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We study the security of interaction protocols when incentives of participants are taken into account.
We begin by formally defining correctness of a protocol, given a notion of rationality and utilities of
participating agents. Based on that, we propose how to assess security when the precise incentives are
unknown. Then, the security level can be defined in terms of defender sets, i.e., sets of participants
who can effectively “defend” the security property as long as they are in favor of the property. We
present a theoretical characterization of defendable protocols under Nash equilibrium.

1 Introduction

Interaction protocols are ubiquitous in multi-agent systems. Protocols can be modeled as games, since
every participant in the protocol has several strategies that she can employ. From a game-theoretic
perspective, protocols are an interesting class of games since they have a goal, i.e., a set of outcomes that
are preferred by the designer of the protocol. Security protocols use cryptography to enforce their goals
against any possible behavior of participants. Such a protocol is deemed correct with respect to its goal
if the goal is achieved in all runs where a predefined subset of players follows the protocol.

We point out that this definition of correctness can be too strong, since violation of the goal may
be achievable only by irrational responses from the other players. On the other hand, the definition may
also prove too weak when the goal can be only achieved by an irrational strategy of agents supporting the
goal, in other words: one that they should never choose to play. To describe and predict rational behavior
of agents, game theory has proposed a number of solution concepts [12]. Each solution concept captures
some notion of rationality which may be more or less applicable in different contexts. We do not fix a
particular solution concept, but consider it to be a parameter of the problem.

Our main contributions are the following. First, in Section 3.1, we define a parametrized notion of
rational correctness for security protocols, where the parameter is a suitable solution concept. Secondly,
based on this notion, we define a concept of defendability of security in a protocol, where the security
property is guaranteed under relatively weak assumptions (Section 3.3). Thirdly, in Section 4, we propose
a characterization of defendable security properties when rationality of participants is based on Nash
equilibrium. Finally, we extend the results to mixed strategies in Section 5. This extended abstract is a
compressed version of [8]. For full exposition, we refer to the original paper.
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We want to emphasize that our work does not focus on “classical” security protocols where most
participants are assumed to be “honest”, i.e., to follow a typically deterministic sequence of actions. More
appropriately, we should say that we study interaction protocols in general, where actions of participants
may or may not be “honest”, and the actual set of available behaviors depends on the execution semantics
of the protocol. We believe that the two kinds of assumptions (honesty vs. being in favor of the protocol
objective) are largely orthogonal. A study of interplay between the two is left for future work.

1.1 Related Work

Researchers have considered protocol execution as a game with the very pessimistic assumption that
the only goal of the other participants (“adversaries”) is to break the intended security property of the
protocol. In this case, a protocol is correct if the “honest” participants have a strategy such that, for all
strategies of the other agents, the goal of the protocol is satisfied (cf. e.g. [9]). Recently, protocols have
been analyzed with respect to some game theoretic notions of rationality [6, 2] where preferences of
participants are taken into account. An overview of connections between cryptography and game theory
is given in [5]. Another survey [11] presents arguments suggesting that study of incentives in security
applications is crucial. Buttyán, Hubaux and Čapkun [3] model protocols in a way similar to ours, and
also use incentives to model the behavior of agents. However, they restrict their analysis to strongly
Pareto-optimal Nash equilibria which is not necessarily a good solution concept for security protocols:
First, it is unclear why agents would individually converge to a strongly Pareto-optimal play. Moreover,
in many protocols it is unclear why agents would play a Nash equilibrium in the first place. Our method
is more general, as we use the solution concept as a parameter to our analysis. Asharov et al. (2011)
[2] use game theory to study gradual-release fair exchange protocols. They consider a protocol to be
game-theoretically fair if the strategy that never aborts the protocol is a computational Nash-equilibrium.
They prove that their analysis allows for solutions that are not admitted by the traditional cryptographic
definition. Groce and Katz [7] show that if agents have a strict incentive to achieve fair exchange, then
gradual-release fair exchange without trusted third party (TTP) is possible under the assumption that the
other agents play rationally. Syverson [13] presents a rational exchange protocol for which he shows
that “enlightened, self-interested parties” have no reason to cheat. Finally, Chatterjee & Raman [4] use
assume-guarantee synthesis for synthesis of contract signing protocols.

In summary, rationality-based correctness of protocols has been studied in a number of papers, but
usually with a particular notion of rationality in mind. In contrast, we define a concept of correctness
where a game-theoretic solution concept is a parameter of the problem. Even more importantly, our con-
cept of defendability of a security property is completely novel. The same applies to our characterizations
of defendable properties under Nash equilibrium.

2 Protocols and Games

A protocol is a specification of how agents should interact. Protocols can contain choice points where
several actions are available to the agents. An agent is honest if he follows the protocol specification,
and dishonest otherwise, i.e., when he behaves in a way that is not allowed by the protocol. In the latter
case, the agent is only restricted by the physical and logical actions that are available in the environment.
For instance, in a cryptographic protocol, dishonest agents can do anything that satisfies properties of
the cryptographic primitives, assuming perfect cryptography (as in [10]). The protocol, together with a
model of the environment of action, a subset of agents who are assumed to be honest, and the operational
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semantics of action execution, defines a multi-agent transition system that we call the model of the
protocol. In the rest of the paper, we focus on protocol models, and abstract away from how they arise.
We also do not treat the usual “network adversary” that can intercept, delay and forge messages, but
essentially assume the existence of secure channels. The issue of the “network adversary” is of course
highly relevant for security protocols, but orthogonal to the aspects we discuss in this paper. In the full
version of this paper [8], we present contract signing protocols as a running example. In such a protocol,
Alice and Bob want to sign a contract. Among the most relevant game-theoretic security properties of
such protocols are fairness, balancedness, and abuse-freeness.

We use normal-form games as abstract models of interaction in a protocol.

Definition 2.1 (Frames and games). A game frame is a tuple Γ = (N,Σ), where N = {A1, . . . ,A|N|} is a
finite set of agents, and Σ = ΣA1×·· ·×ΣA|N| is a set of strategy profiles.

A normal-form (NF) game is a game frame plus a utility profile u = {u1, . . . ,u|N|} where ui : Σ→ R
is a utility function assigning utility values to strategy profiles.

Game theory uses solution concepts to define which strategy profiles capture rational interactions.
Let G be a class of games with the same strategy profiles Σ. Formally, a solution concept for G is
a function SC : G →P(Σ) that, given a game, returns a set of rational strategy profiles. Well-known
solution concepts include e.g. Nash equilibrium (NE), dominant and undominated strategies, Stackelberg
equilibrium, Pareto optimality etc.
Protocols as Games. Let P be a model of a protocol. We will investigate properties of P through the
game frame Γ(P) in which strategies are conditional plans in P, i.e., functions that specify for each
choice point which action to take. A set of strategies, one for each agent, uniquely determines a run of
the protocol, i.e., a sequence of actions that the agents will take. Γ(P) takes runs to be the outcomes in
the game, and hence maps strategy profiles to runs.

Security protocols are designed to achieve one or more security requirements and/or functionality
requirements. We only consider requirements that can be expressed in terms of single runs having a
certain property. We model this by a subset of possible behaviors, called the objective of the protocol.

Definition 2.2. Given a game frame Γ = (N,Σ), an objective is a set γ ⊆ Σ. We call γ nontrivial in Γ iff
γ is neither impossible nor guaranteed in Γ, i.e., /0 6= γ 6= Σ.

3 Incentive-Based Security Analysis

In this section, we give a definition of correctness of security protocols that takes into account rational
decisions of agents, based on their incentives.

3.1 Incentive-Based Correctness

As we have pointed out, the requirement that all strategy profiles satisfy the objective might be too strong.
Instead, we will require that all rational runs satisfy the objective. In case there are no rational runs, all
behaviors are equally rational; then, we require that all strategy profiles must satisfy γ .

Definition 3.1. A protocol model represented as game frame Γ = (N,Σ) with utility profile u is correct
with respect to objective γ under solution concept SC, written (Γ,u) |=SC γ , iff:{

SC(Γ,u)⊆ γ if SC(Γ,u) 6= /0
γ = Σ otherwise.
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3.2 Unknown Incentives

Definition 3.1 applies to a protocol when a utility profile is given. However, the exact utility profiles are
often unknown. One way out is to require the protocol to be correct for all possible utility profiles.
Definition 3.2. A protocol model represented by game frame Γ is valid with respect to objective γ under
solution concept SC (written Γ |=SC γ) iff (Γ,u) |=SC γ for all utility profiles u.

It turns out that, under some reasonable assumptions, protocols are only valid for trivial objectives.
Definition 3.3. Let G = (N,Σ,(u1, . . . ,un)). Let π = (π1, . . . ,πn), where for all i ∈ N, πi : Σi→ Σi is a
permutation on Σi. We slightly abuse the notation by writing π((s1, . . . ,sn)) for (π1(s1), . . . ,πn(sn)).
A solution concept is closed under permutation iff s ∈ SC((N,Σ,(u′1, . . . ,u

′
n))) if and only if π(s) ∈

SC((N,Σ,(u′1 ◦π
−1
1 , . . . ,u′n ◦π−1

n ))).
Being closed under permutation is a very natural property. Essentially, it means that “renaming” of

strategies does not have an effect on the output of the game. All solution concepts that we know of are
closed under permutation.
Theorem 3.4. If SC is closed under permutation, then Γ |=SC γ iff γ = Σ.1

Thus, correctness for all distributions of incentives is equivalent to correctness in all possible runs.

3.3 Defendability of Protocols

Typical analysis of a protocol implicitly assumes some participants to be aligned with its purpose. E.g.,
one usually assumes that communicating parties are interested in exchanging a secret without the eaves-
dropper getting hold of it, that a bank wants to prevent web banking fraud etc. In this section, we
formalize this idea by assuming a subset of agents, called the defenders of the protocol, to be in favor
of its objective. Our new definition of correctness says that a protocol is correct with respect to some
objective γ if and only if it is correct with respect to every utility profile in which the preferences of all
defenders comply with γ .2

Definition 3.5. A group of agents D ⊆ N supports the objective γ in game (N,Σ,u) iff for all i ∈ D, if
s ∈ γ and s′ ∈ Σ\ γ then ui(s)> ui(s′).

A protocol model represented as game frame Γ is defended by agents D, written Γ |=SC [D]γ , iff
(Γ,u) |=SC γ for all utility profiles u such that D supports γ in game (Γ,u).

Clearly, if there are no defenders, then defendability is equivalent to ordinary protocol validity:
Proposition 3.6. If Γ is a game frame and SC is a solution concept, we have that Γ |=SC [ /0]γ iff Γ |=SC γ .

If all agents are defenders, any protocol is correct, as long as the solution concept does not select
strongly Pareto-dominated strategy profiles, and there always is some strategy profile which is rational
according to the solution concept.
Definition 3.7. A solution concept is weakly Pareto iff it never selects a strongly Pareto dominated
outcome (i.e., such that there exists another outcome strictly preferred by all the players). It is efficient
iff it never returns the empty set.
Theorem 3.8. If Γ is a game frame and SC is an efficient weakly Pareto solution concept then Γ |=SC [N]γ .

Many solution concepts are both efficient and weakly Pareto, for example: Stackelberg equilibrium,
maximum-perfect cooperative equilibrium, backward induction and subgame-perfect Nash equilibrium
in perfect information games. On the other hand, Nash equilibrium is neither weakly Pareto nor efficient,
and equilibrium in dominant strategies is weakly Pareto but not necessarily efficient.

1 For proofs of all theorems, we refer to the original paper [8].
2 There is an analogy of the concept to [1] where “robust” goals are studied, i.e., goals that are achieved as long as a selected

subset of agents behaves correctly.
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t1 t2
s1 hi,hi 0,0
s2 0,0 lo, lo

(a)

t1 t2 t3
s1 hi, lo lo,hi 0,0
s2 lo,hi hi, lo 0,0
s3 0,0 0,0 0,0

(b)

Figure 1: (a) HiLo game for 2 players; (b) Extended matching pennies. In both games, we assume that
hi > lo > 0, e.g., hi = 100 and lo = 1

4 Characterizing Defendability under Nash Equilibrium

In this section, we turn to properties that can be defended if agents’ rationality is based on Nash equilib-
rium or Optimal Nash Equilibrium.

4.1 Defendability under Nash Equilibrium

From Theorem 3.4, we know that no protocol is valid under Nash equilibrium (NE) for any nontrivial
objective, since NE is closed under permutation. Do things get better if we assume some agents to be
in favor of the security objective? We now look at the extreme variant of the question, i.e., defendabil-
ity by the grand coalition N. Note that, by monotonicity of defendability wrt the set of defenders D,
nondefendability by N implies that the objective is not defendable by any coalition at all.

Our first result in this respect is negative: we show that in every game frame there are nontrivial
objectives that are not defendable under NE.

Theorem 4.1. Let Γ be a game frame with at least two players and at least two strategies per player.
Moreover, let γ be a singleton objective, i.e., γ = {ω} for some ω ∈ Σ. Then, Γ 6|=NE [N]γ .

In particular, the construction from the above proof shows that, as mentioned before, there are cases
where the “defending” coalition has a strategy to achieve a goal γ , but there are still rational plays in
which the goal is not achieved.

To present the general result that characterizes defendability of security objectives under Nash equi-
librium, we need to introduce additional concepts. In what follows, we use s[ti/i] to denote (s1, . . . ,si−1, ti,
si+1, . . . ,sN), i.e., the strategy profile that is obtained from s when player i changes her strategy to ti.

Definition 4.2. Let γ be a set of strategy profiles in Γ. The deviation closure of γ is defined as Cl(γ) =
{s ∈ Σ | ∃i ∈ N, ti ∈ Σi . s[ti/i] ∈ γ}.

Cl(γ) extends γ with the strategy profiles that are reachable by unilateral deviations from γ . Thus,
Cl(γ) can be seen as the closure of γ with the behaviors that are relevant for Nash equilibrium. More-
over, the following notion captures strategy profiles that can be used to construct sequences of unilateral
deviations ending up in a cycle.

Definition 4.3. A strategic knot in γ is a subset of strategy profiles S⊆ γ such that there is a permutation
(s1, . . . ,sk) of S where: (a) for all 1 ≤ j < k, s j+1 = s j[s j+1

i /i] for some i ∈ N, and (b) s j = sk[s j
i /i] for

some i ∈ N, j < k.

Essentially, this means that every strategy s j+1 is obtained from s j by a unilateral deviation of a
single agent. If these deviations are rational (i.e., increase the utility of the deviating agent), then the
knot represents a possible endless loop of rational, unilateral deviations which precludes a group of
agents from reaching a stable joint strategy. We now state the main result of this section.
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Theorem 4.4. Let Γ be a finite game frame and γ a nontrivial objective in Γ. Then, Γ |=NE [N]γ iff
Cl(γ) = Σ and there is a strategy profile in γ that belongs to no strategic knots in γ .

4.2 Optimal Nash Equilibria

Nash equilibrium is a natural solution concept for a game played repeatedly until the behavior of all
players converges to a stable point. For a one-shot game, NE possibly captures convergence of the pro-
cess of deliberation. It can be argued that, among the available solutions, no player should contemplate
those which are strictly worse for everybody when compared to another stable point. This gives rise to
the following refinement of Nash equilibrium: OptNE(Γ,u) is the set of optimal Nash equilibria in game
(Γ,u), defined as those equilibria that are not strongly Pareto-dominated by another Nash equilibrium.
Defendability by the grand coalition under OptNE has the following simple characterization.

Theorem 4.5. Let Γ be a finite game frame and γ a nontrivial objective in Γ. Then, Γ |=OptNE [N]γ iff
there is a strategy profile in γ that belongs to no strategic knots in γ .

5 Defendability in Mixed Strategies

So far, we considered only deterministic (pure) strategies. It is well known that for many games and
solution concepts, rational strategies exist only when taking mixed strategies into account. We now
extend our definition of correctness to mixed strategies, i.e., randomized conditional plans represented
by probability distributions over pure strategies from ΣAi . Let dom(s) be the support (domain) of a mixed
strategy profile s, i.e., the set of pure strategy profiles that have nonzero probability in s. We extend the
notion to sets of mixed strategy profiles in the obvious way. By SCm we denote the variant of SC in mixed
strategy profiles. A protocol is correct in mixed strategies iff all the possible behaviors resulting from a
rational (mixed) strategy profile satisfy the goal γ; formally: Γ,u |=m

SC γ iff dom(SCm(Γ,u)) ⊆ γ when
SCm(Γ,u) 6= /0 and γ = ΣΓ otherwise. The definitions of protocol validity and defendability in mixed
strategies (Γ |=m

SC γ and Γ |=m
SC [D]γ) are analogous. For defendability in mixed strategies under Nash

equilibrium, we have the following, rather pessimistic result.

Theorem 5.1. Let Γ be a finite game frame, and γ an objective in it. Then, Γ,u |=m
NE [N]γ iff γ = Σ.

On the other hand, it turns out that optimal Nash equilibrium yields a simple and appealing charac-
teristics of N-defendable properties. In the following, γ is closed under convex combination of strategies
iff every combination of strategies that appear in some profile in γ again is an element of γ .

Theorem 5.2. Γ |=m
OptNE [N]γ iff γ =Conv(γ), i.e., γ is closed under convex combination of strategies.

Corollary 5.3. Γ |=m
OptNE [N]γ iff there exist subsets of individual strategies

χ1 ⊆ Σ1, . . . ,χ|N| ⊆ Σ|N| such that γ = χ1×·· ·×χ|N|.

That is, security property γ is defendable by the grand coalition in Γ iff γ can be decomposed into
constraints on individual behavior of particular agents.

6 Conclusions

We propose a framework for analyzing security protocols (and other interaction protocols), that takes into
account the incentives of agents. In particular, we consider a novel notion of defendability that guarantees
that all the runs of the protocol are correct as long as a given subset of the participants (the “defenders”) is
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in favor of the security property. We have obtained some characterization results for defendability under
Nash equilibria and optimal Nash equilibria. In the original paper [8], we also address the computational
complexity of the corresponding decision problems, both in the generic case and in some special cases.
In the future, we plan to combine our framework with results for protocol verification using game logics
(such as ATL), especially for those solution concepts that can be expressed in that kind of logics.

Acknowledgements. We thank the SR2014 reviewers for their extremely useful remarks. Addressing
the fundamental ones was not possible in this extended abstract due to space and time constraints, but
we will use them in the journal version of the paper (in preparation).

Wojciech Jamroga acknowledges support of the National Research Fund Luxembourg (FNR) under
project GaLOT – INTER/DFG/12/06.

References
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