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We report on a recent work on a resolution-based calculus for Coalition Logics, a non-normal modal
logic that can be used for reasoning about cooperative agency. The resolution method works on
problems, which are essentially sets of clauses where the different contexts for reasoning are sepa-
rated. We introduce a normal form and a set of inference rules to solve the satisfiability problem in
Coalition Logics. The calculus is sound, complete, and terminating.

1 Introduction

Coalition Logic CL is a formalism intended to describe the ability of groups of agents to achieve an
outcome in a strategic game [13]. CL is a multi-modal logic with modal operators of the form [A ], where
A is a set of agents. The formula [A ]ϕ reads as the coalition A has a strategy to achieve ϕ , where
ϕ is a formula. We note that CL is a non-normal modal logic, as the schema that represents additivity,
[A ]ϕ ∧ [A ]ψ⇒ [A ](ϕ ∧ψ), is not valid. However, monotonicity, [A ](ϕ ∧ψ)⇒ [A ]ϕ ∧ [A ]ψ , holds.

Coalition Logic is equivalent to the next-time fragment of Alternating-Time Temporal Logic (ATL)
[1, 4], where [A ]ϕ translates into 〈〈A 〉〉 hϕ (read as the coalition A can ensure ϕ at the next moment in
time). The satisfiability problems for ATL and CL are EXPTIME-complete [15] and PSPACE-complete
[13], respectively. Proof methods for these logics include, for instance, tableau-based methods for ATL
[15, 5] and a tableau-based method for CL [7].

In this paper, we report on a recently developed resolution-based calculus for CL, RESCL [11]. As
to the best of our knowledge, there are no other resolution-based methods for either ATL or CL. Pro-
viding such a method for CL gives the user a choice of proof methods. Several comparisons of tableau
algorithms and resolution methods [9, 6] indicate that there is no overall best approach: for some classes
of formulae tableau algorithms perform better whilst on others resolution performs better. So, with a
choice of different provers, for the best result the user could run several in parallel or the one most likely
to succeed depending on the type of the input formulae. RESCL is sound, complete, and terminating as
shown in [11].

The paper is organised as follows. In the next section, we present the syntax, axiomatisation, and
semantics of CL. In Section 3, we introduce the resolution-based method for CL, the main results, and
provide a small example. Conclusions and future work are given in Section 4.
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2 Coalition Logic

As in [5], we define Σ ⊂ N to be a finite, non-empty set of agents. A coalition A is a subset of Σ. For-
mulae in CL are constructed from propositional symbols (Π = {p,q,r, . . . , p1,q1,r1, . . .}) and constants
(true, false), together with Boolean operators (¬, for negation, and ∧, for conjunction) and coalition
modalities. Formulae whose main operator is classical are built in the usual way. A coalition modality
is either of the form [A ]ϕ or 〈A 〉ϕ , where ϕ is a well-formed CL formula. The coalition operator 〈A 〉
is the dual of [A ], that is, 〈A 〉ϕ is an abbreviation for ¬[A ]¬ϕ , for every coalition A and formula ϕ .
We denote by WFFCL the set of CL well-formed formulae. Parentheses will be omitted if the reading is
not ambiguous. We also omit the curly brackets within modalities. For instance, we write [1,2]ϕ instead
of [{1,2}]ϕ . Formulae of the form

∨
ϕi (resp.

∧
ϕi), 1 ≤ i≤ n, n ∈ N, ϕi ∈WFFCL, represent arbitrary

disjunctions (resp. conjunctions) of formulae. If n = 0,
∨

ϕi (resp.
∧

ϕi) is called the empty disjunction
(resp. empty conjunction), denoted by false (resp. true).

A literal is either p or ¬p, for p ∈ Π. For a literal l of the form ¬p, where p is a propositional
symbol, ¬l denotes p; for a literal l of the form p, ¬l denotes ¬p. The literals l and ¬l are called
complementary literals. A positive coalition formula (resp. negative coalition formula) is a formula
of the form [A ]ϕ (resp. 〈A 〉ϕ), where ϕ ∈WFFCL. A coalition formula is either a positive or a negative
coalition formula.

Coalition logic can be axiomatised by the following schemata (where A ,A ′ are coalitions and ϕ,ϕ1,
ϕ2 are well-formed formulae) [13]:

⊥ : ¬[A ]false
> : [A ]true
Σ : ¬[ /0]¬ϕ ⇒ [Σ]ϕ
M : [A ](ϕ1∧ϕ2)⇒ [A ]ϕ1
S : [A ]ϕ1∧ [A ′]ϕ2⇒ [A ∪A ′](ϕ1∧ϕ2), if A ∩A ′ = /0

together with propositional tautologies and the following inference rules: modus ponens (from ϕ1 and
ϕ1 ⇒ ϕ2 infer ϕ2) and equivalence (from ϕ1 ⇔ ϕ2 infer [A ]ϕ1 ⇔ [A ]ϕ2). It can be shown that the
inference rule monotonicity (from ϕ1 ⇒ ϕ2 infer [A ]ϕ1 ⇒ [A ]ϕ2) is a derivable rule in this system.
The next result will be used later.

Lemma 1 The formula [A ]ψ1∧〈B〉ψ2⇒ 〈B \A 〉(ψ1∧ψ2) where A and B are coalitions, A ⊆B,
and ψ1,ψ2 ∈WFFCL, is valid.

Proof.

1. [A ]ψ1∧ [B \A ](ψ1⇒¬ψ2)⇒ [B](ψ1∧ (ψ1⇒¬ψ2)) S,A ′ = B \A
ϕ1 = ψ1,ϕ2 = ψ1⇒¬ψ2

2. ψ1∧ (ψ1⇒¬ψ2)⇒¬ψ2 propositional tautology
3. [B](ψ1∧ (ψ1⇒¬ψ2))⇒ [B]¬ψ2 2, monotonicity
4. [A ]ψ1∧ [B \A ](ψ1⇒¬ψ2)⇒ [B]¬ψ2 1,3, chaining
5. [A ]ψ1∧¬[B]¬ψ2⇒¬[B \A ](¬ψ1∨¬ψ2) 4, rewriting
6. [A ]ψ1∧〈B〉¬¬ψ2⇒ 〈B \A 〉¬(¬ψ1∨¬ψ2) 5, def. dual
7. [A ]ψ1∧〈B〉ψ2⇒ 〈B \A 〉(ψ1∧ψ2) 6, rewriting

�

The semantics of CL is given in terms of Concurrent Game Structures (CGS) [2] and it is positional,
that is, agents have no memory of their past decisions and, thus, those decisions are made by taking
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into account only the current state. We note that the semantics of CL is often presented in terms of
Multiplayer Game Models (MGMs) [12]. Note also that MGMs yield the same set of validities as CGSs
[4]. As we intend to extend the proof method given here, the correctness proofs are based on the tableau
procedure for full ATL [5] and we follow the semantics presentation given there.

Def. 1 A Concurrent Game Frame (CGF) is a tuple F = (Σ,S ,s0,d,δ ), where

• Σ is a finite non-empty set of agents;
• S is a non-empty set of states, with a distinguished state s0;
• d : Σ×S −→N+, where the natural number d(a,s)≥ 1 represents the number of moves that the

agent a has at the state s. Every move for agent a at the state s is identified by a number between 0
and d(a,s)−1. Let D(a,s) = {0, . . . ,d(a,s)−1} be the set of all moves available to agent a at s.
For a state s, a move vector is a k-tuple (σ1, . . . ,σk), where k = |Σ|, such that 0≤ σa ≤ d(a,s)−1,
for all a ∈ Σ. Intuitively, σa represents an arbitrary move of agent a in s. Let D(s) = Πa∈ΣD(a,s)
be the set of all move vectors at s. We denote by σ an arbitrary member of D(s).
• δ is a transition function that assigns to every s ∈S and every σ ∈D(s) a state δ (s,σ) ∈S that

results from s if every agent a ∈ Σ plays move σa.

In the following, let F = (Σ,S ,s0,d,δ ) be a CGF with s,s′ ∈S . We say that s′ is a successor of
s (an s-successor) if s′ = δ (s,σ), for some σ ∈ D(s). If κ is a tuple, then κn (or κ(n)) denotes the n-th
element of κ . Let |Σ|= k and let A ⊆ Σ be a coalition. An A -move σA at s ∈S is a k-tuple such that
σA (a) ∈ D(a,s) for every a ∈A and σA (a′) = ∗ (i.e. an arbitrary move) for every a′ 6∈A . We denote
by D(A ,s) the set of all A -moves at state s. A move vector σ extends an A -move vector σA , denoted
by σA v σ or σ w σA , if σ(a) = σA (a) for every a ∈ A . Let σA ∈ D(A ,s) be an A -move. The
outcome of σA at s, denoted by out(s,σA ), is the set of all states s′ ∈S for which there exists a move
vector σ ∈ D(s) such that σA v σ and δ (s,σ) = s′.

Def. 2 A Concurrent Game Model (CGM) is a tuple M = (F ,Π,π), where F = (Σ,S ,s0,d,δ )
is a CGF; Π is the set of propositional symbols; and π : S −→ 2Π is a valuation function.

Def. 3 Let M = (Σ,S ,s0,d,δ ,Π,π) be a CGM with s ∈S . The satisfaction relation, denoted by
|=, is inductively defined as follows.

• 〈M ,s〉 |= true;
• 〈M ,s〉 |= p iff p ∈ π(s), for all p ∈Π;
• 〈M ,s〉 |= ¬ϕ iff 〈M ,s〉 6|= ϕ;
• 〈M ,s〉 |= ϕ ∧ψ iff 〈M ,s〉 |= ϕ and 〈M ,s〉 |= ψ;
• 〈M ,s〉 |= [A ]ϕ iff there exists a A -move σA ∈ D(A ,s) s.t. 〈M ,s′〉 |= ϕ for all s′ ∈ out(s,σA );
• 〈M ,s〉 |= 〈A 〉ϕ iff for all A -moves σA ∈ D(A ,s) exists s′ ∈ out(s,σA ) s.t. 〈M ,s′〉 |= ϕ .

Semantics of false, disjunctions, and implications are given in the usual way. Given a model M , a state
s in M , and a formula ϕ , if 〈M ,s〉 |= ϕ , s ∈S , we say that ϕ is satisfied at the state s in M .

In this work, we consider tight satisfiability, i.e. the evaluation of a formula ϕ depends only on the
agents occurring in ϕ [15]. We denote by Σϕ , where Σϕ ⊆ Σ, the set of agents occurring in a well-formed
formula ϕ . If Φ is a set of well-formed formulae, ΣΦ ⊆ Σ denotes

⋃
ϕ∈Φ Σϕ . Let ϕ ∈ WFFCL and

M = (Σϕ ,S ,s0,d,δ ,Π,π) be a CGM. Formulae are interpreted with respect to the distinguished world
s0. Thus, a formula ϕ is said to be satisfiable in M , denoted by M |= ϕ , if 〈M ,s0〉 |= ϕ; it is said to be
satisfiable if there is a model M such that 〈M ,s0〉 |= ϕ; and it is said to be valid if for all models M
we have 〈M ,s0〉 |= ϕ . A finite set Γ⊂WFFCL is satisfiable in a state s in M , denoted by 〈M ,s〉 |= Γ,
if for all γi ∈ Γ, 0≤ i≤ n,n ∈ N, 〈M ,s〉 |= γi; Γ is satisfiable in a model M , M |= Γ, if 〈M ,s0〉 |= Γ;
and Γ is satisfiable, if there is a model M such that M |= Γ.
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3 Resolution Calculus

The resolution calculus for CL, RESCL, operates on sets of clauses. A formula in CL is firstly converted
into a coalition problem, which is then transformed into a coalition problem in Divided Separated Normal
Form for Coalition Logic, DSNFCL.

Def. 4 A coalition problem is a tuple (I ,U ,N ), where I , the set of initial formulae, is a finite
set of propositional formulae; U , the set of global formulae, is a finite set of formulae in WFFCL; and
N , the set of coalition formulae, is a finite set of coalition formulae, i.e. those formulae in which a
coalition modality occurs.

The semantics of coalition problems assumes that initial formulae hold at the initial state; and that
global and coalition formulae hold at every state of a model.

Def. 5 Given a coalition problem C = (I ,U ,N ), we denote by ΣC the set of agents ΣU ∪N . If
C = (I ,U ,N ) is a coalition problem and M = (ΣC ,S ,s0,d,δ ,Π,π) is a CGM, then M |= C if, and
only if, 〈M ,s0〉 |= I and 〈M ,s〉 |= U ∪N , for all s ∈S . We say that C = (I ,U ,N ) is satisfiable,
if there is a model M such that M |= C .

In order to apply the resolution method, we further require that formulae within each of those sets are
in clausal form: initial clauses and global clauses are of the form

∨n
j=1 l j; positive coalition clauses are

of the form
∧m

i=1 l′i ⇒ [A ]
∨n

j=1 l j; and negative coalition clauses are of the form
∧m

i=1 l′i ⇒〈A 〉
∨n

j=1 l j;
where m,n≥ 0 and l′i , l j, for all 1≤ i≤m, 1≤ j≤ n, are literals or constants. We assume that clauses are
kept in the simplest form by means of usual Boolean simplification rules. Tautologies are removed from
the set of clauses as they cannot contribute to finding a contradiction. A coalition problem in DSNFCL
is a coalition problem (I ,U ,N ) such that I is a set of initial clauses, U is a set of global clauses,
and N is a set of positive and negative coalition clauses.

The transformation of a coalition logic formula into a coalition problem in DSNFCL is analogous to
the approach taken in [3], where first-order temporal formulae are transformed into a Divided Separated
Normal Form (DSNF) by means of renaming and rewriting of temporal operators by simulating their
fix-point representation. The transformation of a formula into a coalition problem in DSNFCL, which
are given in [10, 11], reduces the number of operators and separates the contexts to which the resolution
inference rules are applied.

The set of inference rules for RESCL are given as follows. Let (I ,U ,N ) be a coalition problem in
DSNFCL; C,C′ be conjunctions of literals; D,D′ be disjunctions of literals; l, li be literals; and A ,B ⊆ Σ

be coalitions (where Σ is the set of all agents). The first rule, IRES1, is classical resolution applied
to clauses which are true at the initial state. The next inference rule, GRES1, performs resolution on
clauses which are true in all states.

IRES1 D∨ l ∈I
D′∨¬l ∈I ∪U
D∨D′ ∈I

GRES1 D∨ l ∈U
D′∨¬l ∈U
D∨D′ ∈U

Soundness of IRES1 and GRES1 follow from the semantics of coalition problems and the soundness
result for classical propositional resolution [14]. The following rules perform resolution on positive and
negative coalition clauses.
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CRES1 C ⇒ [A ](D∨ l) ∈N
A ∩B = /0 C′ ⇒ [B](D′∨¬l) ∈N

C∧C′ ⇒ [A ∪B](D∨D′) ∈N

CRES2 D∨ l ∈U
C ⇒ [A ](D′∨¬l) ∈N
C ⇒ [A ](D∨D′) ∈N

CRES3 C ⇒ [A ](D∨ l) ∈N
A ⊆B C′ ⇒ 〈B〉(D′∨¬l) ∈N

C∧C′ ⇒ 〈B \A 〉(D∨D′) ∈N

CRES4 D∨ l ∈U
C ⇒ 〈A 〉(D′∨¬l) ∈N
C ⇒ 〈A 〉(D∨D′) ∈N

Soundness of the inference rules CRES1-4 follow from the axiomatisation of CL, given in Section 2. We
give sketches of the proofs here. Let M be a CGM and s ∈M a state. Recall that coalition clauses
are satisfied at any state in M . For CRES1, if 〈M ,s〉 |= C ∧C′, by the semantics of conjunction
and implication, we have that 〈M ,s〉 |= C ∧C′ ⇒ [A ](D∨ l)∧ [B](D′ ∨¬l). By axiom S, we have
that [A ](D∨ l)∧ [B](D′ ∨¬l) implies [A ∪B]((D∨ l)∧ (D′ ∨¬l)). Therefore, 〈M ,s〉 |= C∧C′ ⇒
[A ∪B]((D∨ l)∧ (D′∨¬l)). By classical resolution applied within the successor states, we obtain that
〈M ,s〉 |= C∧C′⇒ [A ∪B](D∨D′). For CRES3, by Lemma 1, we have that [A ](D∨ l)∧〈B〉(D′ ∨
¬l)⇒ 〈B \A 〉((D∨ l)∧ (D′ ∨¬l)), with A ⊆B, is valid. If 〈M ,s〉 |= C∧C′, by the semantics of
implication, we have that 〈M ,s〉 |= C∧C′⇒ 〈B \A 〉((D∨ l)∧ (D′∨¬l)). Applying classical resolu-
tion within the successor states, we obtain that 〈M ,s〉 |=C∧C′⇒ 〈B \A 〉(D∨D′). Soundness of the
inference rules CRES2 and CRES4 follow from the above and the semantics of coalition problems: as
a formula ϕ in U is satisfied at all states, we have that true⇒ [ /0]ϕ is also satisfied at all states.

The next two inference rules are justified by the axioms ⊥ and >, given by ¬[A ]false and [A ]true,
respectively, which imply that the consequent in both rewriting rules cannot be satisfied.

RW1
∧n

i=1 li⇒ [A ]false ∈N∨n
i=1¬li ∈U

RW2
∧n

i=1 li⇒ 〈A 〉false ∈N∨n
i=1¬li ∈U

As sketched above, the resolution-based calculus for Coalition Logic is sound.

Theorem 1 (Soundness) Let C be a coalition problem in DSNFCL. Let C ′ be the coalition problem in
DSNFCL obtained from C by applying any of the inference rules IRES1, GRES1, CRES1-4 or RW1-2
to C . If C is satisfiable, then C ′ is satisfiable.

A derivation from a coalition problem in DSNFCL C = (I ,U ,N ) by RESCL is a sequence C 0,C 1,
C 2, . . . of problems such that C 0 = C , C i = (I i,U i,N i), and C i+1 is either (I i ∪ {D},U i,N i),
where D is the conclusion of IRES1; (I i,U i∪{D},N i), where D is the conclusion of GRES1, RW1,
or RW2; or (I i,U i,N i∪{D}), where D is the conclusion of CRES1, CRES2, CRES3, or CRES4;
and D is not a tautology.

A refutation for a coalition problem in DSNFCL C = (I ,U ,N ) (by RESCL) is a derivation from C
such that for some i≥ 0, C i = (I i,U i,N i) contains a contradiction, where a contradiction is given by
either false ∈I i or false ∈U i. A derivation terminates if, and only if, either a contradiction is derived
or no new clauses can be derived by further application of resolution rules of RESCL.

The completeness proof for RESCL is based on the tableau construction given in [5]. Given an
unsatisfiable coalition problem in DSNFCL C , an initial tableau is obtained by this construction which
is then reduced to an empty tableau via a sequence of deletion steps. We show that each deletion step
corresponds to an application of the resolution inference rules to (sub)sets of clauses in C or clauses
previously derived from C . The derivation constructed in this way is shown to be a refutation of C .

Theorem 2 (Completeness) Let C = (I ,U ,N ) be an unsatisfiable coalition problem in DSNFCL.
Then there is a refutation for C using the inference rules IRES1, GRES1, CRES1-4, and RW1-2.
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The proof that every derivation terminates is trivial and based on the fact that we have a finite num-
ber of clauses that can be expressed. As the number of propositional symbols after translation into the
normal form is finite and the inference rules do not introduce new propositional symbols, we have that
the number of possible literals occurring in clauses is finite and the number of conjunctions (resp. dis-
junctions) on the left-hand side (resp. right-hand side) of clauses is finite (modulo simplification). As the
number of agents is finite, the number of coalition modalities that can be introduced by inference rules
is also finite. Thus, only a finite number of clauses can be expressed (modulo simplification), so at some
point either we derive a contradiction or no new clauses can be generated.

Theorem 3 Let C = (I ,U ,N ) be a coalition problem in DSNFCL. Then any derivation from C by
RESCL terminates.

Example 1 We show a simple example, adapted from [8], of the application of RESCL to a problem
involving the cooperation of agents. There are two agents (1 and 2) and two toggle switches. For each
agent a = 1,2, there are two possible actions: [a]toga ∧ [a]¬toga, where toga denotes that the agent a
can toggle the switch (clauses 3, 9–13). The light is initially off, i.e. we have that t0⇒¬l (clauses 1 and
2). If the light is off and the switch is toggled, then at the next moment the light is on: toga∧¬l⇒ [a]l
(clauses 5 and 6). Similarly, if the light is on and the agent toggles the switch, then at the next moment
the light is off: toga∧ l⇒ [a]¬l (clauses 7 and 8). We prove that the agents can cooperate to turn on the
light, that is, we introduce the clauses 4 and 14, which corresponds to the negation of [1,2]l.

1. t0 [I ]
2. ¬t0∨¬l [U ]
3. ¬t0∨ t1 [U ]
4. ¬t1∨ t4 [U ]
5. tog1∧¬l ⇒ [1]l [N ]
6. tog2∧¬l ⇒ [2]l [N ]
7. tog1∧ l ⇒ [1]¬l [N ]
8. tog2∧ l ⇒ [2]¬l [N ]
9. t1 ⇒ [1]tog1 [N ]

10. t1 ⇒ [2]tog2 [N ]
11. t1 ⇒ [1]¬tog1 [N ]
12. t1 ⇒ [2]¬tog2 [N ]
13. t1 ⇒ [ /0]t1 [N ]

14. t4 ⇒ [ /0]¬l [N ]
15. ¬t0∨ t4 [U ,gres1,3, 4]
16. t4∧ tog1∧¬l ⇒ [1]false [N ,cres1,5, 14]
17. t1 ⇒ [ /0]t4 [N ,cres2,13, 4]
18. l∨¬t4∨¬tog1 [U ,rw1,16]
19. t1 ⇒ [ /0]l∨¬tog1 [N ,cres2,17, 18]
20. t1 ⇒ [1]l [N ,cres1,19, 9]
21. t1∧ t4 ⇒ [1]false [N ,cres1,20, 14]
22. ¬t1∨¬t4 [U ,rw1,21]
23. ¬t0∨¬t1 [U ,gres1,22, 15]
24. ¬t0 [U ,gres1,23, 3]
25. false [I,ires1,1, 24]

4 Conclusion

The resolution-based calculus for the Coalition Logic CL is applied to a coalition problem in DSNFCL,
which separates the dimensions to which the resolution rules are applied. The transformation into the
normal form is satisfiability preserving and polynomially bounded by the size of the original formula.
Soundness of the method follows from the axiomatisation of CL. Completeness is proved with respect to
the tableau procedure given in [5]: if a tableau for a coalition problem is closed, there is a refutation based
on the calculus given here. Termination is ensured by the fact that number of propositional symbols and
agents is finite, so there are only a finite number of clauses that can be generated.

The decision procedure based on RESCL is in EXPTIME, as shown in [11]. This is optimal, as the
satisfiability problem for coalition problems in DSNFCL is EXPTIME-hard, thus more expressive than
the language of CL. This result follows from [15, Lemma 4.10, page 785] and the fact that an extension
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of CL with positive occurrences of ATL’s 〈〈 /0〉〉 operator can be translated into DSNFCL. It also follows
that DSNFCL is more expressive than CL.

RESCL is very simple in structure, so an implementation can be obtained in a quite straightforward
way by extending existing resolution provers for either PTL or CTL, for instance, and it is left as future
work. Future work also includes the extension of this calculus to the full language of ATL, which can be
achieved by designing a set of resolution-like inference rules to deal with eventualities, that is, formulae
which hold at some future time of a run.
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