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First cycle games (FCG) are played on a finite graph by two players who push a token along the
edges until a vertex is repeated, and a simple cycle is formed. The winner is determined by some
fixed property Y of the sequence of labels of the edges (or nodes) forming this cycle. These games
are traditionally of interest because of their connection with infinite-duration games such as parity
and mean-payoff games.

In this work we study the memory requirements for winning strategies of FCGs and certain
associated infinite duration games. We exhibit a simple FCG that is not memoryless determined (this
corrects a mistake in Memoryless determinacy of parity and mean payoff games: a simple proof by
Björklund, Sandberg, Vorobyov (2004) that claims that all FCGs for which Y is closed under cyclic
permutations are memoryless determined). We then go on to show that Θ(n!) memory (where n is the
number of nodes in the graph), which is always sufficient, may be necessary to win some FCGs. On
the other hand, we identify easy to check conditions on Y (i.e., Y is closed under cyclic permutations,
and both Y and its complement are closed under concatenation) that are sufficient to ensure that the
corresponding FCGs and their associated infinite duration games are memoryless determined. We
demonstrate that many games considered in the literature, such as mean-payoff, parity, energy, etc.,
satisfy these conditions. On the complexity side, we show (for efficiently computable Y ) that while
solving FCGs is in PSPACE, solving some families of FCGs is PSPACE-hard.

First cycle games (FCGs) are played on a finite graph by two players who push a token along the
edges of the graph until a simple cycle is formed. Player 0 wins the play if the sequence of labels of
the edges (or nodes) of the cycle satisfies some fixed cycle property Y , and otherwise Player 1 wins. For
instance, if every vertex has an integer priority, the cycle property Y = cyc-Parity states that the largest
priority occurring on the cycle should be even. For a fixed cycle property Y , we write FCG(Y ) for the
family of games over all possible arenas with this winning condition. We are motivated by two questions.

1. Under what conditions on Y is every game in FCG(Y ) memoryless determined?

2. What is the connection between FCGs and infinite-duration games?

First cycle games. First, we give a simple example showing that finite cycle games (FCGs) are not
necessarily memoryless determined, even if Y is closed under cyclic permutations (i.e., even if winning
depends on the cycle but not on how it was traversed), contrary to the claim in [2][Page 370]. We then
show that, for a graph with n nodes, whereas no winning strategy needs more than (n−1)! memory (since
this is enough to remember the whole history of the game), some FCGs require at least Ω(n!) memory. To
complete the picture, we analyse the complexity of solving FCGs and show that it is PSPACE-complete.
More specifically, we show that if one can decide in PSPACE whether a given cycle satisfies the property
Y , then solving the games in FCG(Y ) is in PSPACE; and that even for a trivially computable cycle
property Y (namely, that the cycle ends with the label 0), solving the games in FCG(Y ) is PSPACE-hard.
First Cycle Games and Infinite-Duration Games. The main object used to connect FCGs and infinite-
duration games (such as parity games) is the cycles-decomposition of a path. Informally, a path is de-
composed by pushing the edges of the path onto a stack; as soon as a cycle is detected in the stack it is
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popped and output, and the algorithm continues. We then say that a winning condition W (such as the
parity or energy winning condition) is Y -greedy on A if in the game on arena A and winning condition
W , Player 0 is guaranteed to win if he ensures that every cycle in the cycles-decomposition of the play
satisfies Y , and Player 1 is guaranteed to win if she ensures that every cycle in the cycles-decomposition
does not satisfy Y . We prove a Transfer Theorem: if W is Y -greedy on A , then the winning regions
in the following two games on arena A coincide, and memoryless winning strategies transfer between
them: the infinite duration game with winning condition W , and the FCG with winning condition Y .

To illustrate the usefulness of the concept of being Y -greedy, we instantiate the definition to well-
studied infinite-duration games: i) the parity winning condition (the largest priority occurring infinitely
often is even) is Y -greedy on every arena A where Y = cyc-Parity, ii) the mean-payoff condition (the
mean payoff is at least ν) is cyc-MeanPayoffν -greedy on every arena A (where cyc-MeanPayoffν =
average payoff is at least ν), and iii) for every arena A with vertex set V , and largest weight W , the
energy condition stating that the energy level is always non-negative starting with initial credit W (|V |−1)
is cyc-Energy-greedy on A (where cyc-Energy= the energy level is non-negative).

In order to prove memoryless determinacy of certain FCGs (and related infinite-duration games) we
generalise techniques used to prove that mean-payoff games are memoryless determined (Ehrenfeucht
and Mycielski [4]). Given a cycle property Y , we first consider the infinite duration games ACG(Y ) (all
cycles), and SCG(Y ) (suffix all-cycles). A game in the family ACG(Y ) requires Player 0 to ensure that
every cycle in the cycles-decomposition of the play (starting from the beginning) satisfies Y . A game
in the family SCG(Y ) requires Player 0 to ensure that every cycle in the cycles-decomposition of some
suffix of the play satisfies Y . As was done in [4], reasoning about infinite and finite duration games is
intertwined – in our case, we simultaneously reason about games in FCG(Y ) and SCG(Y ). We define
a property of arenas, which we call Y -unambiguous, and prove a Memoryless Determinacy Theorem: a
game from FCG(Y ) whose arena A is Y -unambiguous is memoryless determined. Combining this with
the Transfer Theorem above, we also get that if A is Y -unambiguous, then any game with a winning
condition W that is Y -greedy on A , is memoryless determined1.

Although checking if an arena is Y -unambiguous may not be hard, it has two disadvantages: it
involves reasoning about infinite paths and it involves reasoning about the arena whereas, in many cases,
memoryless determinacy is guaranteed by the cycle property Y regardless of the arena (this is the case for
example with Y = cyc-Parity). Therefore, we also provide easy to check ‘finitary’ sufficient conditions
on Y (namely that Y is closed under cyclic permutations, and both Y and its complement are closed
under concatenation) that ensure Y -unambiguity of every arena, and thus memoryless determinacy for
all games in FCG(Y ). We demonstrate the usefulness of these conditions by observing that typical cycle
properties are easily seen to satisfy them, e.g., cyc-Parity,cyc-MeanPayoffν ,cyc-Energy.

We conclude by noting that, in particular, if Y is closed under cyclic permutations, and both Y and
its complement are closed under concatenation, then games with winning condition W are memoryless
determined on every arena A for which W is Y -greedy on A . As noted above, for many winning
conditions W (such as mean-payoff, parity, and energy winning conditions) it is easy to find a cycle
property Y satisfying the mentioned closure conditions, and for which W is Y -greedy on the arena of
interest. This provides an easy way to deduce memoryless determinacy of these classic games.
Related work. As just discussed, this work extends [4], finds a counter-example to a claim in [2],
and supplies a proof of a lemma in [3]. Conditions that ensure (or characterise) which games have
memoryless strategies appear for example in [1, 5, 6]. However, all of these deal with infinite duration
games and do not exploit the connection to finite duration games.

1Taking Y to be cyc-GoodForEnergy (defined to be that either the energy level is positive, or it is zero and the largest priority
occurring is even) and noting that for every arena A we have: i) A is Y -unambiguous and, ii) the game in ACG(Y ) over A is
Y -greedy on A ; we obtain a proof of [3][Lemma 4] that no longer relies on the incorrect result from [2].
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1 Definitions

In this paper all games are two-player turn-based games of perfect information played on finite graphs.
The players are called Player 0 and Player 1. Due to space limitations, proofs appear in the full version
of the article.
Arena An arena is a labeled directed graph A = (V0,V1,E,U,λ ) where

1. V0 and V1 are disjoint sets of vertices of Player 0 and Player 1, respectively; the set of vertices of
the arena V :=V0 ∪V1 is non-empty.

2. E ⊆ V ×V is a set of edges with no dead-ends (i.e., for every v ∈ V there exists w ∈ V such that
(v,w) ∈ E);

3. U is a set of possible labels.

4. λ : E → U is a labeling function, used by the winning condition.
Typical choices for U are R and N. Games in which vertices are labeled instead of edges can be

modeled by ensuring λ (v,w) = λ (v,w′) for all v,w,w′ ∈V . Similarly, games in which vertices are labeled
by elements of U′ and edges are labeled by elements of U′′ can be modeled by labeling edges by elements
of U′×U′′. As usual, if u = e1e2 · · · is a (finite or infinite) sequence of edges in the arena, we write λ (u)
for the string of labels λ (e1)λ (e2) · · · .
Plays and strategies A play π = π0,π1, . . . in an arena is an infinite2 sequence over V such that (π j,π j+1)∈
E for all j ∈ N. The node π0 is called the starting node of the play. We denote the set of all plays in the
arena A by plays(A ). A strategy for Player i is a function S : V ∗Vi → V such that if u ∈ V ∗ and v ∈ Vi
then (v,S(uv)) ∈ E. A strategy S for Player i is memoryless if S(uv) = S(u′v) for all u,u′ ∈ V ∗,v ∈ Vi.
A play π is consistent with S, where S is a strategy for Player i, if for every j ∈ N such that π j ∈ Vi, it
is the case that π j+1 = S(π0 · · ·π j). A strategy S for Player i is generated by a Moore machine if there
exists a finite set M of memory states, an initial state mI ∈ M, a memory update function δ : V ×M → M,
and a next-move function ρ : V ×M → V such that if u = u0u1 · · ·ul is a prefix of a play with ul ∈ Vi
then S(u) = ρ(ul,ml) where ml is defined inductively by m0 = mI and mi+1 = δ (ui,mi). A strategy S
is finite-memory if it is generated by some Moore machine. A strategy S uses memory at most k if it is
generated by some Moore machine with |M| ≤ k. A strategy S uses memory at least k if every Moore
machine generating S has |M| ≥ k.
Games, Winning Conditions, and Memoryless Determinacy A game is a pair (A ,O) where A =
(V0,V1,E,U,λ ) is an arena and O ⊆ plays(A ) is an objective (usually induced by the labeling). If either
V0 or V1 is empty, then the game (A,O) is called a solitaire game. A play π in a game (A ,O) is won by
Player 0 if π ∈ O, and won by Player 1 otherwise. A strategy S for Player i is winning starting from a
node v ∈V if every play π that starts from v and is consistent with S is won by Player i.

A winning condition is a set W ⊆ Uω . If W is a winning condition and A is an arena, the objective
OW (A ) induced by W is defined as follows: OW (A ) = {v0v1v2 · · · ∈ plays(A ) | λ (v0,v1)λ (v1,v2) · · · ∈
W}. Here are some standard winning conditions:

• The parity condition PARITY consists of those infinite sequences c1c2 · · · ∈Nω such that the largest
label occurring infinitely often is even.

• For ν ∈ R, the ν-mean-payoff condition consists of those infinite sequences c1c2 · · · ∈ R such that
limsupk→∞

1
k ∑k

i=1 ci is at least ν .

• The energy condition for a given initial credit r ∈N, written ENERGY(r), consists of those infinite
sequences c1c2 · · · ∈ Zω such that r+ c1 + · · ·+ ck ≥ 0 for all k ≥ 1.

2For simplicity, we consider plays of both finite and infinite duration games to be infinite. However, in a finite duration
game (and in particular in any FCG) the winner is determined by a finite prefix of the play, and the moves of the players after
this prefix are immaterial.
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• The energy-parity condition ENERGY-PARITY(r) is defined as consisting of (c1,d1)(c2,d2) · · · ∈
N×Z such that c1c2 · · · is in PARITY and d1d2 · · · is in ENERGY(r).

The (memoryless) winning region of Player i is the set of vertices v ∈ V such that Player i has a
(memoryless) winning strategy starting from v. A game is pointwise memoryless for Player i if the
memoryless winning region for Player i coincides with the winning region for Player i. A game is
uniform memoryless for Player i if there is a memoryless strategy for Player i that is winning starting
from every vertex in that player’s winning region.

A game is determined if the winning regions partition V . A game is pointwise memoryless determined
if it is determined and it is pointwise memoryless for both players. A game is uniform memoryless
determined if it is determined and uniform memoryless for both players.
Cycle decomposition A cycle in an arena A is a sequence of edges (v1,v2)(v2,v3) · · ·(vk−1,vk)(vk,v1).

Define an algorithm that processes a play π ∈ plays(A ) and outputs a sequence of cycles: at step 0
start with empty stack; at step j push the edge (π j,π j+1) onto the stack, and if for some k, the top k edges
on the stack form a cycle, this cycle is popped and output, and the algorithm continues to step j + 1.
The sequence of cycles output by this algorithm is called the cycles-decomposition of π , and is denoted
by cycles(π). The first cycle of π is the first cycle in cycles(π). For example, if π = vwxwvs(xyz)ω ,
then cycles(π) = (w,x)(x,w),(v,w)(w,v),(x,y)(y,z)(z,x),(x,y)(y,z)(z,x), . . ., and the first cycle of π is
(w,x)(x,w).

Observe that cycles(π) has the property that at most |V |−1 edges of π do not appear in it (i.e, they
are pushed but never popped – like the edge (v,s) in the example above). As we show in the full version,
this allows one to reason, for instance, about the initial credit problem for energy games (cf. [3]).
Cycle properties A cycle property is a set Y ⊆U∗, used later on to define winning conditions for games.
Here are some cycle properties that we refer to in the rest of the article:

1. Let cyc-EvenLen be those sequences c1c2 · · ·ck ∈ U∗ such that k is even.
2. Let cyc-Parity be those sequences c1 · · ·ck ∈ N∗ such that max1≤i≤k ci is even.
3. Let cyc-Energy be those sequences c1 · · ·ck ∈ Z∗ such that ∑k

i=1 ci ≥ 0.

4. Let cyc-GoodForEnergy be those sequences (c1,d1) · · ·(ck,dk)∈ (N×Z)∗ such that either ∑k
i=1 di >

0, or both ∑k
i=1 di = 0 and c1 · · ·ck ∈ cyc-Parity.

5. Let cyc-MeanPayoffν be those sequences c1 · · ·ck ∈ R∗ such that 1
k ∑k

i=1 ci ≤ ν , for some ν ∈ R.
6. Let cyc-MaxFirst be those sequences c1 · · ·ck ∈ N∗ such that c1 ≥ ci for all 1 ≤ i ≤ k.
7. Let cyc-EndsZero be those sequences c1 · · ·ck ∈ N∗ such that ck = 0.

If Y ⊆ U∗ is a cycle property, write ¬Y for the cycle property U∗ \Y .
We isolate two important classes of cycle properties (the first is inspired by [2]):

1. Say that Y is closed under cyclic permutations if ab ∈ Y implies ba ∈ Y , for all a ∈ U,b ∈ U∗.
2. Say that Y is closed under concatenation if a ∈ Y and b ∈ Y imply that ab ∈ Y , for all a,b ∈ U∗.
Note that all the cycle properties just listed, except for cyc-MaxFirst and cyc-EndsZero, are closed

under cyclic permutations and concatenation; and that ¬cyc-EvenLen, although closed under cyclic per-
mutations, is not closed under concatenation.
First Cycle Games (FCGs) Given a cycle property Y ⊆ U∗, and an arena A = (V0,V1,E,U,λ ), let the
objective OFCG(Y )(A )⊆ plays(A ) be such that π ∈ OFCG(Y )(A ) iff λ (u) ∈ Y where u is the first cycle
in the cycles-decomposition of π . The family FCG(Y ) of first cycle games of Y consists of all games of
the form (A,OFCG(Y )(A )) where A is an arena with labels in U. For instance, FCG(cyc-Parity) consists
of those games such that Player 0 wins iff the largest label occurring on the first cycle is even.3

3Formally, then, first cycle games are of infinite duration, although the winner is determined after the first cycle appears on
the play.
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2 Finite Duration Cycle Games (on being first)

In this section we analyse the memory required for winning strategies in first cycle games, and the
complexity of solving these games. We begin by correcting a mistake in [2].

Proposition 1. There exists a cycle property Y closed under cyclic permutations and a game in FCG(Y )
that is not pointwise memoryless determined.

To see this, consider a game where Player 1 chooses from {a,b} and Player 0 must match the choice.
This clearly requires Player 0 to have memory. The claim follows by simply encoding this game as
a FCG. For example, let the cycle-property Y be cyc-EvenLen, let the vertex set be {v1,v2,v3,v4}, let
V0 = {v1}, and let the edges be {(v1,v2),(v2,v1),(v1,v3),(v3,v2),(v2,v4),(v4,v1)}.

We now consider the difference between pointwise and uniform memoryless determinacy of FCGs.

Theorem 1. 1. Solitaire FCGs are pointwise memoryless determined.

2. There is a solitaire FCG that is not uniform memoryless determined.

3. If cycle property Y is closed under cyclic permutations, and a game from FCG(Y ) is pointwise
memoryless for Player i, then that game is uniform memoryless for Player i.

Proposition 2. 1. For a FCG on an arena with n vertices, if Player i wins from v, then every winning
strategy for Player i starting from v uses memory at most (n−1)!.

2. For every n there exists a FCG on an arena with 3n+ 1 vertices, and a vertex v, such that every
winning strategy for Player 0 starting from v uses memory at least n!.

The first item is immediate since (n− 1)! is enough to remember the whole history of the game up
to the point a cycle is formed. The proof of the second item is by showing a game where Player 1 can
“weave” any possible permutation of n nodes, whereas in order to win Player 0 must remember this
permutation. The construction is in the full version of the paper.

Finally, we analyse the complexity of solving FCGs with efficiently computable cycle properties.

Theorem 2. 1. If Y is a cycle property for which solving membership is in PSPACE, then the problem
of solving games in FCG(Y ) is in PSPACE.

2. The problem of solving games in FCG(cyc-EndsZero) is PSPACE-complete.

Sketch. For the first item, observe that solving the game amounts to evaluating the finite AND-OR tree
obtained by unwinding the arena into all possible plays, up to the point on each play where a cycle is
formed; nodes belonging to Player 0 are ’or’ nodes, nodes belonging to Player 1 are ’and’ nodes, and a
leaf is marked by ’true’ iff the cycle formed on the way to it is in Y . Since this tree has depth at most n
(the size of the arena), and since we assumed membership in Y is in PSPACE, marking the leaves can be
done in PSPACE. So evaluating the tree can be done in PSPACE.

For the second item, note that Generalised Geography can be thought of as a first cycle game in
which Player i nodes are labeled by i, and Y = cyc-EndsZero. Note that computing Y is computationally
trivial, but solving Generalised Geography is PSPACE-hard (see for instance [7][Theorem 8.11]).

3 Infinite Duration Cycle Games

3.1 On being greedy

We start by defining two types of infinite duration games called the All-Cycles and the Suffix All-Cycles
games, whose winning condition is derived from Y . Informally, All-Cycles games are games in which
Player 0 wins iff all cycles in the cycles-decomposition of the play are in Y , and Suffix All-Cycles Games
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are games in which Player 0 wins iff all cycles in the cycles-decomposition of some suffix of the play
are in Y . Formally, for arena A = (V0,V1,E,U,λ ) and cycle property Y ⊆ U∗, we define two objectives
O ⊆ plays(A ) and corresponding families of games as follows:

1. π ∈ OACG(Y )(A ) :if λ (u) ∈ Y for all cycles u in cycles(π).

2. π ∈ OSCG(Y )(A ) :if some suffix π ′ of π satisfies that λ (u) ∈ Y for all cycles u in cycles(π ′). 4

Define the corresponding families of games:

1. The family ACG(Y ) of all-cycles games of Y consists of all games of the form (A ,OACG(Y )(A )).

2. The family SCG(Y ) of suffix all-cycles games of Y consists of all games of the form (A ,OSCG(Y )(A )).

Definition 1. Say that a game (A ,O) is Y -greedy if OACG(Y )(A )⊆ O and OACG(¬Y )(A )⊆V ω \O. Say
that a winning condition W is Y -greedy on arena A if the game (A ,OW ) is Y -greedy.

Intuitively, W being Y -greedy on A means that Player 0 can win the game on arena A with winning
condition W if he ensures that every cycle in the cycles-decomposition of the play is in Y , and Player 1
can win if she ensures that every cycle in the cycles-decomposition of the play is not in Y .

For instance, the winning condition PARITY (the largest priority occurring infinitely often is even)
is cyc-Parity-greedy on every arena A , the ν-mean-payoff condition (the limsup average is at least ν)
is cyc-MeanPayoffν -greedy on every arena A , and the energy condition (stating that the energy level is
always non-negative starting with initial credit W (|V |−1), where W is the largest weight and V are the
vertices of the arena A ) is cyc-Energy-greedy on A .

Theorem 3 (Transfer). Let (A ,O) be a Y -greedy game, and let i ∈ {0,1}.

1. The winning regions for Player i in the games (A ,O) and (A ,OFCG(Y )(A )) coincide.

2. For every memoryless strategy S for Player i starting from v in arena A : S is winning in the game
(A ,O) if and only if S is winning in the game (A ,OFCG(Y )(A )).

Corollary 1. Let W be Y -greedy on arena A . Then the game (A ,OW ) is determined, and is point-
wise (uniform) memoryless determined if and only if the game (A ,OFCG(Y )(A )) is pointwise (uniform)
memoryless determined.

3.2 On being unambiguous

Definition 2. An arena A is Y -unambiguous if OSCG(Y )(A )∩OSCG(¬Y )(A ) = /0.

Lemma 1. If A is Y -unambiguous then the game (A ,OSCG(Y )(A )) is Y -greedy.

Theorem 4 (Memoryless Determinacy). If arena A is Y -unambiguous, then the game (A ,OFCG(Y )(A ))
is pointwise memoryless determined. If Y is also closed under cyclic permutations, then this game is
uniform memoryless determined.

It is of interest to note that the proof of this theorem is a generalisation of the proof used in [4] for
showing memoryless determinacy of mean-payoff games. As in [4], our proof reasons about infinite
plays. More specifically, we obtain from Theorem 3 and Lemma 1 that the winning regions of each
player in the games (A ,OSCG(Y )(A )) and (A ,OFCG(Y )(A )) coincide, and then go on and use this fact
to derive memoryless strategies for the game (A ,OFCG(Y )(A )).

Corollary 2. Suppose arena A is Y -unambiguous.

4Note that this is not the same as saying that λ (u)∈Y for all but finitely many cycles u in cycles(π). For instance, let Y be the
property that the cycle has odd length, and take π := (v1v2v1v3v2v4)

ω . Note that i) decomposing the suffix π ′ starting with the
second vertex results in all cycles having odd length, and ii) it is not the case that almost all cycles in the cycles-decomposition
of π have odd length (in fact, they all have even length).



B. Aminof & S. Rubin 7

1. If (A ,O) is Y -greedy, then the game (A ,O) is pointwise memoryless determined.

2. The games (A ,OSCG(Y )(A )) and (A ,OACG(Y )(A )) are pointwise memoryless determined.

If in addition Y is closed under cyclic permutations, then these game are uniform memoryless determined.

Proof. For the first item combine Theorems 3 and 4. For the second, use Lemma 1 and the fact that
(A ,OACG(Y )(A )) is always Y -greedy. For the final statement apply Theorem 1 item 3.

We now provide a simple sufficient condition on Y — that does not involve reasoning about cycles-
decompositions of infinite paths — that ensures that every arena A is Y -unambiguous:

Theorem 5. Let Y ⊆ U∗ be a cycle property. If Y is closed under cyclic permutations5, and both Y and
¬Y are closed under concatenation, then every arena A is Y -unambiguous.

It is easy to check that the following cycle properties satisfy the hypothesis of Theorem 5: cyc-Parity,
cyc-Energy, cyc-MeanPayoffν , and cyc-GoodForEnergy. On the other hand, ¬cyc-EvenLen is not closed
under concatenation, whereas cyc-MaxFirst is not closed under cyclic permutations.

We conclude with the main result of this section:

Corollary 3. Suppose Y is closed under cyclic permutations, and both Y and its complement are closed
under concatenation. Then the following games are uniform memoryless determined for every arena A :
(A ,OW ) if W is Y -greedy on A , (A ,OSCG(Y )(A )), and (A ,OACG(Y )(A )).

We believe that Corollary 3 provides a practical and easy way of deducing that many infinite dura-
tion games are uniform memoryless determined, as follows: exhibit a cycle property Y that is closed
under cyclic permutations and both Y and ¬Y are closed under concatenation, such that the winning
condition W is Y -greedy on the arena A of interest. Finding such a Y is usually easy since it is sim-
ply a ‘finitary’ version of the winning condition W . For example, uniform memoryless determinacy of
parity games, mean-payoff games, and energy-games, can easily be deduced by considering the cycle
properties cyc-Parity, cyc-MeanPayoffν , and cyc-Energy.
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