateway output flow respectively in the case
of acyclic models (check gateways g2 and g9 in Fig. 1). Notice that the definitions
above does not exclude the loop structure from being a well-formed model (i.e.
a XOR merge gateway followed, at some point after it, by a XOR split decision
gateway). Example of that are gateways g3, g4 and g5, g8 in Fig. 1, where the
decision gateways (g4 and g8) decides either to forward the process to later
actions or to go back to the merge gateways (i.e. g3 and g5). In point (6), the
function preds (i.e. object predecessors) returns a set of connected predecessor
objects from an object to the start event, and the function succs (i.e. object
successors) returns a set of connected successor objects from an object to the
end event. The function names in the parenthesis are referring to the membership
below.

In Fig. 2, an example of the difference between a well-structured and a well-
formed model is illustrated. The model in (a) has a gateway with more than one
input and output transitions and more than one start and end events at the same
time, while the model in (b) satisfies the well-formedness requirements above.
In order to automate the check of these conditions, we introduce equationally-
defined predicate (wfs) for well-formed set of BPMN elements, checking whether
the requirements above are satisfied for each set of elements.
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(a) (b)

Fig. 2. (a)well-structured BPMN model. (b)well-formed BPMN Model.

subsort WFprocess < ObjectSet .

op wfs : Object ObjectSet ~> Bool .

ceq wfs(O,A) = true

if wfstartend((O,A),noobject) /\ wfException((O,A),noobject) /\

wfActivities((O,A),noobject) /\ wfGates((O,A),noobject) /\

wfpath(O,(O,A),noobject) .

eq wfs(O,A) = false [owise] .

op <<_>> : ObjectSet -> ObjectSet [ctor].

cmb << O, A >> : WFprocess if wfs(O,A) .

The membership above performs a comparison between the set4 which contains
the well-formed objects of the same type and the set of the objects of that
particular type in the process. If these two sets are identical, the condition is
satisfied. Otherwise ([owise] function above), it returns false. On satisfying the
well-formedness requirements, a process is a WFprocess (i.e. a subsort of the
main sort ObjectSet). That is, an object can change its sort during execution
if it satisfies certain conditions following the concept of Maude’s conditional
membership [14]. Having well-formed BPMN models allows us to formally define
its behavioural semantics as detailed in the next section.

5 BPMN Behavioural Semantics

In this section two categories of semantics specification rules are defined. The
first category contains the general rules for common patterns of behaviour in a
BPMN model (subsection 5.1), while the second category contains more domain
specific rules (subsection 5.2) which serve the introduced example in Section 2.

5.1 General Behavioural Rules

A W-BPMN process is active if one or more of its objects are active. Conversely,
a W-BPMN process is inactive if all its objects are inactive. Hence, we introduce
a boolean attribute active to indicate whether an object is active or not. As
shown in Table 1, the start event is activated according to the rule Initiate

which assigns the value true to the start event active attribute if there are no
active objects in the process initial state. On the other side of the process, the
rule Terminate terminates a process if it is active and the only active object
is the end object using the function isActive. The rule rewrites the object set

4 We use the operator noobject as the identity element for the objectSet
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Table 1. BPMN Behavioural Semantics Rewriting Rules - I

BPMN – ——-> Rewrite Rules

crl[Initiate]: CVcol*<<A,<E1:startEvent|active:false;AS1> >>

=> CVcol*<<A,<E1:startEvent|active:true;AS1> >>

if isActive(<<A>>)=false.

crl[Terminate]: CVcol * <<A,<E1:endEvent|active:true;AS1> >>

=> TerminatedSuccessfully if isActive (<< A >>) = false.

rl[Seq]: << <X:K|out:tN1;active:true;AS1>,

<Y:L|in:(tN1,T1);active:false;AS2>, A >>

=> << <X:K|out:tN1;active:false;AS1>,

<Y:L|in:(tN1,T1);active:true;AS2>, A >>

rl[ANDFork]: << <G1:aforkgate|out:T1;active:true;AS1>,A >>

=> << <G1:aforkgate|out:T1;active:false;AS1>,

activateANDsuccessors(T1,A)>>

rl[XORsplit]: (CVcol)*<< <G1:xsplitgate|out:T1;dF:T2;guard:GExp;

error:tN2;controlValues:noCV;active:true;AS1>, A >>

=>(CVcol)*<< <G1:xsplitgate|out:T1;dF:T2;guard:GExp;

error:tN2;controlValues:assignCVs(GExp,CVs);active:false;AS1>,

activateXORchild(T1,T2,tN2,GExp,assignCVs(GExp,CVs),A)>>

rl[ORsplit]: (CVcol)*<< <G1:osplitgate|out:(tN1,T1);dF:tN2;

guard:GExp;error:tN3;controlValues:noCV;active:true;AS1>,A>>

=> (CVcol)*<< <G1:osplitgate|out:(tN1,T1);error:tN3;dF:tN2;

guard:GExp;controlValues:assignCVs(GExp,CVs);active:false;AS1>,

(activateORchildren(evalORguard(GExp,assignCVs(GExp,CVs),

notrans),A))>>

into a descriptive statement indicating process termination (e.g. the term zero)
as an indication of successful termination. For the sequential execution pattern,
the rule Seq in Table 1 deactivates the first object X and activates the successor
object Y which may be an activity or a gateway, where K and L are the objects
CIDs, tN1 is the transition that links the two objects, AS1 and AS2 are the
remaining attributes that an object might have, and A is the other objects in the
process. The parallel execution pattern (rule ANDFork): activates all immediate
successor objects for the fork gateway concurrently. In the exclusive decision-
based execution pattern (rule XORsplit): a decision must be taken based on the
evaluation of guard conditions, which will allow the flow to go in one branch
and prevent it from others (i.e., the expressions are mutually exclusive). While
function activateXORchild activates the successor object, function evalGuard

retrieves the transition linked to the successfully evaluated expression and then
it can be used to connect with the object to be activated. The guard Expression

is evaluated using the well-defined Maude modules (i.e. NAT, STRING, BOOL) for
the possible guard operations mentioned in Section 3.

For inclusive decision-based (rule ORsplit): activates the OR-split succes-
sor(s) using function activateORchildren based on the evaluation of the guard
expressions using function evalORguard, hence activating one or more succes-
sors. The function evalORguard takes the Expression(s), the control values and
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the set of outgoing transitions from the OR-split gateway under consideration
as inputs and retrieves the set of transitions whose associated guard expression
evaluates to true. The definition below deals with the equality relation over the
string values in guard expressions.

eq evalORguard(noexp,noCV,T1) = T1 .

eq evalORguard(((V1==S1, t N2) . GExp), ((V1:S1) .. CVs),T1)

= evalORguard(GExp, CVs, (t N2, T1)) .

eq evalORguard(((V1==S1, t N2) . GExp), ((V1:S2) .. CVs),T1)

= evalORguard(GExp,CVs,T1) [owise] .

In case of joining parallel activities, the ajoingate cannot be activated until
all its predecessors have finished (i.e. deactivated). The (rule ANDJoin) in Table
2 activates the join gateway and the function deactivatePreds collects the
immediate predecessors and deactivate them if active predecessors are found
using function activePreds. As long as the XOR activates only one branch, then
the merging behaviour of the exclusive gateways activates an xmergegate object
if it has one active immediate predecessor, and it deactivates this predecessor
using (rule XORmerge) in Table 2.

In case of OR merge semantics, the number of activated branches that it
should wait for before activating the successor object is unknown to the merge
gateway. This situation may result in lack of synchronization [15] where the
merge gateway succeeding object is activated more than once. In order to over-
come this situation, the attribute itsSplit is introduced to relate a merge
gateway to its split gateway, in order to keep track of the number of activated
flows that need to be deactivated. Moreover, function ready2Merge checks if all
the activated immediate predecessors of the OR merge gateway are active and
ready for the merge. Here, the relation between the two gateways as one block
(check Section 4) facilitates the efficient evaluation and execution of the guards.
It enables the merge gateway to know how many branches have been activated
after its corresponding OR-split gateway. In (rule ORmerge) in Table 2, Boolean
function ready2Merge is used to take the activated transitions resulted from the
evaluation function evalORguard and checks if the same number of predecessors
is active and ready to be merged.

eq Ready2Merge(notrans,T1,A)=true .

eq Ready2Merge((tN1,T1),(tN2,T2),(<X:K|out:(tN2,T3);active:true;AS1>,A))

= Ready2Merge((T1),(T2),(<X:K|out:(tN2,T3);active:true;AS1>,A)) [owise].

The function assignCVs is defined to enable the automatic assignment of
control values to the corresponding gateways at run time. It takes the given
collection of control values and assigns them to their corresponding split gate-
way object attribute controlValues in the process. In particular, it matches
the guard expression variable name and the control value variable name, then
retrieves the set of control values for the split gateway. It allows the modeller
to enter the control values as a collection as part of the initial configuration
of the process without modifying the process itself. The result of the process
execution is of the form defined as (CVcollection * ObjectSet -> Trace).
The resulting trace is a possible trace for the model. A trace is a possible
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Table 2. BPMN Behavioural Semantics Rewriting Rules - II

BPMN – ——-> Rewrite Rules

crl[ANDJoin]:<< <G1:ajoingate | in:T1;itsSplit:G2;

active:false;ToBActive:true;AS1>,<G2:aforkgate|AS3>,A>>

=> <<<G1:ajoingate|in:T1;itsSplit:G2;

active:true;ToBActive:false;AS1>,<G2:aforkgate|AS3>

,A>> if activePreds(T1,preds1(<G2:aforkgate|AS3>,

<G1:ajoingate|in:T1;itsSplit:G2;active:true;

ToBActive:false;AS1>,(A,<G2:aforkgate|AS3>),nobject,nobject))

== false∧isActive(<<imPreds(T1,A,noobject)>>) == false.

crl[XORmerge]:<< <X:K|out:(tN1,T2); active:true; AS1>,

<G1:xmergegate | in:(tN1,T1); active:false; AS2 >,A>>

=> << <X:K|out:(tN1,T2); active:false; AS1>,<G1:xmergegate|

in:(tN1,T1); active:true; AS2>,A>> if K =/= xsplitgate

crl[ORmerge]: << <G1:omergegate|in:(tN1,T1);itsSplit:G2;

active:false;AS1>,<G2:osplitgate|active:false;guard:GExp;

controlValues:CVs;AS2>,A>>

=> <<<G1:omergegate|in:(tN1,T1);itsSplit:G2;active:true;AS1>,

<G2:osplitgate|active:false;guard:GExp;controlValues:CVs;AS2>,

deactivateOPreds((tN1,T1),A)>>

if Ready2Merge(evalORguard(GExp,CVs,notrans),(tN1,T1),A)

execution of the BPMN model, and OTraces is the set of all possible traces
for executing a process. If the model does not have diverging elements (e.g.
gateways), then it will have one possible trace of execution; i.e. ∀oi ∈ OS
((Cid(oi) /∈ G ∧ eventType(oi) 6= exception) → |OTraces| = 1). However, if
the model contains diverging elements, then there will be more than one possi-
ble trace of the BPMN model; i.e. ∃oi ∈ OS ((Cid(oi) ∈ {ANDfork, XORsplit,
ORsplit, exception}) → |OTraces| > 1). Thus we can consider the possible
executable traces for the model if we listed the set of the possible collections
of control values for a certain model. In this case, by simulating the process
execution, it will result in the set of the possible traces for the model with re-
spect to gateway routing. For example, a possible trace from the example in Fig.
1 can be represented as: (((Authorized?:"YES"), (AuthorizedCR?:"YES"),
(MoreCR1?:"NO"), (MoreCR2? : "NO")) * ReleaseBaseline).

5.2 Domain-Specific Semantics

Each BP represents a specific work procedure carrying its characteristics, con-
ditions and constraints. This can be reflected by specific patterns of behaviour,
assigned to process elements, which are dependent on the corresponding busi-
ness environment. In Fig. 1, task Retrieve CI is active only if a (CR) is open
and data object Baseline status is changed to released if the task Release

Baseline is active. Such conditional behaviours are modelled graphically for
presentation purposes in Fig. 3 (e) and (g) respectively, while the corresponding
term rewrite rules are coded in Maude using the syntactic notation presented
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Document 
used CIs

CIs doc.
[inUse]

Document 
used CIs

CIs doc.
[documented]

(f)

Release
Baseline

Baseline
[none]

Release
Baseline

Baseline
[released]

(g)

Make baseline
available to read

Baseline
[released]

Make baseline
available to read

Baseline
[readOnly]

(h)

Retrieve CIs

CIs doc.
[initial]

CR
[open]

Retrieve CIs

CIs doc.
[inUse]

CR
[open]

(e)

Open CR

CR
[initial]

Open CR

CR
[open]

(c)

 Close CR

CR
[open]

Close CR

CR
[closed]

(d)

Check 
Authorization

Authorization List
[none]

Authorization List
[granted]

Check 
Authorization

(a)

Check 
Authorization

Authorization List
[none]

Authorization List
[declined]

Check 
Authorization

(b)

Fig. 3. Domain Context Rules for Release Baselines Example

in Section 3. In Fig. 3 parts (a)-(h), the possible status (defining its life cycle)
for a Change Request CR data object are: initial, open and closed ; for a Con-
figuration Item CI doc are: initial, inUse and documented ; for Authorization
List are: none, granted and declined and for a Baseline are: none, released and
readOnly. Some rules are applied when the corresponding task is active (marked
by the black circle in the corner of the task) such as Check Authorization

and others can change their inactive state to an active state depending on the
connected data object’s status (e.g. Retrieve CIs). In the example, an autho-
rization is checked, if the requester is listed in the Authorization List then
the data object status is changed to granted (rule (a) in Fig. 3), otherwise, the
status will change to declined (rule (b)). Similarly, for each CR, it is opened (rule
(c)), a relevant CI doc is called to be changed (rule (e)) and the CR is closed
(rule (d)). The CI doc is set to be inUse (rule (e)) and then to be documented

(rule (f)). Finally, a Baseline is released when task Release Baseline is active
(rule (g)) then made as a readOnly document (rule (h)). In the next section
we introduce how the specified syntax and semantics are used to verify BPMN
processes and use this as the basis for checking a Configuration Management
process compliance.

6 Verifying BP models

Our proposed approach enables the formal analysis of the BPMN models at
design time using Maude’s LTL model checker [8]. The BP model is checked
against some defined properties to see if they are satisfied by the model or
not. Maude’s LTL Model Checker associates a Kripke structure (K) with the
rewrite theory (R) which represents a model M . Then, the model checker solves
a satisfaction problem of the form K(R, k)Π , [t] |= ϕ where k is a set of initial
states from the rewrite theoryR, Π defines the state predicates to be considered,
[t] a kind of initial states, and ϕ is the property to be checked. The result of model
checking is true, i.e. the property is satisfied, or a possible trace of the model in
which the property does not hold; i.e. counterexample. The example BP model in
Fig. 1 represents a subprocess of the CM process in a software company. This acts
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Table 3. CMMI-CM Requirements and the corresponding LTL formulae

Textual Requirements, LTL Formulae and MC Results

Req.1 Obtain authorization before releasing baselines (1.3.1)
LTL [](∼executed("Release Baseline") W conditionGuard(Authorized?:"YES"))

MC result Bool: true

Req.2 Release baselines of the documented CIs (1.3.2)
LTL [](status("CI doc", documented) → <>executed("Release Baseline"))

MC result Bool: true

Req.3 Track the status of change requests to closure (2.1.5)
LTL []((status("CR-1", open) →<> status("CR-1", closed)) ∧

(status("CR-2", open) →<> status("CR-2", closed)) ∧

(status("CR-3", open) →<> status("CR-3", closed)))

MC result Bool: true

as the model specifications which are specified by the rewrite theory R earlier
in Section 3 and Section 5, while the property specifications ϕ are modelled
from the CMMI [13] best practices. The set of predicates Π we use are: (1)
executed: determines the activation of an activity, (2) status: determines the
status change of a data object, and (3) conditionGuard: determines the control
value for a gateway guard. The requirement specifications (ϕ) are modelled in
LTL formulae as described in Table 35. The goal is to check if the model satisfies
properties in (ϕ) by means of (K(R, k)Π , [t] |= ϕ) using Maude’s LTL model
checker. The formula: reduce in 〈ModuleName〉 : modelCheck(〈InitialState〉,
〈LTLproperty〉) is used. The command modelCheck takes the initial state of the
system (initial), where the process is inactive and the LTL formula for the
property (as in Table 3).

Req-1: Obtain authorization before releasing baselines. Depending on the
value of variable Authorized?, the flow can proceed to activity ReleaseBaseline
in case it is authorized or to gateway g10 without releasing the baseline (cf. rules
(a) and (b) in Fig. 3). The LTL symbol ”weak until” (a W b) used in the for-
mula in Table 3 requires that a remains true until b becomes true, but does not
require that b ever does become true (i.e. a may remain true forever). Based on
the data object Authorization List value, which is "YES" in the example, the
activity Release Baseline can be activated. Otherwise, if the value is "NO", the
activity may remain not active forever. One advantage of the LTL is the ability
to express safety properties of this kind.

Req-2: Release baselines of the documented CIs. Whenever the CI is docu-
mented, then baseline should be released at some point in the future. The LTL
formula in the table indicates that the CI document has the status documented,
which implies that activity Release Baseline is eventually (i.e. LTL symbol

5 The numbers in the parentheses are references to the source in [13], for example,
(1.2.3) refers to the first specific goal, second specific practice, and third sub-practice
in CM Process Area.
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<>) executed. By checking the model, it retrieves true which means the property
is already satisfied by the model.

Req-3: Track the status of change requests to closure. It checks that all
change requests are resolved before releasing a baseline. The LTL formula speci-
fies that whenever a change request CR is open, it is eventually closed. Note that
we are considering three change requests in the example. The check returns true.

The CMMI requires a CM process to satisfy a number of best practices (some
of them are modelled as requirements in Table 3) in order to be compliant with
the CMMI standard model along with other CMMI process areas. Hence the
requirements for releasing a baseline should be satisfied by the BP model. If we
define the requirements as ϕ = {φ1, φ2, φ3}, then the compliance check result is
dependent on the relation K(R, k)Π , [t] |= ϕ. Based on the above model checking
results, the satisfaction relation above will result in true. This means the BP in
Fig. 1 is compliant with the CMMI CM process area, assuming it contains only
the used properties in Table 3.

7 Related Work and Conclusions

There are many attempts to transform the BPMN as a graphical language into
Petri nets [3], YAWL [6], graphs [4] and CSP [5]. A mapping from a subset of
BPMN into Petri nets was proposed in [3] reserving the classical Petri nets lim-
itation in representing the inclusive OR gateway. Another mapping into YAWL
was introduced in [6] following a well-formed models notion and lacking the data
objects and inclusive OR gateway semantics. Graph rewrite rules were used in
[4] for conformance checking and visualization purposes without using a well-
formedness notion or handling of data objects. In [5], CSP was used to define
the BPMN semantics, followed by a refinement procedure for property check-
ing. The approach in [9] used Maude to formally represent workflow patterns
however, the notion of well-formedness is not used and the data objects are not
formalized. To the best of our knowledge, no approach has included, as part of
the language formalization, a formal representation with evaluation semantics
for the conditions guarding the BPMN gateways before this work. Moreover,
our approach provide a comprehensive formalization for the inclusive OR merge
gateways that prevent lack of synchronization. We believe it remains a problem
in many approaches (e.g. [3, 9, 6]). As for compliance problem, in [16], based on
model-driven development, a metamodel compliance checking was implemented
in an object-oriented hypertext representation of requirements tool RETH. A
semi-automatic framework for managing compliance throughout the BP lifecycle
based on defined compliance patterns was introduced in [17]. In [18], BPMN-Q,
a BPMN based query language, was used for property specifications.

In this paper we have presented the formal syntax and behavioural seman-
tics specifications for a subset of the BPMN. We have solved some of BPMN
challenging issues related to its ambiguity and process structure, conditional
expressions, and handling of data objects. A set of domain-specific rules are in-
troduced for simulating the behaviour of data objects. Moreover, we introduce a
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well-formed semantics for the merge gateways by using the block structure. The
resulting BPMN models are verified using Maude verification toolkit to ensure
well-formedness. An illustrated example is used to prove the applicability of the
formalization in compliance checking for BPs like the CM. In future work, the
approach may be extended to model more BPMN elements, such as the event-
based gateways, process collaboration and exception handling. A further study
of the soundness of the resulting models is undergoing. The current prototype
provides the formalization of BPs in Maude and we are planning its integration
within a modelling environment (e.g. Eclipse) to map BPMN models into terms
in Maude in order to verify them with Maude’s verification toolkit.

References

[1] OMG: BPMN 2.0. Technical Report formal/2011-01-03, OMG (2011)
[2] Börger, E.: Approaches to Modeling BPs: a Critical Analysis of BPMN, Workflow

Patterns and YAWL. Softw. Syst. Model. 11(3) (2012) 305–318
[3] Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and Analysis of Business

Process Models in BPMN. Inf. Softw. Technol. 50(12) (2008) 1281–1294
[4] Gorp, P.V., Dijkman, R.M.: A Visual token-based Formalization of BPMN 2.0

based on in-place Transformations. Infor. & Soft. Tech. 55(2) (2013) 365–394
[5] Wong, P.Y., Gibbons, J.: Formalisations and Applications of BPMN. Sci. Comput.

Program. 76(8) (2011) 633–650
[6] Ye, J., Song, W.: Transformation of BPMN Diagrams to YAWL Nets. Journal of

Software 5(4) (2010)
[7] Muehlen, M.Z., Recker, J.: How Much Language Is Enough? Theoretical and

Practical Use of the Business Process Modeling Notation. In: Advanced Informa-
tion Systems Engineering. CAiSE ’08, Berlin, Springer-Verlag (2008) 465–479

[8] Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - a High-Performance Logical Framework. Springer (2007)

[9] Grande, L.H.: Introducción a la notación BPMN y su relación con las estrategias
del lenguaje Maude. Master’s thesis, Facultad de Informática (2009)
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Abstract. This paper presents the first step of a wider research effort
to apply tree automata completion to the static analysis of functional
programs. Tree Automata Completion is a family of techniques for com-
puting or approximating the set of terms reachable by a rewriting rela-
tion. The completion algorithm we focus on is parameterized by a set E
of equations controlling the precision of the approximation and influenc-
ing its termination. For completion to be used as a static analysis, the
first step is to guarantee its termination. In this work, we thus give a
sufficient condition on E and T (F) for completion algorithm to always
terminate. In the particular setting of functional programs, this condi-
tion can be relaxed into a condition on E and T (C) (terms built on the
set of constructors) that is closer to what is done in the field of static
analysis, where abstractions are performed on data.

1 Introduction

Computing or approximating the set of terms reachable by rewriting has more
and more applications. For a Term Rewriting System (TRS) R and a set of
terms L0 ⊆ T (F), the set of reachable terms is R∗(L0) = {t ∈ T (F) | ∃s ∈
L0, s →R∗ t}. This set can be computed exactly for specific classes of R [10]

but, in general, it has to be approximated. Applications of the approximation
of R∗(L0) are ranging from cryptographic protocol verification [1], to static
analysis of various programming languages [5] or to TRS termination proofs [15].
Most of the techniques compute such approximations using tree automata as the
core formalism to represent or approximate the (possibly) infinite set of terms
R∗(L0). Most of them also rely on a Knuth-Bendix completion-like algorithm
completing a tree automatonA recognizing L0 into an automatonA∗ recognizing
exactly, or over-approximating, the set R∗(L0). As a result, these techniques can
be refered as tree automata completion techniques [9, 22, 8, 4, 13, 19]. A strength
of this algorithm, and at the same time a weakness, is that its precision is
parameterized by a function [8] or a set of equations [13]. It is a strength because
tuning the approximation function (or equations) permits to adapt the precision
of completion to a specific goal to tackle. This is what made it successful for
program and protocol verification. On the other hand, this is a weakness because
it is difficult to guarantee its termination.



In this paper, we define a simple sufficient condition on the set of equations for
the tree automata completion algorithm to terminate. This condition, which is
strong in general, reveals to be natural and well adapted for the approximation of
reachable terms when TRSs encode typed functional programs. We thus obtain
a way to automatically over-approximate the set of all reachable program states
of a functional program, or even restrict it to the set of all results. Thus we can
over-approximate the image of a functional program.

2 Related work

Tree automata completion. With regards to most papers about completion [9, 22,
8, 4, 13, 19], our contribution is to give the first criterion on the approximation for
the completion to terminate. Note that it is possible to guarantee termination of
the completion by inferring an approximation adapted to the TRS under concern,
like in [20]. In this case, given a TRS, the approximation is fixed and unique.
Our solution is more flexible because it lets the user change the precision of the
approximation while keeping the termination guarantee. In [22], T. Takai have
a completion parameterized by a set of equations. He also gives a termination
proof for its completion but only for some restricted classes of TRSs. Here our
termination proof holds for any left-linear TRS provided that the set of equations
satisfy some properties.

Static analysis of functional programs. With regards to static analysis of func-
tional programs using grammars or automata, our contribution is in the scope of
data-flow analysis techniques, rather than control-flow analysis. More precisely,
we are interested here in predicting the results of a function [21], rather than
predicting the control flow [18]. Those two papers, as well as many other ones,
deal with higher order functions using complex higher-order grammar formalisms
(PMRS and HORS). Higher-order functions are not in the scope of the solution
we propose here. However, we obtained some preliminary results suggesting that
an extension to higher order functions is possible and gives relevant results (see
Section 6). Furthermore, using equations, approximations are defined in a more
declarative and flexible way than in [21], where they are defined by a dedicated
algorithm. Besides, the verification mechanisms of [21] use automatic abstraction
refinement. This can be also performed in the completion setting [3] and adapted
to the analysis of functional programs [14]. Finally, using a simpler (first order)
formalism, i.e. tree automata, makes it easier to take into account some other
aspects like: evaluation strategies and built-ins types (see Section 6) that are not
considered by those papers.

3 Background

In this section, we introduce some definitions and concepts that will be used
throughout the rest of the paper (see also [2, 7]). Let F be a finite set of symbols,
each associated with an arity function, and let X be a countable set of variables.



T (F ,X ) denotes the set of terms and T (F) denotes the set of ground terms
(terms without variables). The set of variables of a term t is denoted by Var(t).
A substitution is a function σ from X into T (F ,X ), which can be uniquely
extended to an endomorphism of T (F ,X ). A position p for a term t is a finite
word over N. The empty sequence λ denotes the top-most position. The set
Pos(t) of positions of a term t is inductively defined by Pos(t) = {λ} if t ∈ X or
t is a constant and Pos(f(t1, . . . , tn)) = {λ} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)}
otherwise. If p ∈ Pos(t), then t|p denotes the subterm of t at position p and t[s]p
denotes the term obtained by replacement of the subterm t|p at position p by
the term s.

A term rewriting system (TRS) R is a set of rewrite rules l → r, where
l, r ∈ T (F ,X ), l 6∈ X , and Var(l) ⊇ Var(r). A rewrite rule l→ r is left-linear if
each variable of l occurs only once in l. A TRS R is left-linear if every rewrite
rule l → r of R is left-linear. The TRS R induces a rewriting relation →R on
terms as follows. Let s, t ∈ T (F ,X ) and l → r ∈ R, s →R t denotes that
there exists a position p ∈ Pos(s) and a substitution σ such that s|p = lσ and
t = s[rσ]p. Given a TRS R, F can be split into two disjoint sets C and D. All
symbols occurring at the root position of left-hand sides of rules of R are in D.
D is the set of defined symbols of R, C is the set of constructors. Terms in T (C)
are called data-terms. The reflexive transitive closure of →R is denoted by →∗R
and s→!

R t denotes that s→∗R t and t is irreducible by R. The set of irreducible
terms w.r.t. a TRS R is denoted by Irr(R). The set of R-descendants of a set
of ground terms I is R∗(I) = {t ∈ T (F) | ∃s ∈ I s.t. s →∗R t}. A TRS R is
sufficiently complete if for all s ∈ T (F), (R∗({s}) ∩ T (C)) 6= ∅.

An equation set E is a set of equations l = r, where l, r ∈ T (F ,X ). The
relation =E is the smallest congruence such that for all substitution σ we have
lσ =E rσ. Given a TRS R and a set of equations E, a term s ∈ T (F) is
rewritten modulo E into t ∈ T (F), denoted s →R/E t, if there exist s′ ∈ T (F)
and t′ ∈ T (F) such that s =E s′ →R t′ =E t. The reflexive transitive closure
→∗R/E of →R/E is defined as usual except that reflexivity is extended to terms

equal modulo E, i.e. for all s, t ∈ T (F) if s =E t then s →∗R/E t. The set of

R-descendants modulo E of a set of ground terms I is R∗E(I) = {t ∈ T (F) | ∃s ∈
I s.t. s→∗R/E t}.

Let Q be a countably infinite set of symbols with arity 0, called states, such
that Q ∩ F = ∅. T (F ∪Q) is called the set of configurations. A transition is
a rewrite rule c → q, where c is a configuration and q is state. A transition is
normalized when c = f(q1, . . . , qn), f ∈ F is of arity n, and q1, . . . , qn ∈ Q.
An ε-transition is a transition of the form q → q′ where q and q′ are states. A
bottom-up non-deterministic finite tree automaton (tree automaton for short)
over the alphabet F is a tuple A = 〈F ,Q,QF , ∆〉, where QF is a finite subset
of Q, ∆ is a finite set of normalized transitions and ε-transitions. The transitive
and reflexive rewriting relation on T (F ∪Q) induced by the set of transitions ∆

(resp. all transitions except ε-transitions) is denoted by →∗∆ (resp. → 6ε ∗∆ ). When
∆ is attached to a tree automaton A we also note those two relations →A∗ and

→ 6ε ∗A , respectively. A tree automatonA is complete if for all s ∈ T (F) there exists



a state q of A such that s →A∗ q. The language (resp. 6ε-language) recognized

by A in a state q is L(A, q) = {t ∈ T (F) | t →∗A q} (resp. L 6ε(A, q) = {t ∈
T (F) | t → 6ε ∗A q}). A state q of an automaton A is reachable (resp. 6ε-reachable)
if L(A, q) 6= ∅ (resp. L 6ε(A, q) 6= ∅). We define L(A) =

⋃
q∈QF

L(A, q). A set of
transitions ∆ is 6ε-deterministic if there are no two normalized transitions in ∆
with the same left-hand side. A tree automaton A is 6ε-deterministic if its set of
transitions is 6ε-deterministic. Note that if A is 6ε-deterministic then for all states
q1, q2 of A such that q1 6= q2, we have L 6ε(A, q1) ∩ L 6ε(A, q2) = ∅.

4 Tree Automata Completion Algorithm

Tree Automata Completion algorithms were proposed in [16, 9, 22, 13]. They are
very similar to a Knuth-Bendix completion except that they run on two distinct
sets of rules: a TRS R and a set of transitions ∆ of a tree automaton A.

Starting from a tree automaton A0 = 〈F ,Q,Qf , ∆0〉 and a left-linear TRS
R, the algorithm computes a tree automaton A′ such that L(A′) = R∗(L(A0))
or L(A′) ⊇ R∗(L(A0)). The algorithm iteratively computes tree automata A1

R,
A2
R, . . . such that ∀i ≥ 0 : L(AiR) ⊆ L(Ai+1

R ) until we get an automaton AkR
with k ∈ N and L(AkR) = L(Ak+1

R ). For all i ∈ N, if s ∈ L(AiR) and s→R t, then

t ∈ L(Ai+1
R ). Thus, if AkR is a fixpoint then it also verifies L(AkR) ⊇ R∗(L(A0)).

To construct Ai+1
R from AiR, we achieve a completion step which consists in

finding critical pairs between→R and→Ai
R

. A critical pair is a triple (l→ r, σ, q)
where l → r ∈ R, σ : X 7→ Q and q ∈ Q such that lσ →∗Ai

R
q and rσ 6→∗Ai

R
q.

For rσ to be recognized by the same state and thus model the rewriting of lσ
into rσ, it is enough to add the necessary transitions to AiR to obtain Ai+1

R such
that rσ →∗Ai+1

R
q. In [22, 13], critical pairs are joined in the following way:

lσ
R
//

Ai
R

��

rσ

Ai+1
R
��

q q′
Ai+1

R

oo

From an algorithmic point of view, there remains two problems to solve: find
all the critical pairs (l → r, σ, q) and find the transitions to add to AiR to have
rσ →∗Ai+1

R
q. The first problem, called matching, can be efficiently solved using

a specific algorithm [8, 10]. The second problem is solved using Normalization.

4.1 Normalization

The normalization function replaces subterms either by states of Q (using tran-
sitions of ∆) or by new states. A state q of Q is used to normalize a term t

if t → 6ε∆ q. Normalizing by reusing states of Q and transitions of ∆ permits to

preserve the 6ε-determinism of→ 6ε∆. Indeed,→ 6ε∆ can be kept deterministic during
completion though →∆ cannot.



Definition 1 (New state). Given a set of transitions ∆, a new state (for ∆)
is a state of Q \ Qf not occurring in left or right-hand sides of rules of ∆ 1.

We here define normalization as a bottom-up process. This definition is simpler
and equivalent to top-down definitions [13]. In the recursive call, the choice of
the context C[ ] may be non deterministic but all the possible results are the
equivalent modulo state renaming.

Definition 2 (Normalization). Let ∆ be a set of transitions defined on a set
of states Q, t ∈ T (F ∪Q) \ Q. Let C[ ] be a non empty context of T (F ∪Q) \
Q, f ∈ F of arity n, and q, q′, q1, . . . , qn ∈ Q. The normalization function is
inductively defined by:

1. Norm∆(f(q1, . . . , qn)→ q) = {f(q1, . . . , qn)→ q}
2. Norm∆(C[f(q1, . . . , qn)]→ q) = {f(q1, . . . , qn)→ q′} ∪

Norm∆∪{f(q1,...,qn)→q′}(C[q′]→ q)
where either (f(q1, . . . , qn) → q′ ∈ ∆) or (q′ is a new state for ∆ and
∀q′′ ∈ Q : f(q1, . . . , qn)→ q′′ 6∈ ∆).

In the second case of the definition, if there are several states q′ such that
f(q1, . . . , qn) → q′ ∈ ∆, we arbitrarily choose one of them. We illustrate the
above definition on the normalization of a simple transition.

Example 1. Given ∆ = {b → q0}, Norm∆(f(g(a), b, g(a)) → q) = {a →
q1, g(q1)→ q2, b→ q0, f(q2, q0, q2)→ q}

4.2 One step of completion

A step of completion only consists in joining critical pairs. We first need to
formally define the substitutions under concern: state substitutions.

Definition 3 (State substitutions, Σ(Q,X )). A state substitution over an
automaton A with a set of states Q is a function σ : X 7→ Q. We can extend
this definition to a morphism σ : T (F ,X ) 7→ T (F ,Q). We denote by Σ(Q,X )
the set of state substitutions built over Q and X .

Definition 4 (Set of critical pairs). Let a TRS R and a tree automaton
A = 〈F ,Q,Qf , ∆〉. The set of critical pairs between R and A is CP (R,A) =
{(l→ r, σ, q) | l→ r ∈ R, q ∈ Q, σ ∈ Σ(Q,X ), lσ →∗A q, rσ 6→∗A q}.

Recall that the completion process builds a sequence A0
R,A1

R, . . . ,AkR of au-
tomata such that if s ∈ L(AiR) and s →R t then t ∈ L(Ai+1

R ). One step of
completion, i.e. the process computing Ai+1

R from AiR, is defined as follows.
Again, the following definition is a simplification of the definition of [13].

1 Since Q is a countably infinite set of states, Qf and ∆ are finite, a new state can
always be found.



Definition 5 (One step of completion). Let A = 〈F ,Q,Qf , ∆〉 be a tree au-
tomaton, R be a left-linear TRS. The one step completed automaton is CR(A) =
〈F ,Q,Qf , JoinCP (R,A)(∆)〉 where JoinS(∆) is inductively defined by:

– Join∅(∆) = ∆
– Join{(l→r,q,σ)}∪S(∆) = JoinS(∆ ∪∆′) where

∆′ = {q′ → q} if there exists q′ ∈ Q s.t. rσ → 6ε ∗∆ q′, and otherwise
∆′ = Norm∆(rσ → q′) ∪ {q′ → q} where q′ is a new state for ∆

Example 2. Let A be a tree automaton with ∆ = {f(q1)→ q0, a→ q1, g(q1)→
q2}. If R = {f(x) → f(g(x))} then CP (R,A) = {(f(x) → f(g(x)), σ3, q0)}
with σ3 = {x 7→ q1}, because f(x)σ3 →A∗ q0 and f(x)σ3 →R f(g(x))σ3. We

have f(g(x))σ3 = f(g(q1)) and there exists no state q such that f(g(q1))→ 6ε ∗A q.
Hence, Join{(f(x)→f(g(x)),σ3,q0)}(∆) = Join∅(∆∪Norm∆(f(g(q1))→ q3)∪{q3 →
q0}). Since Norm∆(f(g(q1)) → q3) = {f(q2) → q3, q(q1) → q2}, we get that
CR(A) = 〈F ,Q∪ {q3},Qf , ∆ ∪ {f(q2)→ q3, q3 → q0}〉.

4.3 Simplification of Tree Automata by Equations

In this section, we define the simplification of tree automata A w.r.t. a set of
equations E. This operation permits to over-approximate languages that cannot
be recognized exactly using tree automata completion, e.g. non regular languages.
The simplification operation consists in finding E-equivalent terms recognized
in A by different states and then by merging those states together. The merging
of states is performed using renaming of a state in a tree automaton.

Definition 6 (Renaming of a state in a tree automaton). Let Q,Q′ be set
of states, A = 〈F ,Q,Qf , ∆〉 be a tree automaton, and α a function α : Q 7→ Q′.
We denote by Aα the tree automaton where every occurrence of q is replaced by
α(q) in Q, Qf and in every left and right-hand side of every transition of ∆.

If there exists a bijection α such that A = A′α then A and A′ are said to
be equivalent modulo renaming. Now we define the simplification relation which
merges states in a tree automaton according to an equation. Note that it is not
required for equations of E to be linear.

Definition 7 (Simplification relation). Let A = 〈F ,Q,Qf , ∆〉 be a tree au-
tomaton and E be a set of equations. For s = t ∈ E, σ ∈ Σ(Q,X ), qa, qb ∈ Q
such that sσ → 6ε ∗A qa, tσ →6ε ∗A qb, and qa 6= qb then A can be simplified into
A′ = A{qb 7→ qa}, denoted by A;E A′.

Example 3. Let E = {s(s(x)) = s(x)} and A be the tree automaton with set
of transitions ∆ = {a → q0, s(q0) → q1, s(q1) → q2}. We can perform a sim-
plification step using the equation s(s(x)) = s(x) because we found a substi-

tution σ = {x 7→ q0} such that: s(s(x))σ → 6ε ∗A q2 and s(x)σ →6ε ∗A q1 Hence,
A;E A′ = A{q2 7→ q1}2

2 or {q1 7→ q2}, any of q1 or q2 can be used for renaming.



As stated in [13], simplification ;E is a terminating relation (each step sup-
presses a state) and it enlarges the language recognized by a tree automaton,
i.e. if A;E A′ then L(A) ⊆ L(A′). Furthermore, no matter how simplification
steps are performed, the obtained automata are equivalent modulo state renam-
ing. In the following, A ;!

E A′ denotes that A ;∗E A′ and A′ is irreducible by
;E . We denote by SE (A) any automaton A′ such that A;!

E A′.

Theorem 1 (Simplified Tree Automata [13]). Let A,A′1,A′2 be tree au-
tomata and E be a set of equations. If A ;!

E A′1 and A ;!
E A′2 then A′1 and

A′2 are equivalent modulo state renaming.

4.4 The full Completion Algorithm

Definition 8 (Automaton completion). Let A be a tree automaton, R a
left-linear TRS and E a set of equations.

– A0
R,E = A

– An+1
R,E = SE

(
CR(AnR,E)

)
, for n ≥ 0

If there exists k ∈ N such that AkR,E = Ak+1
R,E, then we denote AkR,E by A∗R,E.

In practice, checking if CP (R,AkR,E) = ∅ is sufficient to know that AkR,E is a

fixpoint. However, a fixpoint cannot always be finitely reached3. To ensure ter-
mination, one can provide a set of approximating equations to overcome infinite
rewriting and completion divergence.

Example 4. Let R = {f(x, y)→ f(s(x), s(y))}, E = {s(s(x)) = s(x)} and A0 be
the tree automaton with set of transitions ∆ = {f(qa, qb)→ q0), a→ qa, b→ qb},
i.e. L(A0) = {f(a, b)}. The completion ends after two completion steps on A2

R,E
which is a fixpoint. Completion steps are summed up in the following table.
To simplify the presentation, we do not repeat the common transitions: AiR,E
and CR(Ai) columns are supposed to contain all transitions of A0, . . . ,Ai−1R,E .

The automaton A1
R,E is exactly CR(A0) since simplification by equations do not

apply. Simplification has been applied on CR(A1
R,E) to obtain A2

R,E .

A0 CR(A0) A1
R,E CR(A1

R,E) A2
R,E

f(qa, qb) → q0 f(q1, q2) → q3 f(q1, q2) → q3 f(q4, q5) → q6 f(q1, q2) → q6
a→ qa s(qa) → q1 s(qa) → q1 s(q1) → q4 s(q1) → q1
b→ qb s(qb) → q2 s(qb) → q2 s(q2) → q5 s(q2) → q2

q3 → q0 q3 → q0 q6 → q3

Now, we recall the lower and upper bound theorems. Tree automata comple-
tion of automaton A with TRS R and set of equations E is lower bounded by
R∗(L(A)) and upper bounded by R∗E(L(A)). The lower bound theorem ensures
that the completed automaton A∗R,E recognizes all R-reachable terms (but not
all R/E-reachable terms). The upper bound theorem guarantees that all terms
recognized by A∗R,E are only R/E-reachable terms.

3 See [10], for classes of R for which a fixpoint always exists.



Theorem 2 (Lower bound [13]). Let R be a left-linear TRS, A be a tree
automaton and E be a set of equations. If completion terminates on A∗R,E then
L(A∗R,E) ⊇ R∗(L(A)).

The upper bound theorem states the precision result of completion. It is de-
fined using the R/E-coherence property. The intuition behind R/E-coherence
is the following: in the tree automaton ε-transitions represent rewriting steps
and normalized transitions recognize E-equivalence classes. More precisely, in a
R/E-coherent tree automaton, if two terms s, t are recognized into the same state
q using only normalized transitions then they belong to the same E-equivalence
class. Otherwise, if at least one ε-transition is necessary to recognize, say, t into
q then at least one step of rewriting was necessary to obtain t from s.

Theorem 3 (Upper bound [13]). Let R be a left-linear TRS, E a set of
equations and A a R/E-coherent tree automaton. For any i ∈ N: L(AiR,E) ⊆
R∗E(L(A)) and AiR,E is R/E-coherent.

5 Termination criterion for a given set of equations

Given a set of equations E, the effect of the simplification with E on a tree
automaton is to merge two distinct states recognizing instances of the left and
right-hand side for all the equations of E. In this section, we give a sufficient
condition on E and on the completed tree automata AiR,E for the tree automata
completion to always terminate. The intuition behind this condition is simple:
if the set of equivalence classes for E, i.e. T (F)/=E

, is finite then so should be
the set of new states used in completion. However, this is not true in general
because simplification of an automaton with E does not necessarily merge all
E-equivalent terms.

Example 5. Let A be the tree automaton with set of transitions a → q, R =
{a → c} and let E = {a = b, b = c}. The set of transitions of CR(A) is {a →
q, c→ q′, q′ → q}. We have a =E c, a ∈ L 6ε(CR(A), q) and c ∈ L 6ε(CR(A), q′) but
on the automaton CR(A), no simplification situation (as described by Defini-
tion 7), can be found because the term b is not recognized by CR(A). Hence, the
simplified automaton is CR(A) where a and c are recognized by different states.

There is no simple solution to have a simplification algorithm merging all states
recognizing E-equivalent terms (see Section 6). Having a complete automaton
A solve the above problem but leads to rough approximations (see [11]). In the
next section, we propose to give some simple restrictions on E to ensure that
completion terminates. In Section 5.2, we will see how those restrictions can
easily be met for “functional” TRS, i.e. a typed first-order functional program
translated into a TRS.



5.1 General criterion

What Example 5 shows is that, for a simplification with E to apply, it is necessary
that both sides of the equation are recognized by the tree automaton. In the
following, we will define a set Ec of contracting equations so that this property
is true. What Example 5 does not show is that, by default, tree automata are not
E-compatible. In particular, any non 6ε-deterministic automaton does not satisfy
the reflexivity of =E . For instance, if an automaton A has two transitions a→ q1
and a → q2, since a =E a for all E, for A to be E-compatible we should have
q1 = q2. To enforce 6ε-determinism by automata simplification, we define a set of
reflexivity equations as follows.

Definition 9 (Set of reflexivity equations Er). For a given set of symbols
F , Er = {f(x1, . . . , xn) = f(x1, . . . , xn) | f ∈ F , and arity of f is n}, where
x1 . . . xn are pairwise distinct variables.

Note that for all set of equations E, the relation =E is trivially equivalent to
=E∪Er . Furthermore, simplification with Er transforms all automaton into an
6ε-deterministic automaton, as stated in the following lemma.

Lemma 1. For all tree automaton A and all set of equation E, if E ⊇ Er and
A;!

E A′ then A′ is 6ε-deterministic.

Proof. Shown by induction on the height of terms (see [11] for details). ut

We now define sets of contracting equations. Such sets are defined for a set
of symbols K which can be a subset of F . This will be used later to restrict
contracting equations to the subset of constructor symbols of F .

Definition 10 (Sets of contracting equations for K, EcK). Let K ⊆ F . A
set of equations is contracting for K, denoted by EcK, if all equations of EcK are
of the form u = u|p with u ∈ T (K,X ) a linear term, p 6= λ, and if the set of

normal forms of T (K) w.r.t. the TRS
−→
EcK = {u→ u|p | u = u|p ∈ EcK} is finite.

Contracting equations, if defined on F , define an upper bound on the number
of states of a simplified automaton.

Lemma 2. Let A be a tree automaton and EcF a set of contracting equations for
F . If E ⊇ EcF ∪ Er then the simplified automaton SE (A) is an 6ε-deterministic

automaton having no more states than terms in Irr(
−→
EcF ).

Proof. First, assume for all state q of SE (A), L6ε(SE (A) , q) ∩ Irr(
−→
EcF ) = ∅.

Then, for all terms s such that s → 6ε ∗SE(A) q, we know that s is not in normal

form w.r.t.
−→
EcF . As a result, the left-hand side of an equation of EcF can be applied

to s. This means that there exists an equation u = u|p, a ground context C and

a substitution θ such that s = C[uθ]. Furthermore, since s → 6ε ∗SE(A) q, we know

that C[uθ] → 6ε ∗SE(A) q and that there exists a state q′ such that C[q′] → 6ε ∗SE(A) q



and uθ → 6ε ∗SE(A) q
′. From uθ →6ε ∗SE(A) q

′, we know that all subterms of uθ are

recognized by at least one state in SE (A). Thus, there exists a state q′′ such

that u|pθ →6ε ∗SE(A) q
′′. We thus have a situation of application of the equation

u = u|p in the automaton. Since SE (A) is simplified, we thus know that q′ = q′′.

As mentioned above, we know that C[q′] → 6ε ∗SE(A) q. Hence C[u|pθ] →6ε ∗SE(A)

C[q′] → 6ε ∗SE(A) q. If C[u|pθ] is not in normal form w.r.t.
−→
EcF then we can do the

same reasoning on C[u|pθ]→ 6ε ∗SE(A) q until getting a term that is in normal form

w.r.t.
−→
EcF and recognized by the same state q. Thus, this contradicts the fact

that SE (A) recognizes no term of Irr(
−→
EcF ).

Then, by definition of EcF , Irr(
−→
EcF ) is finite. Let {t1, . . . , tn} be the subset of

Irr(
−→
EcF ) recognized by SE (A). Let q1, . . . , qn be the states recognizing t1, . . . , tn

respectively. We know that there is a finite set of states recognizing t1, . . . , tn
because E ⊇ Er and Lemma 1 entails that SE (A) is 6ε-deterministic. Now, for

all terms s recognized by a state q in SE (A), i.e. s → 6ε ∗SE(A) q, we can use a

reasoning similar to the one carried out above and show that q is equal to one

state of {q1, . . . , qn} recognizing normal forms of
−→
EcF in SE (A). Finally, there

are at most card(Irr(
−→
EcF )) states in SE (A). ut

Now it is possible to state the Theorem guaranteeing the termination of com-
pletion if the set of equations E contains a set of contracting equations EcF for
F and a set of reflexivity equations.

Theorem 4. Let A be a tree automaton, R a left linear TRS and E a set of
equations. If E ⊇ Er ∪ EcF , then completion of A by R and E terminates.

Proof. For completion to diverge it must produce infinitely many new states.
This is impossible if E contains EcF and Er (see Lemma 2). ut

5.2 Criterion for Functional TRSs

Now, we consider functional programs viewed as TRSs. We assume that such
TRSs are left-linear, which is a common assumption on TRSs obtained from
functional programs [2]. In this section, we will restrict ourselves to sufficiently
complete TRSs obtained from functional programs and will refer to them as
functional TRSs. For TRSs representing functional programs, defining contract-
ing equations of EcC on C rather than on F is enough to guarantee termination
of completion. This is more convenient and also closer to what is usually done in
static analysis where abstractions are usually defined on data and not on func-
tion applications. Since the TRSs we consider are sufficiently complete, any term
of T (F) can be rewritten into a data-term of T (C). As above, using equations of
EcC we are going to ensure that the data-terms of the computed languages will
be recognized by a bounded set of states. To lift-up this property to T (F) it is
enough to ensure that ∀s, t ∈ T (F) if s →R t then s and t are recognized by
equivalent states. This is the role of the set of equations ER.



Definition 11 (ER). Let R be a TRS, the set of R-equations is ER = {l =
r | l→ r ∈ R}.

Theorem 5. Let A0 be a tree automaton, R a sufficiently complete left-linear
TRS and E a set of equations. If E ⊇ Er ∪ EcC ∪ ER with EcC contracting then
completion of A0 by R and E terminates.

Proof. Firstly, to show that the number of states recognizing terms of T (C) is
finite we can do a proof similar to the one of Lemma 2 . Let G ⊆ T (C) be

the finite set of normal forms of T (C) w.r.t.
−→
EcC . Since E ⊇ Er ∪ EcC , like in

the proof of Lemma 2, we can show that in any completed automaton, terms
of T (C) are recognized by no more states than terms in G. Secondly, since R is
sufficiently complete, for all terms s ∈ T (F) \ T (C) we know that there exists
a term t ∈ T (C) such that s →R∗ t. The fact that E ⊇ ER guarantees that s

and t will be recognized by equivalent states in the completed (and simplified)
automaton. Since the number of states necessary to recognize T (C) is finite, so
is the number of states necessary to recognize terms of T (F). ut

Finally, to exploit the types of the functional program, we now see F as a many-
sorted signature whose set of sorts is S. Each symbol f ∈ F is associated to a
profile f : S1 × . . . × Sk 7→ S where S1, . . . , Sk, S ∈ S and k is the arity of f .
Well-sorted terms are inductively defined as follows: f(t1, . . . , tk) is a well-sorted
term of sort S if f : S1× . . .×Sk 7→ S and t1, . . . , tk are well-sorted terms of sorts
S1, . . . , Sk, respectively. We denote by T (F ,X )

S
, T (F)

S
and T (C)S the set of

well-sorted terms, ground terms and constructor terms, respectively. Note that
we have T (F ,X )

S ⊆ T (F ,X ), T (F)
S ⊆ T (F) and T (C)S ⊆ T (C). We assume

that R and E are sort preserving, i.e. that for all rule l→ r ∈ R and all equation
u = v ∈ E, l, r, u, v ∈ T (F ,X )

S
, l and r have the same sort and so do u and v.

Note that well-typedness of the functional program entails the well-sortedness
of R. We still assume that the (sorted) TRS is sufficiently complete, which is
defined in a similar way except that it holds only for well-sorted terms, i.e. for
all s ∈ T (F)

S
there exists a term t ∈ T (C)S such that s →R∗ t. We slightly

refine the definition of contracting equations as follows. For all sort S, if S has
a unique constant symbol we note it cS .

Definition 12 (Set EcK,S of contracting equations for K and S). Let K ⊆
F . The set of well-sorted equations EcK,S is contracting (for K) if its equations

are of the form (a) u = u|p with u linear and p 6= Λ, or (b) u = cS with u

of sort S, and if the set of normal forms of T (K)S w.r.t. the TRS
−−−→
EcK,S =

{u→ v | u = v ∈ EcK,S ∧ (v = u|p ∨ v = cS)} is finite.

The termination theorem for completion of sorted TRSs is similar to the previous
one except that it needs R/E-coherence of A0 to ensure that terms recognized
by completed automata are well-sorted (see [11] for proof).

Theorem 6. Let A0 be a tree automaton recognizing well-sorted terms, R a
sufficiently complete sort-preserving left-linear TRS and E a sort-preserving set



of equations. If E ⊇ Er ∪ EcC,S ∪ ER with EcC,S contracting and A0 is R/E-
coherent then completion of A0 by R and E terminates.

5.3 Experiments

The objective of data-flow analysis is to predict the set of all program states
reachable from a language of initial function calls, i.e. to over-approximate
R∗(L(A)) where R represents the functional program and A the language of
initial function calls. In this setting, we automatically compute an automaton
A∗R,E over-approximating R∗(L(A)). But we can do more. Since we are dealing
with left-linear TRS, it is possible to build AIrr(R) recognizing Irr(R). Finally,
since tree automata are closed under all boolean operations, we can compute
an approximation of all the results of the function calls by computing the tree
automaton recognizing the intersection between A∗R,E and AIrr(R).

Here is an example of application of those theorems. Completions are per-
formed using Timbuk. All theAIrr(R) automata and intersections were performed
using Taml. Details can be found in [14].

Ops append:2 rev:1 nil:0 cons:2 a:0 b:0 Vars X Y Z U Xs

TRS R

append(nil,X)->X append(cons(X,Y),Z)->cons(X,append(Y,Z))

rev(nil)->nil rev(cons(X,Y))->append(rev(Y),cons(X,nil))

Automaton A0 States q0 qla qlb qnil qf qa qb Final States q0 Transitions
rev(qla)->q0 cons(qb,qnil)->qlb cons(qa,qla)->qla nil->qnil

cons(qa,qlb)->qla a->qa cons(qb,qlb)->qlb b->qb

Equations E Rules cons(X,cons(Y,Z))=cons(Y,Z) %%% Ec

%%% E_R %%% E^r

append(nil,X)=X rev(X)=rev(X)

append(cons(X,Y),Z)=cons(X,append(Y,Z)) cons(X,Y)=cons(X,Y)

rev(nil)=nil append(X,Y)=append(X,Y)

rev(cons(X,Y))=append(rev(Y),cons(X,nil)) a=a b=b nil=nil

In this example, the TRS R encodes the classical reverse and append func-
tions. The language recognized by automaton A0 is the set of terms of the form
rev([a, a, . . . , b, b, . . .]). Note that there are at least one a and one b in the list. We
assume that S = {T, list} and sorts for symbols are the following: a : T , b : T ,
nil : list, cons : T × list 7→ list, append : list× list 7→ list and rev : list 7→ list.
Now, to use Theorem 6, we need to prove each of its assumptions. The set E of
equations contains ER, Er and EcC,S . The set of Equations EcC,S is contracting be-
cause the automaton A

Irr(
−−−→
Ec

C,S)
recognizes a finite language. This automaton can

be computed using Taml: it is the intersection between the automaton AT (C)S
4

recognising T (C)S and the automaton AIrr({cons(X,cons(Y,Z))→cons(Y,Z)}):

4 Such an automaton has one state per sort and one transition per constructor.
For instance, on our example AT (C)S will have transitions: a → qT , b → qT ,
cons(qT, qlist) → qlist and nil → qlist.



States q2 q1 q0 Final States q0 q1 q2

Transitions b->q2 a->q2 nil->q1 cons(q2,q1)->q0

The language of A0 is well-sorted and E and R are sort preserving. We can
prove sufficient completeness of R on T (F)

S
using, for instance, Maude [6] or

even Timbuk [9] itself. The last assumption of Theorem 6 to prove is that A0 is
R/E-coherent. This can be shown by remarking that each state q of A0 recog-

nizes at least one term and if s → 6ε ∗A0
q and t → 6ε ∗A0

q then s =E t. For instance

cons(b, cons(b, nil))→ 6ε ∗A0
qlb and cons(b, nil)→ 6ε ∗A0

qlb and cons(b, cons(b, nil)) =E

cons(b, nil). Thus, completion is guaranteed to terminate: after 4 completion
steps (7 ms) we obtain a fixpoint automaton A∗R,E with 11 transitions. To re-
strain the language to normal forms it is enough to compute the intersection
with Irr(R). Since we are dealing with sufficiently complete TRSs, we know

that Irr(R) ⊆ T (C)S . Thus, we can use again AT (C)S for the intersection that
is:

States q3 q2 q1 q0 Final States q3 Transitions a->q0 nil->q1 b->q2

cons(q0,q1)->q3 cons(q0,q3)->q3 cons(q2,q1)->q3 cons(q2,q3)->q3

which recognizes any (non empty) flat list of a and b. Thus, our analysis preserved
the property that the result cannot be the empty list but lost the order of the
elements in the list. This is not surprising because the equation cons(X, cons(Y,

Z))=cons(X, Z) makes cons(a, cons(b, nil)) equal to cons(a, nil). It is possible to
refine by hand EcC,S using the following equations: cons(a,cons(a,X))=cons(a,X),
cons(b,cons(b,X))=cons(b,X), cons(a,cons(b,cons(a,X)))=cons(a,X). This set of
equations avoids the previous problem. Again, E verifies the conditions of Theo-
rem 6 and completion is still guaranteed to terminate. The result is the automa-
ton A′∗R,E having 19 transitions. This time, intersection with AT (C)S gives:

States q4 q3 q2 q1 q0 Final States q4 Transitions a->q1 b->q3 nil->q0

cons(q1,q0)->q2 cons(q1,q2)->q2 cons(q3,q2)->q4 cons(q3,q4)->q4

This automaton exactly recognizes lists of the form [b, b, . . . , a, a, . . .] with at
least one b and one a, as expected. Hopefully, refinement of equations can be
automatized in completion [3] and can be used here, see [14] for examples. More
examples can be found in the Timbuk 3.1 source distribution.

6 Conclusion and further research

In this paper we defined a criterion on the set of approximation equations to
guarantee termination of the tree automata completion. When dealing with, so
called, functional TRS this criterion is close to what is generally expected in
static analysis and abstract interpretation: a finite model for an infinite set of
data-terms. This work is a first step to use completion for static analysis of
functional programs. There remains some interesting points to address.



Dealing with higher-order functions. Higher-order functions can be encoded into
first order TRS using a simple encoding borrowed from [17]: defined symbols be-
come constants, constructor symbols remain the same, and an additional applica-
tion operator ’@’ of arity 2 is introduced. On all the examples of [21], completion
and this simple encoding produces exactly the same results [14].

Dealing with evaluation strategies. The technique proposed here, as well as [21],
over-approximates the set of results for all evaluation strategies. As far as we
know, no static analysis technique for functional programs can take into account
evaluation strategies. However, it is possible to restrict the completion algorithm
to recognize only innermost descendants [14], i.e. call-by-value results. If the
approximation is precise enough, any non terminating program with call-by-
value will have an empty set of results. An open research direction is to use this
to prove non termination of functional programs by call-by-value strategy.

Dealing with built-in types. Values manipulated by real functional programs are
not always terms or trees. They can be numerals or be terms embedding numer-
als. In [12], it has been shown that completion can compute over-approximations
of reachable terms embedding built-in terms. The structural part of the term is
approximated using tree automata and the built-in part is approximated using
lattices and abstract interpretation.

Besides, there remain some interesting theoretical points to solve. In section 5, we
saw that having a finite T (F)/=E

is not enough to guarantee the termination
of completion. This is due to the fact that the simplification algorithm does
not merge all states recognizing E-equivalent terms. Having a simplification
algorithm ensuring this property is not trivial. First, the theory defined by E has
to be decidable. Second, even if E is decidable, finding all the E-equivalent terms
recognized by the tree automaton is an open problem. Furthermore, proving that
T (F)/=E

is finite, is itself difficult. This question is undecidable in general [23],
but can be answered for some particular E. For instance, if E can be oriented
into a TRS R which is terminating, confluent and such that Irr(R) is finite
then T (F)/=E

is finite [23].

Acknowledgments Many thanks to the referees for their detailed comments.
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Abstract. The ICAO-standardized Password Authenticated Connec-
tion Establishment (PACE) protocol is used all over the world to secure
electronic passports. We verify key-secrecy of PACE by modelling it as
an Observational Transition System (OTS) in CafeOBJ.

1 Introduction

Cryptographic primitives such as encryption mechanisms, hash functions or mes-
sage authentication codes undergo the scrutiny of a large community of re-
searchers. While their mathematical foundations might not yet be understood in
full detail, sudden ground-breaking attacks on them have been few. Using these
primitives as building blocks to construct security protocols however is another,
difficult challenge. In fact, it was often that erroneous protocol specifications and
design decisions lead to attacks, despite the usage of well-known cryptographic
primitives suggesting a high level of security. Often cited for a subtle, easily
overlooked error is [12], but [6] contains an impressive list of failed attempts
to design secure protocols. Formally proving properties of a protocol to exclude
subtle attacks is one important step — amongst others — in the construction of
security protocols.

Password Authenticated Connection Establishment (PACE) [3] is used all
over the world to secure communication with electronic passports. Here, PACE
replaces the older Basic Access Control (BAC) where security concerns with
low-entropy passwords occurred. RFID has been used in electronic passports
over contact-based solutions for the ability to keep passport formats and for rea-
sons of durability. This raises concerns of citizens that passports enable secret
tracking or that criminals secretly read out sensitive biometric information. Also
PACE is used in national id-cards that enable secure two-factor authentication
for e-commerce. PACE protects the highly valuable biometric information of
the document holder. For all these reasons, ensuring trust in PACE is of utter-
most importance: For once to secure the communication, but also to increase
acceptance of citizens for electronic passports.

Our contribution is threefold. First, we show key secrecy of PACE itself, fa-
cilitating trust in the protocol. Second, while the open-source CafeOBJ has a
proven track-record in the verification of security protocols [19, 18, 17, 16, 14, 15,



20], our proof serves once more as a case study to show that theorem proving
in CafeOBJ scales well beyond simple academic problems to real-world scenar-
ios. Third, to our best knowledge, we are the first to model a Diffie-Hellman
key-exchange to such detail in CafeOBJ. This might serve as a foundation for
analysing other DH-based protocols.

The source code of the proof is available under a free license from the author
upon request.

The structure of this paper is as follows: In Section 2 we introduce the PACE
protocol. A very brief recapitulation of modeling OTS’s in CafeOBJ, and proving
their invariants is given in Section 3. We provide an abstract version of PACE
show how to model and prove key secrecy, and reflect on lessons learned in
Section 4 Properties of PACE have already been analysed in the proprietary
VSE-tool [11]. In Section 5 we relate our work to that proof. Last, we conclude
our presentation in Section 6 and mention future directions. In our presentation
we assume familiarity with CafeOBJ.

2 The PACE key agreement protocol

The goal of the PACE key agreement protocol is to establish a secure, authen-
ticated connection between the chip inside a machine readable travel document
(MRTD) and a corresponding terminal (PCD). PACE uses a pre-shared low
entropy password to derive a high-entropy one using a Diffie-Hellman key ex-
change [8]. The protocol is versatile in the sense that it allows to use either
standard multiplicative groups of integers modulo p or groups based on elliptic
curves.

The protocol works as follows: First, it is assumed that a common low en-
tropy password π is known both by the chip and the terminal. Depending on
the document type (international travel document, national id-card etc.) and
use-case (border control, e-commerce) three solutions exist in practice: 1.) The
password is derived from the Machine Readable Zone (MRZ), 2.) the password
is derived from a Card Access Number (CAN) specifically printed on the doc-
ument for this purpose or 3.) the password is derived from a secret personal
identification number (PIN) known only to the owner of the document. In all
cases, the password is stored on the chip in a protected way. To read out data
on the chip, the MRZ is optically read by, or the CAN or the PIN is entered
manually into the terminal.

In the next step, the chip sends both a random nonce s encrypted by a sym-
metric cipher with π and the domain parameter DPICC for the group operation
to the terminal. Using a mapping function and the domain parameter, the nonce
s is mapped to some generator g of the group 〈g〉. Both the terminal and MRTD
chip chose another nonce x resp. y and compute exponents, i.e. the group op-
eration is applied with the nonce together with the generator to derive gx resp.
gy. These are then shared, and a key K = (gx)y = (gy)x and MAC and Session-
Keys are derived. Knowledge of the sent exponents and the key is verified by



MRTD Chip (PICC) Terminal (PCD)

shared password π

choose nonce s← Zq

static domain parameter DPICC

z = enc(H(π), s)
DPICC,z−−−−−−→

s = dec(H(π), z)
g = map(DPICC, s) g = map(DPICC, s)
choose x← Z∗

q choose y ← Z∗
q

h1 = gx h2 = gy

h1−→
h2←−

abort, if h2 6∈ 〈g〉 or h1
.
= h2 abort, if h2 6∈ 〈g〉 or h2

.
= h1

K = hx
2 = (gy)x K = hy

1 = (gx)y

KMAC = H(K||1) KMAC = H(K||1)
KENC = H(K||2) KENC = H(K||2)
TPICC = mac(KMAC, h2) TPCD = mac(KMAC, h1)

TPICC−−−−→
TPCD←−−−−

abort, if TPCD 6= mac(KMAC, h1) abort, if TPICC 6= mac(KMAC, h2)

Fig. 1. The PACE protocol.

exchanging MAC-tokens. See Figure 1 for a brief overview of the protocol. For
more detailed specifications we refer to [3].

3 OTS, CafeOBJ and invariant-proving

Our proof approach is based on Observational Transition Systems (OTS’s). For
precise definitions and an introduction to OTS’s we refer to [17]. For a more
in-depth treatment and the theoretical foundations of CafeOBJ we refer to [7].
Here we only briefly recapitulate how OTS’s are modelled in CafeOBJ in order
to give an intuition of the overall proof approach and proof structure. An OTS
is a triple of a set of observable values, a set of initial states, and a set of of
conditional transition rules. A protocol can be modelled as an OTS, where each
state of the protocol can be observed, and the effect of a state change on these
observations is described by transitions. An invariant is a property that holds
(is observable) in all states reachable from the initial ones. We have the following
correspondence between an OTS and CafeOBJ:

– The state space is modelled as a hidden sort H.



– A data types D is described in order-sorted algebra with visible sort V .

– An observation is modelled as a CafeOBJ behavioural operator:

bop o : H V1 V2 ... VN -> V

Here V1,...,VN and V are visible sorts corresponding to data typesD1, . . . , Dn,
and H is the hidden sort representing the state space.

– A transition is also modelled as a CafeOBJ behavioural operator:

bop t : H V1 V2 ... VM -> H

The first argument of t refers to the current state. The operator t — iden-
tified by the indices V1 ... VM — maps the current state to another state
in the state space. How this transition operator affects the state space in
particular, is defined in CafeOBJ in the following manner:

ceq o(t(X,Y1,...,YM),Z1,...,ZN) =

changeval(X,Y1,...,YM,Z1,...ZN)

if effective-condition(X,Y1,...,YM,Z1,...,ZN) .

ceq t(X,Y1,...,YM) = X

if not effective-condition(X,Y1,...,YM,Z1,...,ZN) .

Here changeval is the operation that changes values of the observation to the
one of the successor state, and effective-condition evaluates whether the
condition to apply the transition is met in the current state. If the observed
value does never change when applying the transition we can combine the
above simply to: eq o(t(X,Y1,...,YM),Z1,...,ZN) = o(X,Y1,...,YM).

Proof Scores A proof score of an invariant consists of two parts: First, the
induction hypothesis w.r.t. the predicate in the initial state is shown. Then the
induction step follows. For each invariant predi(s,x) we define a corresponding
operator and an equation

op invI : H V1 V2 ... VN -> Bool .

eq invI(S,X1,...,XN) = ... .

These definitions are grouped in a module INV. In the definitions of visible sorts
in our model, we also define a constant init denoting an arbitrary initial state.
Then to prove predi(s,x) we simply open the module INV, fix arbitrary objects
v1,...,vN for the visible sorts V1,...,VN and issue a reduce command w.r.t.
the initial state red invI(init,v1,...,vN).

For the induction step we have to show that if predi(s,x) holds in state s,
then it also holds in any possible next state s′. For each predicate we fix arbitrary
states s and s′, define an operator of form op istepI : V1 V2 ... VN -> Bool

and an equation

eq istepI(X,Y,...) = invI(s,X1,,...,XN) implies invI(s’,X1,...,XN) .

These definitions are grouped in a module ISTEP. To prove the induction step it
then suffices to open the module, fix arbitrary objects v1,...,vN for the visible
sorts and issue a reduce command red istepI(v1,...,vN).



Lemmata Quite often the induction step cannot be shown directly, since the
induction hypothesis is too weak. Then we need to apply a lemma. Let invJ

be a predicate with free variables of visible sorts E1,...,EK, and let e1,...,eK
denote either free variables of, or expressions (i.e. terms) of these sorts. We
can strengthen the induction hypothesis by augmenting invJ in state s, i.e. by
issuing red invJ(s,e1,...eK) implies istepI(v1,...,vN). One advantage
in the observational approach is that we can use invJ to strengthen the induction
step in the proof of invI and vice-versa.

Case Analysis Another possibility is to apply case analysis. Suppose for ex-
ample v1 is defined as an arbitrary object, and we consider the case that either
v1 is constructed by the constructor f applied to some other object vC, or that
this is not the case. Then the induction step is done in two steps: We first open
ISTEP, declare v1 = f(vC), and reduce red istepI(v1,...). Then we do the
same again, but declare (v1 = f(vC)) = false before reducing. Clearly we
have exhaustively considered all possible cases, since it is always true that:

(v1 = f(vC)) or (not (v1 = f(vC)))

Of course it is possible to strengthen the induction hypothesis by more than one
predicate, to stack case analysis, and to combine lemma application with case
analysis.

4 Modelling PACE in CafeOBJ

Our proof is in the Dolev-Yao model [9]. We assume that principals interact
with each other by sending messages, and distinguish between honest principals
who behave according to the protocol, and malicious ones that fake and forge
messages. The malicious principals are modelled as the most general intruder.
Moreover we make the following assumption:

1. Cryptographic primitives are sound. Random nonces are unique and cannot
be guessed, encrypted messages can only be decoded by knowing the cor-
rect key, hashes are one-way and there are no collisions, and two message
authentication codes are the same only if generated from the same message
with the same key.

2. The intruder can glean any public information (i.e. messages, ciphers etc.)
that is sent in the network.

3. The intruder can send two kinds of messages: He can use ciphers based on
cryptographic primitives from existing messages as black boxes to send new
fake messages, and he can use eavesdropped information to generate new
messages from scratch. But as noted above, he cannot eavesdrop informa-
tion from ciphers based on cryptographic primitives without knowing the
corresponding keys or passwords.



4.1 An abstract version of PACE

To abstract away from implementation-dependent information and those that
cannot be captured in the Dolev-Yao model anyway, we define the following
abstract version of the PACE protocol.

Message 1 : p→ q : encπ(ns, D)

Message 2 : p→ q : ∗(na, G)

Message 3 : q → p : ∗(nb, G)

Message 4 : p→ q : mac(H(∗(na, ∗(nb, G))), ∗(nb, G), D)

Message 5 : q → p : mac(H(∗(nb, ∗(na, G))), ∗(na, G), D)

We assume that a run of PACE is conducted by exchanging five messages. In
the first step, a message is sent from a participant p to another one q. The
message encrypts a random nonce ns with the shared password π, with attached
static domain parameters D. Next, p maps the nonce ns from the first message
with the domain parameters to a group generator G. Then p chooses a random
nonce na, applies the group operator ∗ to both na and G and sends the result
∗(na, G) to q. In a similar manner, q chooses a random nonce nb and sends
∗(nb, G) to p. Next, p computes the key H(∗(na, ∗(nb, G))). He then sends a
message authentication code — encoded with that key — with the received
exponent ∗(nb, G) and domain parameters D to q, in order to verify knowledge
of both the received exponent and the generated key. Principal q does the same in
reverse, and the common key H(∗(na, ∗(nb, G))) is used from now on to exchange
encrypted messages.

4.2 Basic Data Types

We use the following algebraic data-types, i.e. visible sorts and corresponding
constructors:

– Principal denotes both honest and malicious participants in the network.
– Random denotes random nonces. We suppose that random nonces are unique

and unguessable.
– Dompar denotes the static domain parameters of PACE. Used domain pa-

rameters are not secret and known to every principal.
– Mappoint denotes a group generator. The constructor maptopoint of data

type Mappoint takes as input a random nonce and static domain parameters
and returns a group generator. We suppose that maptopoint is a one-way
function.

– Expo denotes an exponent of the form gx, where the group generator g is
generated by maptopoint using a random nonce and domain parameters as
input.

– Hash denotes keys — we suppose that hashing is our key derivation function.
The constructor hash takes as input a random nonce and an exponent and
returns a key.



– Cipher1 denotes the cipher resulting from a symmetric encryption. Its con-
structor enc takes as input a random nonce and static domain parameters.
We assume implicitly that a Cipher1 is encoded with the shared password
π in the following way: Given a Cipher1, every principal is able reconstruct
the static domain parameters. But only if he knows the shared password π,
he is able to decode the random nonce.

– Cipher3 denotes message authentication codes. The constructor mac takes
as input a hash, an exponent and domain parameters.

We define three sorts and data types for the messages in Section 4: Mes-
sage 1 of Section 4 is of type Message1, messages 2 and 3 are of type Message2,
and messages 4 and 5 are of type Message3. Here, Message1 is a Cipher1 at-
tached with meta-information describing the creator, the (seemingly) sender,
and the receiver of a message. Similar, a Message3 is a Cipher3 attached with
corresponding meta-information. The data type Message2 is constructed by at-
taching meta-information to an exponent. Moreover for the definition of the data
structures we point to two design decisions:

Modelling of the shared password PACE assumes a fixed shared password
π known among honest principals. Knowledge of the password is modelled by
a predicate knowspi where we set knowspi(intruder) = false. We do not
introduce a specific data type for decryption of messages of type 1 but simply
distinguish between messages that are created by an honest principal who does
know π and the intruder, who does not. This reduces the number of data types
and thereby yields less complexity in the case analysis of proofs.

Equality of hashes We define the equality operator _=_ for hashes as

eq (H1 = H2)

= ((rand(H1) = rand(H2) and expo(H1) = expo(H2)) or

(rand(H1) = rand(expo(H2)) and rand(H2) = rand(expo(H1))

and point(expo(H1)) = point(expo(H2)))) .

in order to capture the properties of the group operator, namely that (gx)y =
(gy)x. When defining equality among message ciphers one might be tempted to
define equality for two ciphers3’s C1 and C2 recursively as:

eq (C1 = C2) = (hash(C1) = hash(C2) and expo(C1) = expo(C2)

and dpar(C1) = dpar(C2)) .

This has the awkward consequence that messages can no longer uniquely be
identified: When a principal sends a message of type 3, implicitly two messages
are added to the network, one w.r.t. each case of equality of the hash. This makes
reasoning in the induction steps quite unintuitive: Suppose we have a cipher3
c = mac(hash(r1,expo(r2,...),...) and perform a case analysis of a cipher3
c3 w.r.t. to c. Then considering the cases c3 = c and (c3 = c) = false is not
exhaustive, as it misses the case c3 = mac(hash(r2,expo(r1,...),...). In our



modelling we define equality of cipher3’s as syntactic equality of normals forms,
and formulate our theorems accordingly when we refer to multiple cipher3’s with
the same hash.

4.3 Protocol Modelling

CafeOBJ is based on first order equational rewriting. It therefore lacks higher
order constructs. In order to collect all sent messages, all generated random
nonces, and other information, we reuse the following definition of a multiset on
an abstract level from [17], and later use this as a parametrized module to adapt
this to multisets containing the data-types defined in the previous section.

mod* SOUP (D :: EQTRIV) principal-sort Soup {

[Elt.D < Soup]

op empty : -> Soup {constr}

op _ _ : Soup Soup -> Soup {constr assoc comm id: empty}

op _\in_ : Elt.D Soup -> Bool

var S : Soup

vars E1 E2 : Elt.D

eq E1 \in empty = false .

eq E1 \in (E2 S) = (E1 = E2) or E1 \in S .

}

Here the operator \in defines membership in the multiset, and a space defines
insertion. To collect all random nonces for example, we can define an observation
bop rands : System -> RandSoup that takes as input a state, and returns as
the observation a soup of random nonces. Given a random nonce r and a state s,
we can test membership by r \in rands(s), and — for example describing the
effects of a transition — insert r in the multiset by r rands(s). Observations
and transitions are defined as follows:

-- observations

bop network : System -> Network

bop rands : System -> RandSoup

bop hashes : System -> HashSoup

bop randsi : System -> RandSoup

bop expos : System -> ExpoSoup

bop cipher1s : System -> Cipher1Soup

bop cipher3s : System -> Cipher3Soup

-- transitions

bop sdm1 : System Principal Principal Random Dompar -> System

bop sdm2 : System Principal Principal Random Message1 -> System

bop sdm3 : System Principal Principal Message1 Message2 Message2

-> System

-- faking and forging messages based on the gleaned info

bop fkm11 : System Principal Principal Cipher1 -> System

bop fkm12 : System Principal Principal Random Dompar -> System

bop fkm21 : System Principal Principal Expo -> System



bop fkm22 : System Principal Principal Random Random Dompar -> System

bop fkm31 : System Principal Principal Cipher3 -> System

bop fkm32 : System Principal Principal Random Expo Expo Dompar -> System

We use seven observers to collect information:

– network returns a multiset of all messages that have been sent so far.
– rands returns a multiset containing all random nonces that have been gen-

erated so far.
– hashes returns all keys resulting from the PACE protocol that have been

gleaned or self-generated by the intruder. The name stems from the fact that
we consider hash to be the key derivation function.

– randsi contains all random nonces gleaned or self-generated by the intruder.
– expos contains all exponents that have been inserted in the network and
– cipher1s and cipher3s collect all ciphertexts of messages of type 1 and

messages of type 3 (i.e. mac-tokens).

The transitions sdm1, sdm2, and sdm3 describe state transitions and their effects
on observations when an honest principal sends a message. Therefore the condi-
tions on when these transitions are effective capture precisely the behaviour of
an honest principal. For example sdm1 is defined as:

eq c-sdm1(S,P,Q,R,D) = not(R \in rands(S)) .

ceq network(sdm1(S,P,Q,R,D)) = me1(P,P,Q,enc(R,D)) network(S)

if c-sdm1(S,P,Q,R,D) .

Here the effective condition for an honest principal to send a message of type 1
is that the random nonce used is fresh: It must not be contained in the multiset
of already used nonces.

The transitions fkmXY describe state transitions and their effects on obser-
vations when the intruder generates messages. Here we distinguish two cases:
1.) the intruder fakes an existing message by changing its source and destina-
tion (fkmX1) and 2.) the intruder injects a new message in the network using
information available to him (fkmX2). Therefore the effective conditions for these
transitions are usually more lax than the ones for sdmX. For example the condi-
tion to fake a message of type 1

eq c-fkm11(S,P,Q,C1) = C1 \in cipher1s(S) .

is just that a cipher1 exists in the network. The intruder can then inject the
message me1(intruder,P,Q,C1) with arbitrary source P and destination Q. Note
that the meta information denoting the creator of the message cannot be altered
by the intruder.

An example for the second case is the condition to construct an arbitrary
new message of type 1

eq c-fkm12(S,P,Q,R,D) = (not (R \in rands(S))) or (R \in randsi(S)) .

Here the intruder can choose to either use a fresh random nonce, or one that
he has gleaned or generated in an earlier state. He then injects the message
me1(intruder,P,Q,enc(R,D)) into the network.



4.4 Proving Key-Secrecy

We show key secrecy in the following sense: Suppose we take the perspective of
an honest principal, i.e. we are either the MRTD or the terminal, and we behave
according to protocol. In particular we assume

1. We have either sent a Message1 with a nonce encrypted with the shared
password π and domain parameters or we have received a Message1 from a
principal who knows π and decrypted it and

2. we constructed a generator of the group with the nonce and the domain
parameters from the above message, used the generator together with a
fresh nonce to create an exponent, and sent it to the other party and

3. we seemingly (we do not know who created the message) received an expo-
nent back from that other party and

4. we seemingly received a MAC-token that, using our secret nonce together
with the received exponent as a key, validates that the other party knows
our sent exponent and the domain parameters.

Then the resulting key must never be known to the intruder. This can be almost
verbatim translated into our main theorem:

eq inv900(S,M1,M21,M22,M3,P,Q) =

(M1 \in network(S) and M21 \in network(S)

and M22 \in network(S) and M3 \in network(S)

and sender(M3) = Q and receiver(M3) = P

and creator(M21) = P and sender(M21) = P and receiver(M21) = Q

and sender(M22) = Q and receiver(M22) = P

and (not (creator(M21) = creator(M3)))

and (not (P = Q)) and knowspi(P)

and ((sender(M1) = P and creator(M1) = P and receiver(M1) = Q) or

(sender(M1) = Q and receiver(M1) = P and knowspi(creator(M1))))

and expo(M21) = expo(cipher3(M3))

and dpar(cipher1(M1)) = dpar(point(expo(M21)))

and rand(cipher1(M1)) = rand(point(expo(M21)))

and dpar(cipher1(M1)) = dpar(cipher3(M3))

and hash(cipher3(M3)) = hash(rand(expo(M21)),expo(M22)))

implies

not (hash(cipher3(M3)) \in hashes(S)) .

Collecting Hashes In our modeling a hash (a key) is only added to the gleaned
set of hashes hashes(S) of the intruder, if a transition fkm32 occurs. One might
argue that with our definition, proving absence of the hash in the multiset
hashes(S) not sufficient, since the following situation might occur: Let m3 be a
message of type 3, s be a state, r1, r2 and r3 all gleaned random nonces included
in randsi(s), d domain parameters known by the intruder, and h the hash
hash(r1,expo(r2,maptopoint(r3,d))) such that: hash(cipher3(m3)) = h,
but h has not been used in a message of type 3 and is therefore not contained
in hashes(S). This would mean that invariant inv900 does not capture true



key secrecy. Note however that in such a case, the intruder can always add h to
hashes(S) by performing the following steps:

1. He inserts a me2(intruder,p,expo(r2,maptopoint(r3,d))) into the net-
work using transition fkm22 with an arbitrary sender and receiver p. By
definition of the transition fkm22 that exponent is included in expos(s’) of
the next state s’.

2. He uses that exponent to send the following message by transition fkm32 to
the network: me3(hash(r1,expo(r2,maptopoint(r3,d))),e,d). Here e is
an arbitrary exponent and d arbitrary domain parameters. Then by defini-
tion of fkm32 the hash h is included in hashes(s’’) of the next state.

In our modeling we have chosen to bind the addition of hashes to the multiset
hashes(s) to sending a message by transition fkm32 as a way to reduce the
complexity of the case analysis in the proof — in our modeling, the most complex
case analysis takes only place in the induction step w.r.t. fkm32.

Application of Lemmata and Case Analysis To prove key secrecy we
need additional invariants. Central to strengthen the induction hypothesis for
istep900 is the invariant that the assumptions of inv900 imply that both par-
ticipants have implicitly agreed upon the same generator g, which itself de-
pends on the nonce exchanged in the first message. For brevity suppose that
assump(S,M1,M21,M22,P,Q) is a predicate that denotes truth of the assump-
tions of invariant inv900 above. The invariant can then be expressed as:

eq inv800(S,M1,M21,M22,M3,P,Q) = assump(S,M1,M21,M22,P,Q)

implies rand(point(expo(M22))) = rand(point(expo(M21))) .

We illustrate how such a lemma is used in the proof together with case analysis,
albeit for a simpler invariant. We make frequent use of the following invariant
as a lemma for others. It states that if we are in a state S, and a M1 of type
Message1 is in the network, then the random nonce of M1 has been used and is
thus included in the collection of all random nonces rands(S).

eq inv300(S,M1) = M1 \in network(S)

implies rand(cipher1(M1)) \in rands(S) .

We prove inv300 inductively on the number of transitions. In the case of tran-
sition fkm11 we perform case analysis w.r.t. its effective condition:

(c-fkm11(s,p10,q10,c11) = false) or (c-fkm11(s,p10,q10,c11) = true)

Here p10 and q10 denote arbitrary principals, and c11 denotes an arbitrary
cipher1. For the first case, the proof directly succeeds:

open ISTEP

ops p10 q10 : -> Principal .

op m10 : -> Message1 .

op c11 : -> Cipher1 .



eq c-fkm11(s,p10,q10,c10) = false .

eq s’ = fkm11(s,p10,q10,r10,d10) .

red istep300(m10) .

close

For the second case c-fkm11(s,p10,q10,c11) = true, we replace the term with
its definition c11 \in cipher1s(s) = true and perform another case analysis
w.r.t. the equality m10 = me1(intruder,p10,q10,c11).

open ISTEP

ops p10 q10 : -> Principal .

ops m10 : -> Message1 .

op c11 : -> Cipher1 .

eq c11 \in cipher1s(s) = true .

eq m10 = me1(intruder,p10,q10,c11) .

eq s’ = fkm11(s,p10,q10,c11) .

***

close

If we directly try to proof the induction step by reducing red istep300(m10)

inserted at ***, CafeOBJ outputs

rand(c11) \in rands(s) xor

me1(intruder,p10,q10,c11) \in network(s) xor ...

This indicates that if me1(intruder,p10,q10,c11) is not already included in
and thus inserted in the network as a result of the transition fkm11, then
rand(c11) \in rands(s) must be true for the induction step to hold. There-
fore the induction hypothesis needs to be strengthened. We do so by introducing
yet another invariant inv150, which states that if a cipher1 is in the network,
than its random nonce is included in the set of all used random nonces.

eq inv150(S,C1) = C1 \in cipher1s(S) implies rand(C1) \in rands(S) .

And indeed, applying inv150 as a lemma at *** by inserting

red inv150(s,c11) implies istep300(m10)

successfully finishes the induction step.

Lessons Learned From the perspective of applying the OTS/CafeOBJ method
in practice, we have found the following to be the two major advantages of that
approach: First, despite the lack of quantors, the verbosity of CafeOBJ allows
for a very compact formalization of the protocol itself, and the invariants we
want to prove. In fact, in our formalization, only 505 lines are used for PACE
itself, and 445 lines are for definition of invariants as modules INV and ISTEP.

Second, the approach does not force oneself into a strict sequential or back-
ward approach when proving. This is supported by the fact that we can prove
each conjunct of a large formula individually in a way where each predicate may
be used to strengthen the induction hypothesis of another one without having to



worry about mutual dependencies. In practice this yields a lot of freedom when
building up the proof. For example we can first focus on very basic and rather
technical invariants, such as inv300 as mentioned above. Such basic properties
can then later be applied as lemmata, simplifying the proof of more complex
invariants.

With more complex invariants, such as our main theorem inv900, it turned
out to be useful to directly apply a proof attempt. Such a complex proof can
usually not be shown directly, however the stuck proof attempt is helpful to dis-
cover needed lemmata. When one discovers a needed lemma, it is advantageous
to have the ability to quickly conjecture an invariant without proving it, and to
try whether that invariant helps to finish the more complex proof. Only after
testing whether the more complex one can be proven, we need to focus on the
lemma. Quickly jumping between such a backtracking, and the above mentioned
forward based approach gives the user a large amount of flexibility.

Conducting a proof attempt implicitly facilitates lemma generation. When
CafeOBJ outputs the result of a reduction different from true, the reduced term
can be used directly to apply case analysis. In such case analysis the vast amount
of cases will be proven trivially. This leads us to the difficult part of the proof,
which is then characterized as a very specific case with several assumptions, say
a1, a2, a3, . . .. If the proof is stuck here, then ¬(a1 ∧ a2 ∧ a3 ∧ . . .) is a natural
candidate lemma. Even though in practice this candidate lemma needs to be
generalized or slightly modified, this often gives the operator a hint to what
major property is needed to successfully conduct the proof.

The main hindrance we found with the OTS/CafeOBJ method is related to
performance. Suppose we are proving an invariant of the form a1∧a2 . . . an =⇒
b, such as inv900. A direct proof attempt often does not terminate, due to the
amount of branching. To get a terminating result, one can make a trivial case
analysis w.r.t. ai, e.g. distinguish the case for ¬a1, for a1 ∧ ¬a2, and so on, to
finally reach the case for a1 ∧ . . . ∧ an. Even then sometimes a proof attempt
does not terminate, so additional (trivial) assumptions and corresponding cases
have to be added. Almost all cases are trivial – it is obvious that in the case
with the assumption ¬a1 the above invariant holds – but lead to a tedious copy
and paste approach and unnecessarily blow up the size of the proofs. Our proof
score for example consists of 38427 lines, of which the vast majority are for such
trivial cases.

All in all, we have proved 40 invariants of our formalization of PACE. The
verification of all invariants together takes approximately two hours and eight
minutes on an Intel Core i7-3520M @ 2.9 Ghz.

5 Related Work

Using inductive theorem proving to verify properties of security protocols was
first pioneered in [21] using Isabelle/HOL [13]. An inductive verification [4] of
the PACE protocol has already been conducted in the verification support en-
vironment (VSE) [11]. VSE has been developed by a consortium of German



universities and industry to provide a tool to meet industry needs for the de-
velopment of highly trustworthy systems, with a high degree of automation in
mind. The proof for PACE for example claims a 70 percent level of automation.
The proof of PACE includes not only key secrecy, but also mutual authentication
and perfect forward secrecy, but is not publicly available. Even if it would how-
ever, independent verification might be difficult as VSE is currently not licensed
as open-source. A non-mechanical proof for security in the sense of Abdalla,
Fouque and Pointcheval [1] has been given in [2]. In [5] attempts are made to
merge these two analysis’.

CafeOBJ touts itself as an industry strength algebraic specification language,
licensed under the GNU general public license. In general, its observational ap-
proach using rewriting without quantifiers is incomparable to the inductive ap-
proach based on first order logic of VSE. Our proof of key-secrecy has been
developed independently from [4]. Aside from rewriting, our proof is mostly
manual. Nevertheless, as mentioned in the previous section, the OTS/CafeOBJ
method implicitly supports the user in discovering lemmata, and thus signifi-
cantly simplifies the complexity of a proof.

6 Conclusion and Future Work

We have successfully verified key secrecy in CafeOBJ. This not only facilitates
trust in the PACE protocol, but also represents one more case-study that shows
that the OTS/CafeOBJ approach scales well beyond toy-examples like NSPK to
real-world scenarios. Also, the PACE proof can serve as a guide on how to model
a DH-key exchange in CafeOBJ. Key-Secrecy however, is only one important
property of PACE. We plan to extend the proof to mutual authentication and
perfect forward secrecy.

The most tedious part in writing proof scores is the lack of automation and
the need to write down large amounts of redundant information when perform-
ing case analysis. As mentioned in the previous section, this often leads to a
“copy-and-paste” approach. Very recently, tool support has been increased sig-
nificantly [10], and we plan to lift our proof to that platform.

We thank the anonymous reviewers for their helpful comments.
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Formal Modeling and Analysis of Cassandra in
Maude

Si Liu, Muntasir Raihan Rahman, Stephen Skeirik,
Indranil Gupta, and José Meseguer

University of Illinois at Urbana-Champaign

Distributed key-value (e.g., Cassandra [2], RIAK [1]) storage systems are in-
creasingly being used to store and query data in today’s industrial deployments.
Many diverse companies and organizations are moving away from traditional
strongly consistent databases and are instead using key-value/NoSQL stores in
order to store huge data sets and tackle an increasing number of users.

Distributed key-value stores typically replicate data on multiple servers for
greater availability in the presence of failures. Since any of the replicas storing
the data can now respond to client read requests, it becomes costly to always
keep all the replicas synchronized. This creates a tension between consistency
(keeping all replicas synchronized) and availability (replying to clients quickly),
especially when the network is partitioned [3]. Whereas traditional databases
prefer consistency over availability, distributed key-value stores risk exposing
stale data to clients to remain highly available. This approach was popularized
by the Dynamo [5] key-value store architecture from Amazon. Cassandra [2] is
an open-source distributed key-value store which closely follows the Dynamo
architecture. Many large scale Internet service companies like Netflix, IBM, HP,
Facebook, Spotify, and PBS Kids rely heavily on the Cassandra key-value storage
system.

Weakly consistent key-value stores like Cassandra typically employ many
complex design decisions that can impact the consistency and availability guar-
antees offered to the clients. Therefore, there is an urgent need to develop formal
models for specifying these design decisions and formal methods for reasoning
about the impact of these design choices on specified consistency (correctness)
and availability (performance) guarantees. Equipped with such a formal model,
it becomes very convenient to explore new design choices and formally compare
them with existing design decisions.

Today there are two main approaches for verifying consistency models for
distributed key-value stores. First, we can run a given key-value store under a
particular environment, and audit the read/write operation logs to check for con-
sistency violations. Second, we can analyze the algorithms used by the key-value
store to ensure consistency. However, the first approach is not guaranteed to find
all violations of the consistency model. Using the second approach is time con-
suming and needs to be repeated for every system with different implementations
of the underlying algorithms for guaranteeing consistency.

In this paper, we present a formal executable model of Cassandra. Our model
is specified in Maude [4], a modeling language based on rewriting logic. Rewriting
logic was proposed in the early nineties as a unified model for concurrency in
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which several well-known models of concurrent and distributed systems can be
represented. Our formal Maude model for Cassandra includes component models
for data partitioning strategies, consistency levels, read repair, and timestamp
policies for ordering multiple versions of data. These component models that
represent various design decisions employed by Cassandra are specified using
Maude rewrite rules. The built-in linear temporal logic (LTL) model checker
of Maude can exhaustively search consistency violations for all possible delay
distributions and ordering of messages between clients, coordinators, and servers
storing replicas of the same data in the system.

Our formal model can also be easily used to specify and analyze new design
choices for a particular component of the key-value store. As a concrete example,
we present a new read processing strategy that is timestamp agnostic. Since our
Maude based Cassandra model is executable, we have been able to formally com-
pare consistency and availability behavior for both the existing timestamp-based
strategy and our new timestamp-agnostic strategy. Our Maude specification is
fewer than 1000 lines of code, compared to the Cassandra code base which is
over a million lines of code. As a result our formal approach for testing new
design choices is faster and more accurate than existing approaches that modify
huge code bases.

Concretely the technical contributions of this paper are:

• We present, to the best of our knowledge for the first time, a formal exe-
cutable model for the Cassandra key-value store using Maude rewriting logic.
Our model can be used to exhaustively search for violations of both strong
and eventual consistency in Cassandra.

• We present a new timestamp agnostic read processing strategy for Cassan-
dra using our model. We compare this new strategy against Cassandra’s
timestamp based strategy and find that it has higher consistency at the cost
of latency. So the new strategy allows us to choose another point in the
consistency-availability trade-off space.
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Abstract. Mobile ad hoc networks (MANETs) are increasingly popular
and deployed in a wide range of environments. However, it is challenging
to formally analyze a MANET, both because there are few reasonably
accurate formal models of mobility, and because the large state space
caused by the movements of the nodes renders straightforward model
checking hard. In particular, the combination of wireless communication
and node movement is subtle and does not seem to have been adequately
addressed in previous formal methods work. This paper presents a for-
mal executable and parameterized modeling framework for MANETs in
Real-Time Maude that integrates several mobility models and wireless
communication. We illustrate the use of our modeling framework with the
Ad hoc On-Demand Distance Vector (AODV) routing protocol, which
allows us to analyze this protocol under different mobility models.

1 Introduction

A mobile ad hoc network (MANET) is a self-configuring network of mobile de-
vices (laptops, smart phones, sensors, etc.) that communicate wirelessly and co-
operate to provide the necessary network functionality. Since MANETs can form
ad hoc networks without fixed infrastructure, they are supposed to have a wide
applicability, for example for providing ad hoc networks for cooperating “smart”
cars, for emergency responders during accidents, during natural disasters which
may disable fixed infrastructure, in battlefield areas, and so on.

Although many such applications are safety-critical and need formal analysis
to ensure their correctness, the formal modeling and analysis of MANETs present
a number of challenges that include:

1. The need to model node movement realistically.
2. Modeling communication. There is a subtle interaction between wireless com-

munication, which typically is restricted to distances of between 10 and 100
meters, and node mobility. For example, nodes may move into or out of the
sender’s transmission range during the communication delay; furthermore,
the sender may itself move during the communication. Modeling communi-
cation in MANETs is therefore challenging for formal languages, which are
usually based on fixed communication primitives.
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3. Since the communication topology of the network depends on the locations
of the nodes, such locations must be taken into account in the model. How-
ever, this leads to very large state spaces, which makes direct model checking
analysis unfeasible: if there are m nodes and n locations, there are nm differ-
ent nodes/locations states. A 10 × 10 grid with four nodes would therefore
lead to 100 million states just to capture all nodes and their locations.

As explained in Section 7, we are not aware of any formal model that provides
a reasonably detailed model of both mobility and communication in MANETs.
Because of its expressiveness and flexibility to define models of communication,
Real-Time Maude [20] is a promising language for formally modeling MANETs.
In this paper we provide, to the best of our knowledge, the first reasonably
detailed formal modeling framework for MANETs. In particular, we formalize

– the most popular models for node mobility, and

– geographically bounded wireless communication, which takes into account
the interplay between communication delay and mobility,

in Real-Time Maude. Furthermore, we use object-oriented techniques to make
it easy to compose our framework with a model of a MANET protocol.

Concerning Challenge 3 above, in this paper we do not develop abstraction
techniques for node mobility. Instead, to be able to perform model checking anal-
ysis, our model is parametric in aspects such as the possible velocities and direc-
tions a node can choose. However, even if a node moves slowly, it may still cover
the entire area (and hence contribute to an unmanageable state space) given
enough time. Another key feature of Real-Time Maude that makes some mean-
ingful model checking analysis of MANETs possible is therefore time-bounded
model checking, which allows us to analyze scenarios only up to a certain du-
ration (during which the nodes may not reach most locations). Abstracting the
state space caused by node mobility and the need to keep track of node locations
is the sine qua non for serious model checking of MANETs. The point is that
this paper lays the foundations for developing such abstractions by providing a
first reasonably detailed formal model of location-aware MANETs.

One of the main tasks of a MANET is to maintain an (ad hoc) network, which
means that the network must figure out how to route messages between nodes.
In this paper we illustrate the use of our MANETs framework by modeling and
analyzing the widely used Ad hoc On-Demand Distance Vector [22] (AODV)
routing protocol for MANETs developed by the IETF MANET working group.

The rest of this paper is organized as follows. Section 2 gives a background to
Real-Time Maude. Section 3 briefly introduces MANETs. Section 4 presents our
Real-Time Maude modeling framework for MANETs. Section 5 shows how our
framework can be used to model the AODV protocol, and Section 6 explains how
that model of AODV can be model checked using Real-Time Maude. Finally,
Section 7 discusses related work and Section 8 gives some concluding remarks.

Due to space limitations, we have to omit many details; they are all given in
our accompanying longer report [14].
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2 Real-Time Maude

Real-Time Maude [20] is a language and tool that extends Maude [5] to support
the formal specification and analysis of real-time systems.

Specification. A Real-Time Maude module specifies a real-time rewrite theory
(Σ,E ∪A, IR,TR), where:

– Σ is an algebraic signature; that is, a set of declarations of sorts, subsorts,
and function symbols.

– (Σ,E∪A) is a membership equational logic theory [5], with E a set of possibly
conditional equations, and A a set of equational axioms such as associativity,
commutativity, and identity. (Σ,E ∪A) specifies the system’s state space as
an algebraic data type, and includes a specification of a sort Time.

– IR is a set of labeled conditional rewrite rules specifying the system’s local
transitions, each of which has the form1 [l] : t −→ t′ if

∧m
j=1 cond j , where

each cond j is either an equality uj = vj or a rewrite tj −→ t′j , and l is a
label. Such a rule specifies an instantaneous transition from an instance of t
to the corresponding instance of t′, provided the condition holds.

– TR is a set of tick rules l : {t} −→ {t′} in time τ if cond that advance
time in the entire state t by τ time units.

A class declaration class C | att1 : s1, . . . , attn : sn declares a class
C with attributes att1 to attn of sorts s1 to sn. An object of class C in a given
state is represented as a term <O : C | att1 : val1, ..., attn : valn > of sort Object,
where O, of sort Oid, is the object’s identifier, and where val1 to valn are the
current values of the attributes att1 to attn. A message is a term of sort Msg.

The state of an object-oriented specification is a term of sort Configuration,
and is a multiset of objects and messages. Multiset union is denoted by an
associative and commutative juxtaposition operator, so that rewriting is multiset
rewriting. For example, the rewrite rule

rl [l] : m(O,w) < O : C | a1 : x, a2 : O’, a3 : z >

=>

< O : C | a1 : x + w, a2 : O’, a3 : z > dly(m’(O’,x), z) .

defines a family of transitions in which a message m, with parameters O and w,
is read and consumed by an object O of class C, the attribute a1 of object O

is changed to x + w, and a new message dly(m’(O’,x),z) is generated; this
message will become the “ripe” message m’(O’,x) after z time units. Attributes
whose values do not change and do not affect the next state of other attributes
or messages, such as a3, need not be mentioned in a rule. Attributes that are
unchanged, such as a2, can be omitted from right-hand sides of rules.

A subclass inherits all the attributes and rules of its superclasses.

1 An equational condition ui = vi can also be a matching equation, written ui:= vi,
which instantiates the variables in ui to the values that make ui = vi hold, if any.
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Formal Analysis. In this paper, we only consider Real-Time Maude’s linear
temporal logic model checker, which analyzes whether each behavior satisfies
a temporal logic formula. State propositions are terms of sort Prop, and their
semantics is defined by equations ceq statePattern |= prop = b if cond, for
b a term of sort Bool, stating that prop evaluates to b in states that are instances
of statePattern when the condition cond holds. These equations together define
prop to hold in all states t where t |= prop evaluates to true. A temporal
logic formula is constructed by state propositions and temporal logic operators
such as True, False, ~ (negation), /\, \/, -> (implication), [] (“always”), <>
(“eventually”), and U (“until”). Real-Time Maude provides both unbounded and
time-bounded LTL model checking. The time-bounded model checking command

(mc t |=t formula in time <= timeLimit .)

checks whether the temporal logic formula formula holds in all behaviors up to
duration timeLimit starting from the initial state t.

3 Mobility and Communication Delay in MANETs

This section gives an overview of the main mobility models used by researchers
on protocol evaluations, and of the per-hop delay in wireless communication.

Fig. 1. Motion paths of a mobile node in three mobility models, where a bullet • depicts
a pause in the movement.

Mobility Models. Different mobility patterns have been proposed to model node
mobility in realistic scenarios. In this paper we focus on the following main
entity mobility models [2], also illustrated in Fig. 1, in which a node’s movement
is independent of the movements of the other nodes:

– Random Walk: Each node moves in “rounds” of fixed durations. A node
moves in the same direction and with the same speed throughout one round.
At the end of each round, the new speed and the new direction of a node are
randomly chosen, and a new moving round starts.
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– Random Waypoint: Each node initially pauses for a fixed duration. When
a pause ends, a node randomly chooses a new destination and a new speed,
and then travels to that destination at the chosen speed. After arriving, the
node again pauses before a new moving round starts.

– Random Direction: Each mobile node chooses a random direction, along
which it travels until reaching the border of the sensing area. When a node
arrives at the border, the node pauses for a given time, and then randomly
selects a new direction and starts to move in that direction.

Communication Delay. To understand how node movement affects wireless com-
munication, we must understand the messaging delays in wireless communica-
tion. In a typical wireless transmit/receive process, the per-hop communication
delay from a transmitter to a receiver consists of the following five phases [24]:

Delay Factor Description
Sender Processing Delay The time elapsed on the sender side from the mo-

ment a message timestamp is taken to the point the
message is buffered in the device.

Media Access Delay The time for a message to stay in the radio device
buffer; e.g., in a CSMA system, this is the delay
waiting for a clear channel to transmit.

Transmit Delay The time for a radio device to transmit a message
over a radio link.

Radio Propagation Delay The time for a message to propagate through the
air to a receiver.

Receiver Processing Delay The time spent on the receiver side to pass the re-
ceived message from the device buffer to the appli-
cation module.

We can abstract from the radio propagation delay, since the transmission range
in MANETs typically ranges from 10 to 100 meters, while the radio propaga-
tion speed is approximately 3× 108 meters per second. The media access delay
depends on the MAC overhead, such as collisions and waiting time.

4 Formalizing MANET Mobility and Communication

This section presents a modeling framework for MANETs with nodes that com-
municate wirelessly. Section 4.2 shows how mobile nodes can be specified in
Real-Time Maude, Section 4.3 explains how the timed behavior of MANETs can
be defined in a way that allows us to easily compose our model with MANET
protocols, and Section 4.4 formalizes wireless communication for MANETs.

4.1 Some Basic Data Types

We assume a sort Location for the set of locations, a sort Speed for the different
velocities with which a node can move, a set Direction for the different direc-
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tions that a node can choose, and sorts SpeedRange, DirRange, and DestRange

denoting sets of, respectively, Speed, Direction, and Location elements.
We also assume that nodes move in a two-dimensional square with length

areaSize. A location is therefore represented as a pair x.y of rational numbers:2

op _._ : Rat Rat ~> Location [ctor] .

cmb X . Y : Location if 0 <= X and X <= areaSize /\ 0 <= Y and Y <= areaSize .

We do not further specify the different powersets, whose elements could be
unions of dense intervals or of single points, or both. Since the nodes need to
nondeterministically select a new speed, a new next destination, and/or a new
next direction, we assume for generality’s sake that there is an operator choose
that can select any value in the respective set nondeterministically, and an oper-
ator [_], so that an element e can be chosen from a set S if and only if there is
a rewrite (in zero or more steps) choose(S) => [e]. For example, if we have a
discrete set of possible next directions d1 ; d2 ; ...; dn, where the set union
operator _;_ is declared to be associative and commutative, we can specify that
any value from the set can be selected, by giving the following rewrite rule:

var D : Direction . var DR : DirRange .

rl [chooseDir] : choose(D ; DR) => [D] .

4.2 Modeling Mobile Nodes

We model a MANET node in an object-oriented style, where a mobile node is
modeled as an object instance of some subclass of the following base class Node:

class Node | currentLocation : Location .

The attribute currentLocation denotes the node’s current location. A station-
ary node is an object instance of the subclass StationaryNode that does not
add any attribute to Node:

class StationaryNode . subclass StationaryNode < Node .

A mobile node is modeled as an object of a subclass of the class MobileNode:

class MobileNode | speed : Speed, direction : Direction, timer : TimeInf .

subclass MobileNode < Node .

where speed and direction denote, respectively, the node’s current speed and
its current movement direction. The timer attribute is used to ensure that a
node changes its movement (or lack thereof) in a timely manner; that is, timer
denotes the time remaining until some discrete event must take place.

2 We do not show most variable declarations, but follow the Maude convention that
variables are written in capital letters.
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Random Walk. A node moving according to the random walk model is continu-
ously moving, in time intervals of length movingTime. At the end of an interval,
the node nondeterministically chooses a new speed and a new direction for its
next interval. Such a node is modeled by an object of the subclass RWNode:

class RWNode | speedRange : SpeedRange, dirRange : DirRange .

subclass RWNode < MobileNode .

where speedRange and dirRange denote the set of possible next speeds and
directions, respectively. The timer attribute inherited from its superclass denotes
the remaining time of its current move interval. The instantaneous behavior of
the mobility part of such a node can be modeled by the following rule. In this
rule, the node is finishing one interval (the timer attribute is 0), and must select
new speed and direction for its next round, and reset the timer:

crl [startNewMove] :

< O : RWNode | timer : 0, speedRange : SR, dirRange : DR >

=>

< O : RWNode | timer : movingTime, speed : S, direction : D > .

if choose(SR) => [S] /\ choose(DR) => [D] .

The actual movement of such a node is modeled in Section 4.3.

Random Waypoint. In the random waypoint mobility model, a node alternates
between pausing and moving. When it starts moving, it selects a new speed and
a new destination and starts moving towards the destination. Such a node should
be modeled by an object instance of the RWPNode subclass:

class RWPNode | speedRange : SpeedRange, destRange : DestRange,

status : Status .

subclass RWPNode < MobileNode .

The status attribute is either pausing or moving, and destRange denotes the
possible next destinations.

The instantaneous behavior of this mobility model is given by the following
rewrite rules. First, if the node is pausing and the timer expires, the node must
get moving by selecting a new speed and desired next location, and resetting the
timer so that it expires when the goal location is reached:

var MOVE-TIME : Time .

crl [startMoving] :

< O : RWPNode | currentLocation : CURR-LOC, status : pausing,

timer : 0, speedRange : SR, destRange : DER >

=>

< O : RWPNode | status : moving, speed : S,

direction : D, timer : MOVE-TIME >

if choose(SR) => [S] /\ choose(DER) => [NEXT-LOC]

/\ D := direction(L, NEXT-LOC)

/\ MOVE-TIME := timeBetweenLocations(CURR-LOC, NEXT-LOC, S) .
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where direction gives the direction from one location to another, and time-

BetweenLocations denotes the time it takes to travel between two locations at a
given speed. The selected speed cannot be zero, unless the selected next location
is also the current location, because then the last matching equation would not
hold, since the traveling time between the two locations would be the infinity
value INF, which is not a Time value.

The following rule applies when the timer of a moving node expires; then it
is time to take a rest for pauseTime time units:

rl [startPausing] :

< O : RWPNode | status : moving, timer : 0 >

=>

< O : RWPNode | status : pausing, timer : pauseTime, speed : 0 > .

Random direction nodes can be defined in the same way; see [14] for details.

4.3 Timed Behavior and Compositionality

Our model of mobile nodes must be easily composable with “application” pro-
tocols such as AODV to define a particular MANET system. The straightfor-
ward way of composing our model of mobility with a MANET protocol is to
let the nodes in the application protocol be modeled as objects of subclasses of
the classes introduced above, since a subclass “inherits” all the attributes and
rewrite rules of its superclasses; in particular, such application-specific subclasses
would inherit the rewrite rules modeling the movements of their nodes.

However, we must allow the user to define the timed behavior of her system,
and compose it with the timed behavior of mobile nodes. We therefore use the
following extension of the “standard” tick rule for object-oriented specifications:

var T : Time . var C : Configuration .

crl [tick] : {C} => {timeEffect(timeEffectMob(C, T), T)} in time T

if T <= min(mte(C), mteMob(C)) .

where timeEffectMob defines the effect of time elapse on the mobility-specific
parts of the system, and timeEffect defines how the passage of time changes
the state in the other parts of the composed system. Likewise, mteMob denotes
the maximum amount of time that may elapse from a given state until some
mobility action must be taken, and mte defines the amount of time until the
application protocol must perform a discrete action. These functions distribute
over the objects and messages in the configuration as explained in [14].

Since the speed is 0 when a node is pausing, we can easily define the timed
behavior of both stationary and mobile nodes. First of all, time does not affect
(the mobility-specific parts of) a stationary node:

eq timeEffectMob(< O : StationaryNode | >, T) = < O : StationaryNode | >.

Time affects a mobile node by moving the node and decreasing its timer value:
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eq timeEffectMob(< O : MobileNode | currentLocation : L, speed : S,

direction : D, timer : T1 >, T)

= < O : MobileNode | currentLocation : move(L,S,D,T),

timer : T1 monus T > .

where move(l,s,d,t) denotes the location resulting from moving a node in loca-
tion l for t time units in direction d and with speed s. This function also makes
sure that a node does not move beyond the area under consideration.

The mobility model does not restrict the time advance for stationary nodes,
whereas for mobile nodes, time can advance until the timer becomes 0:

eq mteMob(< O : StationaryNode | >) = INF .

eq mteMob(< O : MobileNode | timer : T >) = T .

4.4 Modeling Wireless Communication in Mobile Systems

Only nodes that are sufficiently close to the sender, i.e., within the sender’s
transmission range, receive a message with sufficient signal strength. However,
both the sender and the potential receivers might move (possibly out of, or into,
the sender’s transmission range) during the entire communication delay.

As mentioned in Section 3, the total communication “delay” can be decom-
posed into five parts. If we abstract from the radio propagation delay, the per-hop
delay can be seen to consist of two parts: the delay at the sender side (including
sender processing delay, media access delay, and transmit delay) and the delay
at the receiver side (including receiver processing delay). The point is that ex-
actly those nodes that are within the transmission range of the sender when the
sending delay ends should receive a message.

It is also worth mentioning that our model is still somewhat abstract and
does not capture all network factors, most notably collisions.

In MANETs communication can be by broadcast, unicast, or groupcast, de-
pending on which kind of message a transmitter intends to send, and who are
the recipients. In our model we have three corresponding message constructors
for broadcast, unicast, and groupcast, respectively:

msg broadcast_from_ : MsgContent Oid -> Msg .

msg unicast_from_to_ : MsgContent Oid Oid -> Msg .

msg gpcast_from_to_ : MsgContent Oid NeighborSet -> Msg .

When a node sender wants to broadcast some message content mc, it gener-
ates a “message” broadcast mc from sender. The following equation adds the
delay on the sending side, sendDelay, to this “broadcast message:”

eq broadcast MC from O = dly(transmit MC from O, sendDelay) .

The crucial moment is when the sending delay expires and the transmit

message becomes “ripe.” All the nodes that are within the transmission range
of the sender at that moment should receive the message. This distribution is
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performed by the function distrMsg, where distrMsg(snd, loc, mc, conf ) gen-
erates a single message, with content mc, to each node in conf that is currently
within the transmission range of location loc; furthermore, this single message
has delay recDelay, modeling the delay at the receiving site:

eq {< O : Node | currentLocation : L > (transmit MC from O) C}

= {< O : Node | > distrMsg(O, L, MC, C)} .

eq distrMsg(O, L, MC, < O’ : Node | currentLocation : L’ > C)

= < O’ : Node | currentLocation : L’ > distrMsg(O, L, MC, C)

(if L withinTransRangeOf L’ then dly((MC from O to O’), recDelay)

else none fi) .

Unicast and groupcast are modeled similarly.

5 Case Study: Route Discovery in AODV

This section first gives an overview of the AODV routing protocol, and then
presents our Real-Time Maude model of AODV, focusing on the route discovery
process. The entire executable Real-Time Maude specification is available at
http://www.ifi.uio.no/RealTimeMaude/MANET/wrla2014-manets.rtmaude.

5.1 Route Discovery in AODV

AODV [22] is a widely used algorithm for routing messages between mobile
nodes which dynamically form an ad hoc network. AODV allows a source node
to initiate a route discovery process on an on-demand basis to establish a route
to a destination node.

Fig. 2. Route discovery process.

A source node S initiates a route
discovery process by broadcasting a
route request (RREQ) message to its
neighbors. An intermediate node can
either unicast a route reply (RREP)
message back to the source if a valid
route to the destination D can be
found in its local routing table, or re-
broadcast the received RREQ to its
own neighbors. As the RREQ trav-
els from S to D, reverse paths from
all nodes back to S are automati-
cally set up. Eventually, when the
RREQ reaches D, it sends a RREP
back along the previously established

reverse path. After this process, a route between S and D is set up.
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5.2 Modeling Route Discovery in Real-Time Maude

Modeling Nodes and Messages. We model an AODV node as an object of a
subclass AODVNode of class Node. The new attributes show the identification of
a node’s routing request, the sequence number of a node itself, the local routing
table, and the buffered routing requests sent since the beginning of the current
round, respectively.

class AODVNode | rreqID : Nat, sequenceNumber : Sqn,

routingTable : RouteTable, requestBuffer : RreqBuffer .

subclass AODVNode < Node .

A routing table of sort RouteTable is modeled using the predefined data type
MAP. It consists of routing table entries of the form Oid |-> Tuple3, mapping a
destination node Oid to a 3-element tuple: the next hop towards the destination,
the distance to the destination, and the local destination sequence number. A
route request buffer of the sort RreqBuffer is specified as a set of requests, each
of which is of the form Oid ∼ Sqn, and uniquely identifies a route request by
the identifier of a node and its sequence number.

In the AODV route discovery process there are mainly two kinds of messages:
RREQ and RREP. They are specified in our model as rreq(...) and rrep(...)

respectively. The message content will be illustrated below.

Modeling Route Discovery. A route discovery process in AODV consists of three
parts: initiating route discovery, route request handling, and route reply han-
dling. We only illustrate part of the route request handling, and refer the reader
to our longer report [14] for more details.

The RREQ-handling rules specify all events that may happen when a route
request is received. The receiving node first checks whether a received (OIP ∼
RREQID) has already been stored locally in the request buffer. If so, the route
request is ignored and the local routing table is updated by adding a routing
table entry towards the sender; otherwise, the receiving node adds the new route
request identifier to the request buffer, and takes further actions according to
the roles played by the receiving node. In the following case, the receiving node
is an intermediate node.

When receiving the RREQ message, an intermediate node either: (a) gener-
ates a route reply to the sender, or (b) re-broadcasts the received RREQ to its
neighbors. For example, action (a), as the following rewrite rule shows, happens
only when O’s local information is fresher than that in the RREQ message (DSN
<= localdsn(RT[DIP])). Then O unicasts the route reply with the fresher des-
tination sequence number and its distance in hops from the destination along
the route back to the source node.

crl [on-receiving-rreq-3] :

(rreq(OIP,OSN,RREQID,DIP,DSN,HOPS,SIP) from SIP to O)

< O : AODVNode | routingTable : RT, requestBuffer : RB >
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=> < O : AODVNode | routingTable : RT’’,

requestBuffer : (OIP ∼ RREQID, RB) >

(msg rrep(OIP,DIP,localdsn(RT’’[DIP]),hops(RT’’[DIP]),O)

from O to nexthop(RT’’[OIP]))

if RT’ := update(SIP,SIP,1,0,RT) /\

RT’’ := update(OIP,SIP,HOPS + 1,OSN,RT’) /\

not (OIP ∼ RREQID) in RB /\ inRT(RT,DIP) /\

DIP =/= O /\ DSN <= localdsn(RT[DIP]) .

6 Formal Analysis of AODV

In this section we analyze the AODV route discovery process under different
mobility models. We therefore define node objects that belong to a subclass of
both AODVNode and a class defining the desired mobility pattern. For example,
a node moving according to the random waypoint model is an object instance
of the class RWPANode, and a stationary node is an instance of the class SANode:

class RWPANode . subclass RWPANode < RWPNode AODVNode .

class SANode . subclass SANode < StationaryNode AODVNode .

The main objective of a routing protocol such as AODV is that a route
between the desired source and the desired destination is eventually estab-
lished. To analyze this property, we define a parameterized atomic proposition
route-found(SRC,DEST) to hold if we can find, in the routing table of the source
node SRC, a routing table entry towards the destination node DEST:

op route-found : Oid Oid -> Prop [ctor] .

eq {< SRC : AODVNode | routingTable : RT , (DEST |-> TP) > REST}

|= route-found(SRC, DEST) = true .

The desired property of AODV can then be formalized as the temporal logic
formula <> route-found(...). Given an initial state initConfig, the follow-
ing command returns true if our desired property holds in the first test round
(roundTime); otherwise, a trace showing a counterexample is provided.

(mc {initConfig} |=t <> route-found(src,dest) in time <= roundTime .)

Experiment Scenarios. We define the following setting for our experiments:

– The transmission range is 10m, and the test area is 100m × 100m.
– The test round is 100s. The delay at the sender and at the receiver is set to

10s and 5s, respectively.
– The range of possible velocities is the singleton set (1).
– Nodes can move right, up, left or down: the direction range is a subset of

(0,90,180,270), and the destination range is a subset of four locations in
the corresponding four directions based on a node’s current location.
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We have analyzed AODV in seven different scenarios; five of them are described
below and the other cases are described in our longer report [14]:

– Scenario (i), shown in Fig. 2, has five stationary nodes, where node 1, located
at (45 . 45), wants to build a route to node 5, located at (60 . 50), and nodes
2, 3 and 4 are at (50 . 50), (50 . 40), and (60 . 40), respectively.

– Scenario (i’), shown in Fig. 3 (a solid circle refers to the initial location of
a node, while a dashed circle refers to some point along the motion path of
a node), has the same topology as Scenario (i), but now node 2 is a random
waypoint node that can move up. We set its pause time to: (a) 10s, (b) 30s,
or (c) 60s. The initial state of this scenario is specified as:

eq src = 1 .

eq initConfig =

(bootstrap src)

< 1 : SANode | currentLocation : 45 . 45 , rreqID : 10, sequenceNumber : 1,

routingTable : empty, requestBuffer : empty >

< 2 : RWPANode | currentLocation : 50 . 50, speed : 0, direction : 0, timer : pauseTime,

speedRange : (1), destRange : (50 . 60), status : pausing, rreqID : 20,

sequenceNumber : 1, routingTable : empty, requestBuffer : empty >

< 3 : SANode | currentLocation : 50 . 40, ... >

< 4 : SANode | currentLocation : 60 . 40, ... >

< 5 : SANode | currentLocation : 60 . 50, ... > .

– Scenario (ii), also shown in Fig. 3, has three nodes with both nodes 2, located
at (40 . 50), and 3 (a random waypoint node located at (50 . 40)) intending
to build a route to the destination node 1 located at (50 . 50).

Fig. 3. Scenarios (i’) and (ii)

Analysis Results. The
results of the model
checking show that
the desired property
holds in Scenarios (i),
(i’)-(a), and (i’)-(c),
but not in Scenarios
(i’)-(b) and (ii).

In Scenario (i’)-
(b), the pause time
(30s) allows node 2

to forward the RREQ
message from node 1 to node 5. However, node 2 cannot receive the RREP
message from node 5 due to its movement (the dash circle in this case is at
(50 . 60)). Meanwhile, since node 5 has already recorded node 1’s RREQ from
node 2, it ignores the one from node 4.

In Scenario (ii), before sending out the RREQ message, node 3 moves left
to a new location (40 . 40) within the transmission range of node 2. Thus, to
establish the route to node 1, node 3’s RREQ message needs to be forwarded
by node 2. However, the model checking counterexample shows that route dis-
covery for node 3 fails: no route can be found between nodes 3 and 1, though
obviously node 2 succeeds in building a route to node 1. This problem arises
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due to the discarding of the RREP message. As stated in [22], an intermediate
node forwards a RREP message only if the RREP message serves to update its
routing table entry towards the destination. However, in this case, node 2 has
already secured an optimal route to node 1 before receiving the RREQ message
from node 3. [7] also pointed out this problem, but in a static linear topology
with three nodes.

7 Related Work

There are a number of formal specification and analysis efforts of MANETs in
general, and AODV in particular.

Bhargavan et al. [1] use the SPIN model checker to analyze AODV. They
only consider a 3-node topology with one link break, but without node move-
ment, and communication delay is not considered. Chiyangwa et al. [4] apply
the real-time model checker Uppaal to analyze AODV. They only consider a
static linear network topology. Although they take communication delay into
account, the effect of mobility on communication delay is not considered, since
the topology is fixed. Fehnker et al. [7] also use Uppaal to analyze AODV. They
also only considered static topologies, or simple dynamic topologies by adding or
removing a link, and those topologies are based on the connectivity graph with-
out concrete locations for nodes. Furthermore, no timing issues are considered.
Höfner et al. [12] apply statistical model checking to AODV. However, mobility is
simply considered by arbitrary instantaneous node jumping between zones that
split the whole test grid. Although they take into account the communication
delay, the combination of mobility and communication delay is not considered.
None of these studies has built a generic framework for MANETs. Our modeling
framework aims at the combination of wireless communication and mobility, and
allows formal modeling and analysis of protocols under realistic mobility models.

On the process algebra side, CWS [17], CBS# [19], CMAN [10], CMN [15],
the ω-calculus [23], RBPT [9], [11], TCWS [16] and AWN [6], have been proposed
as process algebraic modeling languages for MANETs. These languages feature
a form of local broadcast, in which a message sent by a node could be received
by other nodes “within transmission range.” However, the connectivity is only
considered abstractly and logically, without taking into account concrete loca-
tions and transmission range for nodes. Furthermore, [17] only considers fixed
network topologies, whereas the others (except [11]) deal with arbitrary changes
in topology. Godskesen et al. [11] consider realistic mobility, and propose con-
crete mobility models. However, no protocol application or automated analysis
is given, and communication delay is not taken into account. Merro et al. [16]
propose a timed calculus with time-consuming communications, and equip it
with a formal semantics to analyze communication collisions.

Generally, these studies have proposed a framework for MANETs, but they
lack of either mobility modeling or timing issues handling.

There are also a number of well known “ambient” calculi for mobility, such as
the ambient calculus [3], the π-calculus [18], and the join-calculus [8]. However,
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these are very abstract models that do not take locations and geographically
bounded communication into account, and are therefore not suitable to model
MANETs at the level of abstraction considered in this paper.

Finally, Maude and Real-Time Maude have been applied to analyze wireless
sensor networks, but the work in [21,13] do not consider node mobility (even
though [13] mentions that mobility is addressed in a technical report in prepa-
ration; however, we cannot find that technical report).

8 Concluding Remarks

We have defined in Real-Time Maude what we believe is the first formal model of
MANETs that provides a reasonably faithful model of popular node movement
patterns and wireless communication. We have used our compositional model to
specify and formally analyze the AODV routing protocol, and have shown that
such Real-Time Maude analysis could easily find the known flaw in AODV.

We have abstracted from message collision, which should also be considered in
our model. The price to pay for having a much more realistic model of MANETs
than other formal approaches is that the state space quickly becomes too large
for model checking. We should therefore develop statistical model checking tech-
niques for MANETs. Most importantly, we should develop abstraction tech-
niques for MANETs. The formalization presented in this paper has provided the
necessary foundation for such efforts.

Acknowledgments. We thank the anonymous reviewers for helpful comments
on a previous version of this paper. This work has been partially supported by
AFOSR Contract FA8750-11-2-0084 and NSF Grant CNS 13-19109.
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Abstract. This paper presents several new results on conditional term
rewriting within the general framework of order-sorted rewrite theories
(OSRTs) which contains the more restricted framework of conditional
term rewriting systems (CTRSs) as a special case. The results uncover
some subtle issues about conditional termination. We first of all gener-
alize a previous known result characterizing the operational termination
of a CTRS by the quasi-decreasing ordering notion to a similar result
for OSRTs. Second, we point out that the notions of irreducible term
and of normal form, which coincide for unsorted rewriting are totally
different for conditional rewriting and formally characterize that differ-
ence. We then define the notion of a weakly operationally terminating (or
weakly normalizing) OSRT, give several evaluation mechanisms to com-
pute normal forms in such theories, and investigate general conditions
under which the rewriting-based operational semantics and the initial
algebra semantics of a confluent OSRT coincide thanks to a notion of
canonical term algebra. Finally, we investigate appropriate conditions
and proof methods to ensure good executability properties of an OSRT
for computing normal forms.

Keywords: Conditional term rewriting, strong and weak operational termina-
tion, irreducible terms, normalized terms, rewriting logic, Maude.

1 Introduction

This paper presents several new contributions to conditional term rewriting and
to the semantics of declarative, rewriting-based languages. The key notion is
that of an order-sorted rewrite theory (OSRT) R = (Σ,B,R), where (Σ,B)
is an order-sorted equational theory [9] with equational axioms B, and R is a
collection of rewrite rules with oriented conditions of the form: ` → r if s1 →
t1, . . . , sn → tn, which are applied modulo B. All the results are in particular new
results for contitional term rewriting systems (CTRSs); that is, for order-sorted
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rewrite theories of the form R = (Σ,∅, R), with Σ having a single sort. The
greater generality of OSRTs is not a caprice, but an absolute necessity for making
formal specification and declarative programming practical and expressive.

Our contributions consist in asking and providing detailed answers to the
following, innocent-sounding questions:

1. Can the operational termination of OSRTs be characterized in terms of or-
ders?

2. What is the right notion of normal form for an OSRT?
3. What is the right notion of weak operational termination for an OSRT?
4. Under what conditions can OSRTs be used as declarative programs having

a well-behaved semantics? And how can we evaluate such programs?
5. Under what conditions does an OSRT have a canonical term algebra that

can be effectively computed and that provides a complete agreement between
the operational semantics of the OSRT as a functional program, and its
mathematical, initial algebra semantics? How can some of these executability
conditions be checked in practice?

Surprisingly enough, some of these questions seem to never have been asked. At
best, the issues involved seem to have remained implicit as not well-understood,
anomalous features in the literature. Consider, for example, question (2) above,
which asks about the notion of normal form. For unconditional term rewriting
the notion is absolutely clear and unproblematic: a normal form is a term t that
is irreducible, that is, such that there is no t′ with t→ t′. For an OSRT, and in
particular for a CTRS, the notion of normal form is actually highly problematic.
The big problem is that for an OSRT there can be terms t that are irreducible in
the above sense, i.e., there is no t′ with t→ t′, but such that when we give t to a
rewrite engine for evaluation such an engine loops! For a trivial example, consider
the single conditional rewrite rule a → b if a → c. Since the rewrite relation
defined by this conditional rule is the empty set, the constant a is trivially
irreducible; but the proof tree associated to the normalization of a using the
CTRS inference system is infinite [7], and a rewrite engine that tries to evaluate
a will loop when trying to satisfy the rule’s condition.3 Therefore, calling a a
normal form is a very bad joke, since, intuitively, a term is considered to be a
normal form if it is “fully normalized,” that is, if it is the result of fully evaluating
some input term by rewriting. Our answer to this puzzle is to introduce a precise
distinction (fully articulated in the paper) between irreducible terms and normal
forms: every normal form is irreducible, but, as the above example shows, not
every irreducible term is a normal form. We call an OSRT normal iff every
irreducible term is a normal form, and call it abnormal otherwise. Abnormal
theories, like the one above, are hopeless for executablity purposes and should
be viewed as monsters in the menagerie of OSRTs.

Termination is quite a subtle issue for OSRTs in general and CTRSs in
particular. Many notions have been proposed (see e.g., [11]), but it is by now

3 For this trivial example one could find ways for an engine to detect this looping; but
undecidability of termination makes a general loop-detecting engine an oxymoron.

2



well-understood that the most satisfactory notion from a computational point of
view is that of operational termination [7] (more on this later). Here we ask and
answer two questions, further developing this notion. The first is question (1)
above. For the case of deterministic 3-CTRS we proved in [7] that operational
termination is equivalent to the order-based notion of quasi-decreasingness. In
Section 3 we generalize this result to a similar result characterizing operational
termination of OSRTs in terms of an (axiom-compatible) term ordering.

A second, related question, seemingly not previously addressed in the litera-
ture, is question (3), which could be rephrased as follows: what is the right notion
of weak termination/normalization for OSRTs? As further explained in Section
4, there are in fact two notions, a computationally ill-behaved one (weak termi-
nation: every term has a terminating rewrite sequence ending in an irreducible
term), and a computationally well-behaved one (weak operational termination:
every term has a normal form).

The notions of normal OSRT and of weak operational termination are closely
related to another question, namely, question (4), on executability conditions for
declarative, conditional rule-based programs, and on their evaluation methods,
i.e., their operational semantics. Interestingly enough, as we explain in Section
4, there are several evaluation methods, which become more and more efficient
as we impose further conditions on the OSTR which we use as our program.

For functional programs specified by an OSRT, the issue is not just one of
having good executability conditions, but actually of correctness. More precisely,
of semantic agreement between an abstract initial algebra semantics when the
rules are viewed as equations, and an operational semantics based on rewriting,
where the computed values —that is, the normal forms— give rise to a very intu-
itive algebra, the canonical term algebra, which under the assumptions of conflu-
ence, coherence, sort-decreasingness and operational termination is isomorphic
to the initial algebra of the specification. Question (5) above asks, essentially:
what is the non plus ultra in terms of generality to maintain this isomorphism
and keeping an exact agreement between mathematical and operational seman-
tics? That is, what are the right conditions for this semantic agreement when we
drop the operational termination condition? This is also answered in Section 4,
relating the answers to associated evaluation methods to compute normal forms.
Last but not least, in Sections 4 and 5 we investigate appropriate conditions and
proof methods to ensure that a theory has good executability properties such as
being normal, and evaluation to normal form defining a total recursive function.

2 Preliminaries

Order-Sorted Algebra. We summarize here material from [4, 9] on order-
sorted algebra. We start with a partially ordered set (S,≤) of sorts, where s ≤ s′
is interpreted as subsort inclusion. The connected components of (S,≤) are the
equivalence classes [s] corresponding to the least equivalence relation ≡≤ con-
taining ≤. We also define bsc = {s′ ∈ S | s′ ≤ s}, i.e., the sorts in S which
are smaller than or equal to s. When [s] has an upper bound, we denote it by

3



>[s]. An order-sorted signature (Σ,S,≤) consists of a poset of sorts (S,≤) and a
S∗×S-indexed family of sets Σ = {Σw,s}(w,s)∈S∗×S , which are function symbols
with a given string of argument sorts and a result sort. If f ∈ Σs1...sn,s, then we
display the function symbol f as f : s1 . . . sn −→ s. This is called a rank dec-
laration for symbol f . Some of these symbols f can be subsort-overloaded, i.e.,
they can have several rank declarations related in the ≤ ordering [4]. Constant
symbols, however, have only one rank declaration. To avoid ambiguous terms, we
assume that Σ is sensible, meaning that if f : s1 · · · sn → s and f : s′1 · · · s′n → s′

are such that [si] = [s′i], 1 ≤ i ≤ n, then [s] = [s′]. Throughout this paper, Σ
will always be assumed sensible.

Given an S-sorted set X = {Xs | s ∈ S} of mutually disjoint sets of variables,
the set T (Σ,X )s of terms of sort s is the least set such that Xs ⊆ T (Σ,X )s.
We let T (Σ,X )[s] =

⋃
s′∈[s] T (Σ,X )s′ . If s′ ≤ s, then T (Σ,X )s′ ⊆ T (Σ,X )s;

and if f : s1 . . . sn −→ s is a rank declaration for symbol f and ti ∈ T (Σ,X )si
for 1 ≤ i ≤ n, then f(t1, . . . , tn) ∈ T (Σ,X )s. The assumption that Σ is sensible
ensures that if [s] 6= [s′], then T (Σ,X )[s] ∩ T (Σ,X )[s′] = ∅.

The set T (Σ,X ) of order-sorted terms is T (Σ,X ) = ∪s∈ST (Σ,X )s. An
element of any set T (Σ,X )s is called a well-formed term. A simple syntactic
condition on (Σ,S,≤) called preregularity [4] ensures that each well-formed term
t has always a least sort possible among all sorts in S, which is denoted LS(t). An
order-sorted substitution σ is an S-sorted mapping σ = {σ : Xs → T (Σ,X )s}s∈S
from variables to terms. The application of an OS-substitution σ to t (denoted
σ(t)) consists of simultaneously replacing the variables occurring in t by a term
according to the mapping σ. A specialization ν is an injective OS-substitution
that maps a variable x of sort s to a variable x′ of sort s′ ≤ s.

Order-Sorted Rewrite Theories. An (order-sorted) rewrite rule is an or-
dered pair (l, r), written l → r, with l, r ∈ T (Σ,X ), and LS(l) ≡≤ LS(r).
An order-sorted conditional rewrite theory (OSRT) is a triple R = (Σ,B,R),
where Σ is an order-sorted signature, B is a set of Σ-equations, and R is
a collection of conditional rewrite rules with oriented conditions of the form
` → r if s1 → t1, . . . , sn → tn, where ` → r and the si → ti are order-sorted
rewrite rules (with ` 6∈ Xs for all s ∈ S), and where the conditions si → ti
are intended to express the reachability of (instances of) ti from (instances of)
si. Throughout this paper the equations (u = v) ∈ B are assumed to be: (i)
regular (i.e., Var(u) = Var(v)), (ii) linear (i.e., no repeated variables in either
u or v); (iii) there is a B-matching algorithm; and (iv) sort-preserving (i.e.,
for each substitution θ, LS(θ(u)) = LS(θ(v))). Examples of axioms B satisfy-
ing (i)–(iii) include combinations of associativity and/or commutativity and/or
identity axioms. Maude supports rewriting modulo such axioms and also checks
automatically property (iv) (it actually checks a somewhat weaker condition for
identity axioms that still ensures a least sort for each B-equivalence class).

Rewrite rules `→ r if c in OSRTs are classified according to the distribution
of variables among `, r, and c, as follows: type 1, if Var(r) ∪ Var(c) ⊆ Var(`);
type 2, if Var(r) ⊆ Var(`); type 3, if Var(r) ⊆ Var(`)∪Var(c); and type 4, if no
restriction is given. An n-OSRT contains only rewrite rules of types m ≤ n. A
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(Refl) u→∗ v
if u =B v

(Tran)

u→ u′ u′ →∗ v
u→∗ v

(Cong)

ui → u′i
f(u1, . . . , ui, . . . , uk)→ f(u1, . . . , u

′
i, . . . , uk)

where f ∈ Σ and 1 ≤ i ≤ k = ar(f)

(Repl)

σ(u1)→∗ σ(v1) . . . σ(un)→∗ σ(vn)

u→ v
where `→ r if u1 → v1 · · ·un → vn ∈ R,

σ is an OS-substitution, u =B σ(`) and v = σ(r)

Fig. 1. Inference rules for order-sorted rewrite theories

3-OSRT R is called deterministic if for each rule l→ r if s1 → t1, . . . , sn → tn
in R and each 1 ≤ i ≤ n, we have Var(si) ⊆ Var(l) ∪

⋃i−1
j=1 Var(tj).

We write t→R u (resp. t→∗R u) iff there is a well-formed proof tree for t→ u
(resp. t →∗ u) for R using the inference system in Figure 1. As usual, →R is
the one-step rewrite relation for the OSRT R and →∗R is the zero-or-more-steps
rewrite relation for R. We write t →0

R u if t =B u; t →1
R u if t →R u, and

t→n
R u, for some n > 1 if there is a term t′ such that t→R t′ and t′ →n−1

R u.

Operational Termination. Given a logic L (defined by its inference rules),
one has the notion of a theory or specification S in such a logic, so that L’s
inference system becomes specialized to each such specification S to derive its
provable theorems ϕ. Assume that we have an interpreter for the logic L, that
is, an inference machine that, given a theory S and a goal formula ϕ will try to
incrementally build a proof tree for ϕ. Intuitively, we will call S terminating if
for any ϕ the interpreter either finds a proof in finite time, or fails in all possi-
ble attempts also in finite time. In the same vein, we can say that a predicate
π (for instance, → or →∗ in the inference system of Figure 1) is operationally
terminating if for any goal ϕ such that ϕ = π(t1, . . . , tk) for terms t1, . . . , tk,
ϕ is operationally terminating. The notion of operational termination captures
this fact, meaning that, given an initial goal, an interpreter will either succeed in
finite time in producing a closed proof tree, or will fail in finite time, not being
able to close or extend further any of the possible proof trees, after exhaustively
searching all such proof trees [7]. In the following, according to the previous
discussion, we speak about operational 1-termination of a OSRT as the opera-
tional termination of → (with respect to the inference system of Figure 1). By
operational termination of an OSRT we then mean the operational termination
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of →∗. Similarly, we say that a term t is operationally (1-)terminating if every
goal t→∗ u (resp. t→ u) is operationally terminating for all terms u.

One last issue important for executability purposes is (strong) B-coherence.
This means that if t→1

R u and t =B t′, then there exists a u′ such that t′ →1
R u′

and u =B u′. For axioms B such as combinations of associativity, commutativity
and identity, Maude automatically completes the user-specified rules so that they
become B-coherent. In this paper we will assume that all OSRTs are B-coherent.

3 Orderings, Quasi-Decreasingness, and (Strong)
Operational Termination

A binary relation R on a set A is terminating (or well-founded) if there is no
infinite sequence a1 R a2 R a3 · · · . Given f : Ak → A and i ∈ {1, . . . , k}, we
say that f is i-monotonic on its i-th argument (or that f is i-monotone with
respect to R) if f(x1, . . . , xi−1, x, . . . , xk) R f(x1, . . . , xi−1, y, . . . , xk) whenever
xR y, for all x, y, x1, . . . , xk ∈ A. We say that R is monotonic if, for all symbols
f , f is monotonic w.r.t. R. In [7] we have shown that operational termination of
deterministic 3-CTRSs (which are special deterministic 3-OSRTs where the set
of sorts S contains a single sort and the set of equations B is empty) is equivalent
to quasi-decreasingness, i.e., the existence of a well-founded partial ordering �
on terms satisfying that: (1) the one-step rewriting relation is contained in �:
→R ⊆ �, (2) the strict subterm relation is contained in �: B ⊆ �, and (3) for
every rule `→ r if s1 → t1, . . . , sn → tn, substitution σ, and index i, 0 ≤ i < n,
if σ(sj) →∗R σ(tj) for every 1 ≤ j ≤ i, then σ(l) � σ(si+1). In the following,
we generalize this result for deterministic 3-OSRTs under the assumptions on
B stated in Section 2. We use strong operational termination and operational
termination as synonymous. This is done to distinguish it from a notion of weak
operational termination presented later. Now we address the problem of defining
appropriate orderings for dealing with order-sorted terms and rewrite theories.

3.1 Orderings for Order-Sorted Terms

A strict ordering �s on terms of sort s is an irreflexive and transitive binary rela-
tion on T (Σ,X )s. A strict ordering �[s] on terms of sort in the connected compo-
nent [s] (of S/≡≤) is an irreflexive and transitive binary relation on T (Σ,X )[s].

Remark 1. Order-sorted rewriting proceeds by transforming terms of the same
connected component [s] ∈ S/≡≤. Therefore, orderings �[s] indexed by con-
nected components of sorts, rather than by sorts, are more appropriate for com-
patibility with the order-sorted rewrite relation. Indeed, note that→+

R= (→+
R[s])

is a well-founded S-ordering if the one-step rewrite relation is terminating, an
that it is monotonic if R is sort-decreasing. On the other hand, we can always
obtain an ordering �s on terms of sort s as follows: �s = �[s] ∩ T (Σ,X )

2
s.

A strict S-ordering �S= {�[s]}[s]∈S/≡≤ is an S-sorted strict ordering on T (Σ,X ),
i.e., given terms u, v ∈ T (Σ,X ), u �S v if and only if u, v ∈ T (F ,X )[s] for some
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[s] ∈ S/≡≤ and u �[s] v. An S-ordering �S is: well-founded if its components
�[s] are well-founded for all s ∈ S; stable if for all S-sorted substitution σ,
s ∈ S, and terms u, v ∈ T (Σ,X )[s] u �[s] v, then σ(u) �[s] σ(v); monotonic if

for all f : s1 · · · sk → s ∈ Σ and terms ui, vi ∈ T (Σ,X )[si] for 1 ≤ i ≤ k, if

ui �[si] vi, then f(u1, . . . , ui, . . . , uk) �[s] f(u1, . . . , ui, . . . , uk). An S-ordering
�S on T (Σ,X ) is compatible with a set of equations B on T (Σ,X ) if for all
terms u, u′, v, whenever u �S v and u′ =B u, we have u′ �S v (in short:
=B ◦ � ⊆ �). The previous definitions generalize to arbitrary relations (quasi-
orderings &, equivalences ≈, etc.) on order-sorted terms.

Remark 2. S-sorted orderings cannot compare terms of different connected com-
ponents. Still, S-sorted orderings are the natural ones when comparing the left-
and right-hand sides of the rules of an order-sorted (conditional) rewrite system.

A term ordering � is a strict order on T (Σ,X ). An S-sorted ordering �S on
T (Σ,X ) defines a term ordering on T (Σ,X ): u � v iff ∃[s] ∈ S/≡≤ such that
u �[s] v. A term ordering which is not S-sorted is the subterm relation D: ∀u, v ∈
T (Σ,X ), uDv if either u = v or u = f(u1, . . . , uk) for some f : s1 · · · sk → s ∈ Σ
and ui D t for some i, 1 ≤ i ≤ k. We write uB v if uD v and u 6= v.

3.2 Quasi-Decreasingness and (Strong) Operational Termination of
determinisitc 3-OSRTs

After the previous discussion, we can provide a generalization to determinisitc
3-OSRTs of the usual notion of quasi-decreasingness for determinsitic 3-CTRSs.

Definition 1 (Quasi-decreasingness). A deterministic 3-OSRT (Σ,B,R) is
quasi-decreasing if there is a well-founded term ordering � on T (Σ,X ) sat-
isfying: (1) →R ⊆ �, (2) =B ◦ � ⊆ �, (3) B ⊆ �, and (4) for every rule
l→ r if u1 → v1, . . . , un → vn, S-sorted substitution σ, and index i, 0 ≤ i < n,
if σ(uj)→∗R σ(vj) for every 1 ≤ j ≤ i, then σ(l) � σ(si+1).

Quasi-decreasingness is a sufficient condition for operational termination of de-
terministic 3-OSRTs.

Theorem 1. Let R be a deterministic 3-OSRT. If R is quasi-decreasing, then
it is operationally terminating.

Quasi-decreasingness is also necessary for operational termination of order-sorted
and sort-decreasing rewrite theories. If for all specializations ν LS(ν(`)) ≥
LS(ν(r)) then we say that the OS-rule `→ r if c is sort-decreasing. We call an
OSRT R = (Σ,B,R) sort-decreasing if all rules in R are so. Due to our assump-
tion that the equations B are sort-preserving and the B-coherence assumption,
sort-decreasingness is stable under B-equivalence classes.

Remark 3. Our definition of sort-decreasing conditional rule does not impose
anything to the conditional part of the rules. In this paper, we need sort-
decreasingness to ensure monotonicity of conditional rewriting (see Proposition
1). This holds without any further restriction on the conditions of the rules.
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Thanks to the stability of sort-decreasing rules under B-equality ensured by
the assumptions on B we then have:

Proposition 1. [8] Let R be a sort-decreasing OSRT, t, u, v ∈ T (Σ,X ) and
p ∈ Pos(t). If t = t[u]p and u→ v, then t[u]p → t[v]p.

Without sort-decreasingness, this important result does not hold (see [8]). This
assumption is essential in our proof of the following result.

Theorem 2. Let R be a sort-decreasing deterministic 3-OSRT. If R is opera-
tionally terminating, then it is quasi-decreasing.

Thus, quasi-decreasingness characterize operational termination of order-sorted,
sort-decreasing rewrite theories.

Corollary 1. A sort-decreasing deterministic 3-OSRT R is operationally ter-
minating if and only if it is quasi-decreasing.

4 Computing with Normal Rewrite Theories

Definition 2 (Irreducible forms and weak termination). Let R be an
OSRT and s, t be terms. We say that t is irreducible if, for any term u, t 6→R u.
Irr(R) (resp. GIrr(R)) is the set of irreducible terms (resp. ground terms) of R.

If s rewrites to an irreducible term t, we say that s has a (not necessarily
unique) irreducible form t, denoted s→→t. If every term s has an irreducible form,
i.e., s→→t for some irreducible term t, then R is called weakly terminating.

Terminating OSRTs are weakly terminating (in general, the opposite is not true).

Definition 3 (Normal form, weak normalization). A term t is called a
normal form if it is irreducible and operationally 1-terminating. Let NF(R) (resp.
GNF(R)) be the set of normal forms (resp. ground normal forms) of R.

If s→→t and t is a normal form, we then write s →! t and call t a normal
form of s. If every term s has a normal form, i.e., s→! t for some normal form
t, then R is called weakly operationally terminating (or weakly normalizing).

Remark 4 (Notation). If R is confluent and weakly operationally terminating,
then we write t →!

R u for t→→Ru, denote such a u by u = t!R or u = canR(t),
and call it the R-canonical form of t which is unique up to B-equality.

Note that →→R/B ⊇ →!
R/B and NF(R) ⊆ Irr(R) (this inclusion can be strict!).

Example 1. The one-step rewrite relation for a → b if a → c (a single rule
OSRT) is empty. Hence, a is irreducible. However, a is not a normal form: every
attempt to prove a reduction step on a starts an infinite proof tree.

There can also be reducible terms that are not operationally 1-terminating.
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Example 2. Term f(a) is not operationally 1-terminating in the 2-CTRS R:

g(a)→ c(b) (1)

b→ f(a) (2)

f(x)→ x if g(x)→ c(y) (3)

Since g(a) → c(b), we have f(a) → a by means of a finite proof tree. However,
since the evaluation of the condition could continue beyond c(b)

g(a)→ c(b)→ c(f(a))

and the term f(a) can start a new (deep) proof tree, we also have an infinite
(well-formed) proof tree for the goal f(a)→ u with u arbitrary.

Remark 5. Note that R in Example 2 is terminating, i.e., there is no infinite
rewrite sequence t1 →R t2 →R · · · . This is easy to see, because the underlying
TRS Ru = {`→ r | `→ r if c ∈ R} is clearly terminating.

Definition 4 (Normal and strongly deterministic rewrite theory). A
deterministic OSRT R is called normal (resp. ground normal) if the set
Irr(R) (resp. the set GIrr(R)) is operationally terminating, i.e., every irreducible
(ground) term is a (ground) normal form: Irr(R) = NF(R) (resp. GIrr(R) =
GNF(R)).

A normal OSRT R = (Σ,B,R) is called strongly deterministic if for each
` → r if s1 → t1, . . . , sn → tn in R, and each substitution θ such that θ(x) ∈
NF(R) for each x ∈ X , we have: θ(t1), . . . , θ(tn) ∈ NF(R).

The B-coherence assumption then gives us:

Proposition 2. If a strongly deterministic 3-OSRT R is (ground) confluent and
weakly normalizing, then R is (ground) normal.

Remark 6. Ground normality is the minimum prerequisite for executability. For
ground normal and ground confluent deterministic 3-OSRT R, each ground term
t has at most one normal form up to B-equality and the process t 7→ [t!R]B
defines a recursive partial function, sinceR need not even be weakly terminating.

In order to prove that a strongly deterministic OSRT R = (Σ,B,R) is ground
normal, we can proceed as follows:

1. Identify a subsignature of constructors Ω with nonempty sorts such that
the rules in R decompose as a disjoint union R(Σ−Ω) ∪ RΩ , where the RΩ
have only Ω terms in their rules and conditions, and each ` → r if s1 →
t1, . . . , sn → tn in R(Σ−Ω) has l = f(t1, . . . , tn) for some f ∈ Σ − Ω. We
also assume that the axioms B decompose as a disjoint union B(Σ−Ω) ∪BΩ
with the BΩ involving only Ω terms, and the B(Σ−Ω) not Ω-equations. This
yields an ORST inclusion RΩ ⊆ R, with RΩ = (Ω,BΩ , RΩ).
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2. Prove (by inductive theorem proving) that for all defined symbols f ∈ Σ−Ω,
say with rank f : s1 · · · sn −→ s, the following inductive property holds:

∀x1 ∈ TΩs1
, . . . , xn ∈ TΩsn

,∃yf(x1, . . . , xn)→1
R y

Then if RΩ is operationally terminating, R is ground normal and, furthermore,
GNF(R) ⊆ TΩ . That is, an inductive proof of ground reducibility w.r.t. the
constructors shows that t ∈ T (Σ) is a ground normal form iff:

1. t ∈ TΩ ; and
2. t ∈ GNF(RΩ).

The assumptions on B give us:

Proposition 3. Let R = (Σ,B,R) be a normal, sort-decreasing, confluent,
strongly deterministic 3-OSRT such that R is finite. If R is weakly operationally
terminating, then the function t 7→ [t!R]B is total recursive and preserves sorts.

Note that, otherwise, if R is confluent but not weakly operationally terminating,
then the function t 7→ [u]B with t→→u may not be recursive, even if each t has an
irreducible form. Implicit in Proposition 3 is the fact that, under such conditions
plus the assumptions on B, when we intepret each `→ r if s1 → t1, . . . , sn → tn
in R as a conditional equation ` = r if s1 = t1, . . . , sn = tn, normal forms define
an algebra CΣ/R,B , called the canonical term algebra of R. Specifically, for each
sort s we define CΣ/R,B,s = GNF(R)/=B ∩TΣ/B , that is, the set of B-equivalence
classes of ground normal forms of sort s, and, for each f : s1 · · · sn −→ s in Σ its
intepretation in CΣ/R,B maps each tuple ([t1]B , . . . , [tn]B) with [ti]B ∈ CΣ/R,B,si
to the B-equivalence class [f(t1, . . . , tn)!R]B , which is well-defined and unique
because of confluence, sort-decreasingness and B-coherence. The agreement be-
tween the operational semantics of R when terms are normalized by rewriting,
and the mathematical semantics of R when its rules are interpreted as condi-
tional equations can then be expressed for such general OSRTs as follows:

Corollary 2. For R = (Σ,B,R) a sort-decreasing, confluent and weakly oper-
ationally terminating strongly deterministic 3-OSRT, the canonical term algebra
CΣ/R is a computable algebra. Furthermore, TΣ/R∪B ' CΣ/R,B.

The general method to compute the normal form t!R of a term t described in
the proof of Proposition 3 is somewhat complex, and can be computationally
expensive. It is therefore useful to seek somewhat less general conditions under
which we can compute normal forms. We consider two such conditions, which
can be executed in Maude in a straightforward way.

The first case is that of a strongly deterministic 3-OSRT that is sort-
decreasing, ground confluent, 1-terminating, and ground weakly terminating and
has a finite number of rewrite rules. Under such conditions, the search command
in Maude asking for the fully-reduced first result for the given input ground term
will compute such a normal form. This assumes that the rules in the theory are
expressed as rules in a Maude system module and not as equations in a func-
tional module, even though the module does indeed have a functional semantics.
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A simple theory transformation, easily definable in Maude’s META-LEVEL module,
can transform the given functional module into its associated system module.
Let us illustrate this general method with an example. Note that in this example
the set B of axioms is empty. The functional module fmod WEAK-NORM endfm ex-
presses the rewrite rules R as conditional equations, whereas the system module
mod WEAK-NORM endm expresses them explicitly as rewrite rules.

fmod WEAK-NORM is

protecting BOOL .

sorts Nat Nat? .

subsort Nat < Nat? .

op 0 : -> Nat . op s : Nat -> Nat .

op _+_ : Nat Nat -> Nat . op even : Nat -> Bool .

ops f g : Nat? -> Nat? .

vars N M : Nat .

eq N + 0 = N . eq N + s(M) = s(N + M) .

eq even(0) = true . eq even(s(0)) = false .

eq even(s(s(N))) = even(N) . eq g(N) = N .

eq f(N) = N + N .

ceq f(N) = g(f(N)) if true := even(N) .

endfm

This module is sort-decreasing, weakly terminating and ground confluent. By
the technique presented in Section ??, we can prove it normal. Giving to Maude
the term f(0) for evaluation leads to non-terminating behavior. That is, the
usual operational semantics for evaluating operationally terminating confluent
theories cannot be relied upon to compute normal forms. This problem can be
solved by transforming the above functional module into a system module, that
is, by transforming equations into rules, and using Maude’s search command:

mod WEAK-NORM is

protecting BOOL .

sorts Nat Nat? .

subsort Nat < Nat? .

op 0 : -> Nat . op s : Nat -> Nat .

op _+_ : Nat Nat -> Nat . op even : Nat -> Bool .

ops f g : Nat? -> Nat? .

vars N M : Nat .

rl N + 0 => N . rl N + s(M) => s(N + M) .

rl even(0) => true . rl even(s(0)) => false .

rl even(s(s(N))) => even(N) . rl g(N) => N .

rl f(N) => N + N .

crl f(N) => g(f(N)) if even(N) => true .

endm

The normal form of a term can then be obtained by searching for the first
result of a terminating computation from the given term. By confluence such a
result is unique up to B-equality, exists by weak operational termination, and
can be found by search without risk of looping thanks to 1-termination:
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Maude> search [1] f(0) =>! N:Nat .

search in WEAK-NORM : f(0) =>! N .

Solution 1 (state 5)

states: 9 rewrites: 12 in 0ms cpu (0ms real) (44943 rewrites/second)

N --> 0

Maude> search [1] f(s(s(0))) =>! N:Nat .

search in WEAK-NORM : f(s(s(0))) =>! N .

Solution 1 (state 14)

states: 20 rewrites: 35 in 0ms cpu (0ms real) (55118 rewrites/second)

N --> s(s(s(s(0))))

Maude> search [1] f(s(s(s(s(0))))) =>! N:Nat .

search in WEAK-NORM : f(s(s(s(s(0))))) =>! N .

Solution 1 (state 27)

states: 35 rewrites: 70 in 1ms cpu (1ms real) (57189 rewrites/second)

N --> s(s(s(s(s(s(s(s(0))))))))

The second case where execution of a weakly operationally terminating deter-
ministic OSRT can be achieved using execution mechanisms already available
in Maude and yields again a full agreement between operational and mathe-
matical semantics is the one of context-sensitive OSRTs under some reasonable
assumptions. A context-sensitive [6] OSRT is a four-tuple R = (Σ,B,R, µ),
where (Σ,B,R) is an OSRT, and µ maps each f : s1 · · · sn −→ s in Σ to a
subset µ(f) ⊆ {1, . . . , n} of the argument positions of f under which rewriting
is allowed. The operational semantics of context-sensitive OSRTs is defined by
restricting the inference system of Figure 1 with the single restriction that, in
the (Cong) Rule, i with 1 ≤ i ≤ k must furthermore satisfy i ∈ µ(f).

The Lemma below states the required conditions onR = (Σ,B,R, µ) yielding
the desired agreement between operational and mathematical semantics. This
result relies on the notion of µ-sufficient completeness and of the algebra CµR of
term in µ-normal form (see [5]).

Lemma 1. If R is a confluent, sort decreasing and strongly deterministic
context-sensitive 3-OSRT R = (Σ,B,R, µ), which is µ-operationally terminat-
ing and µ-sufficiently complete for Ω ⊆ Σ a subsignature of free constructors
modulo B, then:

1. R is ground weakly operationally terminating.
2. CµR |Ω= TΩ/B.
3. For each t ∈ TΣ, t!R,B = t!µR,B, that is, the normal form and the µ-normal

form of t (which can be computed by Maude’s reduce command) coincide.
4. TΣ/E∪B ' CµE/B (agreement between operational and denotational seman-

tics).

Under the assumptions of Lemma 1, we compute normal forms as follows:
since Maude supports the execution of confluent context-sensitive 3-OSRTs
R = (Σ,B,R, µ) specified as functional modules, we just use reduce to compute
normal µ-forms, which under the assumptions in Lemma 1 are also ordinary nor-
mal forms in the underlying OSRT (Σ,B,R). We can illustrate these ideas with
the following example of a context-sensitive 3-OSRT in Maude:
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fmod FACTORIAL is

protecting NAT .

op monus : Nat Nat -> Nat .

op _~_ : Nat Nat -> Bool [comm] .

op [_,_,_] : Bool Nat Nat -> Nat [strat (1 0)] .

op fact : Nat -> Nat .

vars N M : Nat .

eq monus(s(N),s(M)) = monus(N,M) .

ceq monus(N,M) = N if M := 0 .

ceq monus(N,M) = 0 if N := 0 .

eq N ~ N = true .

eq s(N) ~ s(M) = N ~ M .

eq 0 ~ s(N) = false .

eq [true,N,M] = N .

eq [false,N,M] = M .

eq fact(N) = [(N ~ 0),s(0),N * fact(monus(N,s(0)))] .

endfm

This theory, though ground confluent, is cleary non-terminating because of
the last equation. Here, µ does not restrict any argument positions, except for
the if-then-else operator [ , , ], where µ([ , , ]) = {1}, as specified by the strat

attribute. It is, however, operationally µ-terminating and has 0 and s, and true,
false as free constructors. Here are some evaluations:

Maude> red fact(2) .

reduce in FACTORIAL : fact(2) .

rewrites: 15 in 0ms cpu (0ms real) (192307 rewrites/second)

result NzNat: 2

Maude> red fact(3) .

reduce in FACTORIAL : fact(3) .

rewrites: 21 in 0ms cpu (0ms real) (10500000 rewrites/second)

result NzNat: 6

Maude> red fact(4) .

reduce in FACTORIAL : fact(4) .

rewrites: 27 in 0ms cpu (0ms real) (692307 rewrites/second)

result NzNat: 24

Maude> red fact(5) .

reduce in FACTORIAL : fact(5) .

rewrites: 33 in 0ms cpu (0ms real) (358695 rewrites/second)

result NzNat: 120

We end this section with the following result that, though well-known (see,
e.g., [12]), has an easier proof with a rewrite theory with axioms B of associtivity
and identity for strings. In some sense this result shows how wild the beasts in
the general menagerie of OSRTs can be, and illustrates the need for notions such
as that of normal theory to obtain reasonable computational behaviors.

Theorem 3. There is a 2-OSRTs R and a sort s such that the set Irr(R)s ⊆
T (F ,X )s of R-irreducible terms is not recursively enumerable, so it is not even
semi-decidable if a term is R-irreducible.
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5 Proving Order-Sorted Rewrite Theories Normal

1-operationally terminating rewrite theories are normal. The opposite is not true.

Example 3. The CTRSR in Example 2 is not 1-operationally terminating. How-
ever, R is normal: assume that there is a minimal irreducible term s having an
infinite well-formed proof tree whose strict subterms are normal forms. Since f
is the only symbol defined by a conditional rule, s = f(t) for some normal form
t. Since f(t) is irreducible, the evaluation of the condition in the rule cannot
succeed, i.e., g(t) must be irreducible. Since t is a normal form, g(t) cannot start
any infinite well-formed tree. Contradiction.

Remark 7. As noticed in Remark 5, R in Example 2 is terminating. Since R is
not 1-operationally terminating and a fortiori not operationally terminating, it
follows from Example 3 that neither 1-operational termination nor operational
termination of R follow from the termination and normality of R.

An interesting feature in the treatment of innermost termination problems using
the dependency pair approach [1] is that, since the variables in the right-hand
side of the dependency pairs are in normal form, the rules which can be used
to connect contiguous dependency pairs are usually a proper subset of the rules
in the TRS. This leads to the notion of usable rules [1, Definition 32] which
simplifies the proofs of innermost termination of rewriting.

In our analysis of normal rewrite theories we have a similar situation: when
an irreducible term t = f(t1, . . . , tk) is tested to see whether it is a normal form,
we know that all possible reductions derived from a proof t → x (for a fresh
variable x) cause the evaluation of the conditional part c of some conditional rule
f(`1, . . . , `k)→ r if c. Therefore, if we single out those rules that can be involved
in any attempt to evaluate σ(c) for some σ such that t = σ(f(`1, . . . , `k)), we
can obtain a more precise analysis. The notion of usable rule provides an upper,
purely syntactic, approximation to the set of rules that eventually apply to a
term t during any possible rewriting on t. We keep the original flavor of the
original, unsorted notion in the following definition.

Definition 5 (Usable rules for a rewrite theory). Let R = (Σ,B,R) be
an OSRT. Let RULES (R, t) be the set of rules defining symbols occurring in t:

RULES (R, t) = {`→ r if c ∈ R | ∃p ∈ Pos(t), root(`) = root(t|p)}

Then, the set of usable rules of R for t is:

U(R, t) = RULES (R, t) ∪
⋃

l→r if c∈RULES(R,t)

U(R′, r) ∪
⋃

si→ti∈c
U(R′, si)

where R′= R− RULES (R, t).

That is: we consider both unconditional and conditional rules and add the rules
that could be used to evaluate the conditions in the rules. Since we are dealing
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with OSRTsR = (Σ,B,R), rewriting happens modulo B. This raises the issue of
whether the above definition of usable rules is overly syntactic, that is, not stable
under B-equality. The key issue is whether in the (Repl) rule in the inference
system of Figure 1 the top symbol of the redex u coincides with that of the
lefthand side l. This is the case by requiring the axioms B to be as follows:

B =
⋃

f :[s1]···[sn]→[s]∈Σ

Bf

where Bf is a set of equations u = v with u, v ∈ T ({f},X )−X , i.e., only symbol
f is allowed (and must) to occur in the equations belonging to Bf . Associativity
and commutativity axioms satisfy this requirement which can even be made to
work for identity axioms by perfoming the semantics-preserving transformation
described in [3]. Now we can give the main result of this section. For an OSRT
R = (Σ,B,R), we say that B preserves the R-normal forms if for all R-normal
forms t, if t =B u, then u is an R-normal form. B-coherence, which is a usual
requirement for working OSRTs, implies this property. By RC we denote the
OSRT obtained as the union of U(R, s) for all lhs’s conditions in the rules of R:

RC =
⋃

`→r if c

⋃
s→t∈c

U(R, s)

Theorem 4. A deterministic 3-OSRT R = (Σ,B,R) is normal if B preserves
the R-normal forms and RC is operationally terminating.

Example 4. Consider the functional module WEAK-NORM in Section 4. Here, RC
is the unconditional subOSRT consisting of the rules defining even. Note that
RC has no conditional rule and is clearly terminating, hence operationally ter-
minating. We conclude that, as claimed, WEAK-NORM is a normal OSRT.

Now we show that Theorem 4 does not characterize normality of OSRTs:

Example 5. Consider the following deterministic 1-CTRS:

a→ b f(x)→ x if c→ d, a→ c
b→ a

Every term f(t) is irreducible and also a normal form because the unsatisfiable
condition c→ d prevents the looping evaluation of the condition a→ c. However,
RC = {a→ b, b→ a} is not (operationally) terminating.

6 Conclusions and Future Work

The results presented in this paper can be viewed from two complementary per-
spectives: one more theoretical, and another more practical. At the theoretical
level, we have investigated parts of the terra incognita of conditional term rewrit-
ing by asking and providing precise answers to innocent-sounding questions such
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as: what is a normal form? How can normal forms be effectively computed? How
should the notion of weakly normalizing system be understood in the conditional
case? How can good executability properties be ensured for a theory? There is,
however, a more practical aspect to all these results. It consists in taking to heart
the idea that rewrite theories are an excellent framework for declarative program-
ming and formal specification and verification. From this second perspective, the
questions asked and answered include: what is the most general notion possible
of a conditional rule-based program for which normal forms can be computed?
What is the appropriate term normalization operational semantics? How can it
be made more efficient? What are the most general possible requirements under
which conditional functional programs can be given an initial algebra semantics
which fully agrees with their operational semantics?

Future work should further investigate proof methods and supporting tools
for all the properties discussed here. For example, although the characteriza-
tion of the operation termination of an OSRT in terms of quasi-decreasingness
offers in principle a complete proof method, we are currently investigating a far-
reaching generalization to the conditional case of the dependency pair method
that seems considerably more effective for mechanizing actual proofs. In general,
the development of intrinsic methods for proving both strong and weak opera-
tional termination of OSRTs seems both quite attractive and sorely needed.
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Abstract. The notion of operational termination captures nontermi-
nating computations due to subsidiary processes that are necessary to
issue a single ‘main’ step but which often remain ‘hidden’ when the
main computation sequence is observed. This highlights two dimensions
of nontermination: one for the infinite sequencing of computation steps,
and the other that concerns the proof of some single steps. For condi-
tional term rewriting systems (CTRSs), we introduce a new dependency
pair framework which exploits such bidimensional nature of conditional
rewriting (rewriting steps + satisfaction of the conditions as reachabil-
ity problems) to obtain a powerful framework for proving operational
termination of CTRSs.

Keywords: Conditional term rewriting, dependency pairs, program analysis,
operational termination.

1 Introduction

Assume that we have an interpreter for a logic L, i.e., an inference machine that,
given a theory S and a goal formula ϕ, will try to incrementally build a proof tree
for ϕ. Intuitively, we call S terminating if for any ϕ the interpreter either finds a
proof in finite time, or fails in all possible attempts also in finite time. The notion
of operational termination captures this fact, meaning that, given an initial goal,
an interpreter will either succeed in finite time in producing a closed proof tree, or
will fail in finite time, not being able to close or extend further any of the possible
proof trees, after exhaustively searching all such proof trees [11]. Operational
termination captures a ‘vertical’ dimension of the termination behavior which
is missing in the usual definition of termination of relations as well-founded, i.e.,
“without infinite reduction sequences” (the ‘horizontal’ dimension).

Available tools for proving operational termination of conditional rewriting
(e.g., AProVE [9] or VMTL [15]) rely on transformations U that map each oper-
ational termination problem for the CTRS R into a termination problem for a
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TRS U(R). Then, available methods for proving termination of U(R) are used.
However, this transformational approach has strong limitations.

Example 1. Consider the following CTRS R [14, Example 8]

h(d)→ c(a) (1)

h(d)→ c(b) (2)

f(k(a), k(b), x)→ f(x, x, x) (3)

g(x)→ k(y) if h(x)→ d, h(x)→ c(y) (4)

As reported in [14, Example 8], U(R) is not terminating. However, our methods
will show that R is operationally terminating.

Most termination tools for proving termination of (variants of) rewriting with
TRSs implement extensions or generalizations of the dependency pair framework
[6, 7]. The main idea is the following: the rules ` → r that are able to produce
infinite sequences are those whose right-hand side r contains (possibly recursive)
function calls. The calls associated to `→ r are represented as new rules u→ v,
that are collected in a new TRS DP(R) of dependency pairs (DPs);R and DP(R)
determine dependency chains whose finiteness characterize termination of R [1].

In this paper, we generalize this approach to deterministic 3-CTRSs, which
are the basis of rewriting-based languages like CafeOBJ [5] or Maude [3]. In
Section 3, we show that computations starting from minimal operationally non-
terminating terms can always follow a precise path where two sources of nonter-
mination can be identified: infinite sequences of rewriting steps (an horizontal
dimension), and infinitely many attempts to check the satisfaction of the con-
ditions in the rules (a vertical dimension). Section 4 introduces a definition of
dependency pairs that makes such a bidimensional nature of infinite compu-
tations explicit (we call them 2D-DPs). The corresponding notion of chain of
dependency pairs permits a completely independent treatment of both dimen-
sions of the termination problems. In Section 5, we adapt the Dependency Pair
Framework [6, 7] to mechanize proofs of operational termination of deterministic
3-CTRSs using 2D-DPs. In Example 8, we prove the operational termination of
R in Example 1. Section 6 discusses related work and concludes.

2 Preliminaries

Recall from [13] the usual notions and notations regarding term rewriting and
CTRSs. An (oriented) CTRS R is a pair R = (F , R) where F is a signature
and R a set of rules ` → r if s1 → t1, · · · , sn → tn, where the conditions
si → ti for 1 ≤ i ≤ n are intended to express the reachability of (instances of)
ti from (instances of) si. As usual, ` and r are called the left- and right-hand
sides of the rule, and the sequence s1 → t1, · · · , sn → tn (often abreviated to
c) is the conditional part of the rule. Rewrite rules ` → r if c are classified
according to the distribution of variables among l, r, and c, as follows: type 1,
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(Refl) t→∗R t

(Tran)

s→R u u→∗R t

s→∗R t

(Cong)

si →R ti
f(s1, . . . , si, . . . , sk)→R f(s1, . . . , ti, . . . , sk)

for all f ∈ F and 1 ≤ i ≤ k = ar(f)

(Repl)

σ(s1)→∗R σ(t1) . . . σ(sn)→∗R σ(tn)

σ(`)→R σ(r)
for all rule `→ r if s1 → t1 · · · sn → tn ∈ R

and substitution σ.

Fig. 1. Inference rules for conditional rewriting

if Var(r) ∪ Var(c) ⊆ Var(`); type 2, if Var(r) ⊆ Var(`); type 3, if Var(r) ⊆
Var(`)∪Var(c); and type 4, if no restriction is given. An n-CTRS contains only
rewrite rules of type m ≤ n. An oriented 3-CTRS R is called deterministic if
for each rule ` → r if s1 → t1, . . . , sn → tn in R and each 1 ≤ i ≤ n, we
have Var(si) ⊆ Var(l) ∪

⋃i−1
j=1 Var(tj). Given R = (F , R), we consider F as the

disjoint union F = C ] D of symbols c ∈ C (called constructors) and symbols
f ∈ D (called defined functions), where D = {root(l) | (l → r if c) ∈ R} and
C = F − D. Terms t ∈ T (F ,X ) such that root(t) ∈ D are called defined terms.
PosD(t) is the set of positions p of subterms t|p such that root(t|p) ∈ D.

We say that a proof tree T is closed whenever it is finite and contains no open
goals; it is well-formed if it is either an open goal, or a closed proof tree, or a
derivation tree of the form T1 ··· Tn

G where, for each j, Tj is itself well-formed,
and there is i ≤ n such that Ti is not closed, for any j < i Tj is closed, and each
of the Ti+1,. . . ,Tn is an open goal [11]. An infinite proof tree is well-formed if it
is an ascending chain of well-formed finite proof trees. Intuitively, well-formed
trees are the trees that an interpreter would incrementally build when trying to
solve one condition at a time from left to right. We write s→R t (resp. s→∗R t)
iff there is a well-formed proof tree for s→R t (resp. s→∗R t) using the inference
system in Figure 1. The CTRS R is called operationally terminating if no infinite
well-formed tree for a goal s→R t or s→∗R t exists.

3 Minimal operationally nonterminating terms in CTRSs

In the following, given a proof tree T , root(T ) is the formula (goal) at the root of
the tree, and left(G) is the left-hand side of goal G, where G is s→ t or s→∗ t
for some terms s and t.
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Definition 1 (Operationally nonterminating term). Let R be a CTRS.
A term t such that left(root(T )) = t for an infinite well-formed proof tree T is
called operationally nonterminating. If there is no infinite well-formed proof tree
T such that left(root(T )) = t, then we call t operationally terminating.

Definition 2 (Minimality). Let R be a CTRS. An operationally nontermi-
nating term t is called minimal if every strict subterm u of t (i.e., t � u) is
operationally terminating. Let Top-∞ be the set of minimal operationally nonter-
minating terms associated to R.

The following lemma shows that operationally nonterminating terms always con-
tain a minimal operationally nonterminatin term.

Lemma 1. Let R = (F , R) be a CTRS and s ∈ T (F ,X ). If s is operationally
nonterminating, then there is a subterm t of s (s� t) such that t ∈ Top-∞.

Proposition 1 below establishes that, for t ∈ Top-∞, there is a precise way for an
infinite computation to proceed. Roughly speaking, a rule `→ r if

∧n
i=1 si → ti

must be used to try a root-step on a reduct of t. Then, there is a minimal op-
erationally nonterminating subterm which is either (1) an instance of a non-
variable subterm of the right-hand side r of the rule (the infinite computa-
tion continues through the horizontal dimension), or (2) an instance of a non-
variable subterm of one of the left-hand sides si of a condition si → ti (the
infinite computation continues through the vertical dimension). Given a term t,
DSubterm(R, t) = {t |p | p ∈ PosD(t)} is the set of defined subterms of t with
respect to rules in R. Let DRules(R, t) be the set of (possibly conditional) rules
in R defining root(t) which depend on other defined symbols in R:

DRules(R, t) = {`→ r if c ∈ R | root(`) = root(t), r /∈ T (C,X )}

The dependency is captured as r /∈ T (C,X ) in the definition. For each v ∈
DSubterm(R, r), DRules(R, v) contains the rules that will (eventually) be used
in root steps in the immediate continuation of the infinite computation in the
horizontal dimension (starting from an instance of v). With regard to the vertical
dimension, given a term t, the set of ‘proper’ conditional rule defining root(t) is:

RulesC (R, t) = {`→ r if

n∧
i=1

si → ti ∈ R | root(`) = root(t),n > 0}

These are the rules involved in transitions of computations to upper levels. We
let URules(R, t) = DRules(R, t) ∪ RulesC (R, t) to be the set of used rules.

Proposition 1. Let R be a deterministic 3-CTRS. Then, for all t ∈ Top-∞,

there exist α : `→ r if
∧n
i=1 si → ti and a substitution σ such that t

>Λ−→∗ σ(`),
and there is a term v such that ` 7 v, σ(v) ∈ Top-∞ and either

1. α ∈ DRules(R, t), for all 1 ≤ i ≤ n, σ(si) is operationally terminating and
σ(si)→∗ σ(ti), and v ∈ DSubterm(R, r) is such that URules(R, v) 6= ∅, or
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2. α ∈ RulesC (R, t), there is i, 1 ≤ i ≤ n such that σ(sj) is operationally ter-
minating and σ(sj)→∗ σ(tj) for all j, 1 ≤ j < i, and v ∈ DSubterm(R, si)
is such that URules(R, v) 6= ∅.

Remark 1. In the following we do not impose that the domain of the substitu-
tions be finite. This is usual practice in the dependency pair approach, where a
single substitution is used to instantiate an infinite number of variables coming
from renamed versions of the dependency pairs (see below).

The next result formalizes a bidimensional view of infinite computations starting
from minimal operational nonterminating terms: they can be viewed as a path
over N× N, where each bidimensional point (xi, yi) is labeled with a rule αi.

Theorem 1. Let R = (F , R) be a deterministic 3-CTRS and t ∈ Top-∞. There
is a substitution σ and an infinite sequence {(xi, yi, αi)}i∈N of triples (xi, yi, αi) ∈
N× N×R such that, for all i ≥ 0, xi+1 + yi+1 = xi + yi + 1 and

1. x0 = y0 = 0, α0 ∈ URules(R, t) and t
>Λ−→∗ σ(`0).

2. For all i ≥ 0, and αi : `i → ri if
ni∧
j=1

sij → tij ∈ R, we have σ(`i) ∈

Top-∞; furthermore, there is a term vi such that `i 7 vi, σ(vi) ∈ Top-∞,

σ(vi)
>Λ−→∗ σ(`i+1), αi+1 ∈ URules(vi), and

(a) If xi+1 = xi + 1, then vi ∈ DSubterm(R, ri) and αi ∈ DRules(R, `i).
(b) If yi+1 = yi + 1, then there is j, 1 ≤ j ≤ ni s.t. vi ∈ DSubterm(R, s ij )

and αi ∈ RulesC (R, `i).

Example 2. Consider the following deterministic 3-CTRS R:

g(a)→ c(b) (5)

b→ f(a) (6)

f(x)→ y if g(x)→ c(y) (7)

Figure 2 shows the representation of the computation starting from f(a) ∈ Top-∞
according to Theorem 1, where the coordinates (xi, yi) have been left implicit.

Remark 2. The minimal sequence f(a) →(7) b →(6) f(a) →(7) b → · · · is also
possible for R in Example 2. This is because σ(g(x)) →∗ (c(y)) for rule (7)
is satisfied without any reduction on b if σ(x) = a and σ(y) = b. The implicit
assumption in the computation model of Proposition 1 is that only reachability
conditions σ(si)→∗ σ(ti) that are free of any infinite computation are important
to decide the application of a rule. This makes real sense in practice. And, of
course, it is harmless for the correctness or completeness of our approach.

According to our discussion, the following definition establishes the subsets of
rules that play a special role in computations starting from minimal terms.
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Fig. 2. Computations starting with f(a) for R in Example 2

Definition 3. The dependent usable rules for a CTRS R and t ∈ T (F ,X ) are:

DU(R, t) = DRules(R, t) ∪
⋃

(l→r if c)∈DRules(R,t)

⋃
v∈DSubterm(R,r)

DU(R•, v)

where R• = R−DRules(R, t). The set of minimal usable rules of R for t is:

MU(R, t) = URules(R, t) ∪
⋃

(l→r if c)∈DRules(R,t)

⋃
v∈DSubterm(R,r)

MU(R•, v)

Let MU(R, t) = ∅ if MU(R, t) is a TRS and MU(R, t) =MU(R, t) otherwise.

The following result shows that an infinite computation starting from a mini-
mal operationally nonterminating term can either start an infinite (horizontal)
rewrite sequence (possibly as part of the evaluation of one of the conditions of a
rule) or else take infinitely many ‘vertical ’ shifts over the conditions in the rules.

Corollary 1. Let R be a deterministic 3-CTRS and t ∈ Top-∞. Then, the se-
quence {(xi, yi, αi)}i≥0 associated to t according to Theorem 1 satisfies one of
the following conditions. Either

1. There is k ≥ 0, `k → rk if ck ∈ R, and an infinite ‘horizontal’ se-
quence {(xi, yk, αi)}i≥k such that for all i ≥ k, xi+1 = xi + 1 and αi ∈⋃
vk∈DSubterm(R,rk )

DU(R, vk), or

2. For each i ∈ N such that yi > 0 and yi = yi−1 + 1, there is ki > i
such that yki = yi + 1, and there is ji, 1 ≤ ji ≤ ni such that αki−1 ∈⋃
vi∈DSubterm(R,siji )

MU(R, vi), with nki−1 conditions in the conditional part

of the rule, satisfies nki−1 > 0.

In the following, we use Dependency Pairs to capture the nontermination be-
havior of computations with CTRSs.
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4 2D Dependency Pairs for CTRSs

Given a signature F and f ∈ F , we let f ] (often just capitalized, e.g., F ) be a
fresh symbol associated to f [1]. Let F ] = {f ] | f ∈ F}. For t = f(t1, . . . , tk) ∈
T (F ,X ), we write t] to denote the marked term f ](t1, . . . , tk). Our Dependency
Pairs for CTRSs are organized into two blocks. The horizontal block contains
those pairs that correspond to rules issuing root steps in infinite rewrite se-
quences (Proposition 1, item 1):

DPH (R) = {`] → v] if c | `→ r if c ∈ R, r � v, ` 7 v,DRules(R, v) 6= ∅}

The vertical block contains pairs for shifting the infinite computation to the
conditions of the rules (Proposition 1, item 2):

DPV (R) = {`] → v] if
k−1∧
j=1

sj → tj | `→ r if
n∧

i=1

si → ti ∈ R,

∃k, 1 ≤ k ≤ n, sk � v, ` 7 v,URules(R, v) 6= ∅}

The subterms in the conditions of the rules that originate the pairs in DPV (R)
are collected in the following set, which we use below:

VC(R) = {v | `→ r if

n∧
i=1

si → ti ∈ R, ∃k, 1 ≤ k ≤ n, sk�v, ` 7 v,URules(R, v) 6= ∅}

We also have pairs to connect pairs in DPV (R) (Corollary 1, item 2):

DPVH (R) =
⋃

w∈VC(R)

{`] → v] if c | `→ r if c ∈MU(R, w), r�v, ` 7 v,URules(R, v) 6= ∅}

Here is the definition of 2D-Dependency Pairs for a CTRS.

Definition 4 (2D-Dependency Pairs). The triple of 2D-dependency pairs
(2D-DPs) for the CTRS R is DP2D(R) = (DPH (R),DPV (R),DPVH (R)).

Example 3. Consider the following 3-CTRS R in [13, Example 7.1.5]

less(x, 0) → false (8)

less(0, s(x)) → true (9)

less(s(x), s(y)) → less(x, y) (10)

minus(0, s(y)) → 0 (11)

minus(x, 0) → x (12)

minus(s(x), s(y)) → minus(x, y) (13)

quotrem(0, s(y)) → pair(0, 0) (14)

quotrem(s(x), s(y)) → pair(0, s(x)) (15)

if less(x, y)→ true

quotrem(s(x), s(y)) → pair(s(q), r) (16)

if less(x, y)→ false, quotrem(minus(x, y), s(y))→ pair(q, r)

7



we have:

DPH (R) :

LESS(s(x), s(y)) → LESS(x, y) (17)

MINUS(s(x), s(y)) → MINUS(x, y) (18)

DPV (R) :

QUOTREM(s(x), s(y)) → LESS(x, y) (19)

QUOTREM(s(x), s(y)) → QUOTREM(minus(x, y), s(y)) (20)

if less(x, y)→ false

QUOTREM(s(x), s(y)) → MINUS(x, y) (21)

if less(x, y)→ false

DPVH (R) : ∅

Example 4. Consider the 3-CTRS R in Example 2. We have:

DPH (R) = {G(a)→ B}
DPV (R) = {F (x)→ G(x)}

DPVH (R) = {G(a)→ B,B → F (a)}

4.1 Characterizing operational termination of CTRSs using 2D-DPs

An essential property of the dependency pair method is that it provides a char-
acterization of termination of TRSsR as the absence of infinite (minimal) chains
of dependency pairs [1, 7]. As we prove below, this is also true for deterministic
3-CTRSs when 2D-DPs are considered. First, we have to introduce a suitable
notion of chain that can be used with 2D-DPs.

Definition 5 (Chain of pairs - Minimal chain). Let P,Q,R be CTRSs. A
(P,Q,R)-chain is a finite or infinite sequence of pairs ui → vi if

∧ni

j=1 sij →
tij ∈ P, together with a substitution σ satisfying that, for all i ≥ 1,

1. σ(sij)→∗R σ(tij) for all j, 1 ≤ j ≤ ni and

2. σ(vi)(→∗R ◦
Λ−→=
Q )∗σ(ui+1), where given a rule ` → r if

n∧
j=1

sj → tj ∈ Q,

we write s
Λ−→=
Q t if either s = t or there is a substitution θ such that s = θ(`),

t = θ(r) and θ(si) →∗R θ(ti) for all j, 1 ≤ j ≤ n (note that the satisfaction
of reachability constraints involves rewritings with R).

As usual, we assume that different occurrences of pairs do not share any vari-
able (renaming substitutions are used if necessary). A (P,Q,R)-chain is called
minimal if for all i ≥ 1, σ(vi) is R-operationally terminating.

Remark 3. Note that, if P and R are TRSs (without conditional rules) and
Q = ∅, Definition 5 specializes to the standard definition of chain of pairs in the
Dependency Pair Framework for TRSs [7, Definition 3].
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Now we provide a new characterization of operational termination of CTRSs.

Theorem 2 (Operational termination of CTRSs). A deterministic 3-
CTRS R is operationally terminating if and only if there is no infi-
nite (minimal) (DPH (R), ∅,R)-chain and there is no infinite (minimal)
(DPV (R),DPVH (R),R)-chain.

Example 5. Consider again the 3-CTRS R in Example 2 and the 2D-DPs in
Example 4. There is an infinite (DPV (R),DPVH (R),R)-chain:

B →DPVH (R) F (a)→∗R F (a)→DPV (R) G(a)→∗R G(a)→DPVH (R) B

witnessing that R is not operationally terminating.

5 Mechanizing proofs of operational termination using
2D-DPs

In the following definition, we speak of (P,Q,R, (ctrs, γ))-chains, for γ = a (resp.
γ = m) if arbitrary (resp. only minimal) chains are considered, in the sense of
Definition 5; similarly, according to Remark 3, we speak of (P,Q,R, (trs, γ))-
chains if P and R are TRSs and Q = ∅.

Definition 6 (CTRS problem). A CTRS problem τ is a tuple τ =
(P,Q,R, e), where P, Q and R are CTRSs, and e ∈ {ctrs, trs} × {a,m} is a
flag. The CTRS problem τ is finite if there is no infinite minimal (P,Q,R, e)-
chain. The CTRS problem τ is infinite if R is non-operationally terminating or
there is an infinite minimal (P,Q,R, e)-chain.

Definition 7 (CTRS processor). A CTRS processor Proc is a mapping from
CTRS problems into sets of CTRS problems. Alternatively, it can also return
“no”. A CTRS processor Proc is

– sound if for all CTRS problems τ , we have that τ is finite whenever
Proc(τ) 6= no and all CTRS problems in Proc(τ) are finite.

– complete if for all CTRS problems τ , we have that τ is infinite whenever
Proc(τ) = no or when Proc(τ) contains an infinite CTRS problem.

A (sound) processor transforms CTRS problems into (hopefully) simpler ones, in
such a way that the existence of an infinite chain in the original CTRS problem
implies the existence of an infinite chain in the transformed one. Here, ‘simpler’
usually means that fewer pairs are involved. Soundness is essential for proving
operational termination; completeness for proving non-operational termination.

Processors are used in a divide and conquer scheme to incrementally simplify
the original CTRS problem as much as possible, possibly decomposing it into
(a tree of) smaller pieces which are independently treated in the same way. The
trivial case comes when the set of pairs P becomes empty. Then, no infinite chain
is possible, and the CTRS problem is finite. Such positive answer is propagated
upwards in the decision tree. In some cases, a witness of an infinite chain is
obtained; then a negative answer “no” can be provided and propagated upwards.
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Theorem 3 (2D-DP-framework). Let R be a CTRS. We construct two trees
whose nodes are labeled with CTRS problems or “yes” or “no”, and whose roots
are labeled with (DPH (R), ∅,R, (ctrs, γ)) and (DPV (R),DPVH (R),R, (ctrs, γ)),
respectively (for γ ∈ {a,m}). For every inner node labeled with τ , there is a
sound processor Proc satisfying one of the following conditions:

1. Proc(τ) = no and the node has just one child that is labeled with “no”.
2. Proc(τ) = ∅ and the node has just one child that is labeled with “yes”.
3. Proc(τ) 6= no, Proc(τ) 6= ∅, and the children of the node are labeled with the

CTRS problems in Proc(τ).

If all leaves of both trees are labeled with “yes”, then R is operationally ter-
minating. If a leaf is labeled with “no” in some of the trees and all processors
used on the path from the root to this leaf are complete, then R is operationally
nonterminating.

Our first processor transfers any proof (or disproof) of the finiteness of a 2D-
DP problem to the standard DP framework for TRSs. In this way, all existing
processors for the DP-framework are now available for the 2D-DP framework.

Theorem 4 (Shift to DP-Framework). Let P and R be TRSs. Then,

ProcTRS (P, ∅,R, (ctrs, γ)) = {(P, ∅,R, (trs, γ))}

is a sound and complete processor.

5.1 Dependency Graph

Given a CTRS problem (P,Q,R, e), we provide a notion of graph that is able
to represent all infinite (minimal) chains of pairs as given in Definition 5.

Definition 8 (CTRS Graph of Pairs). Let P, Q and R be CTRSs. The
CTRS-graph G(P,Q,R, e) where e = (ctrs, γ) and γ ∈ {a,m} has P as the set
of nodes. Given α : u→ v if c, α′ : u′ → v′ if c′ ∈ P, there is an arc from α to
α′ if α, α′ is a minimal (P,Q,R, e)-chain for some substitution σ.

In general, the CTRS graph is not computable due to the reachability conditions

σ(v)(→∗R ◦
Λ−→=
Q )∗σ(u′) (for u → v if c ∈ P). Since the reachability problem

for (conditional) rewriting is undecidable, we approximate it. Following [8], we
approximate the CTRS-dependency graph as follows. Let tcapR be:

tcapR(x) = y if x is a variable, and

tcapR(f(t1, . . . , tk)) =

f([t1], . . . , [tk]) if f([t1], . . . , [tk]) does not unify
with ` for any `→ r if c in R

y otherwise

where y is intended to be a new, fresh variable that has not yet been used
and given a term s, [s] = tcapR(s). We assume that ` shares no variable with
f([t1], . . . , [tk]) (rename if necessary). With tcapR we approximate reachability
problems as unification. According to Definitions 5 and 8, we have the following.
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Definition 9 (Estimated connection). Let Q and R be CTRSs, θ be a sub-
stitution, and α : u → v if c to α′ : u′ → v′ if c′ be two conditional rules.
There is a (Q,R, θ)-connection from α to α′ if

1. tcapR(θ(v)) and u′ unify, or
2. tcapR(θ(v)) and u′′ unify with mgu θ′ for some α′′ : u′′ → v′′ if c′′ ∈ Q

and there is a (Q− {α′′},R, θ′)-connection from α′′ to α′.

Definition 10 (Estimated CTRS Graph of Pairs). Let P, Q and R be
CTRSs. The estimated CTRS-graph EG(P,Q,R, e) has P as the set of nodes.
There is an arc from α to α′ if there is a (Q,R, ε)-connection from α to α′.

Remark 4. If Q = ∅ and P,R are TRSs, Definitions 8 and 10 specialize to the
standard ones for TRSs [7, Definition 7] (and [8, Definition 12]).

Definition 11 (Graphs for a CTRS). Let R be a CTRS. The CTRS De-
pendency Graphs (CTRSDGs) for R are DGH(R) = G(DPH (R), ∅,R, e) and
DGV (R) = G(DPV (R),DPVH (R),R, e)

The following processor decomposes a CTRS problem (P,Q,R, e) with graph
G(P,Q,R, e) according to the strongly connected components (SCCs) of the
graph, i.e., cycles in G(P,Q,R, e) that are not contained in any other cycle.

Theorem 5 (SCC processor). Let P, Q and R be CTRSs. Then,

ProcSCC (P,Q,R, e) = {(P ′Q,R, e) | P ′ are the pairs of an SCC in G(P,Q,R, e)}

is a sound and complete processor.

With ProcSCC , we can separately work with the strongly connected components
of G(P,Q,R, e), disregarding other parts of the graph.

Example 6. For R in Example 3, DGH(R) and DGV (R) are shown in Figure 3.
With τH = (DPH (R), ∅,R), we have ProcSCC (τH) = {τH1, τH2}, where τH1 =
({(17)}, ∅,R) and τH2 = ({(18)}, ∅,R). For τV = (DPV (R),DPVH (R),R) we
get ProcSCC (τV ) = {τV 1}, where τV 1 = ({(20)}, ∅,R).

5.2 Use of orderings and argument filterings

The absence of infinite chains of pairs can be ensured by finding appropriate
relations that are compatible with the rules and the pairs. In this way, we obtain
smaller sets of pairs P ′ ⊆ P by removing the strict pairs, i.e., those pairs
u → v if

∧n
i=1 s

′
i → t′i ∈ P which are compatible with a well-founded relation

=. In the following, we provide precise definitions to achieve this.

Definition 12 (Conditional reduction triple). Let F be a signature. A con-
ditional reduction triple (&,�,=) consists of relations &,�,= on T (F ,X ) such
that & is a monotonic quasi-ordering and = is well-founded. Furthermore, we
require R ◦ =⊆= or = ◦R ⊆= for R ∈ {&,�} and & ◦ � ⊆& or & ◦ � ⊆�.
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Fig. 3. Estimated DGs for R in Example 3

An argument filtering π for a signature F is a mapping that assigns to each
k-ary function symbol f ∈ F an argument position i ∈ {1, . . . , k} or a (possibly
empty) list [i1, . . . , im] of argument positions with 1 ≤ i1 < · · · < im ≤ k [10].
The trivial argument filtering π>(f) = [1, . . . , k] (for each k-ary symbol f ∈ F)
is the argument filtering which does nothing. The signature Fπ of symbols with
filtered arguments consists of all function symbols f ∈ F such that π(f) is
some list [i1, . . . , im], where, in Fπ, the arity of f is m. As usual, we give the
same name to the version of f ∈ F that belongs to Fπ. An argument filtering π
induces a mapping from T (F ,X ) to T (Fπ,X ), also denoted by π, which removes
subterms:

π(t) =

 t if t is a variable
π(ti) if t = f(t1, . . . , tk) and π(f) = i
f(π(ti1), . . . , π(tim)) if t = f(t1, . . . , tk) and π(f) = [i1, . . . , im]

Argument filterings provide a simple way to remove parts of the syntactic struc-
ture of a rule. In this way, we obtain simpler rules that are easier to compare.

Theorem 6 (Reduction triple processor). Let P, Q, and R be CTRSs, π be
an argument filtering and (&,�,=) be a conditional reduction triple such that:

1. For all `→ r if
n∧
i=1

si → ti ∈ R and substitutions σ, if σ(π(si)) & σ(π(ti))

for all 1 ≤ i ≤ n, then σ(π(`)) & σ(π(r)).

2. For all u→ v if
n∧
i=1

ui → vi ∈ Q and substitutions σ, if σ(π(ui)) & σ(π(vi))

for all 1 ≤ i ≤ n, then σ(π(u)) ./ σ(π(v)) for some ./ ∈ {&,�,=}.
3. For all u→ v if

n∧
i=1

ui → vi ∈ P and substitutions σ, if σ(π(ui)) & σ(π(vi))

for 1 ≤ i ≤ n, then σ(π(u)) ./ σ(π(v)) for some ./ ∈ {&,�,=}.

Let P= (Q=) be the set of rules u→ v if
n∧
i=1

ui → vi ∈ P (u→ v if
n∧
i=1

ui →

vi ∈ Q) satisfying that for all substitutions σ, σ(π(u)) = σ(π(v)) (resp.

12



σ(π(u)) = σ(π(v))) holds whenever σ(π(ui)) & σ(π(vi)) (resp. σ(π(ui)) &
σ(π(vi))) holds for all 1 ≤ i ≤ n. Then,

ProcRT (P,Q,R, e) = {(P − P=,Q−Q=,R, e)}

is a sound and complete processor.

Example 7. Consider the CTRS R in Example 3 and the CTRS problems τH1,
τH2 and τV 1 in Example 6. We apply ProcRT to those problems using the same
reduction triple (≥,≥, >) induced by the polynomial interpretation

[false] = 0 [true] = 0 [0] = 0 [s](x) = x+ 1
[less](x) = 0 [minus](x, y) = x [pair](x, y) = 0 [quotrem](x, y) = 0

[LESS](x, y) = x [MINUS](x, y) = x [QUOTREM](x, y) = x

by s ≥ t if [s] ≥ [t] and s > t if [s] > [t]. We have:

[less(x, 0)] = 0 ≥ 0 = [false]
[less(0, s(x))] = 0 ≥ 0 = [true]

[less(s(x), s(y))] = 0 ≥ 0 = [less(x, y)]
[minus(0, s(y))] = 0 ≥ 0 = [0]

[minus(x, 0)] = x ≥ x = [x]
[minus(s(x), s(y))] = x+ 1 ≥ x = [minus(x, y)]
[quotrem(0, s(y))] = 0 ≥ 0 = [pair(0, 0)]

[quotrem(s(x), s(y))] = 0 ≥ 0 = [pair(0, s(x))]
[quotrem(s(x), s(y))] = 0 ≥ 0 = [pair(s(q), r)]

[LESS(s(x), s(y))] = x+ 1 > x = [LESS(x, y)]
[MINUS(s(x), s(y))] = x+ 1 > x = [MINUS(x, y)]

[QUOTREM(s(x), s(y))] = x+ 1 > x = [QUOTREM(minus(x, y), s(y))]

Since we do not use the conditions to prove the compatibility of the ordering
with the rules, we omit them in the example. This proves proves τH1, τH2 and
τV 1 finite. Thus, R is operationally terminating.

Theorem 7 (Unsatisfiable rules). Let P, Q, and R be CTRSs, π be an ar-
gument filtering and (&,�,=) be a conditional reduction triple such that:

1. For all `→ r if
n∧
i=1

si → ti ∈ R and substitutions σ, if σ(π(si)) & σ(π(ti))

for all 1 ≤ i ≤ n, then σ(π(`)) & σ(π(r)).

2. For all u→ v if
n∧
i=1

ui → vi ∈ Q and substitutions σ, if σ(π(ui)) & σ(π(vi))

for all 1 ≤ i ≤ n, then σ(π(u)) ./ σ(π(v)) for some ./ ∈ {&,�,=}.
3. For all u→ v if

n∧
i=1

ui → vi ∈ P and substitutions σ, if σ(π(ui)) & σ(π(vi))

for all 1 ≤ i ≤ n, then σ(π(u)) ./ σ(π(v)) for some ./ ∈ {&,�,=}.

Let P= (Q=, R=) be the set of rules u → v if
nP∧
i=1

ui → vi ∈ P (u →

v if
nQ∧
j=1

uj → vj ∈ Q, ` → r if
nR∧
k=1

sk → tk ∈ R) satisfying that for all

13



substitution σ, there is i, 1 ≤ i ≤ nP (j, 1 ≤ j ≤ nQ, k, 1 ≤ k ≤ nR) such that
σ(π(vi)) = σ(π(ui)) (resp. σ(π(vj)) = σ(π(uj)), σ(π(tk)) = σ(π(sk))) Then,

ProcUR(P,Q,R, e) = {(P − P=,Q−Q=,R−R=, e)}

is a sound and (if R= = ∅ or e = (ρ, a)) complete processor.

Example 8. For R in Example 1, DPH (R) = {F (k(a), k(b), x) → F (x, x, x)},
and DPV (R) = DPVH (R) = ∅. For the initial CTRS problem
(DPH (R), ∅,R, (ctrs,m)), the following interpretation:

[a] = 0 [b] = 0 [c](x) = 0 [d] = 1 [f ](x, y, z) = 0
[g](x) = 0 [h](x) = 0 [k](x) = 0 [F ](x, y, z) = 0

can be used to generate a triple (≥,≥, >) which can be used to prove R op-
erationally terminating. Since [h(x)] = 0 and [d] = 1, we have [d] > [h(x)].
With ProcUR, we can remove rule (4) from R. The new CTRS problem
(DPH (R), ∅,R′)}, (ctrs,m)), where R′ = R − {(4)}, satisfies the conditions in
Theorem 4 for a shift to a DP problem τtrs = (DPH (R), ∅,R′, (trs,m)) that
can then be solved by using any processor for TRSs. For instance, the forward
instantiation processor [7, Definition 28] can be used to prove finiteness of τtrs.

6 Related work and conclusions

To the best of our knowledge, this is the first correct and complete characteriza-
tion of operational termination of deterministic 3-CTRS which is based on the
notion of dependency pair. The notion of minimal operationally nonterminating
term and the properties explored here (Section 3) are also new in the literature.

The recent Conditional Dependency Pairs (CDPs) by Nakamura et al. [12]
apply to a restricted subclass of 1-CTRSs: the condition c in the 1-rules (` →
r if c) considered in [12] is a term rather than a sequence s1 → t1, . . . , sn → tn.
An instance σ(c) of condition c is satisfied if and only if σ(c)→∗ true. For the 1-
CTRSs considered in [12], our proposal generates a subset of the pairs considered
in [12, Definition 3.1], i.e., DPH (R) ∪ DPV (R) ∪ DPVH (R) ⊆ CDP (R). Often,
the inclusion is strict due to our more restrictive generation of pairs. Their notion
of chain ([12, Definition 3.2]) is also different to our Definition 5.

As remarked in the introduction, existing tools for proving termination of
conditional TRSs currently use transformation techniques. We are not aware of
any implementation of direct methods. The transformation which is typically
used for this purpose is U in [13, Definition 7.2.48]. This transformation is not
complete, however. For instance, U(R) is not terminating for R in Example 1,
but we proved that R is operationally terminating in Example 8. Furthermore,
when U(R) is terminating, tools may fail to find a proof. This is often due to
the loss of information introduced by transformations, and also to the presence
of new symbols and rules that prevent the search process from finding a proof.
The techniques presented in this paper have been included as part of the tool
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mu-term3 [2]. The first benchmarks of existing examples in the literature are
very positive and show that the 2D-DP framework permits simple and fast proofs
like the ones in the examples of this paper. This will also make possible to
have these techniques available to tools like MTT [4], which use mu-term as a
backend for achieving proofs of operational termination of more general theories
like membership equational programs or order-sorted rewrite theories. This will
require the extension of the techniques presented here to the case of order-sorted
conditional rewrite theories with types and subtypes, and where rewriting can
take place modulo axioms B. This is envisaged as an interesting subject for
future work.
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Abstract. Modularity has been recognised as a problematic issue of
programming language semantics, and various semantic frameworks have
been designed with it in mind. Reusability is another desirable feature
which, although not the same as modularity, can be enabled by it. The
K Framework, based on Rewriting Logic, has good modularity support,
but reuse of speci�cations is not as well developed.

The PLanCompS project is developing a framework providing an open-
ended collection of reusable components for semantic speci�cation. Each
component speci�es a single fundamental programming construct, or
`funcon'. The semantics of concrete programming language constructs is
given by translating them to combinations of funcons. In this paper, we
show how this component-based approach can be seamlessly integrated
with the K Framework. We give a component-based de�nition of CinK
(a small subset of C++), using K to de�ne its translation to funcons as
well as the (dynamic) semantics of the funcons themselves.

1 Introduction

Even very di�erent programming languages often share similar constructs. Con-
sider OCaml's conditional `if E1 then E2 else E3' and the conditional oper-
ator `E1 ? E2 : E3' in C. These constructs have di�erent concrete syntax but
similar semantics, with some variation in details. We would like to exploit this
similarity when de�ning formal semantics for both languages by reusing parts of
the OCaml speci�cation in the C speci�cation. With traditional approaches to
semantics, reuse through `copy-paste-and-edit' is usually the only option that is
available to us. By default, this is also the case with the K Framework [9,13].
This style of speci�cation reuse is not systematic, and prone to error.

The semantic framework currently being developed by the PLanCompS
project1 provides fundamental constructs (funcons) that address the issues of
reusability in a systematic manner. Funcons are small semantic entities which
express essential concepts of programming languages. These formally speci�ed
components can be composed to capture the semantics of concrete program-
ming language constructs. A speci�cation of Caml Light has been developed as
an initial case study [3] and a case study on C# is in progress.

1 http://www.plancomps.org/

http://www.plancomps.org/
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For example, the funcon if-true can be used to specify OCaml's conditional
expression. Semantics is given by de�ning a translation from the concrete con-
struct to the corresponding funcon term:

Jif E1 then E2 else E3K = if-true(JE1K, JE2K, JE3K)

Since the conditional operator in C uses integer valued expressions as the
condition, its translation will re�ect this:

JE1 ? E2 : E3K = if-true(not(equal(JE1K, 0)), JE2K, JE3K)

We could also de�ne an if-non-zero funcon that would match the C-
conditional semantics exactly. However, the translation using if-true is so simple
that there wouldn't be much advantage in doing so. We can reuse the if-true

funcon, and with it, its semantic de�nition. This way, we also make the di�erence
between the OCaml and C conditional construct transparent. Section 2 provides
more information on funcons.

PLanCompS uses MSOS [10], a modular variant of structural operational
semantics [11], to formally de�ne individual funcons. However, the funcon ap-
proach can be seamlessly integrated with other su�ciently modular speci�cation
frameworks. We have tested the use of funcons with the K Framework by giving
a speci�cation of CinK [8,9], a pedagogical subset of C++. We have de�ned both
the translation of CinK to funcons and the semantics of the funcons using K's
rewrite rules. The complete prototyped speci�cation is available online.2 Also in-
cluded are the CinK test programs which we have used to test our speci�cation.
Interested readers may run these programs themselves using the K tool.

In this paper, we present our speci�cation of the CinK translation (Section 3)
and illustrate the de�nition of the semantics of funcons involved in it (Section 4).
Section 5 o�ers an overview of related work and alternative approaches. We
conclude and suggest directions of future work in Section 6.

2 Fundamental Constructs

As mentioned in the Introduction, the PLanCompS project is developing an
open-ended collection of fundamental programming constructs, or `funcons'.
Many funcons correspond closely to simpli�ed programming language constructs.
However, each funcon has �xed syntax and semantics. For example, the funcon
written assign(E1,E2) has the e�ect of evaluating E1 to a variable, E2 to a value
(in any order), then assigning the value to the variable; it is well-typed only if E1
is of type variables(T) and E2 is of type T. In contrast, the language construct
written `E1 = E2' may be interpreted as an assignment or as an equality test (and
its well-typedness changes accordingly) depending on the language.

The syntax or signature of a funcon determines its name, how many argu-
ments it takes (if any), the sort of each argument, and the sort of the result.
The following computation sorts re�ect fundamental conceptual and semantic
distinctions in programming languages.

2 http://cs.swan.ac.uk/~csfvesely/wrla2014/

http://cs.swan.ac.uk/~csfvesely/wrla2014/
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� The sort Comm (commands) is for funcons (such as assign(E1,E2)) that are
executed only for their e�ects; on normal termination, a command computes
the �xed value skip.

� The sort Expr (expressions) is for funcons (such as stored-value(E) and
bound-value(I)) that compute values of sort Values.

� The sort Decl (declarations) is for funcons (such as bind-value(I,E)) that
compute environments of sort Environments, which represent sets of bindings
between identi�ers and values.

All computation sorts include their sorts of computed values as subsorts: a value
takes no steps at all to compute itself.

One of the aims of the PLanCompS project is to establish an online repository
of funcons (and data types) for anybody to use `o�-the-shelf' as components of
language speci�cations. The project is currently testing the reusability of existing
funcons and developing new ones in connection with some major case studies
(including Caml Light, C#, and Java). Because individual funcons are meant
to represent fundamental concepts in programming languages, many funcons
(expressing, e.g., sequencing, conditionals, variable lookup and dereferencing)
have a high potential for reuse. In fact, many funcons used in the Caml Light
case study appear in the semantics of CinK presented in the following section.

The nomenclature and notation for the existing funcons are still evolving,
and they will be �nalised only when the case studies have been completed, in
connection with the publication of the repository. Observant readers are likely
to notice some (minor) di�erences between the funcon names used in this paper
and in previous papers (e.g. [3]).

Regardless of the details of funcon notation, funcons can be algebraically
composed to form funcon terms, according to their argument sorts (strictly lifted
to corresponding computation sorts) and result sorts. Well-formedness of funcon
terms is context-free: assign(E1,E2) is a well-formed funcon term whenever E1

and E2 are well-formed funcon terms of sort Expr. In contrast, well-typedness
of funcon terms is generally context-sensitive. For example, the funcon term
assign(bound-value(I),42) is well-typed only in the scope of a declaration that
binds I to an integer variable. Dynamic semantics is de�ned for all well-formed
terms; execution of ill-typed terms usually fails.

The composability of funcons does not depend on features such as whether
they might have side e�ects, terminate abruptly, diverge, spawn processes, inter-
act, etc. This is crucial for the reusability of the funcons. The semantics of each
funcon has to be speci�ed without regard to the context in which it might be
used, which requires a highly modular speci�cation framework. Funcon speci�-
cations have previously been given in MSOS, Rewriting Logic, ASF+SDF, and
action notation. Here, we explore specifying funcons in K, following Ros,u.3

A component-based semantics of a programming language is speci�ed by a
context-free grammar for an abstract syntax for the language, together with
a family of inductively speci�ed functions translating abstract syntax trees to

3 k/examples/funcons in the stable K distribution at http://www.kframework.org

http://www.kframework.org
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funcon terms. The static and dynamic semantics of a program is given by that of
the resulting funcon term. As mentioned above, funcons have �xed syntax and
semantics. Thus, evolution of a language is expressed as changes to translation
functions. If the syntax or semantics of the programming language changes, the
de�nition of the translation function has to be updated to re�ect this.

Tool support for translating programs to funcon terms, and for executing the
static and dynamic semantics of such terms, has previously been developed in
Prolog [2], Maude [1] and ASF+SDF. We now present our experiment with K,
focusing on dynamic semantics.

3 CinF: a Funcon Speci�cation of CinK

This section presents an overview of our CinK speci�cation using funcons. We
include examples from the K sources of the speci�cation. A selection of de�nitions
of funcons involved in the speci�cation can be found in Section 4.

CinK is a pedagogical subset of C++ [8,9] used for experimentation with
the K Framework. The original report [8] presents the language in seven it-
erations. The �rst speci�es a basic imperative language; subsequent iterations
extend it with threads, model-checking, references, pointers, and unidimensional
and multi-dimensional arrays. Our speci�cation starts with only an expression
language which we extend with declarations, statements, functions, threads, ref-
erences, and pointers. The extensions follow the order of the CinK iterations;
however, we omit arrays and support for model-checking.

The grammar which we have used for our speci�cation is a simpli�ed gram-
mar matching CinK derived from the C++ grammar found in the standard [7,
Appendix A].

We invite the reader to compare our speci�cation by translation to funcons
with the original K speci�cation of CinK in [8]. Our hope is that our trans-
lation functions, together with the suggestive naming of funcons, give a rough
understanding of the semantics of language constructs, even before looking at
the semantics of funcons themselves.

3.1 Simple Expressions

To give semantics for expressions we use the translation function evaluateJ_K
: Expression → Expr. It produces a funcon term (of sort Expr) which, when
executed, evaluates the argument expression.

De�nitions for arithmetic expressions in CinK can be given very straightfor-
wardly using data operations, which all extend to strict funcons on Expr. For
example, semantics of the multiplication operator is expressed as the application
of the operation int-times to translations of operand expressions (numeric types
in CinK are limited to integers with some common operations):

rule evaluateJ E1:Expression * E2:Expression K ⇒
int-times(evaluateJ E1 K, evaluateJ E2 K)
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The `short-circuit and' operator can be readily expressed using a conditional
funcon, which is strict only in its �rst argument. The (obvious) K de�nition for
if-true can be found in Section 4.

rule evaluateJ E1:Expression && E2:Expression K ⇒
if-true(evaluateJ E1 K, evaluateJ E2 K, false)

We will use the generic if-true funcon later in this section to de�ne the condi-
tional statement.

3.2 Variables, Blocks and Scope

Bindings and Variables Semantics of declarations are given using the trans-
lation function elaborateJ_K : DeclarationSeq → Decl. The bind-value(I,V)

funcon binds the identi�er I to the value V, producing a `small' environment
containing only the newly created binding. To allocate a new variable of a spec-
i�ed type we use allocate. In Caml Light, bind-value was used for individual
name-value bindings in let-expressions, and allocate for reference data types
(e.g. `ref int').

rule elaborateJ T:TypeSpecifier I:Id ; K ⇒
bind-value(I, allocate(variables(typeJ T K)))

In relation to variables, CinK (following C++) distinguishes between two
general categories of expressions: lvalue- and rvalue-expressions. We express this
distinction by having di�erent translation functions for expressions in lvalue
and rvalue contexts: in addition to evaluateJ_K, we de�ne evaluate-lvalJ_K
and evaluate-rvalJ_K. The default function evaluateJ_K produces terms eval-
uating lvalue and rvalue expressions according to their category. When an
expression is expected to evaluate to an lvalue, we use evaluate-lvalJ_K,
which is unde�ned on rvalue expressions. When an rvalue is expected, we use
evaluate-rvalJ_K which produces terms evaluating all expressions into rvalues.
For lvalue expressions it returns the corresponding stored value, i.e., it serves as
an lvalue-to-rvalue conversion.

The addition of variables also a�ects our translations of simple expressions
and we need to update them. For example, numeric operations expect an rvalue
and thus the operands are now translated using evaluate-rvalJ_K.

To get the variable bound to an identi�er in the current environment we use
bound-value. A variable is dereferenced using stored-value. The semantics for
an identi�er appearing in an lvalue or rvalue context is thus:

rule evaluate-lvalJ I:Id K ⇒ bound-value(I)
rule evaluate-rvalJ I:Id K ⇒ stored-value(evaluate-lvalJ I K)

Blocks and Controlling Scope We distinguish between declaration state-
ments and other statements within a block using funcons scope and seq. The
funcon scope(D,X) evaluates X in the current environment overridden with the
environment computed by D. A declaration statement within a block produces a
new environment that is valid until the end of the block:
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rule executeJ BD:BlockDeclaration SS:StatementSeq K ⇒
scope(elaborateJ BD K, executeJ SS K)

The function executeJ_K : StatementSeq→ Comm translates statements to funcon
commands.

For all other kinds of statements in a block we use the simple sequencing
funcon seq(C,X) which executes the command C for side e�ects, then executes X.

rule executeJ BS:BlockStatement SS:StatementSeq K ⇒
seq(executeJ BS K, executeJ SS K)

To accumulate multiple declarations into one environment we use the accum

funcon. The funcon accum(D1,D2) is similar to scope, except its result is the
environment produced by elaborating declaration D2 and overriding the environ-
ment computed by D1 with it. This matches the semantics of a multi-variable
declaration:

rule elaborateJ T:TypeSpecifier ID:InitDeclarator ,
IDL:InitDeclaratorList ; K ⇒

accum(elaborateJ T ID ; K, elaborateJ T IDL ; K)

Note that accum is strict in its �rst argument, so the correct order of evaluation
is enforced.

Although Caml Light and CinK are quite di�erent languages, all the funcons
we needed so far for CinK here are reused from [3].

3.3 Assignment and Control Statements

The basic construct for updating variables in CinK/C++ is the assignment ex-
pression `E1 = E2', where the expression E1 is expected to evaluate to an lvalue,
to which the rvalue of E2 will be assigned. The value of the whole expression is
the lvalue of E1. Semantics of assignment is a rather simple translation using the
assign-giving-variable funcon:

rule evaluate-lvalJ E1:Expression = E2:Expression K ⇒
assign-giving-variable(evaluate-lvalJ E1 K, evaluate-rvalJ E2 K)

The funcon assign-giving-variable is strict in both arguments but not se-
quentially, so the arguments are evaluated in an unspeci�ed order. The funcon
assigns the value given as its second argument to the variable given as its �rst
argument and returns this variable as result.

CinK has boolean-valued conditions and the translations of while- and if-
statements are trivial:

rule executeJ while ( E:Expression ) S:Statement K ⇒
while-true(evaluate-rvalJ E K, executeJ S K)

rule executeJ if ( E:Expression ) S:Statement K ⇒
executeJ if ( E ) S else { } K

rule executeJ if ( E:Expression ) S1:Statement else S2:Statement K ⇒
if-true(evaluate-rvalJ E K, executeJ S1 K, executeJ S2 K)
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3.4 Function De�nition and Calling

We represent functions as abstraction values which wrap any computation as a
value. An abstraction can be passed as a parameter, bound to an identi�er, or
stored like any other value. To turn a funcon term into an abstraction, we use
the abstraction value constructor. The funcon apply applies an abstraction to
a value and the abstraction may refer to the passed value using given. Multiple
parameters can be passed as a tuple constructed via tuple value constructors.

A function call expression simply applies the abstraction to translated argu-
ments:

rule evaluate-rvalJ E1:Expression ( E2:Expression ) K ⇒
apply(evaluate-rvalJ E1 K, evaluate-paramsJ tuple(E2) K)

At this stage the language only supports call-by-value semantics and so each
parameter is evaluated to an rvalue before being passed to a function. The trans-
lation function evaluate-paramsJ_K (de�ned in terms of evaluate-rvalJ_K)
recurses through the parameter expressions and constructs a tuple.

rule evaluate-paramsJ tuple(E1:Expression , E2:Expression) K ⇒
tuple-prefix(evaluate-rvalJ E1 K, evaluate-paramsJ tuple(E2) K)

rule evaluate-paramsJ tuple(E:Expression) K ⇒
tuple-prefix(evaluate-rvalJ E K, tuple(.))

We have introduced the auxiliary abstract syntax tuple(E) to ensure that param-
eters separated by commas are not interpreted as a comma-operator expression.

We use patterns as translations of function parameters. Patterns themselves
are abstractions which compute an environment when applied to a matching
value. The pattern for passing a single parameter by value allocates a variable of
the corresponding type and binds it to an identi�er; then it assigns the parameter
value to the variable and returns the resulting environment.

rule patternJ T:TypeSpecifier I:Id K ⇒
abstraction(
accum(bind-value(I, allocate(variables(typeJ T K))),
decl-effect(assign(bound-value(I), given))))

Here we use the funcon decl-effect(C), which allows using a command C as a
declaration. It is an abbreviation for seq(C,bindings(.)).

Roughly, the semantics of a function de�nition is to allocate storage for an
abstraction of the corresponding type, bind it to the function name, and use it
to store an abstraction of the function body. Looking closer, the de�nition has
to deal with some more details:

rule elaborateJ T:TypeSpecifier I:Id ( PDL:ParameterDeclarationList )
CS:CompoundStatement K ⇒

decl-effect(assign(bound-value(I),
close(abstraction(
scope(match-compound(pattern-tupleJ PDL K, given),
catch(seq(executeJ CS K, throw(variant(returned, null))),
abstraction(original(returned, given))))))))
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Within the abstraction we use match-compound to match the passed value against
the pattern tuple constructed from individual parameter patterns. The transla-
tion of the function body is evaluated in the environment produced by this
matching (scope). Since a return statement abruptly terminates a function re-
turning a value, we represent return statements as exceptions containing a value
tagged with the atom `returned' and wrap the function body in a handler. The
catch funcon catches the exception and the handling abstraction retrieves the
value tagged with `returned', making it the return value of the whole function.
In case there was no return statement in the body of the function, we throw
a `returned' with null. Using close we form a closure of the abstraction with
respect to the de�nition-time environment. This imposes static scopes for bind-
ings.

As mentioned above, an explicit return statement translates to throwing a
value tagged with `returned'. A parameterless return throws a null.

rule executeJ return E:Expression; K ⇒
throw(variant(returned, evaluate-rvalJ E K))

rule executeJ return ; K ⇒ throw(variant(returned, null))

As a simple way of allowing self- and mutually recursive function de�nitions,
we pre-allocate function variables and bind all function names declared at the
top-level in a global environment using evaluate-forwardsJ_K. Then we com-
bine this environment with the elaboration of full function de�nitions and other
declarations. The main function is called in the scope of the global environment.

rule translateJ DS:DeclarationSeq K ⇒
scope(accum(elaborate-forwardsJ DS K, elaborateJ DS K),
effect(apply(evaluate-rvalJ main K, tuple(.))))

Because function identi�ers are already bound when the full function de�-
nition is elaborated, the full de�nition only assigns the abstraction to the pre-
allocated variable.

3.5 Threads

The second iteration in the original CinK report adds very basic thread support
to the language. Spawning a thread in CinK mimics the syntax of using the
std::thread class from the C++ standard library. However, instead of referring
to the standard library, semantics is given to the construct directly.

rule elaborateJ std::thread I1:Id ( I2:Id , E:Expression ) ; K ⇒
decl-effect(effect(spawn(close(abstraction(evaluateJ I2 (E) K)))))

The funcon spawn(A) creates a new thread in which the abstraction A will
be applied. In our case the abstraction contains a function call corresponding to
the parameters given to the thread constructor.

3.6 References

A reference in C++ is an alias for a variable, i.e., it introduces a new name for
an already existing variable.



FunKons: Component-Based Semantics in K 9

rule elaborateJ T:TypeSpecifier & I:Id = E:Expression K ⇒
bind-value(I, evaluate-lvalJ E K)

The expression E is expected to be an lvalue and we bind the resulting variable
to identi�er I. We are assuming that the input program is statically correct and
thus the variable will have the right type.

A reference parameter pattern simply binds I to the given variable.

rule patternJ T:TypeSpecifier & I:Id K ⇒
abstraction(bind-value(I, given))

Before introducing references, we evaluated function parameters to an
rvalue. Now the function evaluate-paramJ_K has to be rede�ned in terms of
evaluateJ_K instead of evaluate-rvalJ_K. Dereferencing is handled condition-
ally inside the parameter pattern.

rule patternJ T:TypeSpecifier I:Id K ⇒
abstraction(
accum(bind-value(I, allocate(variables(typeJ T K))),
decl-effect(assign(bound-value(I), current-value(given)))))

The funcon current-value dereferences its parameter if it is a variable (lvalue),
otherwise returns the parameter itself.

3.7 Pointers

The last CinK extension that we consider is the addition of pointers to the
language. Pointers are variables that hold addresses to other objects in memory.
A pointer declaration allocates a new object for holding locations (variables in
our terminology). Our semantics of declarations uses types to allocate storage
and a pointer declaration complicates matters. Here we present a simpli�ed
version only supporting single-level indirection. The complete version has to
deal with the notoriously complicated syntax for pointer declarations in C++.

rule elaborateJ T:TypeSpecifier * I:Id ; K ⇒
accum(bind-value(I, allocate(variables(typeJ T * K))))

rule typeJ T:TypeSpecifier * K ⇒ pointers(typeJ T K)

For our full speci�cation of pointers, we refer the reader to the online material.
Explicit dereferencing of a pointer variable amounts to retrieving the value

stored in the pointer. This value is the location to which the pointer is pointing.
This is expressed in our translation:

rule evaluate-lvalJ * E:Expression K ⇒
stored-value(evaluate-rvalJ E K)

A Note on Reuse The complete funcon de�nition of CinK available online uses 26
funcons. Of these, 19 have been previously used in the speci�cation of Caml Light
and only 7 were introduced in the present work, 3 of which are just abbreviations
for longer funcon terms. It is thus possible to conclude that the degree of reuse
of funcons between the Caml Light and CinK speci�cations is high, even if the
languages are quite di�erent.
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3.8 Con�guration

The con�guration of the �nal iteration of our speci�cation is as follows:

configuration
<T>
<threads>
<thread multiplicity="*">
<name> main:Threads </name>
<k> translateJ $PGM:TranslationUnit K </k>
<xstack> .List </xstack>
<context>
<env> .Map </env>
<given> no-value </given>

</context>
</thread>

</threads>
<store> .Map </store>
<output stream="stdout"> .List </output>
<input stream="stdin"> .List </input>

</T>

It appears that this con�guration could be generated from the K rules de�ning
the funcons used in our speci�cation of CinK. It is unclear to us whether inference
of K con�gurations from arbitrary K rules is possible, and whether it would be
consistent with the K con�guration abstraction algorithm.

3.9 Sequencing of Side E�ects

Following the C++ standard [7], CinK decouples side e�ects of some constructs
to allow delaying memory writes to after an expression value has been returned.
This gives compilers more freedom for performing optimisations and during code
generation. The newest C++ standard uses a relation sequenced before to de�ne
how side e�ects are to be ordered with respect to each other and to value evalu-
ation. The CinK speci�cation uses auxiliary constructs for side e�ects and uses
a bag to collect side e�ects. An auxiliary sequence point construct forces �nal-
isation of side e�ects in the bag. We are currently experimenting with funcons
to express decoupled side e�ects.

4 Funcons in K

We now illustrate our K speci�cation of the syntax and semantics of the funcons
and value types used in our component-based analysis of CinF. We specify each
funcon and value type in a separate module, to facilitate selective reuse. Since
modularity is a signi�cant feature of our speci�cations, we show some of the
speci�ed imports. The complete speci�cations are available online, together with
the K speci�cation of the translation of CinF programs to funcons.
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4.1 Expressions

Expressions compute values:

module EXPR imports VALUES
syntax Expr ::= Values
syntax KResult ::= Values

Our speci�cations of value types lift the usual value operations to expression
funcons, each of which is strict in all its arguments:

module INTEGERS imports EXPR ...
syntax Expr ::= "int-times" "(" Expr "," Expr ")" [strict]

| ...
syntax Values ::= Int
rule int-times(I1:Int, I2:Int) ⇒ I1 *Int I2
rule ...

In contrast, the conditional expression funcon if-true(E1,E2,E3) is strict only
in E1, and its rules involve unevaluated expression arguments:

module IF-TRUE-EXPR imports EXPR ...
syntax Expr ::= "if-true" "(" Expr "," Expr "," Expr ")" [strict(1)]
rule if-true(true, E:Expr, _) ⇒ E
rule if-true(false, _, E:Expr) ⇒ E

We specify a corresponding funcon for conditional commands separately, since it
appears that K modules cannot have parametric sorts (although the rules above
could be generalised to arbitrary K arguments).

4.2 Declarations

module DECL imports BINDINGS
syntax Decl ::= Bindings
syntax KResult ::= Bindings

Bindings are values corresponding to environments (mapping identi�ers to val-
ues), and come equipped with some operations that can be used to compose
declarations:

module BINDINGS imports DECL
syntax Bindings ::= bindings(Map)
syntax Decl ::= "bindings-union" "(" Decl "," Decl ")" [strict]
rule bindings-union(bindings(M1:Map), bindings(M2:Map)) ⇒
bindings(M1 M2)

We could have included the funcon bind-value(I,E) as an operation in the above
module, since it is strict in its only expression argument:

module BIND-VALUE imports ...
syntax Decl ::= "bind-value" "(" Id "," Expr ")" [strict(2)]
rule bind-value(I:Id, V:Values) ⇒ bindings(I |-> V)
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In contrast, the following funcons involve inspecting or (temporarily) changing
the current environment, which is assumed to be in an accompanying cell:

module BOUND-VALUE imports ...
syntax Expr ::= "bound-value" "(" Id ")"
rule <k> bound-value(I:Id) ⇒ V:Values ...</k>

<env>... I |-> V ...</env>

module SCOPE-COMM imports ...
syntax Comm ::= "scope" "(" Decl "," Comm ")" [strict(1)]
rule <k> scope(bindings(Env:Map), C:Comm) ⇒

reset-env(Env’, C) ...</k>
<env> Env’:Map ⇒ Env’[Env] </env>

module ACCUM imports ...
syntax Decl ::= "accum" "(" Decl "," Decl ")" [strict(1)]
rule <k> accum(bindings(Env:Map), D:Decl) ⇒

reset-env(Env’, bindings-union(bindings(Env), D)) ...</k>
<env> Env’:Map ⇒ Env’[Env] </env>

The auxiliary operation reset-env(M,K) preserves the result of K when resetting
the current environment to M:

module RESET-ENV
syntax K ::= "reset-env" "(" Map "," K ")" [strict(2)]
rule <k> reset-env(Env:Map, V’:KResult) ⇒ V’ ...</k>

<env> _:Map ⇒ Env </env>

The K argument could be of sort Expr, Decl or Comm. Since we do not
use reset-env directly in the translation of CinF to funcons, the fact that
reset-env(M,K) is (semantically) of the same sort as K is irrelevant.

4.3 Commands

module COMM imports SKIP
syntax Comm ::= Skip
syntax KResult ::= Skip

In contrast to the usual style in K speci�cations, commands compute the unique
value skip:Skip on normal termination, rather than dissolving. However, this
di�erence does not a�ect the translation of programs to funcons.

module SEQ-DECL imports ...
syntax Decl ::= "seq" "(" Comm "," Decl ")" [strict(1)]
rule seq(skip, D:Decl) ⇒ D

As with if-true, the funcon seq(C,X) is essentially generic in X, but its syn-
tax needs to be speci�ed separately for each sort of X. In contrast, the sort of
effect(X) is independent of the sort of X, and we can specify it generically:

module EFFECT imports COMM
syntax Comm ::= "effect" "(" K ")" [strict]
rule effect(_:KResult) ⇒ skip
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The speci�cation of while-true illustrates reuse between funcon speci�cations:

module WHILE-TRUE
imports COMM
imports EXPR
imports IF-TRUE-COMM
imports SEQ-COMM
syntax Comm ::= "while-true" "(" Expr "," Comm ")"
rule while-true(E:Expr, C:Comm) ⇒

if-true(E, seq(C, while-true(E, C)), skip)

4.4 Variables

Variables are themselves treated as values:

module VARIABLES imports ...
syntax Variables ::= "no-variable"
syntax Values ::= Variables

The speci�cations of the funcons for allocating, assigning to, and inspecting the
values stored in variables are much as usual, and we omit them here.

4.5 Functions

module FUNCTIONS imports ...
syntax Functions ::= "abstraction" "(" Expr ")"
syntax Values ::= Functions

The operation abstraction(E) constructs a value from an unevaluated expres-
sion E. It can then be closed to obtain static bindings for identi�ers in E (the K
speci�cation of the funcon close(E) is unsurprising, and omitted here).

module APPLY imports ...
syntax Expr ::= "apply" "(" Expr "," Expr ")" [strict]
rule apply(abstraction(E:Expr), V:Values) ⇒ supply(V, E)

The funcon supply(E1,E2) makes the value of E1 available as `given' in the
evaluation of E2:

module SUPPLY-EXPR imports ...
syntax Expr ::= "supply" "(" Expr "," Expr ")" [strict(1)]
rule <k> supply(V:Values, E:Expr) ⇒ reset-given(V’, E) ...</k>

<given> V’ ⇒ V </given>

module GIVEN imports ...
syntax Expr ::= "given"
rule <k> given ⇒ V:Values ...</k> <given> V </given>

The speci�cations of the funcons throw and catch assume that all cells used
to represent the current context of a computation are grouped under a unique
context cell. This gives improved modularity: the speci�cation remains the same
when further contextual cells are required. In other respects, the speci�cation
follows the usual style in the K literature, using a stack of exception handlers:
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module THROW imports ...
syntax Comm ::= "throw" "(" Expr ")" [strict]
rule <k> (throw(V’:Values) ~> _) ⇒ (apply(F, V’) ~> K) </k>

<xstack> (F:Functions, K:K, B:Bag) ⇒ . ...</xstack>
<context> _ ⇒ B </context>

module CATCH imports ...
syntax Expr ::= "catch" "(" Comm "," Expr ")" [strict(2)]
rule <k> (catch(C:Comm, F:Functions) ⇒ (C ~> popx)) ~> K </k>

<xstack> . ⇒ (F, K, B) ...</xstack>
<context> B:Bag </context>

syntax K ::= "popx"
rule <k> popx ⇒ . </k> <xstack> _:ListItem ⇒ . ...</xstack>

Funcons throw and catch have the most complicated de�nitions of all, yet
they are still modest in size and complexity.

5 Related Work

The work in this paper was inspired by a basic speci�cation of the IMP exam-
ple language in funcons using K by Ros,u. IMP contains arithmetic and boolean
expressions, variables, if- and while-statements, and blocks. The translation to
funcons is speci�ed directly using K rewrite rules without de�ning sorted trans-
lation functions. The example can be found in the stable K distribution.4

CinK, the sublanguage of C++ that we use as a case study in this paper, is
taken from a technical report by Lucanu and S, erb nut,  [8]. We have limited
ourselves to the same subset of C++, except that we omit arrays.

SIMPLE [12] is another K example language which is fairly similar to CinK.
The language is presented in two variants: an untyped and a typed one. The
de�nition of typed SIMPLE uses a di�erent syntax and only speci�es static
semantics. With the component-based approach, we specify a single translation
of language constructs to funcons. The MSOS of the funcons de�nes separate
relations for typing and evaluation; in K, it seems we would need to provide a
separate static semantics module for each funcon, since the strictness annotations
and the computation rules are di�erent.

K speci�cations scale up to real-world languages, as illustrated by Ellison's
semantics of C [4]. The PLanCompS project is currently carrying out major case
studies (C#, Java) to examine how the funcon-based approach scales up to large
languages, and to test the reusability of the funcon speci�cations.

Speci�cation of individual language constructs in separate K modules was
proposed by Hills and Ros,u [6] and further developed by Hills [5, Chapter 5].
They obtained reusable rules by inferring the transformations needed for the
rules to match the overall K con�guration. The reusability of their modules
was limited by their dependence on language syntax, and by the fact that the
semantics of individual language constructs is generally more complicated than
that of individual funcons.

4 http://www.kframework.org

http://www.kframework.org
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6 Conclusion

We have given a component-based speci�cation of CinK, using K to de�ne the
translation of CinK to funcons as well as the (dynamic) semantics of the funcons
themselves. This experiment con�rms the feasibility of integrating component-
based semantics with the K Framework.

The K speci�cation of each funcon is an independent module. Funcons are
signi�cantly simpler than constructs of languages such as CinK, and it was pleas-
antly straightforward to specify their K rules. However, we would have preferred
the K con�gurations for combination of funcons to be generated automatically.

Many of the funcons used here for CinK were introduced in the component-
based speci�cation of Caml Light [3], demonstrating their reusability. The names
of the funcons are suggestive of their intended interpretation, so the translation
speci�cation alone should convey a �rst impression of the CinK semantics. Read-
ers are invited to browse the complete K speci�cations of our funcons online, then
compare our translation of CinK to funcons with its direct speci�cation in K [8].

In continuation of this work, we are investigating funcons to specify deferred
side-e�ects and sequence points. We are also aiming to de�ne the static semantics
of funcons in K, so our translation would induce a static semantics for CinK.
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Abstract. We present in this paper an integration of CafeOBJ into
Full Maude. We have developed a grammar to parse any CafeOBJ spec-
ification, an intermediate language to store it, and a translation from
this representation into Maude specifications. This integration enhances
CafeOBJ functionality in many ways: our intermediate representation
has been developed mirroring Maude metalevel, and hence it allows
CafeOBJ users to analyze, modify and execute them; CafeOBJ speci-
fications can use Maude commands, including the LTL model checker;
other Full Maude tools can be easily combined with this extension; and
we provide an alternative implementation for CafeOBJ that can be easily
modified and extended. We present here the ideas for parsing and trans-
lating CafeOBJ specifications, and illustrate with examples the features
listed above.

Keywords: CafeOBJ, Full Maude, Integration, Metalevel

1 Introduction

CafeOBJ [9] is a language for writing formal specifications of models for wide
varieties of software and systems, and verifying properties of them. CafeOBJ
implements equational logic by rewriting and can be used as a powerful inter-
active theorem proving system. Specifiers can write proof scores [10] also in
CafeOBJ and perform proofs by executing these proof scores. CafeOBJ provides
several features to ease the specification of systems. These features include a
flexible mix-fix syntax, powerful and clear typing system with ordered sorts,
parameterized modules and views for instantiating the parameters, module ex-
pressions, operators for defining terms, and equations for defining the (possibly
conditional) equalities between terms and (possibly conditional) transitions for
specifying how a system evolves, among others. However, only a subset of the
CafeOBJ specifications, the equational part, is executable, where the operational
semantics is given by a conditional order-sorted term rewriting system.

Maude modules are executable rewriting logic specifications. Maude func-
tional modules [1, Chapter 4] are executable membership equational specifica-
tions that allow the definition of sorts; subsort relations between sorts; operators

? Research partially supported by Japanese project Kakenhi 23220002, MICINN Span-
ish project StrongSoft (TIN2012-39391-C04-04), and Comunidad de Madrid program
PROMETIDOS (S2009/TIC1465).



for building values of these sorts, giving the sorts of their arguments and result,
and which may have attributes such as being associative or commutative, for
example; memberships asserting that a term has a sort; and equations identify-
ing terms. Both memberships and equations can be conditional. Maude system
modules [1, Chapter 6] are executable rewrite theories. A system module can
contain all the declarations of a functional module and, in addition, declarations
for rules and conditional rules. An important feature of rewriting logic is that it
is reflective, that is, it can be faithfully interpreted in terms of itself. This fea-
ture is efficiently implemented in Maude by means of the META-LEVEL module [1,
Chapter 14], which allows us to use Maude modules and terms as usual data.

Full Maude [1, Part II] is an extension of Maude written in Maude itself.
Full Maude provides an even more powerful module algebra than the one avail-
able in Core Maude, features for parsing and printing Maude modules, and an
explicit module database. This database, combined with the meta-level features
explained above, allows us to introduce, remove, modify, and analyze the mod-
ules introduced by the user. Moreover, it is also possible to change the syntax of
existing features and add new kinds of modules and commands. Full Maude is
built on top of the Loop Mode [1, Chapter 17], which provides a mechanism to
read the modules and commands introduced by the user enclosed in parentheses,
and to show him the results generated by these commands. For these reasons,
Full Maude has been traditionally used as a basis for further extensions, either
for extra syntactic constructs, like the support for Real-Time modules [14], or
for new commands, like the narrowing search currently available for symbolic
execution [2, Chapter 16].

We present in this paper an extension of Full Maude to parse CafeOBJ
modules. The advantages obtained by using this tool, publicly available at http:
//maude.sip.ucm.es/cafe/, are:

– Maude modules can be imported by CafeOBJ modules, and vice versa. The
former is specially useful because Maude provides the predefined modules
SATISFACTION, LTL-SIMPLIFIER, and MODEL-CHECKER [1, Chapter 12], which
allow the user to define and prove LTL properties on CafeOBJ specifications.
We can also use the Loop Mode [1, Chapter 17] to develop interactive tools.
Moreover, we have defined an intermediate representation of CafeOBJ spec-
ifications that mirrors Maude metalevel, and have included functions to exe-
cute terms using these modules. That is, CafeOBJ modules can use CafeOBJ
modules and terms as standard data, just as several Maude applications have
been designed during the last years.

– Maude commands can be used on CafeOBJ specifications. This allows the
user to use, among others, the rew command to apply transitions (and nor-
malization via equations) to CafeOBJ terms (which cannot be done in the
current release of CafeOBJ) [1, Chapter 6]; the search command to perform
searches to check invariants [1, Chapter 12]; or the narrowing command for
symbolic execution [2, Chapter 16].

– It provides a new implementation of CafeOBJ. Our interface parses any
CafeOBJ module and accepts open-close environments, required to exe-

http://maude.sip.ucm.es/cafe/
http://maude.sip.ucm.es/cafe/


cute proof scores. We also process behavioral specifications, although the
current version of the tool does not distinguish between behavioral and non-
behavioral statements in the translation.
Moreover, this new implementation is more powerful in the sense that any
CafeOBJ programmer can add new syntax and commands. Although this
extension would require modifying the Maude code used by the interface, it
is so similar to CafeOBJ code that it can be easily understood. Actually, the
code has been designed with this feature in mind, so the syntax and parsing
modules are carefully distinguished and documented.
As an example of the syntax that can be added to CafeOBJ specifications,
our parser allows the user to use matching and rewrite conditions, as well
as using the nonexec and metadata attributes in equations and transitions.
Some of these features are available in the latest release of CafeOBJ, while
others are only supported by our implementation.

– It allows an easy integration of CafeOBJ specifications with any tool im-
plemented on top of Full Maude. We have currently integrated the Maude
Declarative Debugger and Test-case Generator [16] and the Constructor-
based Inductive Theorem Prover [11]. Our goal when integrating these tools
was to provide a minimum framework where CafeOBJ functions can be
tested, fixed when a wrong behavior is found, and proved correct with re-
spect to some properties, once we have confidence in the soundness of the
implementation. However, many other interesting tools can be integrated
using our approach.

– Finally, we provide a script to connect CafeOBJ with Full Maude in a trans-
parent way. We have implemented a Java class that transforms the source
code to meet the format required by Full Maude, which includes enclosing
the modules in parentheses, adding the ‘ to escape characters such as [, ],
or ,, and removing CafeOBJ comments, among others. In this way, it is not
necessary to modify the original CafeOBJ specifications to use the interface.

The rest of the paper is organized as follows: Section 2 briefly introduces
the related work, while Section 3 present the basic notions used throughout
the paper. Section 4 describes the parsing and translation process. Section 5
illustrates how to use the tool. Finally, Section 6 presents the concluding remarks
and outlines some lines of future work.

2 Related Work

The most similar examples to the present work are Full Maude itself [1, Part II],
Real-Time Maude [14], and the Maude Strategy Language [7]. The former de-
fines a complete syntax for Maude, extends it with support for object-oriented
modules, and provides commands to execute them. Similarly, Real-Time Maude
defines real-time modules and timed commands to execute them, while the Strat-
egy Language extends Maude modules with syntax for defining execution strate-
gies, as well as rewrite commands using these strategies. Our work follows the
same steps: it requires to define the syntax of our modules and commands,



parse them, translate them into Maude (in Full Maude this is only the case
for object-oriented modules, since standard modules do not require translation),
and execute the commands. Nonetheless, we take advantage of many features
developed for Full Maude and reused later [5] that greatly ease the parsing task.

Besides these tools, Maude has been used as a semantical framework to spec-
ify the semantics of several languages, such as LOTOS [17], CCS [17], or C [8].
These researches, as well as several other efforts to describe a methodology to
represent the semantics of programming languages in Maude, led to the rewrit-
ing logic semantics project [12], which presents a comprehensive compilation of
these works.

Another translation from CafeOBJ to Maude can be found in [18]. There,
the authors translate a subset of CafeOBJ specifications (more specifically, spec-
ifications of state machines standing for asynchronous distributed systems) into
Maude to perform model checking. Although they follow an approach similar to
the one in the current paper, it is focused in just one kind of specification, and
hence it lacks scalability.

3 Preliminaries

We present in this section some basic notions required throughout the rest of the
paper. First, we describe CafeOBJ and Maude by means of an example. Then,
we give some details about the Maude metalevel and Full Maude.

3.1 CafeOBJ and Maude

CafeOBJ (on the lefthand side) can define modules with loose semantics by using
the syntax mod*. For example, we can define a module ELT requiring the existence
of a sort Elt and an element of this sort, called mt, which is a constructor. This
kind of behavior is specified in Maude (on the righthand side) as a theory:

mod* ELT { fth ELT is

[Elt] sort Elt .

op mt : -> Elt {constr} op mt : -> Elt [ctor] .

} endfth

We can use this module to define a parameterized module with tight se-
mantics, with syntax mod!. The module LIST below indicates that it receives a
parameter X fulfilling the requirements stated by ELT. This module first defines
the sort List for lists. Similarly, we define a parameterized system module LIST

in Maude with syntax mod:

mod! LIST(X :: ELT) { mod LIST{X :: ELT} is

[List] sort List .

The constructors are defined, as shown above, with the keyword op and the
constr attribute. In this case the constructors are nil for empty lists and the
juxtaposition for placing an element of sort Elt in front of a list. Note the
different syntax for the sort Elt, qualified by the parameter X:



op nil : -> List {constr} op nil : -> List [ctor] .

op __ : Elt.X List -> List {constr} op __ : X$Elt List -> List [ctor] .

We can also define functions for lists. For example, composition of lists is
defined by distinguishing constructors on the first argument. Note that both
CafeOBJ and Maude follow the same syntax, although CafeOBJ allows some
extra syntactic sugar, including just-once on-the-fly declaration of variables:

var E : Elt.X var L : List var E : X$Elt . var L : List .

op _@_ : List List -> List op _@_ : List List -> List .

eq [c1] : nil @ L = L . eq [c1] : nil @ L = L .

eq [c2] : (E L) @ L’:List = eq [c2] : (E L) @ L’:List =

E (L @ L’) . E (L @ L’:List) .

Similarly, we can define the reverse function. This function uses the constant
mt from module ELT as the reverse of the empty list,1 while the reverse for bigger
lists is defined as usual by using the composition above:

op reverse : List -> List op reverse : List -> List .

eq [r1] : reverse(nil) = mt nil . eq [r1] : reverse(nil) = mt nil .

eq [r2] : reverse(E L) = eq [r2] : reverse(E L) =

reverse(L) @ (E nil) . reverse(L) @ (E nil) .

We can also define non-deterministic transitions. For example, we can com-
bine two lists by using the commutative operator mix and two transitions to
indicate that the next element is the first one of any of the lists (thanks to the
matching module commutativity):

op mix : List List -> List {comm} op mix : List List -> List [comm] .

trans [m1] : mix(nil, L) => L . rl [m1] : mix(nil, L) => L .

trans [m2] : mix(E L, L’) rl [m2] : mix(E L, L’)

=> E mix(L, L’) . => E mix(L, L’) .

} endm

Finally, in CafeOBJ we can use an on-the-fly view to instantiate LIST with
natural numbers:

mod! NAT-LIST {

pr(LIST(view to NAT {sort Elt -> Nat, op mt -> 0}))

}

On the other hand, we need to define an explicit view in Maude, and then
use this view to instantiate the module:

view Nat from Elt to NAT is

sort Elt to Nat .

op mt to 0 .

endv

mod NAT-LIST is

pr LIST{Nat} .

endm

1 This is a wrong definition that will be detected and fixed in Section 5.3.



3.2 Maude Metalevel and Full Maude

Exploiting the fact that rewriting logic is reflective [3], an important feature
of Maude is its systematic and efficient use of reflection through its predefined
META-LEVEL module [1, Chapter 14], a characteristic that allows many advanced
metaprogramming and metalanguage applications. In this work, we take advan-
tage of this feature to parse, store, transform, and execute CafeOBJ modules.

Full Maude [1, Part II] is an extension of Maude written in Maude itself. Full
Maude is built on top of the LOOP-MODE module [1, Chapter 17]. This module
allows input/output interaction by means of the [_,_,_] operator, which builds
terms of sort System and where the first argument corresponds to the input
introduced by the user, which must be enclosed in parentheses to be recognized;
the second one is a term of sort State that can be defined by the user for each
application; and the third one the output shown to the user.

In Full Maude this State is defined by using a class Database, which has
an attribute db standing for the Full Maude database. It also has attributes
for the current input, the output not processed yet, and the default module.
Essentially, the Loop Mode transforms the data introduced by the user into a
list of quoted identifiers; this list is then meta-parsed by Full Maude by using
the GRAMMAR module, which includes the syntax for modules and commands.
If this parsing is successful, then the term thus obtained is placed in the input

attribute. Different inputs are treated by using rules: modules and views are pro-
cessed to check whether they fulfill the semantic constraints required by Maude,
and then introduced into the database, while commands are executed by using
this database. The results must be placed in the output attribute; a rule will
move this data to the third component of the system.

Hence, our aims in this paper are to extend GRAMMAR to include CafeOBJ
syntax, process the new terms obtained from the parsing, and define commands
(and the appropriate rules) to deal with these new features.

4 Introducing CafeOBJ Modules into the Full Maude
Database

We present in this section the basic ideas to introduce CafeOBJ modules into
the Full Maude database. First, we describe how CafeOBJ modules are parsed.
Then we show how the obtained modules can be translated into Maude and used
by other tools implemented in Full Maude.

4.1 Parsing CafeOBJ Modules and Commands

As explained in the previous section, in order to parse CafeOBJ modules we have
to define its syntax, which will be used by Full Maude to create a term that will
be processed to obtain the actual module. We use the metarepresentation of
this module to extend the GRAMMAR metamodule from Full Maude, providing the
metamodule CafeGRAMMAR. It can be used to parse both Maude and CafeOBJ
modules and commands.



Basically, the syntax follows the CafeOBJ grammar in [13], although we
have extended it with some features that will be available in the next release of
CafeOBJ, such as the nonexec attribute or matching conditions. Following the
standard approach, we define a sort for each syntactic category in the grammar,
and operator declarations for each production rule. In this way, we specify a mod-
ule CafeMETA-SIGN where this information is contained. For example, the sort
@CafeTransDecl@2 stands for the definition of transitions in CafeOBJ syntax:

op trans_=>_. : @CafeBubble@ @CafeBubble@ -> @CafeEqDecl@ [ctor] .

op ctrans_=>_if_. : @CafeBubble@ @CafeBubble@ @CafeBubble@

-> @CafeTransDecl@ [ctor] .

op ctrans_=>_if_. : @CafeBubble@ @CafeBubble@ @CafeBubble@

-> @CafeTransDecl@ [ctor] .

Note that we use a special sort @CafeBubble@ to encapsulate terms that can
take any form. Basically, a bubble is any list of quoted identifiers, which must
be later parsed to obtain a valid term in the current module.

These declarations, as well as the rest of declarations for the statements
available in a CafeOBJ module, are defined as a subsort of a @CafeDeclList@,
which are composed by means of a juxtaposition operator:

subsorts @CafeImportDecl@ ... @CafeTransDecl@ < @CafeDeclList@ .

op __ : @CafeDeclList@ @CafeDeclList@ -> @CafeDeclList@ [assoc] .

For example, the transition m1 from Section 3 would be parsed as:

’trans_=>_.[’CafeBubble[’__[’‘[.Qid, ’’m1.Qid, ’‘], ’:, ’’mix.Qid,

’‘(.Qid, ’’nil.Qid, ’‘,, ’’L.Qid, ’‘).Qid]], ’CafeBubble[’’L.Qid]]

Note that the label is included in the bubble for the lefthand side; it must be
extracted before processing this side (analogously, attributes might appear in
the bubble for the righthand side). This term must be now parsed again in order
to check whether it fulfill the semantics constraints, e.g., the terms only use
variables previously defined, they are bound either in the lefthand side or in a
matching condition, and terms are built using existing operators. This second
phase returns, when the module is correct, a term of sort CafeModule:

op mod*_{__[_]____} : CafeHeader CafeImportList HiddenSortDecl SortSet

CafeSubsortDeclSet CafeOpDeclSet CafeEqSet CafeTransSet

-> CafeModule [ctor] .

Our definition of CafeOBJ modules uses the sorts Qid, Term, and Condition

from Maude metalevel to define the sorts used here. For example, transitions are
declared as follows:

op trans_=>_{_}. : Term Term CafeAttrSet -> CafeTrans [ctor] .

op ctrans_=>_if_{_}. : Term Term Condition CafeAttrSet -> CafeTrans [ctor] .

2 We follow the Full Maude convention and enclose sorts for parsing in @.



In this way, the transition m1 is represented as:

trans ’mix[’nil.List, ’L:List] => ’L:List {label:(’m1)} .

Once the final module has been obtained, it is stored in a database, which is
just a partial function from quoted identifiers (of sort Qid) to CafeModule. This
modules can be retrieved, modified, executed, and stored again, as we will see in
Section 5. Note that the current version of the tool does not support metasyntax
for views; they are just introduced as Maude views.

Regarding commands, we provide the syntax for open...close environ-
ments, which combine operator declarations (mainly constants) and equation
definitions with red commands to define proof scores [10], and specific commands
for dealing with CafeOBJ modules. In this case we create a module on-the-fly,
where the reductions take place.

4.2 Translating the Modules

Taking advantage of the similarities between the syntax and the semantics of
CafeOBJ and Maude, most of the transformations performed by our tool are
straightforward. Both languages have modules with loose semantics (called the-
ories in Maude), modules with tight semantics, parameterized modules, views to
instantiate these modules, equations, and transitions (rules in Maude) as main
features. From the Maude point of view there are some features that cannot
be translated into CafeOBJ, being the main one the membership axioms stat-
ing the members of a sort, because Maude implements membership equational
logic while the CafeOBJ type system is based on order sorted algebra. However,
the differences in this case are not important because we are interested in the
translation from CafeOBJ to Maude.

There are two important features in CafeOBJ that cannot be translated
into Maude. Both of them are related to the modules with loose semantics: (i)
these modules can be parameterized in CafeOBJ but cannot be parameterized
in Maude and (ii) these modules can be imported in any mode (being the modes
protecting, indicating that no junk and no confusion is added to the sorts;
extending, denoting that no confusion is allowed; and including, indicating
that there are no restrictions, see [1, Chapter 8] for details), while Maude theories
can only be imported in including mode. We have dealt with these restrictions
in a conservative way. First, we translate these modules, that should be Maude
theories, as modules (i.e., they have tight semantics), and a warning message is
shown. This change is harmless if our aim is to execute them or to use any of the
tools currently integrated (the declarative debugger and the CITP), but has two
disadvantages: (a) it might fail later, if this module is used as the target of a view,
and (b) other tools, not integrated yet, might distinguish between the different
kinds of modules. Similarly, we always translate the importation modes for these
modules as including, which is also fine in our case (the tools integrated thus
far use flattened modules) but might produce problems with other tools. The
user can force the tool to translate the modules without modifications with the
command strict translation on .).



There are also some other complex features that require a non-straightforward
translation. More specifically, the CafeOBJ syntax for views is much more flex-
ible than the one used by Maude: they can be defined on-the-fly and can be
used in an order different from the one specified in the parameterized module by
using the parameter name. The former is solved by creating explicit views with
fresh view identifiers, while the latter requires to manipulate the parameterized
module from the database to reorder the views.

Basically, our implementation defines a function cafe2maude, which takes a
CafeModule and returns a Maude Module:

op cafe2maude : CafeModule -> Module .

It uses auxiliary functions to translate each element in a CafeOBJ module.
For instance, transitions are translated into rules as follows:

op cafe2maude : CafeTrans -> Rule .

eq cafe2maude(trans T => T’ {AtS} .) = rl T => T’ [cafe2maude*(AtS)] . .

eq cafe2maude(ctrans T => T’ if C {AtS} .) = crl T => T’

if C [cafe2maude*(AtS)] . .

where cafe2maude* is an auxiliary function that translates the attributes.
As explained in Section 3.2, the connection between the Loop Mode and

the behavior of the tool is implemented by rules. We have defined a new class
CafeDatabase, subclass of Database, to take care of the translation and the new
commands:

sort CafeDatabaseClass .

subsort CafeDatabaseClass < DatabaseClass .

op CafeDatabase : -> CafeDatabaseClass [ctor] .

This class defines two new attributes: strict, which indicates whether the
translation is strict or not, and cafeDB, which contains the CafeOBJ database:

op strict :_ : Bool -> Attribute [ctor] .

op cafeDB :_ : CafeDB -> Attribute [ctor] .

4.3 Combining CafeOBJ and other Full Maude tools

Using the modules described in the previous sections, it is easy to modify any tool
built in Full Maude for Maude specifications and make it work with CafeOBJ
modules, given that they follow two standard principles:3

– They use a module extending GRAMMAR to parse their modules/commands. In
this case, it is enough to extend CafeGRAMMAR instead, and CafeOBJ modules
will be parsed.

3 Note that these changes will allow us to execute the tools. However, some theoretical
considerations may be required to prove that this execution is correct.



– They define a subclass of Database to process their modules/commands. We
have to modify this definition to extend CafeDatabase. It is also required
to initialize the attributes strict and cafeDB, so they can be used later.

To test the benefits of this approach we have already worked with the Maude
declarative debugger and test-case generator [16] and the Constructor-based In-
ductive Theorem Prover (CITP) [11]. The main problem of the integration is
that the output provided by the tool refers to the transformed Maude code.
Although this might be fine in some cases (e.g. the debugger refers to the label
of the wrong statement, so it is safe to use it, see Section 5.3 for details), in
some others it is interesting to refer to the original CafeOBJ module or just use
commands which are specifically defined for CafeOBJ users. In this case, some
extra changes are required, as shown in the next section for the CITP.

5 Connecting CafeOBJ and Maude

We present in this section how to use the most important features of our imple-
mentation. We first show how to use the metalevel representation of CafeOBJ.
Then, we describe the basic commands provided in the interface and how to
use the Maude Declarative Debugger and the Constructor-based Inductive The-
orem Prover. All the modules, scripts, and examples shown here are available at
http://maude.sip.ucm.es/cafe/.

5.1 Metaprogramming in CafeOBJ

We provide in the META-CAFE-SYNTAX module the syntax for CafeOBJ modules.
It follows the syntax in the predefined module META-LEVEL for Maude modules,
but uses specific syntax to follow CafeOBJ conventions. These modules are re-
trieved and inserted from/into the database with the functions getTopModule

and setTopModule. Note that, since these modules are stored in a specific at-
tribute of the CafeDatabase class, specifications using the database are not
completely transparent from Maude syntax:

op getTopModule : CafeDB Qid ~> CafeModule .

op setTopModule : CafeDB Qid CafeModule -> CafeDB .

Finally, these modules can be modified and executed by using the functions
in CAFE-META-LEVEL. It includes functions for accessing the different compo-
nents of a module, update them, and for executing terms in a given modules.
The current version of the tool provides the functions metaReduce, for applying
equations until a normal form is reached; metaRewrite, for applying transitions
given a bound in the number of transitions applied; and metaFrewrite, for fair
application of transitions given a bound in the number of transitions applied and
the maximum number of rewrites at each entitled position on each traversal of
a subject term (see [1, Chapter 14] for details):

http://maude.sip.ucm.es/cafe/


op metaReduce : Qid Term CafeDB Database -> ResultPair .

op metaRewrite : Qid Term Bound CafeDB Database -> ResultPair .

op metaFrewrite : Qid Term Bound Nat CafeDB Database -> ResultPair .

Note that these functions require the Maude database, since they might import
some Maude modules. They are implemented by building the corresponding flat
Maude module and then using the appropriate built-in Maude functions.

For example, we could define a function getCommOps extracting the com-
mutative operators from a CafeOBJ module by using an auxiliary function
filterCommOps that keeps the commutative operators from a set:

op getCommOps : CafeModule -> CafeOpDeclSet

eq getCommOps(CM) = filterCommOps(getOps(CM)) .

op filterCommOps : CafeOpDeclSet -> CafeOpDeclSet

eq filterCommOps(none) = none .

eq filterCommOps(COD CODS) = if isComm?(COD) then COD

else none fi filterCommOps(CODS) .

where isComm? is an auxiliary function that checks whether an operator is com-
mutative. Note that we allow operators with both the op definition and the
pred keyword. This function uses another auxiliary function containsComm?

which just traverses the attributes looking for comm:

pred isComm? : CafeOpDecl

eq isComm?(op Q : TyL -> Ty {AtS}) = containsComm?(AtS) .

eq isComm?(pred Q : TyL {AtS}) = containsComm?(AtS) .

pred containsComm? : CafeAttrSet

eq containsComm?(none) = false .

eq containsComm?(A AtS) = A == comm or containsComm?(AtS) .

5.2 Basic Commands

Once the files in the webpage have been downloaded and the paths have been
configured, and assuming the modules above are saved in a file called wrla.cafe,
we can start the tool by typing:

$ ./cafe2maude wrla.cafe

The cafe2maude script creates a temporary file generated by a Java appli-
cation. This file contains the original CafeOBJ modules modified in order to
be accepted by Full Maude (e.g. adding the parentheses enclosing modules and
views, removing CafeOBJ comments, and adding the ‘ character to the escape
characters such as { or }). Once the script is executed, the modules are intro-
duced into the Full Maude database and we can use any Maude command on
them. For example, the rew command uses transitions to evaluate terms. Note
that this command, as well as the one below, is not available in CafeOBJ:

Maude> (rew mix(1 3 nil, 2 4 nil) .)

result List : 1 2 3 4 nil



We can also use symbolic search to start with terms with variables and look
for substitutions that fulfill the conditions imposed by the search. For example,
we can look for the term required in the mix operator to obtain the result from
the rew command:

Maude> (search [1] mix(L:List, 2 4 nil) ~>! 1 2 3 4 nil .)

Solution 1

L:List --> 1 3 nil

No more solutions.

where the ! option indicates that we are looking for final terms and ~>! dis-
tinguishes the symbolic search from the standard one, performed with =>!. In
this case we obtain the substitution L:List --> 1 3 nil, indicating that we
needed this list to obtain the result.

Besides using Maude commands, we can also work with CafeOBJ specifica-
tions. For example, we can see the original module and execute proof scores.
Basically, proof scores are scripts defining an inductive proof, where constants
can be declared by means of operators and hypothesis by using equations. The
base and the inductive steps are proved by using the red command. For example,
we can prove the associativity of the _+_ function as follows:

open NAT + BOOL

ops i j k : -> Nat

red (0 + j) + k == 0 + (j + k) . -- base step

eq (i + j) + k = i + (j + k) . -- induction hypothesis

red (s(i) + j) + k == s(i) + (j + k) . -- inductive step

close

Once we load the file with this open-close environment, Maude executes the
red commands and provides the following result:

Processing open-close environment:

reduce(0 + j)+ k == 0 + j + k .

Result: true : Bool

reduce(s i + j)+ k == s i + j + k .

Result: true : Bool

5.3 Using the Declarative Debugger and Test-case Generator

To start this tool it is enough to download the script cdd, configure the paths,
and execute it with the files we want to test and debug. Then, we can use all
the commands described in http://maude.sip.ucm.es/debugging/ to test and
debug our CafeOBJ modules. For example, we can test the reverse function by
using the so called function coverage criterium, which generates ground test
cases that must use all the equations defined for reverse (r1 and r2) in all the
calls (the single call to this function is located in r2). This is done by using:

http://maude.sip.ucm.es/debugging/


Maude> (function coverage .)

Function Coverage selected

Maude> (test in NAT-LIST : reverse .)

1 test cases have to be checked by the user:

1. The term reverse(0 0 nil) has been reduced to 0 0 0 nil

All calls were covered.

That is, the call reverse(0 0 nil) uses both r1 and r2 for the recursive
call (r2 for the first call and r1 for the second one). Note that the result of this
call is unexpected, because it should also be 0 0 nil. Hence, this function is
buggy and must be debugged. We can do it by typing:

Maude> (invoke debugger with user test case 1 .)

Declarative debugging of wrong answers started.

This command starts the declarative debugger. Declarative debuggers find
bugs in programs by asking questions to the user, that must answer yes or no

(check the webpage above for more possible answers) until the bug is found.
Hence, the debugger presents the following question:

Is this reduction (associated with the equation r2) correct?

reverse(0 nil) -> 0 0 nil

Maude> (no .)

This result is erroneous for the same reasons explained above, so the user
answers no and the debugging session continues with the following questions:

Is this reduction (associated with the equation com2) correct?

(0 nil) @ 0 nil -> 0 0 nil

Maude> (yes .)

Is this reduction (associated with the equation r1) correct?

reverse(nil) -> 0 nil

Maude> (no .)

We answer yes for a correct composition but no for another application of
reverse. With this information the debugger is able to find the bug:

The buggy node is: reverse(nil) -> 0 nil

with the associated equation: r1

In fact, the equation r1 should return just nil. The questions asked during
the session correspond to the nodes of a tree representing the wrong computation.
This tree, which might be useful to the user to check the relations between the
calls, can also be shown.

5.4 Using the Constructor-based Inductive Theorem Prover

We have extended the CITP to work with CafeOBJ-like commands, hence ob-
taining a tool fully customized for CafeOBJ. This has been done by adding an



extra attribute language to the tool, which allows us to distinguish between
interfaces, while the underlying modules dealing with proofs are left unmodified.

The CITP allows the user to prove properties on CafeOBJ specifications. It
is started by the citp script. Since we want to prove properties on CafeOBJ
specifications, we have to indicate it with a specific command, which sets the
language attribute explained above to cafeOBJ, hence modifying the syntax
and the display options to work with CafeOBJ specifications:

Maude> (cafeOBJ language .)

CafeOBJ selected as current specification language.

Now we can introduce goals, which are depicted as equations or transitions.
For example, we can prove the associativity of list composition, using on-the-fly
declaration of variables from CafeOBJ, by typing:

Maude> (goal NAT-LIST |- eq L1:List @ (L2:List @ L3:List) =

(L1 @ L2) @ L3 ;)

============================ GOAL 1-1 ============================

< Module NAT-LIST is concealed ... end,

eq L1:List @(L2:List @ L3:List) = (L1:List @ L2:List)@ L3:List . >

unproved

INFO: an initial goal generated!

This goal can easily be proved by using induction on L1 and then applying
the default tactic with the auto command:

Maude> (set ind on L1:List .)

INFO: Induction will be conducted on L1:List

Maude> (auto .)

INFO: Goal 1-1 was successfully proved by applying tactic: SI CA CS TC IP

INFO: PROOF COMPLETED

It is also possible to state goals involving transitions. For example, we can
define the following trivial goal, which just uses the commutativity attribute:

Maude> (goal NAT-LIST |- trans mix(L:List, nil) => L ;)

============================ GOAL 1-1 ============================

< Module NAT-LIST is concealed ... end, trans mix(L:List,nil) => L:List . >

unproved

INFO: an initial goal generated!

Note that CafeOBJ syntax is used for both the goal and the displayed infor-
mation. This simple goal can be discarded by just using auto:

Maude> (auto .)

INFO: Goal 1-1 was successfully proved by applying tactic: SI CA CS TC IP

INFO: PROOF COMPLETED

Much more information on the CITP, including several other commands,
all of them now customized for CafeOBJ specifications, is described at http:

//www.jaist.ac.jp/~danielmg/citp.html.

http://www.jaist.ac.jp/~danielmg/citp.html
http://www.jaist.ac.jp/~danielmg/citp.html


6 Concluding Remarks and Ongoing Work

We have presented in this paper a tool to introduce CafeOBJ specifications into
the Full Maude database. This tool allows us to use Maude modules and com-
mands with CafeOBJ specifications, provides an implementation of a CafeOBJ
metalevel, and eases the task of connecting CafeOBJ specifications with tools
implemented on top of Full Maude. Using this feature we provide an environ-
ment where CafeOBJ specifications can be tested, debugged, and proved correct
by integrating the Maude Declarative Debugger and Test-case Generator and
the Constructor-based Inductive Theorem Prover.

We want to improve the implementation of the metalevel in two different
ways: first, we want to define the syntax for representing views, in such a way that
they can also be analyzed and modified. On the other hand, we are interested in
defining more execution commands: currently only metaReduce, metaRewrite,
and metaFrewrite are available, but several others can be implemented using
our translation for CafeOBJ specifications and the built-in commands in Maude
metalevel. Another interesting topic would be distinguish between behavioral
and non-behavioral specifications when translating and executing the modules.

We are currently working to extend our framework with the Maude Formal
Environment (MFE) [6]. This environment allows to check properties such as ter-
mination, confluence, and coherence on Maude specifications. It also includes the
Inductive Theorem Prover [4], a tool to prove inductive properties on equational
Maude specifications. Integrating this environment with CafeOBJ specifications
would allow us to check that the executability requirements hold.

We are also interested in integrating Real-Time Maude [14] in our frame-
work. This integration would be specially interesting for CafeOBJ users, since
several protocols, such as [15], has already been specified in CafeOBJ. However,
this integration is not straightforward, since it requires to extend the syntax of
CafeOBJ specifications with timed rules, as originally implemented for Maude.

Besides connecting more tools, we are also interested in extending the com-
mands for CafeOBJ. More specifically, we are interested in the t1 =(m,n)=> t2

predicate, which indicates that the term t2 is reachable from t1, with m the num-
ber of searched terms and n the depth of the search (both numbers can be set to
* to indicate that it is unbounded). This predicate, that is not documented and
allows several extra conditions to constrain the states, is similar to the search

command in Maude. It is interesting to implement this predicate, since it would
increment the amount of CafeOBJ commands supported by our interface while
providing a documented version in terms of Maude.
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14. P. C. Ölveczky and J. Meseguer. Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation, 20:161–196, 2007.

15. I. Ouranos, K. Ogata, and P. S. Stefaneas. Formal analysis of TESLA protocol in
the Timed OTS/CafeOBJ method. In T. Margaria and B. Steffen, editors, ISoLA
(2), LNCS 7610, pages 126–142. Springer, 2012.

16. A. Riesco, A. Verdejo, N. Mart́ı-Oliet, and R. Caballero. Declarative debugging of
rewriting logic specifications. Journal of Logic and Algebraic Programming, 81(7-
8):851–897, 2012.

17. A. Verdejo and N. Mart́ı-Oliet. Executable structural operational semantics in
Maude. Journal of Logic and Algebraic Programming, 67:226–293, 2006.

18. M. Zhang and K. Ogata. Modular implementation of a translator from behavioral
specifications to rewrite theory specifications. In B. Choi, editor, Proceedings of
the 9th International Conference on Quality Software, QSIC 2009, pages 406–411.
IEEE Computer Society, 2009.

http://maude.cs.uiuc.edu/maude2-manual
http://maude.cs.uiuc.edu/maude2-manual
http://www.comp.dit.ie/pbrowne/compfund2/manual.pdf


Rewriting Modulo SMT and Open System Analysis

Camilo Rocha1, José Meseguer2, and César Muñoz3

Escuela Colombiana de Ingeniería, Bogotá, Colombia
University of Illinois at Urbana-Champaign, Urbana IL, USA

NASA Langley Research Center, Hampton VA, USA

Abstract. This paper proposes rewriting modulo SMT, a new technique that
combines the power of SMT solving, rewriting modulo theories, and model check-
ing. Rewriting modulo SMT is ideally suited to model and analyze infinite-state
open systems, i.e., systems that interact with a non-deterministic environment.
Such systems exhibit both internal non-determinism, which is proper to the sys-
tem, and external non-determinism, which is due to the environment. In a reflec-
tive formalism, such as rewriting logic, rewriting modulo SMT can be reduced
to standard rewriting. Hence, rewriting modulo SMT naturally extends rewriting-
based reachability analysis techniques, which are available for closed systems, to
open systems. The proposed technique is illustrated with the formal analysis of a
real-time system that is beyond the scope of timed-automata methods.

1 Introduction

Symbolic techniques can be used to represent possibly infinite sets of states by means
of symbolic constraints. These techniques have been developed and adapted to many
other verification methods such as SAT solving, Satisfiability Modulo Theories (SMT),
rewriting, and model checking. A key open research issue of current symbolic tech-
niques is extensibility. Techniques that combine different methods have been proposed,
e.g., decision procedures [28, 29], unifications algorithms [7, 11], theorem provers with
decision procedures [1, 10, 32], and SMT solvers in model checkers [3, 18, 27, 36, 38].
However, there is still a lack of general extensibility techniques for symbolic analy-
sis that simultaneously combine the power of SMT solving, rewriting- and narrowing-
based analysis, and model checking.

This paper proposes a new symbolic technique that seamlessly combines rewriting mod-
ulo theories, SMT solving, and model checking. For brevity, this technique is called
rewriting modulo SMT, although it could more precisely be called rewriting modulo
SMT+B, where B is an equational theory having a matching algorithm. It complements
another symbolic technique combining narrowing modulo theories and model checking,
namely narrowing-based reachability analysis [8, 26]. Neither of these two techniques
subsumes the other.

Rewriting modulo SMT can be applied to increase the power of equational reasoning,
e.g., [16, 17, 21], but its full power, including its model checking capabilities, is better
exploited when applied to concurrent open systems. Deterministic systems can be natu-
rally specified by equational theories, but specification of concurrent, non-deterministic



systems requires rewrite theories [24], i.e., triples R = (Σ, E,R) with (Σ, E) an equa-
tional theory describing system states as elements of the initial algebra TΣ/E , and R
rewrite rules describing the system’s local concurrent transitions. An open system is a
concurrent system that interacts with an external, non-deterministic environment. When
such a system is specified by a rewrite theory R = (Σ, E,R), it has two sources of non-
determinism, one internal and the other external. Internal non-determinism comes from
the fact that in a given system state different instances of rules in R may be enabled, and
the local transitions thus enabled may lead to completely different states. What is pe-
culiar about an open system is that it also has external, and often infinitely-branching,
non-determinism due to the environment. That is, the state of an open system must
include the state changes due to the environment. Technically, this means that, while
a system transition in a closed system can be described by a rewrite rule t→t′ with
vars(t′) ⊆ vars(t), a transition in an open system is instead modeled by a rule of the
form t(−→x ) → t′(−→x ,−→y ), where −→y are fresh new variables. Therefore, a substitution for
the variables −→x]−→y decomposes into two substitutions, one, say θ, for the variables −→x
under the control of the system and another, say ρ, for the variables −→y under the con-
trol of the environment. In rewriting modulo SMT, such open systems are described by
conditional rewrite rules of the form t(−→x )→ t′(−→x ,−→y ) if φ, where φ is a constraint solv-
able by an SMT solver. This constraint φ may still allow the environment to choose an
infinite number of substitutions ρ for −→y , but can exclude choices that the environment
will never make.

The non-trivial challenges of modeling and analyzing open systems can now be better
explained. They include: (1) the enormous and possibly infinitary non-determinism due
to the environment, which typically renders finite-state model checking impossible or
unfeasible; (2) the impossibility of executing the rewrite theory R = (Σ, E,R) in the
standard sense, due to the non-deterministic choice of ρ; and (3) the, in general, un-
decidable challenge of checking the rule’s condition φ, since without knowing ρ, the
condition φθ is non-ground, so that its E-satisfiability may be undecidable. As further
explained in the paper, challenges (1)–(3) are all met successfully by rewriting modulo
SMT because: (1) states are represented not as concrete states, i.e., ground terms, but as
symbolic constrained terms 〈t ;ϕ〉 with t a term with variables ranging in the domains
handled by the SMT solver and ϕ an SMT-solvable formula, so that the choice of ρ is
avoided; (2) rewriting modulo SMT can symbolically rewrite such pairs 〈t ;ϕ〉 (describ-
ing possibly infinite sets of concrete states) to other pairs 〈t′ ;ϕ′〉; and (3) decidability
of φθ (more precisely of ϕ ∧ φθ) can be settled by invoking an SMT solver.

Rewriting modulo SMT can be integrated with model-checking by exploiting the fact
that rewriting logic is reflective [15]. Hence, rewriting modulo SMT can be reduced
to standard rewriting. In particular, all the techniques, algorithms, and tools available
for model checking of closed systems specified as rewrite theories, such as Maude’s
search-based reachability analysis [14], become directly available to perform symbolic
reachability analysis on systems that are now infinite-state.

The technique proposed in this paper is illustrated with the formal analysis of the CASH
scheduling protocol [13]. This protocol specifies a real-time system whose formal anal-
ysis is beyond the scope of timed-automata [2].



2 Preliminaries

Notation on terms, term algebras, and equational theories is used as in [6, 19].

An order-sorted signature Σ is a tuple Σ=(S ,≤, F) with a finite poset of sorts (S ,≤)
and set of function symbols F. The binary relation ≡≤ denotes the equivalence relation
generated by ≤ on S and its point-wise extension to strings in S ∗. The function symbols
in F can be subsort-overloaded and satisfy the condition that, for w,w′ ∈ S ∗ and s, s′ ∈
S , if f : w −→ s and f : w′ −→ s′ are in F, then w ≡≤ w′ implies s ≡≤ s′. A top sort
in Σ is a sort s ∈ S such that if s′ ∈ S and s ≡≤ s′, then s′ ≤ s. For any sort s ∈ S , the
expression [s] denotes the connected component of s, that is, [s] = [s]≡≤ .

The variables X are an S -indexed family X = {Xs}s∈S of disjoint variable sets with each
Xs countably infinite. Expressions TΣ(X)s and TΣ,s denote, respectively, the set of terms
of sort s and the set of ground terms of sort s; accordingly, TΣ(X) and TΣ denote the
corresponding order-sorted Σ-term algebras. All order-sorted signatures are assumed
preregular [19], i.e., each Σ-term t has a least sort ls(t) ∈ S s.t. t ∈ TΣ(X)ls(t). For
S ′ ⊆ S , a term is called S ′-linear if no variable with sort in S ′ occurs in it twice. The
set of variables of t is written vars(t).

A substitution is an S -indexed mapping θ : X −→ TΣ(X) that is different from the
identity only for a finite subset of X. The identity substitution is denoted by id and θ|Y
denotes the restriction of θ to a family of variables Y ⊆ X. Expression dom(θ) denotes
the domain of θ, i.e., the subfamily of X for which θ(x) , x, and ran(θ) denotes the
family of variables introduced by θ(x), for x ∈ dom(θ). Substitutions extend homomor-
phically to terms in the natural way. A substitution θ is called ground iff ran(θ) = ∅.
The application of a substitution θ to a term t is denoted by tθ and the composition
of two substitutions θ1 and θ2 is denoted by θ1θ2. A context C is a λ-term of the form
C = λx1, . . . , xn.c with c ∈ TΣ(X) and {x1, . . . , xn} ⊆ vars(c); it can be viewed as an
n-ary function C(t1, . . . , tn) = cθ, where θ(xi) = ti for 1 ≤ i ≤ n and θ(x) = x other-
wise.

A Σ-equation is an unoriented pair t = u with t ∈ TΣ(X)st , u ∈ TΣ(X)su , and st ≡≤ su.
A conditional Σ-equation is a triple t = u if γ, with t = u a Σ-equation and γ a finite
conjunction of Σ-equations; it is called unconditional if γ is the empty conjunction.
An equational theory is a tuple (Σ, E), with Σ an order-sorted signature and E a finite
collection of (possibly conditional) Σ-equations. We assume throughout that TΣ,s , ∅
for each s ∈ S , because this affords a simpler deduction system. An equational theory
E = (Σ, E) induces the congruence relation =E on TΣ(X) defined for t, u ∈ TΣ(X) by
t =E u iff E ` t = u by the deduction rules for order-sorted equational logic in [25].
Similarly, =1

E
denotes provable E-equality in one step of deduction. The E-subsumption

ordering�E is the binary relation on TΣ(X) defined for any t, u ∈ TΣ(X) by t �E u iff
there is a substitution θ : X −→ TΣ(X) such that t =E uθ. A set of equations E is called
collapse-free for a subset of sorts S ′ ⊆ S iff for any t = u ∈ E and any substitution
θ : X −→ TΣ(X) neither tθ nor uθ are a variable for some sort s ∈ S ′. TE(X) and
TE (also written TΣ/E(X) and TΣ/E) denote the quotient algebras induced by =E on the
term algebras TΣ(X) and TΣ , respectively; TΣ/E is called the initial algebra of (Σ, E). A



theory inclusion (Σ, E) ⊆ (Σ′, E′), with Σ ⊆ Σ′ and E ⊆ E′, is called protecting iff the
unique Σ-homomorphism TΣ/E −→ TΣ′/E′ |Σ to the Σ-reduct of the initial algebra TΣ′/E′
is a Σ-isomorphism, written TΣ/E ' TΣ′/E′ |Σ . A set of equations E is called regular iff
vars(t) = vars(u) for any equation (t = u if γ) ∈ E.

Appropriate requirements are needed to make an equational theory E admissible, i.e.,
executable in rewriting languages such as Maude [14]. In this paper, it is assumed that
the equations of E can be decomposed into a disjoint union E ] B, with B a collection
of structural axioms (such as associativity, and/or commutativity, and/or identity) for
which there exists a matching algorithm modulo B producing a finite number of B-
matching solutions, or failing otherwise, and that the equations E can be oriented into
a set of (possibly conditional) sort-decreasing, operationally terminating, and confluent
conditional rewrite rules

−→
E modulo B.

−→
E is sort decreasing modulo B iff for each (t →

u if γ) ∈
−→
E and substitution θ, ls(tθ) ≥ ls(uθ) if (Σ, B,

−→
E ) ` γθ.

−→
E is operationally

terminating modulo B iff there is no infinite well-formed proof tree in (Σ, B,
−→
E ).
−→
E is

confluent modulo B iff for all t, t1, t2 ∈ TΣ(X), if t →∗E/B t1 and t →∗E/B t2, then there is
u ∈ TΣ(X) such that t1 →∗E/B u and t2 →∗E/B u. The term t ↓E/B∈ TΣ(X) denotes the E-
canonical form of t modulo B so that t →∗E/B t↓E/B and t↓E/B cannot be further reduced
by→E/B. Under the above assumptions t↓E/B is unique up to B-equality.

A Σ-rule is a triple l → r if φ, with l, r ∈ TΣ(X)s, for some sort s ∈ S , and φ =∧
i∈I ti = ui a finite conjunction of Σ-equations. A rewrite theory is a tuple R = (Σ, E,R)

with (Σ, E) an order-sorted equational theory and R a finite set of Σ-rules. R induces
a rewrite relation →R on TΣ(X) defined for every t, u ∈ TΣ(X) by t →R u iff there
is a rule (l → r if φ) ∈ R and a substitution θ : X −→ TΣ(X) satisfying t =E lθ,
u =E rθ, and E ` φθ. The relation →R is undecidable in general, unless conditions
such as coherence [37] are given. A key point of this paper is to make such a relation
decidable when E decomposes as E0 ] B1, where E0 is a built-in theory for which
formula satisfiability is decidable and B1 has a matching algorithm. A topmost rewrite
theory is a rewrite theory R = (Σ, E,R), such that for some top sort State, no operator
in Σ has State as argument sort and each rule l → r if φ ∈ R satisfies l, r ∈ TΣ(X)State

and l < X.

3 Rewriting Modulo a Built-in Subtheory

The concept of rewriting modulo a built-in equational subtheory is presented. In par-
ticular, the notion of rewrite theory modulo a built-in subtheory and its ground rewrite
relation are introduced. A canonical representation for rewrite theories modulo built-
ins is proposed and fundamental results are presented. Detailed proofs can be found
in [33, 34].

Definition 1 (Signature with Built-ins). An order-sorted signature Σ = (S ,≤, F) is a
signature with built-in subsignature Σ0 ⊆ Σ iff Σ0 = (S 0, F0) is many-sorted, S 0 is a set
of minimal elements in (S ,≤), and if f : w −→ s ∈ F1, then s < S 0 and f has no other
typing in F0, where F1 = F\F0.



The notion of built-in subsignature in an order-sorted signature Σ is modeled by a many-
sorted signature Σ0 defining the built-in terms TΣ0 (X0). The restriction imposed on the
sorts and the function symbols in Σ w.r.t. Σ0 provides a clear syntactic distinction be-
tween built-in terms (the only ones with built-in sorts) and all other terms.

If Σ ⊇ Σ0 is a signature with built-ins, then an abstraction of built-ins for t is a context
λx1 · · · xn.t◦ such that t◦ ∈ TΣ1 (X) and {x1, . . . , xn} = vars(t◦)∩X0, where Σ1 = (S ,≤, F1)
and X0 = {Xs}s∈S 0 . Lemma 1 shows that such an abstraction can be chosen so as to
provide a canonical decomposition of t with useful properties.

Lemma 1. Let Σ be a signature with built-in subsignature Σ0 = (S 0, F0). For each
t ∈ TΣ(X), there exist an abstraction of built-ins λx1 · · · xn.t◦ for t and a substitution
θ◦ : X0 −→ TΣ0 (X0) such that (i) t = t◦θ◦ and (ii) dom(θ◦) = {x1, . . . , xn} are pairwise
distinct and disjoint from vars(t); moreover, (iii) t◦ can always be selected to be S 0-
linear and with {x1, . . . , xn} disjoint from an arbitrarily chosen finite subset Y of X0.

In the rest of the paper, for any t ∈ TΣ(X) and Y ⊆ X0 finite, the expression abstractΣ1 (t,Y)
denotes the choice of a triple 〈λx1 · · · xn.t◦ ; θ◦ ; φ◦〉 such that the context λx1 · · · xn.t◦ and
the substitution θ◦ satisfy the properties (i)–(iii) in Lemma 1, and φ◦ =

∧n
i=1 (xi = θ◦(xi)).

Under certain restrictions on axioms, matching a Σ-term t to a Σ-term u, can be decom-
posed modularly into Σ1-matching of the corresponding λ-abstraction and Σ0-matching
of the built-in subterms. This is described in Lemma 2.

Lemma 2. Let Σ = (S ,≤, F) be a signature with built-in subsignature Σ0 = (S 0, F0).
Let B0 be a set of Σ0-axioms and B1 a set of Σ1-axioms. For B0 and B1 regular, lin-
ear, collapse free for any sort in S 0, and sort-preserving, if t ∈ TΣ1 (X0) is linear with
vars(t) = {x1, . . . , xn}, then for each θ : X0 −→ TΣ0 (X0):

(a) if tθ =1
B0

t′, then there exist x ∈ {x1, . . . , xn} and w ∈ TΣ0 (X0) such that θ(x) =1
B0

w
and t′ = tθ′, with θ′(x) = w and θ′(y) = θ(y) otherwise;

(b) if tθ =1
B1

t′, then there exists v ∈ TΣ1 (X0) such that t =1
B1

v and t′ = vθ; and

(c) if tθ =B0]B1 t′, then there exist v ∈ TΣ1 (X0) and θ′ : X0 −→ TΣ0 (X0) such that
t′ = vθ′, t =B1 v, and θ =B0 θ

′ (i.e., θ(x) =B0 θ
′(x) for each x ∈ X0).

Definition 2 introduces the notion of rewriting modulo a built-in subtheory.

Definition 2 (Rewriting Modulo a Built-in Subtheory). A rewrite theory modulo the
built-in subtheory E0 is a topmost rewrite theory R = (Σ, E,R) with:

(a) Σ=(S ,≤, F) a signature with built-in subsignature Σ0=(S 0, F0) and top sort State∈S ;

(b) E = E0 ] B0 ] B1, where E0 is a set of Σ0-equations, B0 (resp., B1) are Σ0-axioms
(resp., Σ1-axioms) satisfying the conditions in Lemma 2, E0 = (Σ0, E0 ] B0) and
E = (Σ, E) are admissible, and the theory inclusion E0 ⊆ E is protecting;



(c) R is a set of rewrite rules of the form l(−→x1,
−→y ) → r(−→x2,

−→y ) if φ(−→x3) such that
l, r ∈ TΣ(X)State, l is (S \ S 0)-linear, −→xi :−→si with −→si ∈ S ∗0, for i ∈ {1, 2, 3}, −→y :−→s with
−→s ∈ (S \S 0)∗, and φ ∈ QFΣ0

(X0), where QFΣ0
(X0) denotes the set of quantifier-free

Σ0-formulas with variables in X0.

Note that no assumption is made on the relationship between the built-in variables x1
in the left-hand side, x2 in the right-hand side, and x3 in the condition φ of a rewrite
rule. This freedom is key for specifying open systems with a rewrite theory because,
for instance, x2 can have more variables than x1. On the other hand, due to the presence
of conditions φ in the rules of R that are general quantifier-free formulas, as opposed
to a conjunction of atoms, properly speaking R is more general than a standard rewrite
theory as defined in Section 2.

The binary rewrite relation induced by a rewrite theory Rmodulo E0 on TΣ,State is called
the ground rewrite relation of R.

Definition 3 (Ground Rewrite Relation). Let R = (Σ, E,R) be a rewrite theory mod-
ulo E0. The relation→R induced by R on TΣ,State is defined for t, u ∈ TΣ,State by t →R u
iff there is a rule l → r if φ in R and a ground substitution σ : X −→ TΣ such that (a)
t =E lσ, u =E rσ, and (b) TE0 |= φσ.

The ground rewrite relation→R is the topmost rewrite relation induced by R modulo E
on TΣ,State. This relation is defined even when a rule in R has extra variables in its right-
hand side: the rule is then non-deterministic and such extra variables can be arbitrarily
instantiated, provided that the corresponding instantiation of φ holds. Also, note that
non-built-in variables can occur in l, but φσ is a variable-free formula in QFΣ0

(∅), so
that either TE0 |= φσ or TE0 6|= φσ.

A rewrite theory R modulo E0 always has a canonical representation in which all left-
hand sides of rules are S 0-linear Σ1-terms.

Definition 4 (Normal Form of a Rewrite Theory Modulo E0). Let R = (Σ, E,R) be
a rewrite theory modulo E0. Its normal form R◦ = (Σ, E,R◦) has rules:

R◦ = {l◦ → r if φ ∧ φ◦ | (∃l→ r if φ ∈ R)〈λ−→x .l◦ ; θ◦ ; φ◦〉 = abstractΣ(l, vars({l, r, φ}))}.

Lemma 3 (Invariance of Ground Rewriting under Normalization). LetR = (Σ, E,R)
be a rewrite theory modulo E0. Then→R =→R◦ .

By the properties of the axioms in a rewrite theory modulo built-insR = (Σ, E0]B0]B1)
(see Definition 2), B1-matching a term t ∈ TΣ(X0) to a left-hand side l◦ of a rule in R◦

provides a complete unifiability algorithm for ground B1-unification of t and l◦.

Lemma 4 (Matching Lemma). LetR = (Σ, E0]B0]B1,R) be a rewrite theory modulo
E0. For t ∈ TΣ(X0)State and l◦ a left-hand side of a rule in R◦ with vars(t)∩ vars(l◦) = ∅,
t �B1 l◦ iff GUB1 (t = l◦) , ∅ holds, where GUB1 (t = l◦) = {σ : X −→ TΣ | tσ =B1 l◦σ}.



4 Symbolic Rewriting Modulo a Built-in Subtheory

This section explains how a rewrite theory R modulo E0 defines a symbolic rewrite
relation on terms in TΣ0 (X0)State constrained by formulas in QFΣ0

(X0). The key idea
is that, when E0 is a decidable theory, transitions on the symbolic terms can be per-
formed by rewriting modulo B1, and satisfiability of the formulas can be handled by
an SMT decision procedure. This approach provides an efficiently executable symbolic
method called rewriting modulo SMT that is sound and complete with respect to the
ground rewrite relation of Definition 3 and yields a complete symbolic reachability
analysis method. Detailed proofs of the theorems presented in this section can be found
in [34].

Definition 5 (Constrained Terms and their Denotation). Let R = (Σ, E,R) be a
rewrite theory modulo E0. A constrained term is a pair 〈t ;ϕ〉 in TΣ(X0)State ×QFΣ0

(X0).
Its denotation ~t�ϕ is defined as ~t�ϕ = {t′∈TΣ,State | (∃σ : X0−→TΣ0 ) t′=tσ∧TE0 |= ϕσ}.

The domain of σ in Definition 5 ranges over all built-in variables X0 and consequently
~t�ϕ ⊆ TΣ,State for any t ∈ TΣ(X0)State, even if vars(t) * vars(ϕ). Intuitively, ~t�ϕ denotes
the set of all ground states that are instances of t and satisfy ϕ.

Before introducing the symbolic rewrite relation on constrained terms induced by a
rewrite theory R modulo E0, auxiliary notation for variable renaming is required. In the
rest of the paper, the expression fresh-vars(Y), for Y ⊆ X finite, represents the choice of
a variable renaming ζ : X −→ X satisfying Y ∩ ran(ζ) = ∅.

Definition 6 (Symbolic Rewrite Relation). Let R = (Σ, E,R) be a rewrite theory
modulo built-ins E0. The symbolic rewrite relation R induced by R on TΣ(X0)State ×

QFΣ0
(X0) is defined for t, u ∈ TΣ(X0)State and ϕ, ϕ′ ∈ QFΣ0

(X0) by 〈t ;ϕ〉  R 〈u ;ϕ′〉
iff there is a rule l → r if φ in R and a substitution θ : X −→ TΣ(X) such that (a)
t =E lζθ and u = rζθ, (b) E0 ` (ϕ′ ⇔ ϕ ∧ φζθ), and (c) ϕ′ is TE0 -satisfiable, where
ζ = fresh-vars(vars(t, ϕ)).

The symbolic relation R on constrained terms is defined as a topmost rewrite relation
induced by R modulo E on TΣ(X0) with extra bookkeeping of constraints. Note that ϕ′

in 〈t ;ϕ〉 R 〈u ;ϕ′〉, when witnessed by l→ r if φ and θ, is semantically equivalent to
ϕ∧φζθ, in contrast to being syntactically equal. This extra freedom allows for simplifi-
cation of constraints if desired. Also, such a constraint ϕ′ is satisfiable in TE0 , implying
that ϕ and φθ are both satisfiable in TE0 , and therefore ~t�ϕ, ∅,~u�ϕ′ . Note that, up to
the choice of the semantically equivalent ϕ′ for which a fixed strategy is assumed, the
symbolic relation R is deterministic because the renaming of variables in the rules is
fixed by fresh-vars. This is key when executing R, as explained in Section 5.

The important question to ask is whether this symbolic relation soundly and completely
simulates its ground counterpart. The rest of this section answers this question in the
affirmative for normalized rewrite theories modulo built-ins. Thanks to Lemma 3, the



conclusion is therefore that R◦ soundly and completely simulates→R for any rewrite
theory R modulo built-ins E0.

The soundness of R◦ w.r.t.→R◦ is stated in Theorem 1.

Theorem 1 (Soundness). Let R = (Σ, E,R) be a rewrite theory modulo built-ins E0,
t, u ∈ TΣ(X0)State, and ϕ, ϕ′ ∈ QFΣ0

(X0). If 〈t ;ϕ〉  R◦ 〈u ;ϕ′〉, then tρ →R◦ uρ for all
ρ : X0 −→ TΣ0 satisfying TE0 |= ϕ′ρ.

The completeness of R◦ w.r.t.→R◦ is stated in Theorem 2, which is a “lifting lemma”.
Intuitively, completeness states that a symbolic relation yields an over-approximation
of its ground rewriting counterpart.

Theorem 2 (Completeness). Let R = (Σ, E,R) be a rewrite theory modulo built-ins
E0, t ∈ TΣ(X0)State, u′ ∈ TΣ,State, and ϕ ∈ QFΣ0

(X0). For any ρ : X0 −→ TΣ0 such
that tρ ∈ ~t�ϕ and tρ →R◦ u′, there exist u ∈ TΣ(X0)State and ϕ′ ∈ QFΣ0

(X0) such that
〈t ;ϕ〉 R◦ 〈u ;ϕ′〉 and u′ ∈ ~u�ϕ′ .

Although the above soundness and completeness theorems, plus Lemma 3, show that
→R is characterized symbolically by R◦ , for any rewrite theory Rmodulo E0, because
of Condition (c) in Definition 6, the relation R◦ is in general undecidable. However,
 R◦ becomes decidable for built-in theories E0 that can be extended to a decidable
theory E+

0 (typically by adding some inductive consequences) such that:

(∀φ ∈ QFΣ0
(X0)) φ is E+

0 -satisfiable ⇐⇒ (∃σ : X0 −→ TΣ0 ) TE0 |= φσ. (1)

Many decidable theories E+
0 of interest are supported by SMT solvers satisfying this

requirement. For example, E0 can be the equational theory of natural number addition
and E+

0 Pressburger arithmetic. That is, TE0 is the standard model of both E0 and E+
0 ,

and E+
0 -satisfiability coincides with satisfiability in such a standard model. Under such

conditions, satisfiability of ϕ ∧ φζθ (and therefore of ϕ′) in a step 〈t ;ϕ〉  R◦ 〈u ;ϕ′〉
becomes decidable by invoking an SMT-solver for E0, so that  R◦ can be naturally
described as symbolic rewriting modulo SMT (and modulo B1).

The symbolic reachability problems considered for a rewrite theory R modulo E0 in
this paper, are existential formulas of the form (∃−→z ) t →∗ u ∧ ϕ, with −→z the variables
appearing in t, u, and ϕ, t ∈ TΣ(X0)State, u ∈ TΣ(X)State, and ϕ ∈ QFΣ0

(X0). By abstract-
ing the Σ0-subterms of u, the ground solutions of such a reachability problem are those
witnessing the model-theoretic satisfaction relation:

TR |= (∃−→x ] −→y ) t(−→x )→∗ u◦(−→y ) ∧ ϕ1(−→x ) ∧ ϕ2(−→x ,−→y ) (2)

where TR = (TΣ/E ,→∗R) is the initial reachability model of R [12], t ∈ TΣ(X0) and
u◦ ∈ TΣ1 (X) are S 0-linear, vars(t) ⊆ −→x ⊆ X0, and −→y ⊆ X. Thanks to the soundness and
completeness results, Theorem 1 and Theorem 2, the solvability of Condition (b) for
→R can be achieved by reachability analysis with R◦ , as stated in Theorem 3.



Theorem 3 (Symbolic Reachability Analysis). Let R = (Σ, E,R) be a rewrite theory
modulo built-ins E0. The model-theoretic satisfaction relation in (2) has a solution iff
there exist a term v ∈ TΣ(X)State, a constraint ϕ′ ∈ QFΣ0

(X0), and a substitution θ :
X −→ TΣ(X), with dom(θ) ⊆ −→y , such that (a) 〈t ;ϕ1〉  

∗
R◦
〈v ;ϕ′〉, (b) v =B1 u◦θ, and

(c) ϕ′ ∧ ϕ2θ is TE0 -satisfiable.

In Theorem 3, since dom(θ) ⊆ −→y , and −→x and −→y are disjoint, the variables of −→x in ϕ2θ are
left unchanged. Therefore, ϕ2θ links the requirements for the variables −→x in the initial
state and −→y in the final state according to both ϕ1 and ϕ2. Also note that the inclusion
of formula ϕ1 as a conjunct in the formula in Condition (c) of Theorem 3 is superfluous
because 〈t ;ϕ1〉 R◦ 〈v ;ϕ′〉 implies that ϕ1 is a semantic consequence of ϕ′.

5 Reflective Implementation of R◦

The design and implementation of a prototype that offers support for symbolic rewriting
modulo SMT in the Maude system are discussed. The prototype relies on Maude’s
meta-level features, that implement rewriting logic’s reflective capabilities, and on SMT
solving for E+

0 integrated in Maude as CVC3’s decision procedures. The extension of
Maude with CVC3 is available from the Matching Logic Project [35]. In the rest of
this section, R = (Σ, E0 ] B0 ] B1,R) is a rewrite theory modulo built-ins E0, where
E0 satisfies Condition (1) in Section 4. The theory mapping R 7→ u(R) removes the
constraints from the rules in R.

In Maude, reflection is efficiently supported by its META-LEVEL module [14], which
provides key functionality for rewriting logic’s universal theory U [15]. In particular,
rewrite theories R are meta-represented in U as terms R of sort Module, and a term t
in R is meta-represented in U as a term t of sort Term. The key idea of the reflective
implementation is to reduce symbolic rewriting with R◦ to standard rewriting in an
associated reflective rewrite theory extending the universal theory U. This is specially
important for formal analysis purposes, because it makes available to R◦ some formal
analysis features provided by Maude for rewrite theories such as reachability analysis
by search. This is illustrated by the case study in Section 6.

The prototype defines a parametrized functional module SAT(Σ0, E0]B0) of quantifier-
free formulas with Σ0-equations as atoms. In particular, this module extends (Σ0, E0 ]

B0) with new sorts Atom and QFFormula, and new constants var(X0) identifying the
variables X0. It has, among other functions, a function sat : QFFormula −→ Bool such
that for φ, sat(φ) = > if φ is E+

0 -satisfiable, and sat(φ) = ⊥ otherwise.

The process of computing the one-step rewrites of a given constrained term 〈t ;ϕ〉 under
 R◦ is decomposed into two conceptual steps using Maude’s metalevel. First, all pos-
sible triples 〈u ; θ ; φ〉 such that t →u(R◦) u is witnessed by a matching substitution θ and
a rule with constraint φ are computed1. Second, these triples are filtered out by keeping
only those for which the quantifier-free formula ϕ ∧ φθ is E+

0 -satisfiable.
1 Note that in u(R◦) variables in X0 are interpreted as constants. Therefore, the number of match-

ing substitutions θ thus obtained is finite.



The first step in the process is mechanized by function next, available from the pa-
rametrized module NEXT(R, State,QFFormula) where R, State, and QFFormula are
the metalevel representations, respectively, of the rewrite theory module R, the state
sort State, and the quantifier-free formula sort QFFormula. Function next uses Maude’s
meta-match function and the auxiliary function new-vars for computing fresh variables
(see Section 4). In particular, the call next(((S ,≤, F ] var(X0)), E0 ] B0 ] B1,R◦), t, ϕ)
computes all possible triples 〈u ; θ′ ; φ′〉 such that t R◦ u is witnessed by a substitution
θ′ and a rule with constraint φ′. More precisely, such a call first computes a renaming
ζ = fresh-vars(vars(t, ϕ)) and then, for each rule(l◦ → r if φ), it uses the function meta-
match to obtain a substitution θ ∈ meta-match(((S ,≤, F ] var(X0)), B0 ] B1), t↓E0/B0]B1 , l◦ζ),
and returns 〈u ; θ′ ; φ′〉 with u = rζθ, θ′ = ζθ, and φ′ = φζθ. Note that by having a
deterministic choice of fresh variables (including those in the constraint), function next
is actually a deterministic function.

Using the above-mentioned infrastructure, the parametrized module NEXT implements
the symbolic rewrite relation R◦ as a standard rewrite relation in the theory NEXT,
extending META-LEVEL, by means of the following conditional rewrite rule:

ceq 〈X:State ;ϕ:QFFormula〉 → 〈Y:State ;ϕ′:QFFormula〉

if 〈Y ; θ ; φ〉 S := next(R•, X, ϕ) ∧ sat(ϕ ∧ φ) = > ∧ ϕ′ := ϕ ∧ φ

where R• = ((S ,≤, F ] var(X0)), B,R◦). Therefore, a call to an external SMT solver is
just an invocation of the function sat in SAT(Σ0, E0 ] B0) in order to achieve the above
functionality more efficiently and in a built-in way.

Given that the symbolic rewrite relation R◦ is encoded as a standard rewrite relation,
symbolic search can be directly implemented in Maude by its search command. In par-
ticular, for terms t, u◦, constraints ϕ1, ϕ2, F a variable of sort QFFormula, the following
invocation solves the inductive reachability problem in Condition (2):

search 〈t ;ϕ1〉 →
∗ 〈u◦ ; F〉 such that sat(F ∧ ϕ2).

6 Analysis of the CASH algorithm

This section presents an example, developed jointly with Kyungmin Bae, of a real-time
system that can be symbolically analyzed in the prototype tool described in Section 5.
The analysis applies model checking based on rewriting modulo SMT. Some details are
omitted. Full details and the prototype tool can be found in [9].

The example involves the symbolic analysis of the CASH scheduling algorithm [13],
which attempts to maximize system performance while guaranteeing that critical tasks
are executed in a timely manner. This is achieved by maintaining a queue of unused
execution budgets that can be reused by other jobs to maximize processor utiliza-
tion. CASH poses non-trivial modeling and analysis challenges because it contains an
unbounded queue. Unbounded data types cannot be modeled in timed-automata for-
malisms, such as those of UPPAAL [22] or Kronos [39], which assume a finite discrete
state.



The CASH algorithm was specified and analyzed in Real-Time Maude by explicit-state
model checking in an earlier paper by Ölveczky and Caccamo [30], which showed that,
under certain variations on both the assumptions and the design of the protocol, it could
miss deadlines. But explicit-state model checking has intrinsic limitations which the
new analysis by rewriting modulo SMT presented below overcomes. The CASH algo-
rithm is parametrized by: (i) the number N of servers in the system, and (ii) the values
of a maximum budget bi and period pi, for each server 1 ≤ i ≤ N. Even if N is fixed,
there are infinitely many initial states for N servers, since the maximum budgets bi and
periods pi range over the natural numbers. Therefore, explicit state model checking can-
not perform a full analysis. If a counterexample for N servers exists, it may be found
by explicit-state model checking for some chosen initial states, as done in [31], but it
could be missed if the wrong initial states are chosen.

Rewriting modulo SMT is useful for symbolically analyzing infinite-state systems like
CASH. Infinite sets of states are symbolically described by terms which may involve
user-definable data structures such as queues, but whose only variables range over de-
cidable types for which an SMT solving procedure is available. For the CASH algo-
rithm, the built-in data types used are the Booleans (sort iBool) and the integers (sort
iInt). Integer built-in terms are used to model discrete time. Boolean built-in terms are
used to impose constraints on integers.

A symbolic state is a pair {iB,Cnf} of sort Sys consisting of a Boolean constraint
iB, with and denoted ˆ, and a multiset configuration of objects Cnf, with multiset
union denoted by juxtaposition, where each object is a record like-structure with an
object identifier, a class name, and a set of attribute-value pairs. In each object config-
uration there is a global object (of class global) that models the time of the system
(with attribute name time), the priority queue (with attribute name cq), the availabil-
ity (with attribute name available), and a deadline missed flag (with attribute name
deadline-miss). A configuration can also contain any number of server objects (of
class server). Each server object models the maximum budget (the maximum time
within which a given job will be finished, with attribute name maxBudget), period
(with attribute name period), internal state (with attribute name state), time exe-
cuted (with attribute name timeExecuted), budget time used (with attribute name
usedOfBudget), and time to deadline (with attribute name timeToDeadline). The
symbolic transitions of CASH are specified by 14 conditional rewrite rules whose con-
ditions specify constraints solvable by the SMT decision procedure. For example, rule
[deadlineMiss] below models the detection of a deadline miss for a server with non-
zero maximum budget.

vars AtSG AtS : AttributeSet . var iB : iBool . var Cnf : Configuration .
vars iT iT’ iNZT : iInt . var St : ServerState . vars G S : Oid . var B : Bool .

crl [deadlineMiss] :
{ iB, < G : global | dead-miss |-> B, AtSG >

< S : server | state |-> St, usedOfBudget |-> iT, timeToDeadline |-> iT’,
maxBudget |-> iNZT, AtS > Cnf }

=> {iB ^ iT >= c(0) ^ iNZT > c(0) ^ iT’ > c(0) ^ iNZT > iT + iT’,
< G : global | dead-miss |-> true, AtSG >
< S : server | state |-> St, usedOfBudget |-> iT, timeToDeadline |-> iT’,

maxBudget |-> iNZT, AtS > Cnf }
if St =/= idle /\ check-sat(iB ^ iT >= c(0) ^ iNZT > c(0) ^ iT’ > c(0) ^ iNZT > iT + iT’) .



That is, the protocol misses a deadline for server S whenever the value of attribute
maxBudget exceeds the addition of values for usedOfBudget and timeToDeadline
(i.e., iNZT > iT + iT’) , so that the allocated execution time cannot be exhausted
before the server’s deadline.

The goal is to verify symbolically the existence of missed deadlines of the CASH al-
gorithm for the infinite set of initial configurations containing two server objects s0
and s1 with maximum budgets b0 and b1 and periods p0 and p1 as unspecified natural
numbers, and such that each server’s maximum budget is strictly smaller than its period
(i.e., 0 ≤ b0 < p0 ∧ 0 ≤ b1 < p1). This infinite set of initial states is specified sym-
bolically by the equational definition (not shown) of term symbinit. Maude’s search
command can then be used to symbolically check if there is a reachable state for any
ground instance of symbinit that misses the deadline:
search in SYMBOLIC-FAILURE : symbinit =>*

{ iB:iBool, Cnf:Configuration < g : global | AtS:AttributeSet, deadline-miss |-> true > } .
Solution 1 (state 233)
states: 234 rewrites: 60517 in 2865ms cpu (2865ms real) (21118 rewrites/second)
iB:iBool --> ((i(0) <= c(0) ^ i(1) <= c(0)) v i(0) <= c(0) + i(1) ^ ...
Cnf:Configuration -->
< s1 : server | maxBudget |-> i(0), period |-> i(1), state |-> waiting, usedOfBudget |-> c(0),

timeToDeadline |-> ((i(1) -- c(1)) -- c(1)), timeExecuted |-> c(0) >
< s2 : server | maxBudget |-> i(2), period |-> i(3), state |-> executing, usedOfBudget |-> c(2),

timeToDeadline |-> ((i(3) -- c(1)) -- c(1)), timeExecuted |-> c(2) >
AtS:AttributeSet --> time |-> c(2), cq |-> emptyQueue, available |-> false

A counterexample is found at (modeling) time two, after exploring 233 symbolic states
in less than 3 seconds. By using a satisfiability witness of the constraint iB computed by
the search command, a concrete counterexample is found by exploring only 54 ground
states. This result compares favorably, in both time and computational resources, with
the ground counterexample found by explicit-state model checking in [30], where more
that 52,000 concrete states were explored before finding a counterexample.

7 Related Work and Concluding Remarks

The idea of combining term rewriting/narrowing techniques and constrained data struc-
tures is an active area of research, specially since the advent of modern theorem provers
with highly efficient decision procedures in the form of SMT solvers. The overall aim of
these techniques is to advance applicability of methods in symbolic verification where
the constraints are expressed in some logic that has an efficient decision procedure.
In particular, the work presented here has strong similarities with the narrowing-based
symbolic analysis of rewrite theories initiated in [26] and extended in [8]. The main
difference is the replacement of narrowing by SMT solving and the decidability advan-
tages of SMT for constraint solving.

M. Ayala-Rincón [5] investigates, in the setting of many-sorted equational logic, the ex-
pressiveness of conditional equational systems whose conditions may use built-in pred-
icates. This class of equational theories is important because the combination of equa-
tional and built-in premises yield a type of clauses which is more expressive than purely
conditional equations. Rewriting notions like confluence, termination, and critical pairs



are also investigated. S. Falke and D. Kapur [16] studied the problem of termination of
rewriting with constrained built-ins. In particular, they extended the dependency pairs
framework to handle termination of equational specifications with semantic data struc-
tures and evaluation strategies in the Maude functional sublanguage. The same authors
used the idea of combining rewriting induction and linear arithmetic over constrained
terms [17]. Their aim is to obtain equational decision procedures that can handle seman-
tic data types represented by the constrained built-ins. H. Kirchner and C. Ringeissen
proposed the notion of constrained rewriting and have used it by combining symbolic
constraint solvers [20]. The main difference between their work and rewriting modulo
SMT presented in this paper, is that the former uses narrowing for symbolic execution,
both at the symbolic ‘pattern matching’ and the constraint solving levels. In contrast,
rewriting modulo SMT solves the symbolic pattern matching task by rewriting while
constraint solving is delegated to an SMT decision procedure. More recently, C. Kop
and N. Nishida [21] have proposed a way to unify the ideas regarding equational rewrit-
ing with logical constraints. More generally, while the approaches in [5, 16, 17, 20, 21]
address symbolic reasoning for equational theorem proving purposes, none of them ad-
dresses the kind of non-deterministic rewrite rules, which are needed for open system
modeling. More recently, A. Arusoaie et al. [4] have proposed a language-independent
symbolic execution framework, within the K framework [23], for languages endowed
with a formal operational semantics based on term rewriting. There, the built-in subthe-
ories are the datatypes of a programming language and symbolic analysis is performed
on constrained terms (called “patterns”); unification is also implemented by matching
for a restricted class of rewrite rules and uses SMT solvers to check constraints.

This paper has presented rewrite theories modulo built-ins and has shown how they can
be used for symbolically modeling and analyzing concurrent open systems, where non-
deterministic values from the environment can be represented by built-in terms [33,34].
In particular, the main contributions of this paper can be summarized as follows: (1) it
presents rewriting modulo SMT as a new symbolic technique combining the powers of
rewriting, SMT solving, and model checking; (2) this combined power can be applied
to model and analyze systems outside the scope of each individual technique; (3) in
particular, it is ideally suited to model and analyze the challenging case of open systems;
and (4) because of its reflective reduction to standard rewriting, current algorithms and
tools for model checking closed systems can be reused in this new symbolic setting
without requiring any changes to their implementation.

Under reasonable assumptions, including decidability of E+
0 , a rewrite theory modulo

is executable by term rewriting modulo SMT. This feature makes it possible to use,
for symbolic analysis, state-of-the-art tools already available for Maude, such as its
space search commands, with no change whatsoever required to use such tools. We
have proved that the symbolic rewrite relation is sound and complete with respect to its
ground counterpart, have presented an overview of the prototype that offers support for
rewriting modulo SMT in Maude, and have presented a case study on the symbolic anal-
ysis of the CASH scheduling algorithm illustrating the use of these techniques.

Future work on a mature implementation and on extending the idea of rewriting mod-
ulo SMT with other symbolic constraint solving techniques such as narrowing modulo



should be pursued. Also, the extension to symbolic LTL model checking, together with
state space reduction techniques, should be investigated. The ideas presented here ex-
tend results in [33] and have been successfully applied to the symbolic analysis of
NASA’s PLEXIL language to program open cyber-physical systems [33]. Future appli-
cations to PLEXIL and other languages should also be pursued.
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Abstract. Fault tolerance has been a major concern in the design of computing
platforms. However, currently, fault tolerance has been done mostly with just
heuristics, high level probabilistic analysis and extensive testing. In this work, we
explore how we can use formal patterns to achieve fault-tolerance designs and
methods. In particular, we look at faults that occur in mechanical button interfaces
such as button bounce, button stuck, and phantom button faults. Our primary goal
is the safety of such interfaces for medical devices [7], but the methods are more
widely applicable. We formally describe corresponding patterns to address these
faults including button debouncing, button stuck detection, and phantom press
filtering. We prove stuttering-bisimulation results for some patterns showing their
fault-masking capablities. Furthermore, for patterns where fault-masking is not
possible, we prove fault-detection properties. We also instantiate these patterns
to a simple instance of a button-press counter and perform execution and model
checking as further validation.

1 Introduction

Idealized abstractions of computing systems allow us to build more complex applica-
tions and for more complex scenarios. One can think in terms of binary values instead
of continuous voltages, and in terms of objects and messages instead of assembly-level
instructions. Given the complexities of the real world, it is remarkable how accurate
these abstractions can be. However, sometimes the real world behavior violates the ex-
pectation of idealized models and we refer to this type of behavior as faults.

In order to maintain the behavior of ideal models in the presence of faults, fault tol-
erance techniques are essential. We would like faults to be completely contained within
the lower levels of design and never be exposed to the upper layers; this is the notion
of fault masking. However, there are many cases where fault masking is impossible. In
these cases, faults will inevitably be exposed to the upper layers, either by explicit fault
detection or as behavioral anomalies such as extra delays and nondeterminism.

In this paper, we explore fault-tolerance micropatterns for button related faults in-
cluding button bounce, phantom button presses, and stuck buttons. These micropatterns
provide specific levels of safety for medical device interfaces in the presence of faults
[7], and can be likewise applied to devices in other areas. All of these faults and fault-
tolerance patterns are quite well known, but our contribution is in the formalization of
these fault-tolerance models including:



(1) defining a model for button interfaces;
(2) modeling faults as a relation from ideal environments to faulty environments;
(3) describing fault tolerance methods as a design transformation pattern using param-
eterized modules;
(4) proving fault-tolerance results about our models using appropriate bisimulation re-
lations; and
(5) validating of our models with execution and model checking.

Since we are dealing with faults on the interface, we mainly focus on faults in the
environment. There are also other classes of faults such as internal faults (e.g. bit flips,
memory corruption, computation errors). However, environmental faults and internal
faults are generally handled orthogonally in the design of a system, so we focus only
on environmental faults. The fault tolerance patterns that we describe in this paper all
have a similar structure that is captured in Figure 1. All fault tolerance designs have
a goal, an ideal abstraction that it is trying to provide (left-hand side of Figure 1). An
ideal environment, and the ideal design will give the correct behavior of the system.
However, the challenge comes when we have a faulty environment (right-hand side of
Figure 1). Just using an ideal design with a faulty environment will most likely lead
to undesirable deviations in the behavior of the system. The goal then is to provide a
design transformation for the system along with the fault model that will have behavior
similar to the ideal. The notion of correspondence in behavior is an important one. In
this paper, this correspondence is expressed as a bisimulation.
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Fig. 1. Fault Modeling

The rest of the paper is organized as follows. Section 2 covers the basics of rewriting
logic and the subset of Maude that we use to describe our models. Section 3 describes
how we model buttons in order to describe button-related faults. Sections 4, 5, and 6
describe in detail our patterns to handel button bounce, phantom button presses, and
stuck buttons respectively. We conclude in Section 7 with a summary and a discussion
of potential future work.



2 Background on Parameterized Formal Specifications and
Real-Time Maude

We use the Maude rewriting logic language [2] to define formal specifications for our
fault-tolerance wrappers for medical systems. We present some of the basic concepts
behind rewriting logic, its real-time extensions, and parametrization.

2.1 Membership Equational Logic and Rewriting Logic

Membership equational logic (MEL) [5] describes the most general form of the equa-
tional components of a Maude rewrite theory. These are called functional modules in
Maude [2].

A MEL signature is a tuple (K, F, S ) where S is a set of sorts (i.e. types), K is a set of
kinds (i.e. super types or error types for data), and F is a set of typed function symbols
(and constants). A MEL theory is a pair (Σ, E) where Σ is a MEL signature, and E a
set of sentences (equations and memberships) expressing (possibly conditional) mem-
bership or equality constraints. If an MEL theory is convergent (satisfies properties of
confluence, termination, and sort-decreasingness), Maude provides efficient execution
of its initial model semantics.

Rewriting logic [1] describes the most general form of modules defined in Maude. A
rewrite theory in Maude is defined in the form of a tuple: (Σ, E, φ,R), where (Σ, E) is an
underlying MEL theory, φ defines the frozen positions of operators (positions where no
rewrites are allowed to occur below), and R is a set of rewrite sentences (possibly condi-
tional on equality and membership sentences). If a rewrite theory satisfies the properties
of coherence, and the underlying MEL theory of a rewrite theory is convergent, then
Maude provides efficient execution of the initial model semantics for the rewrite theory.
This includes efficient execution for simulation, searching and LTL model checking.

2.2 Full Maude and Real-Time Maude

Full Maude [3] is a Maude interpreter written in Maude, which in addition to the Core
Maude constructs provides syntactic constructs such as object oriented modules. Object
oriented modules implicitly add in sorts Object and Msg. Furthermore, OO-modules
add a sort called Configuration which consists of a multiset of terms of sort Object
or Msg. Objects are represented as records:

< objectID : classID | Attribute 1 : Value 1, ... Attribute n : Value n >

Rewriting logic rules are then used to describe state transitions of objects based
on consumption of messages. For example, the following rule expresses the fact that a
surgical-laser object consumes a message to set the power to 50 Watts:

rl setPower(sl1, 50) < sl1 : SurgeryLaser | power : P >

=> < sl1 : SurgeryLaser | power : 50 > .



Real-time Maude [6] is a real-time extension for Maude developed on top of Full
Maude. It adds syntactic constructs for defining timed modules. Timed modules au-
tomatically import the TIME module, which defines the sort Time (which can be in-
stantiated as discrete or continuous) along with various arithmetic and comparison
operations on Time. Timed modules also provide a sort System which encapsulates
a Configuration and implicitly associates with it a time stamp of sort Time. After
defining a time-advancing strategy, Real-time Maude provides timed execution (trew),
timed search (tsearch), which performs search on a term of sort System based on the
time advancement strategy, and timed and untimed LTL model checking commands.

Real-time Maude provides useful constructs for specifying real-time systems, in-
cluding basic semantics of time and time advancement. We use the model of linear time
provided by Real-Time Maude. For time advancement, we have used the conventional
best practice where only one timed rewrite rule is used and is fully determined by the
operators tick and mte [6].

The tick operator advances time over a configuration by some time duration. For ex-
ample, with timer (and time units being seconds): tick(timer(10), 3) = timer(7). That is,
a timer with 10 sec remaining ticked by 3 sec will become a timer with 7 sec remaining.

The mte operator computes the maximum time that can elapse in a system before
an interesting event occurs. Interesting events include all state transitions in which mes-
sages are generated in a configuration. Again, with the timer example, we assume that
components only react when the timers expire, so the maximum time elapsable for a
timer would be the time it takes the timer to expire: mte(timer(10)) = 10.

Real-Time Maude also includes models of time that have infinity, INF, as a possible
time value. Although, INF will never be used to advance time in any system, it is useful
to have INF to describe unbounded time. For example, mte(stableSys) = INF.

2.3 Parameterized Modules

Modules in Maude have an initial model semantics. Maude also supports theories which
have a loose semantics (that is, not just the initial mode, but all the models of the theory
are allowed). Theories can be instantiated by views (i.e., theory interpretations) to other
theories or modules. In particular, a theory can be instantiated by a view to any module
whose initial model satisfies all equational, membership, and rewrite sentences of the
theory.

Parametrized modules [2] are modules which take theories as input parameters and
define operations (parametrically) in terms of the input theory. Parametrized modules
are instantiated by providing views to concrete modules for the corresponding input the-
ories. Once instantiated, the parametrized module is given the free extension semantics
for the initial models of the targets of the input views. Core Maude, Full Maude, and
Real-Time Maude all support parameterized modules. For our pattern, we will exploit
in particular the Real-Time Maude parameterization mechanisms.

3 Modeling Buttons

Before we describe specific patterns, we should describe the problem domain that we
are addressing. Many cyber-physical systems, including many medical devices, use but-



tons as an input interface. We need a general abstraction that can capture the important
details of any button interaction with the system. This abstraction must be detailed
enough to model faulty button behavior.

For the cases that we are considering, it is sufficient to use a 2-state button abstrac-
tion. A button model can be in one of two states, either pressed or not pressed, at any
instant in time. Button behavior is then a function buttonstate : Time → {on, off }. Here,
Time is some ideal continuous physical time, which can be represented by the positive
real numbers R≥0. Time can also be reasoned about from the perspective of a system
clock that ticks (advances time) in discrete intervals, in which case we can model it
using the natural numbers N. It is desirable to prove results about our system using
continuous time as it is more general. However, some of our proved results later use a
discrete time model as it allows for cleaner proofs using induction and is still general
enough to cover the behaviors of systems running on a system clock.

Realistic button press behaviors will have additional constraints such as buttons
cannot toggle faster than a certain frequency, and we can also make some mathematical
simplifications such as making all the button press intervals left-closed [7]. With these
assumptions, we can model continuous button behavior with a discrete timed model,
since in each finite interval of time, given a button function, b, there are only a finite
number of press and release events in b. For example, if the button behavior is b(t) = on
for t ∈ [0, 1) ∪ [2, 5) and b(t) = off otherwise. This can be represented discretely
without any loss of information as a list of pairs describing when a button gets pressed
and released, e.g., (press, 0).(release, 1).(press, 2).(release, 5). We can easily specify
this type of list structure in Maude with its expressive typing system [7].

3.1 Button Behavior Semantics in a System

The behavior of a button we have just defined is a purely mathematical one. By itself,
it has no behavior semantics. To capture the behavior of the list of button press events
over time, we simply convert the list of press and release events over time into a set of
delayed messages:

op to-msgs : PressReleaseList Oid -> Configuration .
msgs press release : Oid -> Msg .

The to-msgs operator homomorphically maps each element of the list to a message.

eq to-msgs(nil, O) = none .
eq to-msgs(L press(T), O) = to-msgs(L,O) delay(press(O), t(T)) .
eq to-msgs(L release(T), O) = to-msgs(L,O) delay(release(O), t(T)) .

The object reacting to this button press event will then receive each button-related
message at the appropriate time according to the semantics of the delay operator.

4 A Pattern to Address Button Bounce Faults

With our current model of the environment (button presses as delayed messages), we are
now ready to discuss how to model faults. Faults essentially add additional behavior to



the environment or system. In general, we would like to capture a fault in full generality
in order to check all cases, but we also need to make enough assumptions to restrict in
a realistic way the faulty behavior. Otherwise, it may become impossible to correctly
design a fault-tolerant system.

4.1 Button Bounce

When a button is pressed, the button may “bounce.” A button bounce is a mechani-
cal phenomenon that occurs due to oscillations when a button is pressed. The contact
voltages of the button may oscillate between high and low thresholds multiple times
before stabilizing. This results in multiple erroneous button press events for only one
intended button press event. Since oscillatory phenomena are usually dampened pretty
quickly, there is a short time window, T max

bounce, within which a button may bounce after
it is pressed.

Of course, the basic model of button bouncing behavior can be described in the
continuous time model as a relation Fbounce ⊆ Ivalid × Ivalid (implicitly parameterized by
a maximum bounce time T max

bounce) where (b, b f ) ∈ Fbounce means that given an ideal input
b, the faulty input b f could result from the button bouncing fault [7]. However, with
proper assumptions on the spacing of events to avoid zeno behavior, we can use Fbounce

to define a corresponding relation on the discrete list-like representation of button press
and release events. This is represented as the binary predicate bounce-fault. The first
argument is the ideal input, and the second argument is the nonideal faulty input. The
predicate returns true iff the faulty model is a possible result of button bounce faults
applied to the ideal model.

op bounce-fault : Input Input -> Bool .
eq bounce-fault(nil,nil) = true .

If the last press events match, then we can remove it and look for earlier faults.

eq bounce-fault(I press(T), I’ press(T)) = bounce-fault(I,I’) .

If a press event occurs in the faulty model, which is later than the corresponding
press event in the ideal model, then it is possibly a bounce event if it is within the
T max

bounce duration, bounce-duration. We can remove this event and analyze the earlier
times for more faults.

ceq bounce-fault(I press(T), I’ press(T’))
= bounce-fault(I press(T), I’)
if T’ le (T plus bounce-duration) /\ T’ gt T .

Release events should match the ideal ones, but there might be extraneous release
events generated by the bounce fault, which we can just remove and reason about the
corresponding press event earlier (using the equations above). Anything that does not
match the patterns described above could not have been generated by a bounce fault.

eq bounce-fault(I release(T),I’ release(T)) = bounce-fault(I,I’) .
ceq bounce-fault(I press(T), I’ release(T’)) = bounce-fault(I press(T),I’)
if T lt T’ .
eq bounce-fault(I,I’) = false [owise] .



The current fault model is purely declarative. It is a binary relation that can be used
to check whether one button input is a faulty version of another. However, this gives
no means for generating a faulty model directly from a nonfaulty one. In order to have
some degree of completeness in model checking analysis later, we need to have a more
executable fault model; one that specifies faults as transitions and not just by a predicate.
Of course, if we choose Time to be the real numbers, we have no hope of obtaining a
set of possible faults manageable for execution purposes as there are uncountably many.
However, for most practical purposes, we can obtain a fairly complete analysis just by
using discrete time, mostly because systems operate based on discrete clocks anyway.
Assuming a natural number model of time, a more executable fault model can be defined
[7].

4.2 A Button Debouncer Pattern

Finally, we come to the most important part of our specification, namely, a formal pat-
tern for correctly handling faulty button bounce behavior. Figure 2 shows the intuitive
structure of the button debouncer. Essentially, all button inputs are filtered through a
wrapper, and by properly timing button press events, we can ignore exactly the faulty
bounced button press events (assuming proper spacing between normal button press
events).
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Fig. 2. The Button Debouncer Pattern

We must first describe the input theory oth DEBOUNCED that is required for a button
debouncer. This includes the original class that the button debouncer will modify, and
also parameters of the system and of the fault in order to adjust the pattern’s behavioral
parameters accordingly. The parameters of the theory DEBOUNCED can be intuitively de-
scribed as follows. The class Wrapped is the class for the internal object that is wrapped
by the button debouncer. An operator |dest| needs to be provided in order to know
whether a message should be forwarded outside of the wrapped configuration. The con-
stant |t-bounce| should be mapped to an appropriately measured constant T max

bounce.
Furthermore, another constant t-space is required to define the minimal time spacing
between two intentional button presses. The message press is of course the special
button press message that we want to debounce. We also add an equation in the theory



specifying that time should not be allowed to advance when a press message has not yet
been handled.

class |Wrapped| .
op |dest| : Msg -> Oid .
op |t-bounce| : -> Time .
op |t-space| : -> Time .
eq |t-bounce| lt |t-space| = true .
msg |press| : Oid -> Msg .
eq mte(|press|(O:Oid)) = zero .

Now, the actual pattern itself is quite straightforward. The debouncer pattern is a
wrapper enclosing an object that modifies its behavior by filtering messages. Besides
the internal configuration, it also adds a timer attribute, which is needed to filter the
debouncing actions correctly. Note that we use parameter |O| as the parameter label of
the theory DEBOUNCED.

(tomod DEBOUNCER{|O| :: DEBOUNCED} is
pr RT-COMP .
pr DELAY-MSG .

class !Debouncer{|O|} |
inside : NEConfiguration,
timer : Timer .

The tick and mte equations are the intuitive ones, where we must tick the inter-
nal configuration according to its defined semantics as well as the timer stored in the
wrapper object.

eq tick(< O : !Debouncer{|O|} | inside : C, timer : TM >, T)
= < O : !Debouncer{|O|} | inside : tick(C, T), timer : tick(TM, T) > .

eq mte(< O : !Debouncer{|O|} | inside : C, timer : TM >)
= minimum(mte(C), mte(TM)) .

Finally, we have the behavioral rules for the object. For receiving messages, all
messages that are not a button press message are forwarded to the internal configuration.
Also, all messages output from the internal object are forwarded to the external wrapper:

crl [forward-in] : IM < O : !Debouncer{|O|} | inside : C >
=> < O : !Debouncer{|O|} | inside : IM C >
if |dest|(IM) == O /\ IM =/= |press|(O) .

crl [forward-out] : < O : !Debouncer{|O|} | inside : OM C >
=> < O : !Debouncer{|O|} | inside : C > OM
if |dest|(OM) =/= O .

When a button press message is received, the behavior will differ based on the timer.
If the timer is not set, then we have an initial button press event, which is immediately
forwarded to the internal configuration. Furthermore, the timer is set for the maximum
bounce duration.

rl [set-timer] : |press|(O) < O : !Debouncer{|O|} | timer : no-timer, inside : C >
=> < O : !Debouncer{|O|} | timer : t(|t-space|), inside : |press|(O) C > .

If the timer is set, then the system is within a bounce duration, and the incoming
button press event is ignored.

crl [ignore-press] : |press|(O) < O : !Debouncer{|O|} | timer : TM, inside : C >
=> < O : !Debouncer{|O|} | inside : C >
if TM =/= timer0 /\ TM =/= no-timer .



Finally, when the timer expires, the timer is removed. This is a model-specific con-
struct that allows the time to advance.

crl [reset-timer] : < O : !Debouncer{|O|} | timer : TM >
=> < O : !Debouncer{|O|} | timer : no-timer >
if TM == timer0 .

endtom)

4.3 Proof of Correctness of the Debouncer Pattern

The button debouncer should essentially mitigate button bounce faults, but we must
make clear this notion and what it means. We essentially need to define a correspon-
dence between ideal behavior and the debounce pattern behavior under a faulty input.
We must define the two transition systems of interest and express their correspondence.
First, we define appropriate projection operations. We need a message filter and a wrap-
per remover. πn f only projects the nonfaulty messages. πw projects the object on the
inside of the wrapper. In Maude, they can be defined as follows:

vars C C’ : NEConfiguration .
eq pi-nf(C) = pi-nonpress(C) pi-press(C, get-time(C)) .

eq pi-w(< I:Oid : PressDebouncer | inside : C >) = C .
eq pi-w(C C’) = pi-w(C) pi-w(C’) .
eq pi-w(C) = C [owise] .

Here all these operators are frozen. pi-nonpress projects all the components of
the configuration that are not pressmessages, and pi-press filters all press messages
that are not faulty using the defined times T-bounce and T-space, and also the timer
set on the debounce wrapper to filter initial times.

Definition 1. States of the transition system S ideal are system configurations with a
single instance of a wrapped object, and such that the input button press messages are
spaced by at least the assumed minimal time spacing.

States of the transition system S wrapped are system configurations with a single in-
stance of a wrapped object in a wrapper object, and such that input button press mes-
sages are related to an ideal button press configuration by the button press fault Fbounce.

We define a relation H ⊆ S ideal×S wrapped by the equivalence siHs f iff πn f (πw((s f ))) =

si and time(s f ) = time(si).

We now come to the theorem that shows that H defines a bisimulation between an
ideal system and a faulty system with our pattern applied. Since H preserves all the
states of the object, this theorem essentially states that our pattern fully masks button
bounce faults for our model of input (with proper spacing between successive button
presses). The full proof of the theorem can be found in [7].

Theorem 1. The relation H is a well-founded bisimulation, and thus H defines a stut-
tering bisimulation between S ideal and S wrapped when considering natural number time.

Note that if we do not have natural number time, then it is not guaranteed that we
have a bisimulation. A simple counter-example would be one where a button bounces an
infinite number of times in a finite time period. Of course, this is due to Zeno behavior.



In order to remove Zeno behavior, we can make the assumption that all events are
spaced at least ∆t apart. This means that if we convert all times t into the natural number
dt/∆te, then the relation is still well founded, and the bisimulation result would still hold.

Notice that any atomic proposition AP defined on a state si can be lifted to a property
of s f by labelling s f according to πn f (πw((s f ))).

In addition to proving these theorems, we have also performed some model check-
ing for simple instantiations of this pattern as an extra level of validation [7].

5 A Pattern to Address Phantom Faults

5.1 Phantom Faults

Slight disturbances in the environment (e.g. EMI, moving parts, etc.) can lead to a
button being unintentionally pressed for a very short time.

The domain model is exactly the same as that for button bounce. We consider button
inputs that we model as discrete messages, and an object that reacts to button inputs by
consuming these messages.

A phantom button fault is a relation Fphantom ⊆ Ivalid × Ivalid (implicitly parameter-
ized by a phantom press duration Tphantom) where faulty button presses of very short
durations may occur. More precisely, (b, b f ) ∈ Fphantom iff

1. b(t) = 1 =⇒ b f (t) = 1 (an intentional button press is always registered)
2. if b f (t) = 1 and b(t) = 0, then t − init(b f , t) < Tphantom (the duration of all phantom

presses are bounded by Tphantom)

We can similarly construct the discrete definition of the Fphantom relation and also
the executable fault generation definitions when we are working in discrete time.

5.2 Dephantom Pattern

The pattern for handling phantom button events first requires describing the necessary
parameters to fully define its behavior in the parameter theory PHANTOMABLE.

Like the button debouncer pattern, the dephantomizer pattern is parameterized, in
this case by the PHANTOMABLE input theory that describes the nature of the phantom
button press fault and the object which will be wrapped by the pattern. This includes a
class |Wrapped|which specifies which object is subject to the phantom press fault. The
|dest| operator which is again used to find which messages to forward to the outside
configuration. The |press| and |release|messages which describe the actual button
press events subject to phantom press faults.
(oth PHANTOMABLE is pr TICK-MTE-SEM .

class |Wrapped| .
op |dest| : Msg -> Oid .
op |t-phantom| : -> Time .

msg |press| : Oid -> Msg .
msg |release| : Oid -> Msg .

var O : Oid .
eq mte(|press|(O)) = zero .

endoth)



The dephatomizer pattern takes a PHANTOMABLE theory as input and describes a
wrapper pattern to mitigate phantom button press faults. The wrapper structure is very
similar to the button debouncer, except for the logic of handling button presses, which
is of course necessary since the fault behavior is different for the pattern.

(tomod DEPHANTOMIZER{|O| :: PHANTOMABLE} is
pr RT-COMP .
pr DELAY-MSG .

class !PhantomIgnore{|O|} |
inside : NEConfiguration,
timer : Timer .

op init-timer : -> Timer .
eq init-timer = no-timer .

vars T : Time .
var O : Oid .
var TM : Timer .
var C : Configuration .

The equations below define the wrapper class and the time advancement semantics.
This is exactly the same as in the button debouncer case. However, here the timer is
used slightly differently to eliminate a different set of faults. The logic for the timer will
be shown later.

eq tick( < O : !PhantomIgnore{|O|} | inside : C, timer : TM >, T)
= < O : !PhantomIgnore{|O|} | inside : tick(C, T), timer : tick(TM, T) > .

eq mte( < O : !PhantomIgnore{|O|} | inside : C, timer : TM >)
= minimum(mte(C), mte(TM)) .

The rule set-timer below sets the timer whenever a button press event is re-
ceived. The timer is then used to make sure that the button is pressed for sufficiently
long before it is actually recognized as an intentional button press event. The rule
non-phantom-release decides the behavior when the system receives a release af-
ter sufficient time has elapsed, and hence the timer is disabled to no-timer. The rule
phantom-release is applied when a release message is received before the timer ex-
pires. This means that insufficient time has elapsed before a button is released and it is
considered a phantom event. Thus, the button press and the release events are hidden
from the internal object. Furthermore, the timer is reset. The last rule reset-timer
is specified when the timer expires. This means that the button press duration has just
passed the threshold to be registered as a valid press. The press event is forwarded to
the internal configuration.

rl [set-timer] : |press|(O) < O : !PhantomIgnore{|O|} | timer : no-timer >
=> < O : !PhantomIgnore{|O|} | timer : t(|t-phantom|) > .

rl [non-phantom-release] : |release|(O) < O : !PhantomIgnore{|O|} |
timer : no-timer, inside : C >

=> < O : !PhantomIgnore{|O|} | inside : |release|(O) C > .

crl [phantom-release] : |release|(O) < O : !PhantomIgnore{|O|} | timer : TM >
=> < O : !PhantomIgnore{|O|} | timer : no-timer >
if TM =/= timer0 /\ TM =/= no-timer .



crl [reset-timer] : < O : !PhantomIgnore{|O|} | timer : TM, inside : C >
=> < O : !PhantomIgnore{|O|} | timer : no-timer, inside : |press|(O) C >
if TM == timer0 .

The last two rules for forwarding messages in and out from the internal configura-
tion are similar to the forwarding rules for the debouncer pattern. Indeed, any wrapper
that selectively filters certain messages will have forward rules of this form.

var IM OM : Msg .
crl [forward-in] : IM < O : !PhantomIgnore{|O|} | inside : C >
=> < O : !PhantomIgnore{|O|} | inside : IM C >
if |dest|(IM) == O /\ IM =/= |press|(O) /\ IM =/= |release|(O) .

crl [forward-out] : < O : !PhantomIgnore{|O|} | inside : OM C >
=> < O : !PhantomIgnore{|O|} | inside : C > OM
if |dest|(OM) =/= O .

endtom)

5.3 Proof of Correctness of the Dephantomizer Pattern

As with the button debouncer, we would like to establish a correspondence between the
execution of an ideal system and that of a system with input faults but with the pattern
applied. Again, the key is to define a projection relation between the two systems. How-
ever, in this case, in addition to the projection operations, we also need to define a time
translation on button press messages to capture the delays of the pattern.

The first transformation operation of interest is the delay-press, which delays
all press messages by a time duration T. This is useful as the dephantom pattern in-
troduces delays in processing the press messages. Because of this, a delay transforma-
tion is required to show an equivalent execution between an ideal system and a de-
layed system. The projection πphantom from a phantom input system with a wrapper
to an ideal input system with no wrapper would be the composition remove-small
; remove-wrapper ; delay-press. Where remove-small is applied first and re-
moves all messages whose durations are too small; remove-wrapper removes the pat-
tern wrapper and exposes the internal object; and delay-press shifts the time of all
button press events by a specific duration. Full details about each of these operator
definitions can be found in [7].

Again, we use the same definitions as with the button bounce case defining the states
of systems S ideal and S wrapped, but this time using the phantom fault Fphantom to provide
faulty button inputs.

Definition 2. Define a relation H ⊆ S ideal×S wrapped such that siHs f iff πphantom(s f ) = si

and time(s f ) = time(si).

We again have a bisimulation result, for which the full proof can be found in [7].

Theorem 2. The relation H is a well-founded bisimulation, and thus H defines a stut-
tering bisimulation between S ideal and S wrapped when considering natural number time.

Notice that in this case, H still preserves all the attributes of objects but only by
making the button press delivery times later in the ideal model. This means that H adds
a delay into the system, which is to be expected as detecting for faulty short button
presses requires the system to wait before registering the button press event.



6 A Pattern to Address Stuck Faults

6.1 Stuck Faults

When a button is pressed, it may become stuck. This may be caused by deterioration in
the spring or sudden increase in friction due to deformation or adhesives. This results
in a persistent logical 1 signal, even though the button was already released.

We again have another device-button interaction, and the model is entirely similar
to the button bounce and phantom press cases.

A button stuck fault is a relation Fstuck ⊆ Ivalid × Ivalid such that a faulty button may
be held down for longer durations than intended, or more precisely, (b, b f ) ∈ Fstuck iff:

1. b(t) = 1 =⇒ b f (t) = 1 (a button appears pressed when it is physically pressed,
regardless of being stuck)

2. If b f (t) = 1 and b(t) = 0, then there is a t′ < t s.t. b(t′) = 1 and b f (t′′) = 1 for
all t′′ ∈ [t′, t] (a button can only become stuck after it has been pressed, and stays
stuck for a continuous time interval).

6.2 Stuck Detection Pattern

Like the button debouncer pattern, the stuck detector pattern takes an input theory that
describes the nature of the stuck button press fault. This includes a class Wrappedwhich
specifies which object is subject to the stuck button press fault. The dest operator is
again used to find which messages to forward to the outside configuration. The press
and release messages describe the actual button press events subject to stuck button
press faults. Furthermore, we have t-stuck to describe the minimal time that the button
will remain stuck. The input theory for the stuck detector pattern is given as follows.

(oth STUCKABLE is
pr TICK-MTE-SEM .

class |Wrapped| .
op |dest| : Msg -> Oid .
op |t-stuck| : -> Time .

msg |press| : Oid -> Msg .
msg |release| : Oid -> Msg .

var O : Oid .
eq mte(|press|(O)) = zero .

endoth)

The stuck detector pattern is defined in the STUCK-DETECTmodule below. It takes a
STUCKABLE theory as input and describes a wrapper pattern to detect stuck button press
faults. The wrapper structure is again very similar to the button debouncer wrapper.

(tomod STUCK-DETECT{|O| :: STUCKABLE} is
pr RT-COMP .
pr DELAY-MSG .

class !StuckDetect{|O|} |
inside : NEConfiguration,
timer : Timer,
stuck-err : Bool .



op init-timer : -> Timer .
eq init-timer = no-timer .
op init-stuck-err : -> Bool .
eq init-stuck-err = false .

We first define the necessary attributes of the wrapper object. Besides the internal
configuration, we have a timer for keeping track of when the button has been pressed
passed its stuck duration. The stuck-err bit, when set to true represents detection of
the error. The other constants define initialization values for each of the attributes.

The tick and mte rules are again similar to those for the other patterns and work by
propagating the operations homomorphically to the internal configuration and timers.
Their behavior on objects are defined by the equations below.

eq tick( < O : !StuckDetect{|O|} | inside : C, timer : TM >, T)
= < O : !StuckDetect{|O|} | inside : tick(C, T), timer : tick(TM, T) > .

eq mte( < O : !StuckDetect{|O|} | inside : C, timer : TM >)
= minimum(mte(C), mte(TM)) .

The rules for the behavior under button press events is just forwarding all button
press and release messages normally, but setting and resetting the timers appropriately.
The last rule, stuck-event, is applied whenever a button press event is not followed
by a release within t-stuck time units. When this happens, the stuck-err is set to
true to indicate detection.

rl [set-timer] : |press|(O) < O : !StuckDetect{|O|} | timer : no-timer, inside : C >
=> < O : !StuckDetect{|O|} | timer : t(|t-stuck|), inside : |press|(O) C > .

rl [release-event] : |release|(O) < O : !StuckDetect{|O|} | inside : C >
=> < O : !StuckDetect{|O|} | inside : |release|(O) C, timer : no-timer, stuck-err : false > .

crl [stuck-event] : < O : !StuckDetect{|O|} | timer : TM >
=> < O : !StuckDetect{|O|} | timer : no-timer, stuck-err : true >
if TM == timer0 .

The forward in and out rules are again similar to the previous two patterns.

var IM OM : Msg .
crl [forward-in] : IM < O : !StuckDetect{|O|} | inside : C >
=> < O : !StuckDetect{|O|} | inside : IM C >
if |dest|(IM) == O /\ IM =/= |press|(O) /\ IM =/= |release|(O) .

crl [forward-out] : < O : !StuckDetect{|O|} | inside : OM C >
=> < O : !StuckDetect{|O|} | inside : C > OM
if |dest|(OM) =/= O .

endtom)

6.3 Proof of Correctness of the Stuck Detection Pattern

The stuck fault is inherently lossy, so the correctness of the pattern is shown in two
parts. First, if no stuck faults occur then we show that the behavior with the pattern is
bisimilar to the ideal system. Second, if a stuck fault occurs, we can no longer guarantee
any correspondence in behavior to the ideal case, but we can guarantee detection of the
fault within a certain time bound.



The projection πstuck from a wrapped system for stuck detection to an ideal input
system with no wrapper is just simply a function remove-wrapper, which removes the
pattern wrapper and exposes the internal object to the external configuration.

Again, we use definitions analogous to those for the button bounce case for states
of S ideal and S wrapped. Although stuck faults will ruin any possibility of behavioral cor-
respondence (since the system becomes unresponsive), we can still show that without
faults our pattern does not alter the behavior of the system.

Definition 3. Define a relation H ⊆ S ideal × S wrapped such that siHs f iff πstuck(s f ) = si

and time(s f ) = time(si).

We can show that under a strict relation H that does not allow for differences in the
faulty model (i.e. no stuck faults occur), then the behavior of the wrapped system in a
faulty environment is bisimilar to that of the ideal system, that is, the added wrapper
does not essentially change to the behavior of the system. Proof in [7].

Theorem 3. The relation H is a well-founded bisimulation, and thus H defines a stut-
tering bisimulation between S ideal and S wrapped when considering natural number time.

However when a button does become stuck, we can no longer give any guarantees
about correct behavior, but we can still detect a fault. The following theorem proves that
any stuck faults will be detected by our pattern. Proof in [7].

Theorem 4. Consider a system in S wrapped. If we have a stuck fault such that there exist
two consecutive press and release events on the input delay(press, t) delay(release,
t′) such that t′ − t > Tstuck then the wrapper attribute stuck-err will be set after
t + Tstuck time units.

7 Conclusion and Future Work

The goal of this work has been to define formal patterns, as parameterized real-time
rewrite theories, that provide provably correct guarantees of fault tolerance for com-
monly occuring faults in button interfaces of manually-operated devices, including
medical equipment. The general technique of well-founded bisimulations [4] has been
used to obtain the desired guarantees for each pattern. Since the formal specifications
are executable, formal analysis by model checking has also been performed.

For future work, an important next step is to analyze the compositional behavior
of multiple patterns together. Although each of the patterns have bisimulation results
which is by itself composable, some of the bisimulations are conditional (such as intro-
ducing delays or adding additional fault-detection messages). In these cases the order
of pattern composition can result in different system behaviors. This highly nontrivial
problem of pattern composition is one of the major challenges that must be addressed
before these patterns can be used for larger scale systems.
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Abstract. Networking of computers and devices have improved paral-
lelism, fault tolerance, and the overall capabilities of real-time systems.
However, the power of networking does not come for free as we are left to
deal with new faults of message loss, message delay, and message corrup-
tion. Generally, in order to abstract away faults in networked systems,
we either assume that the system is not time sensitive and information
can be retransmitted indefinitely, or we must have dedicated reliable
networking hardware and appropriate protocols to remove the faults en-
tirely. In the paper, we present a formally specified heart-beat pattern
for use in real-time safety-critical systems with unreliable networks. We
use parameterize modules to specify our pattern generically, not tied to
the particular system being designed.

1 Introduction

Networking has always been a key element in improving the scalability of cyber-
physical systems. When used correctly, networking can improve scalability and
performance by increasing parallelism, improve the fault tolerance of systems by
introducing redundancy, and improve the overall computing power by linking
disjoint computing elements together. However, none of these benefits of net-
working comes for free, and naive usage of network technology can easily have
the opposite effect of descreasing performance and fault-tolerance.

Networking introduces many new problems that we must address before hav-
ing a correctly functioning system:

– Message delivery is not reliable, since messages can be lost on the network
due to noise or other issues.

– Message delays are more variable, since messages may be routed in many
ways.

– Failure dependencies increase, since the failure of one network component
can causally disrupt all other components across the network.

In safety-critical systems such as avionics, an ultra reliable real-time network
is used to ensure timely communication between components. However, in medi-
cal systems, these hard real-time network guarantees are much harder to achieve



since medical devices need to be mobile (across hospital rooms) and setting up
cables to connect different medical devices can become very error prone and haz-
ardous. Thus, modern medical system designs prefer to use wireless connections
to set up devices and to improve mobility. However, this inherently reduces the
network reliablity of medical systems compared to other systems. This poses a
safety challenge that must be addressed in medical system designs. We call this
the problem of open-loop safety, which means maintaining safety in a system
even in the situation when devices become disconnected from each other due to
network failures.

In this paper, we describe a heartbeat formal pattern for networked medical
systems and more generally CPS systems operating over unreliable networks.
The heartbeat pattern creates a fault-tolerance layer that can still ensure some
real-time safety interlocks when messages are dropped. We use the term ideal
system to describe a system design that is correct without considering message
loss faults. Our heartbeat pattern itself is then a theory transformation from
the ideal system to a system that operates in an environment with message loss
faults. Our pattern should have the following properties:

– Generic: our pattern applies to any system that can be modelled as a real-
time object-oriented actor model with a sender-receiver pair.

– Formally defined preconditions: the conditions required for using our pattern
correctly are captured in the form of an input theory.

– Proven to be correct: when preconditions are met and no faults occur, we
formally prove that our pattern preserves the behavior of the ideal system.

– Proven to be robust: when preconditions are met and faults occur, we formally
prove that our pattern guarantees delivery of critical messages, and thus, can
be used to guarantee a certain level of safety.

2 Safe Networked Device Communication

Network failures must be taken into account in almost all distributed systems.
General solutions usually involve time stamping, acks, and resending. However,
in a real-time system, waiting for resends is a luxury that in general cannot be
afforded. A real-time control system must be able to remain safe, which includes
making timely decisions, even if the entire network permanently fails and all
devices become disconnected. This is especially problematic when devices are
tightly coupled and must coordinate actions in a timely manner. For the patterns
in this section, we are solely focused on the following problem:
Context: A set of communicating devices whose behaviors need to be coupled
in certain ways.
Problem: Critical messages for device coordination could be lost due to a faulty
network.
Domain Model: We use timed object-oriented actor models in Maude to model
our system. A configuration is a multiset of messages and objects. The rewrite
(state transition) rule for potential message loss of a LossyMsg in a configuration
is just:



M:LossyMsg C:Configuration => C:Configuration

2.1 Example Instances

1. During laser-airway surgery, the oxygen on a mechanical ventilator must be
turned-off before using the laser. If the laser is on with oxygen flowing, then
a dangerous airway fire can result. Furthermore, if the oxygen does not turn
back on within a certain time, then hypoxia can result for the patient. The
laser and oxygen devices must coordinate their behaviors closely over the
network to prevent harm to the patient.

2. A patient is being administered calcium chloride after a heart attack through
an infusion device. Later the patient develops blood acidosis and needs to be
given sodium bicarbonate. The calcium chloride infusion must be stopped
before sodium bicarbonate can be started; otherwise calcium bicarbonate
precipitate can form. Again, these two infusion devices need to communicate
to prevent harm to the patient.

2.2 Heartbeat Protocol for Fail-Safe Communication

The heartbeat protocol focuses on single communication channels between two
nodes. We assume that a device behavior is being controlled/coordinated by some
message sender (either a supervisory device or another medical device). In order
for the heartbeat protocol to make sense, we make the following assumptions on
the receiving device D:

1. D has a set of well-defined global safe states Ssafe . In these states it is
assumed that there will not be any adverse interactions between D and
other device states.

2. There is a critical message Mcrit such that after receiving Mcrit , D will
transition to a state in Ssafe .

Given that Mcrit can be lost, the heartbeat pattern makes sure that D still
enters a safe state by constructing a new message re(Mcrit). This new message
is resent periodically as a heartbeat message when Mcrit has not yet been sent.
Both the original sender and receiver are encapsulated into meta-objects. The
sender meta-object, will periodically retransmit re(Mcrit) until Mcrit is sent by
the inner sender. The receiver meta-object will forward a Mcrit message to the
inner receiver, either when Mcrit is received or when re(Mcrit) has not been
received for a certain period of time:

rl < sender : SendWrapper | inner : C M-crit >

=> < sender : SendWrapper | inner : C, resend : no-timer > M-crit .

rl < sender : SendWrapper | inner : C, resend : t(0) >

=> < sender : SendWrapper | inner : C, resend : t(resend-time) >

re(M-crit) .

rl M-crit < receiver : RecvWrapper | inner : C >

=> < receiver : RecvWrapper | inner : M-crit C, timeout : t(timeout-time) > .

rl < receiver : RecvWrapper | inner : C, timeout : t(0) >

=> < receiver : RecvWrapper | inner : M-crit C, timeout : t(timeout-time) > .



Correctness: For this pattern, it can be shown that the receiver will always
receive a message Mcrit (at a delay of at most Ttimeout). Thus, even during
network disconnects the receiver device D will transition to a state in Ssafe . Of
course, the device D can also preemptively transition to a state in Ssafe due to
message loss; however, this is still safe. It can also be shown true that if there
is no message loss, there is a bisimulation between the device behavior using
the heartbeat protocol and the device behavior behavior without the heartbeat
protocol.

3 Conclusion and Future Work

Our heartbeat pattern addresses an important safety problem for medical devices
connected by an unreliable network, which can be described as an open-loop
safety problem. Our pattern is generic in that in can be applied to any sender and
receiver pair that satisfies the preconditions stated in the pattern’s parameter
theory. It as also provably correct under nonfailure conditions and provably safe
under message loss failures.

In this work, our pattern still makes some ideal assumptions that should
sbe addressed in future work, including the addition of clock skews and variable
message delays. Furthermore, the generalization of our pattern to multiple sender
and receiver configurations can also be considered. On the modeling perspective,
our model specification are still limited to object-oriented actor systems. It will
be interesting to see how to define the same pattern for more hardware-oriented
models of communication.
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Abstract. The OSEK/VDX is an international standard of automobile
operating systems, which are typical safety-critical systems that require
extensive safety analysis and verification. Our previous work has shown
formal methods are useful to verify the safety of both the OSEK/VDX-
based operating systems and applications. Using formal methods requires
formal semantics of the OSEK/VDX standard. In this paper, we present
a formal semantics of the standard defined in K, a rewrite-based formal
semantics framework. With the formal semantics, we can (1) verify user-
defined applications by symbolic execution, and (2) automatically gen-
erate test cases for testing of the OSEK/VDX-based operating systems.
Compared with existing formal semantics of the standard, the formal se-
mantics defined in K is more flexible and generic. This work also shows
that K is not only used for formalizing the semantics of programming
languages, but also for automobile operating systems.

1 Introduction

The OSEK/VDX is an international standard of developing automobile oper-
ating systems [1]. An automobile operating system is a piece of safety-critical
software to manage resources and applications which run on the system to control
electrical devices in automobiles. Its safety should be extensively analyzed and
verified. To implement an OSEK/VDX-based operating system, the traditional
approach is to develop both the kernel and applications following the standard,
and compile them together to generate an executable system. The system must
be tested extensively for safety [2]. This approach is effort-consuming and prone
to errors in that modification to source code usually requires recompilation and
testing requires complete suite of test cases, which usually are difficult to build.
Our previous work shows that using formal methods is an effective approach

? This research was supported by Kakenhi 23220002, Japan, and by the MSIP(Ministry
of Science, ICT and Future Planning), Korea, under the ITRC(Information Tech-
nology Research Center) support program (NIPA-2013-H0301-13-5004) supervised
by the NIPA(National IT Industry Promotion Agency).



to both safety verification of OSEK/VDX-based applications [3] and test case
generation [4, 5], complementary to the traditional testing-based approach.

Using formal methods requires formal semantics of the OSEK/VDX stan-
dard. In this paper, we present an executable formal semantics of the standard,
which is defined in K, a rewrite-based formal framework [6]. We choose K for its
flexibility, simplicity and tool-support. K allows user-defined data types and sup-
ports formalization of infinite-state systems. Especially, K provides tool-support
to automatically generate interpreter and state-space explorer based on the de-
fined semantics. Another advantage of using K is that it does not require extra
effort to transform user-defined applications into corresponding formal definition
in K in order to use the formal semantics. In this sense, the formal semantics of
the standard in K is more flexible and generic than those formalized in Promela
[7] and NuSMV [5], which have restriction on the number of tasks, resources,
events in OSEK/VDX-based operating systems, and also need extra effort to
instantiate the semantics with user-defined applications.

The benefit from this formal semantics is multifold. Firstly, it can be used to
verify user-defined applications by integrating the formal semantics with the se-
mantics of the language in which the applications are implemented. Secondly, it
can be used to automatically generate test cases for the testing of OSEK/VDX-
based operating systems. This work also shows that K is not only used for
formalization of the semantics of programming languages, but also for the for-
malization of automobile operating systems. To the best of our knowledge, this
is the first work to formalize operating systems in the K framework.

Organization of the paper: Section 2 introduces the background and our
overall approach. Sections 3 and 4 describe the OSEK/VDX standard and K.
Section 5 shows the formalization of OSEK/VDX in K. Section 6 demonstrates
two applications of the formal semantics, i.e., symbolic execution and test case
generation. Sections 7 and 8 mention some related work and conclude the paper.

2 Background and Overall Approach

The OSEK/VDX standard is a generic description which is mandatory for any
implementation of an OSEK/VDX operating system. It concerns the general
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description of the strategy and functionality, standardized application program-
ming interface (API), resource management, event mechanism, etc. Fig. 1 depicts
the traditional process of implementing OSEK/VDX-based operating systems
[8]. An OSEK/VDX-based operating system is built out of a kernel which in-
cludes basic functionalities described in the standard such as scheduler, APIs,
etc., and a group of applications which interact with the kernel through APIs.
An application includes a configuration of resources, tasks, and events that are
defined in OIL (OSEK Implementation Language) and source code for each task
of the application. They are compiled together and an executable operating sys-
tem is developed. The system is then extensively tested for safety. There are two
major problems with the traditional approach. One is that the whole system
must be re-compiled and re-tested due to every change to either the kernel or
applications. It is costly in terms of both effort and time. Another problem is
that it is prone to errors due to the ambiguity of the standard which in written
in natural language and the lack of test cases. A suite of comprehensive test
cases are necessary to detect potential errors in a system, however it is not an
easy task to build such a suite of test cases.

Using formal methods is an effective means of developing reliable OSEK/VDX-
based operating systems, complementary to the traditional one. Fig. 2 shows the
overview of our formal approach to the verification of OSEK/VDX-based appli-
cations and test case generation for the testing of OSEK/VDX-based operating
systems. The OSEK/VDX standard, including features such as task scheduling,
resource management, or event mechanism is formalized. To verify user-defined
applications, the semantics of the programming language in which tasks are
implemented should also be formalized. User-defined applications can be sym-
bolically executed with the integration of the two formal semantics. By symbolic
execution, we can verify the execution result and detect potential errors such as
deadlock in applications. For test case generation, users only need to provide a
configuration of tasks, resources and events, and the constraints that generated
test cases should satisfy, such as the number of APIs for each task. Test cases are
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automatically generated based on the formal semantics of the kernel. Generated
test cases can be used for OSEK/VDX-based operating systems by checking
whether the result obtained by running each test case on practical system is the
same as the expected result.

3 The OSEK/VDX Standard and OIL

As mentioned earlier, the OSEK/VDX standard generically describes all manda-
tory requirements of an OSEK/VDX-based operating system. In our current
formalization we only consider some fundamental parts in the standard such as
task scheduling, resource management, event mechanism, error handling, etc.,
and leave others as future work.

Task and task scheduling Task is the basic building block of an OSEK/VDX
application. Multitask is one of the basic requirements of OSEK/VDX-based
operating systems. The OSEK/VDX standard specifies two kinds of tasks, i.e.,
basic task and extended task. Fig. 3 shows the state transitions of basic tasks and
extended tasks. A basic task has three states, i.e., ready, running and suspended,
while an extended task has a waiting state besides the three. The difference
between them is that the extended tasks can wait for events during execution by
using the system call WaitEvent, while the basic tasks cannot. Calling WaitEvent
may result in a waiting state, and the release of the processor. The processor can
be reassigned to a lower-priority task without the need to terminate the running
extended task.

Tasks are controlled by the scheduler. The scheduler decides on the basis of
the task priority which is the next of the ready tasks to be transferred into the
running state. The OSEK/VDX standard provides two scheduling policies, i.e.,
full preemptive and non preemptive scheduling. By full preemptive scheduling, a
running task may be rescheduled at any instruction by the occurrence of trigger
conditions pre-set by the operating system, such as successful termination of a
task, and activating a task. The running task is put into the ready state, as soon
as a higher priority task gets ready.
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Fig. 3. The state model of basic task (left) and extended task (right)
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Resource management and priority ceiling protocol Resource manage-
ment is used to co-ordinate concurrent accesses of several tasks with different
priorities to shared resources. It ensures that two tasks can never occupy the
same resource at the same time, deadlocks will never occur by use of these re-
sources, and access to resources never results in a waiting state.

There are some restrictions when using resources. When occupying a re-
source, the task should not call some APIs such as TerminateTask, which may
cause rescheduling after they are called. If a task is occupying multiple resources,
these resources must be released in LIFO order.

However, under these restrictions it is possible that a lower-priority task may
delay the execution of higher-priority task, which is called priority inversion.
An example about it can be found in [1]. To avoid priority inversion, OSEK
prescribes the OSEK Priority Ceiling Protocol (PCP). The protocol requires
that each resource has a ceiling priority which is statically assigned at the system
generation. Basically, the priority shall be set at least to the highest priority of
all tasks that access that resource. If a task requires a resource, and its current
priority is lower than the ceiling priority of the resource, the priority of the task
is raised to the ceiling priority of the resource. If the task releases a resource,
the priority of the task is reset to the one before requiring that resource.

Event mechanism Tasks in OSEK/VDX-based operating systems are synchro-
nized by events. Events are the criteria for the transition of extended tasks from
the waiting state to the ready state (see Fig. 3). Events are not independent
objects, but assigned to extended tasks. An event can be assigned to multiple
extended tasks, and each extended task has a definite number of events.

When activating an extended task, its events are cleared by the system. All
tasks can set any event of any non-suspended extended task, but only the owner
can clear its events. Details about event mechanism can be referred to [1].

OSEK Implementation Language (OIL) OIL is used to configure tasks,
resources, events and their relations in an OSEK/VDX-based operating system
[8]. Fig. 3 shows an example of how to declare resources, events and tasks in
OIL. It says that in the corresponding application there is a resource named r1,
an event named e1, and a task named t1. Resource r1 is declared as a standard

RESOURCE r1 {

RESOURCEPROPERTY = STANDARD;

};

EVENT e1 {

MASK = AUTO;

};

TASK t1{

AUTOSTART = true;

PRIORITY = 3;

SCHEDULE = FULL;

RESOURCE = r1;

EVENT = e1;

};

Fig. 4. An example of configuration in OIL
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resource. Event e1 is declared with a mask as AUTO. Event mask is an integer
number. If a mask is set AUTO, one bit is assigned to it. The statements in the
configuration of task t1 say that the task should be automatically started (put
into ready state) after the initialization of operation system. The priority of the
task is 3, and it is preemptable (indicated by FULL). The last two statements in
t1 mean that task t1 can access resource r1, and it has the event e1.

4 The K Framework

K is a rewrite-based executable semantics framework, in which programming
languages, calculi, as well as type systems or formal analysis tools can be defined
[6]. K definition of a semantics is automatically translated into Maude rewrite
theories [9] for execution and formal analysis purposes. The K tool has been used
to formalize some practical programming languages such as C [10]. Some analysis
tools have also been defined in K such as a type checker and type inferencers [6].

Semantics in K is defined using labeled and potentially nested cell structures
and K (rewrite) rules. The cell structure is called a configuration, which is used
to represent system or program state. In this paper, we call it K configuration
to differ from the configuration of OSEK/VDX-based applications. There are
two types of K rules: computational rules, which count as computational steps,
and structural rules, which do not count as computational steps. The role of
structural rules is to rearrange the configuration so that computational rules can
match and apply. They correspond to the equations and rewrite rules respectively
in rewriting logic [11].

The formal definition of a programming language in K automatically yields
an interpreter for the language, and program analysis tools such as a state-space
explorer, with which we can verify the result of a program in that language by
symbolically executing it with the interpreter, and explore all possible results
(under the condition that the state space is finite and reasonably small) by
searching or model checking.

5 Formalizing the OSEK/VDX Standard in K

In this section, we explain our approach to formalizing the OSEK/VDX standard
in the K framework 3.

5.1 K configuration of the OSEK/VDX

The K configuration of a running OSEK/VDX-based operating system consists
of over 40 nested cells. Fig. 5 shows part of them. Each cell has a label. The
label ended with ∗ indicates that there can be multiple such cells. A cell that
does not have nested cells is a unit cell, storing a term which represents a piece
of information of a state. In the brackets is the type of the terms in Fig. 5.

3 Some details are omitted due to the limitation of space. The complete formalization,
K source code and the examples mentioned in Section 6 are available at the webpage
http://www.jaist.ac.jp/~zhangmin/osek-formal.html.
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〈List〉readyTasks 〈Signal〉signal 〈Map〉types 〈Error〉errorCell 〈Bool〉tcgMode

〈Map〉env 〈Id〉runningTask . . .

〈Stmt〉k 〈Stmt〉apiData 〈TaskState〉state 〈Id〉tid 〈Nat〉tPriority 〈Bool〉ext
〈List〉historyK 〈List〉waitEvents 〈Map〉taskEvents 〈List〉taskResources

〈Id〉rid 〈Nat〉rPriority 〈Id〉rTid 〈Nat〉tPri 〈List〉rOwner . . .
resource* resources

task*
tasks

global

OSEK
〈Id〉eid 〈List〉eOwner . . . event* events

〈Bool〉auto 〈List〉accRes〈Bool〉schedule . . .

Fig. 5. K configuration of the OSEK/VDX standard

We take the task cell for example. There is both static and dynamic infor-
mation of a task represented by the nested cells in task. Static information is
that configured by users such as task ID in cell tid, priority in cell tPriority, its
source code in cell apiData, whether the task is an extended one in cell ext, etc.
Dynamic information is that which changes during the execution of operating
system such as the next statement to be executed in cell k, the list of events
which the task is waiting for in cell waitEvents, the events owned by the task
and their status (set or clear) in cell taskEvents, etc. We do not explain all of
the cells due to the space limitation. Some will be explained later when needed.

5.2 Formalization of the scheduler

In our formalization, we only consider full preemptive scheduling. As mentioned
earlier, the occurrence of trigger conditions such as termination of a task will
cause operating system to reschedule tasks. We define a type Signal and a
constant schedule of it. We use a cell with label signal to store the occurrence
of such trigger conditions. When there is a signal schedule in the signal cell, it
indicates that some trigger condition has just occurred. Operating system must
first handle it before executing any task. We define a set of K rules to specify
the scheduler. The main one is as follows:

rule <signal > schedule => .</signal > <runningTask > I’ => I </runningTask >

<readyTasks > (< I,N >, L) => add2Head(I’,N’,L) </readyTasks >

<task > <schedule > FULL </schedule > <state > running => ready </state >

<tid > I’ </tid > <tPriority > N’ </tPriority > ... </task >

<task > <tid > I </tid > <state > ready => running </state > ... </task >

when N >Int N’ [transition]

The rule specifies how a K configuration changes before and after scheduling.
Before scheduling, there is a signal schedule in cell signal. In cell readyTasks
there is the list of ready tasks in a descend order by their priority. If there are
two or more ready tasks with the same priority, they are ordered by the time
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when they get ready. However, the task which is preempted from running is
considered as the oldest one among the ready tasks of the same priority [1]. In
the cell readyTasks, < I,N >, L represents that task I is the oldest one with
the highest priority N among the ready tasks. The cells nested in the first task
represent that task I’ is the present running task with priority N’ and it is
preemptable, indicated by the value FULL in the cell schedule. If task I has a
higher priority than task I’, i.e., N >Int N’, I’ is preempted, and I becomes
running. After being preempted, I’ is changed into ready state. It is added to
the head of the sub-list of the ready tasks which have the same priority as I in
the list of ready tasks by function add2Head.

5.3 Formalization of resource management

As depicted in Fig. 5, each resource is represented as a cell with label resource,
which consists of unit cells for the resource identifier, ceiling priority, and a list
of tasks that can access the resource. It also contains two unit cells which are
dynamically created when the resource is allocated to a task. The two unit cells
are used to store the identifier of the task to which the resource is allocated, and
the priority of the task before it gets the resource.

Tasks access resources by two APIs, i.e., GetResource and ReleaseResource.
As mentioned earlier, there are restrictions when accessing resources. Such re-
strictions together with the Priority Ceiling Protocol should be reflected by the
formal semantics of the two APIs. For instance, the main rule defined for Ge-
tResource is as follows:

rule <signal > schedule => .</signal > <runningTask > I’ => I </runningTask >

<readyTasks > (< I,N >, L) => add2Head(I’,N’,L) </readyTasks >

<task > <schedule > FULL </schedule > <state > running => ready </state >

<tid > I’ </tid > <tPriority > N’ </tPriority > ... </task >

<task > <tid > I </tid > <state > ready => running </state > ... </task >

when N >Int N’ [transition]

In the cell k, there is a list of APIs to be executed by task I. The API to be
executed next in the list is GetResource(R), where R is a resource ID. The cell
tPriority stores the present priority of task I, and the cell accRes stores the
list L of resources which task I is accessing. Resource R has a ceiling priority N2.
L’ in the cell rOwner represents the list of tasks that can access resource R. The
condition (following the keyword when) is true when task I can access but is not
accessing resource R. When the condition is true, R is allocated to I. According
to the Priority Ceiling Protocol, if the present priority of task I is lower than
the resource’s ceiling priority, it is raised to the ceiling priority, as defined in
the cell tPriority. R is added to the head of the list of resources being accessed
by I. In the cell resource for R, two cells rTid and tPri are created, storing the
task’s ID and present priority, i.e., I and N’, respectively. The present priority
should be stored because when task I releases the resource by ReleaseResource,
its priority should be reset to the one before it gets the resource. The semantics
of ReleaseResource can be defined likewise. We omit the details of it in the paper.
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5.4 Formalization of event mechanism

Each event is represented by an event cell as shown in Fig. 5. An event cell only
consists of two sub-cells, storing the static information of the event, i.e., the event
name in cell labeled by eid, and a list of owners (tasks) to which the event can be
accessed in cell labeled by eOwner. Because event is not an independent object,
but is assigned to extended tasks. We declare a new cell with label taskEvents
for each extended task, storing the status of events that are assigned to the task.
The status of an event is either set or clear, indicating that the event is set or
cleared respectively. We declare a type EventStatus and two constants SET and
CLEAR of it to represent the two corresponding status.

There are four APIs associated to events, i.e., GetEvent, SetEvent, WaitEvent
and ClearEvent, with which tasks can get, set, wait and clear specific events. We
take SetEvent for example to show how to define its semantics in K. SetEvent
takes a task ID and an event name. The state of the task specified in the API is
transferred to ready state, if the event specified in the API is one of the events
which the task was waiting for. This can be formalized by the following K rule:

rule <task > <state > running </state > <k> SetEvent(I,E); => . ...</k>

...</task > <task > <tid > I </tid > <state > waiting => ready </state >

<waitEvents > L => . </waitEvents > <tPriority > N </tPriority >

<taskEvents >... (E |-> (CLEAR => SET)) ...</ taskEvents > ...</task >

<readyTasks > L’ => add2Tail(I,N,L’) </readyTasks >

<signal > . => schedule </signal > when (E in L) [transition]

The rule says that SetEvent(I,E); is the next API to be executed by a running
task, where I is a task ID and E is an event name. Task I is in the waiting state,
and is waiting for a list L of events. If E is in the list, task is transferred to ready
state, and it does not wait for any events. Thus, the list L is changed into an
empty one, represented by L => . in the cell waitEvents. The status of event E is
changed into SET in the cell taskEvents. Task I is added to the tail of the sub-list
of ready tasks which have the same priority as I in the list of ready tasks by
function add2Tail. At the same time, the schedule signal is fired to invoke the
scheduler.

If task I is not waiting for the event E, the event is simply set after the API is
called. We omit the formal definition of it and those of other three event-related
APIs in the paper.

5.5 Formalization of error handling

There are pre-defined errors in the OSEK/VDX standard. Such errors should
be handled correctly when an operating system is implemented. For instance,
an error will occur when a task tries to terminate itself while occupying some
resources, which is strictly forbidden. If an error is raised, a specific error code
should be returned. However, the standard does not specify how to handle such
errors, and it is up to system developers.
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We formalize errors by a specific function called Error, which takes four
arguments, i.e., an error code, the identifier of the task which causes the error,
the API that causes the error, and a string to provide detailed information of the
error. When an error occurs, an error cell errorCell as shown in Fig. 5 is created
with a term constructed by the Error function in it. At the same time, an error
signal is inspired and put in the signal cell. The following rule shows an example
of the formalization of the error which is caused when a task tries to terminate
while still occupying resources.

rule <task > <state > running </state > <k> TerminateTask (); </k>

<tid > I </tid > <accRes > ListItem(R) ... </accRes > ... </task >

<signal > . => stop </signal >

(.Bag => <errorCell > Error(E_OS_RESOURCE , I, TerminateTask ();,

"Task cannot terminate when occupying resources!") </errorCell >)

[transition]

The term in cell accRes is the list of resources that are currently occupied by the
task. In the above rule the list is not empty when the API TerminateTask(); is
to be executed in the next step. In the cell errorCell, E_OS_RESOURCE is an error
code which is pre-defined in the standard.

5.6 Formalization of OIL

We formalize OIL in K in order to support user-defined configurations. K is well
suited to formalize programming languages. OIL can also be naturally formalized
in K like other languages such as C. One difference is that the semantics of OIL
is formalized as structural rules, instead of computational rules. That is because
OIL is a configuration language, which is used for configuring resources, tasks,
events, etc. in a system, but not for computation or execution.

Given an OIL program, a K configuration is instantiated based on the dec-
larations of resources, tasks, and events in the program. For instance, for each
resource which is declared as shown in Fig. 3, a resource cell is created, which
consists of four unit cells for resource identifier, its ceiling priority (0 at initial),
the resource property, and the list of tasks that can access it (empty at initial).
The following rule specifies the creation of a resource cell according to a decla-
ration of a resource. The condition means that I is not used as an identifier for
other tasks, events and resources.

rule <k> (RESOURCE I:Id { RESOURCEPROPERTY = RP; } ; => .) ... </k>

<resources >(. => <resource > <rid > I </rid > <rPriority > 0 </rPriority >

<rProperty > RP </rProperty > <rOwner > .List </rOwner > </resource >)

... </resources > <types > M:Map => (I |-> resource) M </types >

<signal > . </signal > when notBool $hasMapping(M,I) [structural]

The ceiling priority of the resource and the list of tasks are calculated when
tasks are initialized. If a task is declared to own a resource as shown in Fig.
3, it is added to the list. If the current ceiling priority (initially 0) is less than
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the priority of the task, it is raised to the priority of the task. Corresponding
structural rules can be defined likewise. We omit the details in the paper.

6 Applications

In this section, we describe two applications of the formal semantics of the
OSEK/VDX standard, i.e., to verify OSEK/VDX applications by symbolic ex-
ecution, and to generate test cases by searching.

6.1 Verification of OSEK/VDX applications by symbolic execution

There may be multiple tasks running in an application. It is necessary to verify
that tasks can correctly synchronize and deadlock can never happen. Suppose
that there are only two tasks t1, t2 in an application and two events e1, e2.Task
t1 is waiting for e1 in order to set event e2, while t2 is waiting for e2 in order to
set event e1. Both the two tasks are in waiting state, leading to deadlock.

An OSEK/VDX application consists of two parts: one is application config-
uration describing the basic information of resources, tasks, events, etc, in the
application defined in OIL, and source code of each task in some programming
language such as C. Thus, it requires to formalize the semantics of a specific
programming language in which tasks are implemented, as shown in Fig. 2.

To demonstrate the feasibility of verifying OSEK/VDX-based applications,
we use a simple C-like imperative programming language whose semantics has
been formally defined in K [12]. We integrate the semantics of the language
and the semantics of the OSEK/VDX standard. With the integrated semantics,
we verify the OSEK/VDX applications that are implemented in the simplified
language.

Fig. 6 shows a simplified application which is used to monitor tire pressure
[3]. There are four tasks with different priorities. Task MT is used to repeatedly
activate task RT (line 34), which collects data from tire sensor and then activates
task ST. Task ST puts the collected data into buffer (line 47) and activate task
PT to process the data (line 49). The synchronization between task RT and ST is
achieved by an event evt. Task ST has to wait for the event until the event is
set by RT (line 45, 41).

The application is supposed to run repeatedly. However, we found a deadlock
occurred by symbolically executing the application with the integrated seman-
tics. The returned result shows that the error occurred because the state task RT

tries to activate task ST, while task ST is in waiting state 4. The execution path
shows that after RT activates ST (line 39), ST starts to run because it has a higher
priority than RT. However, ST goes to waiting state because evt is not set (line
45). The scheduler selects RT to run because among the ready tasks, i.e., RT and
MT, RT’s priority is the highest. However RT does not set the event because evt

4 In OSEK/VDX standard, there is a maximum number of task activation. In our
experiment, we assume the maximal number is 1. In this case, an error occurs because
it violates the maximum activation count.
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a. Configuration b. Implementation of tasks

1 EVENT evt {

2 MASK = AUTO;

3 };

4 RESOURCE BUFF{

5 RESOURCEPROPERTY = STANDARD;

6 };

7 TASK MT {

8 PRIORITY = 4;

9 AUTOSTART = true;

10 SCHEDULE = FULL;

11 };

12 TASK RT{

13 PRIORITY = 6;

14 AUTOSTART = false;

15 SCHEDULE = FULL;

16 };

17 TASK ST{

18 PRIORITY = 8;

19 AUTOSTART = false;

20 SCHEDULE = FULL;

21 EVENT = evt;

22 RESOURCE = BUFF;

23 };

24 TASK PT{

25 PRIORITY = 10;

26 AUTOSTART = false;

27 SCHEDULE = FULL;

28 RESOURCE = BUFF;

29 };

30 int data;

31 int buff;

32
33 TASK MT{

34 while(true){ActivateTask(RT);}

35 };

36 // Terminate

37 TASK RT{

38 // get data from tire sensor

39 ActivateTask(ST);

40 if(data !=0)

41 {SetEvent(ST ,evt); }

42 TerminateTask ();

43 };

44 TASK ST{

45 WaitEvent(evt);

46 GetResource(BUFF);

47 buff=data;

48 ReleaseResource(BUFF);

49 ChainTask(PT);

50 };

51 TASK PT{

52 // Read data from buff

53 GetResource(BUFF);

54 // process data

55 buff =0;

56 ReleaseResource(BUFF);

57 TerminateTask ();

58 };

Fig. 6. The configuration and source code of an OSEK/VDX application

data is 0 (line 40). It just terminates itself (line 42). MT is the only ready task,
which is selected to run by the scheduler. It activates RT (line 34), and RT tries
to activate ST (line 39). However, ST is in the waiting state, leading to the dead-
lock. The problem is caused by the code at line 40 and 41 because evt cannot
be always set after ST is activated. We can fix it by moving ActivateTask(ST);

to the block of if condition. We execute the revised application by searching.
No solution is found, which means that there is no deadlock state from which
the system cannot proceed further.

OSEK/VDX-based applications are usually implemented in C. The semantics
of C has been formalized in K [10]. We believe that by integrating the seman-
tics of C and the standard we can verify more complicated OSEK/VDX-based
applications implemented in C, which is one piece of our future work.

6.2 Using the formal semantics for test case generation

Testing is still the main approach to conformance checking of OSEK/VDX-
based operating systems. However, it is practically impossible to test all possible
combinations of APIs and one solution is to analyze the constraints among APIs
and to generate automatically test cases that satisfy these constraints [7, 5].
Given some constraints and a configuration of tasks, resources, and events, the
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test case generation problem is to generate a sequence of APIs for each task and
generated APIs satisfy the specified constraints.

The formal semantics of the OSEK/VDX standard in K can also be used
for generating test cases. The basic idea is as follows. After a configuration is
loaded by the K tool, a task cell is instantiated for each task according to their
corresponding setting in the configuration and is in the suspended state. The
one whose AUTOSTART property is true becomes ready and then is scheduled
to run. All the tasks do not have any API to execute initially. We define a
set of K rules which randomly generate an API for the currently running task
based on the state of the task. The generated API is then executed based on its
formal semantics that is predefined, and the state of the running task is changed
correspondingly.

Generated APIs must satisfy some built-in constraints. These constraints are
specified in K rules. For instance, if the API to be executed is ReleaseResource,
one constraint is that the parameter of the API must be the resource which is
the latest one allocated to the task, i.e., the first resource R of the sequence in
the cell taskResources as shown in the following rule.

rule <task > <tid > I </tid > <state > running </state > <apiData > . </apiData >

<k> . => ReleaseResource(R); </k> <taskRes > ListItem(R) ... </taskRes >

... </task > <tcgMode > true </tcgMode > <signal > . </signal > [transition]

The rule also represents three conditions when API can be generated, i.e., the
system is running in the test case generation mode as indicated by the cell
tcgMode, the running task is undefined as indicated by an empty cell apiData,
and no signal is waiting for handling as indicated by the empty cell signal.

If the randomly generated API is TerminateTask or ChainTask, a sequence
of APIs are completed for the running task. That is because there is a constraint
that TerminateTask and ChainTask must be the last API in a task. After the
API is executed, the task is terminated and the scheduler selects another task to
run according to the scheduling policy. After each task has a generated sequence
of APIs, a test case is generated.

An an example, we explain how to generate test cases with the configuration
in Fig. 6. Each test case consists of four sequences of APIs for the tasks in
the configuration. We feed the configuration into the K tool and a pattern to
which expected results should match, such as the number of APIs for each task.
There are two optional parameters specifying the maximal searching depth and
the number of test cases. The tool outputs K configurations that match the
specified pattern. In each configurations, every task is assigned with a sequence
of APIs, constituting a test case.

The number of test cases may be infinite. For instance, a task can infinitely
repeat the process of getting and releasing a resource, making the process of
test case generation non-terminating. To solve this problem, We can solve this
problem by setting upper bounds to the number of generated test cases and the
number of APIs in each task respectively. In the experiment, we defined two
patterns denoted by A and B, specifying that in each generated test case there
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Table 1. Experimental result of generating two classes of test cases with pattern A
(the left table) and B (the right table).

Depth Solution Test case Time (sec)

16 0 0 6
17 92 23 10
20 1024 132 30
21 1468 163 43
22 1748∗ 200∗ 65

Depth Solution Test cases Time (sec)

20 0 0 16
21 176 44 23
25 1320 186 76
26 1572 209 97
27 1736∗ 234∗ 146

must be at least two tasks which have exactly two and three APIs, respectively.
The experimental result is shown in Table 1. Solutions are the configurations
returned by K, and they match the specified pattern. We remove the duplicate
configurations among them and obtain the number of test cases. The numbers
with ∗ mean that they are the upper bound at the corresponding depth. The K
tool runs out of memory once the upper bound exceeds that numbers.

7 Related Work

There are several formalizations of the OSEK/VDX standard. In [13], the seman-
tics of APIs in the standard is formalized using Hoare-logic. The purpose is to
verify the correctness of the APIs that are implemented in concrete OSEK/VDX-
based operating systems, which is different from ours. The semantics of the stan-
dard is formalized using Promela in [7] and NuSMV in [5], with the purpose of
test case generation. Compared with their formalization, our formal semantics in
K is more flexible and generic in that they have to assume the list of ready tasks
in system is finite because the languages requires the system specified must be
of finite-state, while in our formalization we do not have that restriction. Their
formalization also requires extra effort to be instantiated according to concrete
user-defined applications, while our formalization directly accepts user-defined
applications as input without any transformation. Their approaches to test case
generation are different from the one described in this paper. For instance, in
[5] they use automata to control what is the next possible API to call based on
user-given constraints. This can improve the efficiency by avoiding unnecessary
trial of those APIs that violate the constraints if they are called. We have tried
implementing the automata-based approach in Maude and evaluated that Maude
can be used as an efficient test case generator [4]. Since Maude is the underlying
rewrite engine of K, we believe that this approach can also be implemented in
K based on our formal semantics of the OSEK/VDX standard.

The OSEK/VDX standard is also formalized using Event-B in [14], and
CafeOBJ in [15]. However, in their work they do not explain how to use their
formalizations for verification. Our work shows that the formalization of the stan-
dard in K can be effectively used for the verification of concrete OSEK/VDX-
based applications and operating systems.
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8 Conclusion

We have presented a formal semantics of the OSEK/VDX standard using K, and
demonstrated two applications of using the formal semantics to the verification
of OSEK/VDX-based applications by symbolic execution and to test case gen-
eration. Compared with the existing formalization of the standard, the formal
semantics in K is more flexible and generic in that there is no restriction to the
number of tasks, resources and events in the formalization, and it does not need
extra effort to instantiate the formal semantics with user-defined applications.
Another advantage of the formal semantics is that it can be integrated with the
semantics of other prevalent programming languages such as C in order to verify
OSEK/VDX-based applications which are implemented in those languages.
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