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We propose extending Alternating-time Temporal Logh& () by an operatofi C I')¢ to express

thati can distribute its powers to a set of sub-agéniis a way which satisfiedTL condition¢ on

the strategic ability of the coalitions they may form, possibly together with others agents. We prove
the decidability of model-checking of formulas whdse .)-subformulas have no inner occurrences

of ((C.).

Introduction

The basic co-operation modality of Alternating-time Temporal Loghdd (, [AHK97, AHKO0Z2]) invites
perceiving agent coalitions as single agents who enjoy the combined powers of the coalition members.
We investigate an operator to reverse this, by addressing the possibility to partition the strategic ability
of a single agent among several sub-agents. We \iritel") ¢ to denote that agentcan partition its
strategic ability among the members of a set of fresh sub-afjenta way which satisfieg, a formula
written in terms of the new agenftiswho assumé's powers, and the other original agents, exdepor
example, a purchase scenario with the vendor represented by salespeemhdelivery teanDT can
be described as
{(customerSP)<purchase agreement
(vendorL. SP.DT) < [SH]O(purchase agreement (DT, custome)) o delivery) ) '

The combined powers of all @& sub-agents are always equal’'®

(aufithe = [ CTI(@O\{iHUTM)¢
where[i C I'] stands for—(i C ')—. CoalitionsA 2 I' may be weaker than but also have abilities
contributed by agents frodh\ I'. The realizability of schemes such as the example one generally depends
on the basic composition of agents’ actions. For instance, simple mechanisms make it always possible
to deny theproper subsets of all substantial strategic ability or makeuse simple majority vote as
indicated by the validity of the formula:

S(@)gA(iNe = GCET) A ~(@heaicr) A —~(hen A (Q)¢.

ACT ACT|A[<[M\A| ACT ,|Al>[M\A|

Subtracting strategic ability from one agent and transfering it in the form of a virtual sub-agent to another
is a way of implementinglelegation Refinement can be instrumental in expressingaienability of
the ability in question. E.g.,

{(i)) ounlockA —=((j)) o unlockn (i C i’ key) (—=((i"}) o unlockA <<L,@> ounlock

g

states the possibility of givings unlockng ability separate identitgeywhich enables its passage jto
The relevant vocabulary introduced consistkeyitself, { j, key} for j keyin-hand and’ for i without
key, respectively.
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2 Refining and Delegating Strategic Ability AT L

Notably we investigate refining and delegating powers and not responsibilities as inN&QZ].[
Sub-agents can pursue their own goals. As it becomes clear below, they do so by influencing the choice
of actions on behalf of their super-agent with the share of the super-agents’ power given to them. Unlike
proper delegation as in, e.cvdHWW1( and BFDO0Z], where givers and receivers of control co-exist,
just(i £ ) is aboutreplacingi by its sub-agentk.

Our main result abolATL with (. C .) in this paper is a model-checking procedure for the subset in
which the arguments df C .) are supposed to beC .)-free, on finite CGMs.

Structure of the paper After brief formal preliminaries oATL on GCMs, we introduce our proposed
operator and model-checking algorithm. We conclude by briefly commenting on some more related
work, assessing our result and mentioning some work in progress.

1 Preliminaries

Definition 1 (concurrent game structures and models)A concurrent game structuGS) for some
given set of agents = {1,...,N} is a tuple of the formW, (Act : i € Z),0) where
W is a non-empty set cftates

Act; is a non-empty set d@dctions i € Z; given al’ C Z, Actr stands for[] Act;
iel
0:W x Acts — W is atransitionfunction.

A concurrent game modéCGM) for = and atomic proposition&P is a tuple of the form{W, (Act; :
i €2),0,V) where(W, (Act :i € Z),0) is a CGS forz andV C W x APis a valuation relation.

In the sequel we always assumiet;, i € > to be pairwise disjoint.

Below we writear to indicate that € Actr wherell C 2. If a € Acty andl" C A, thenar also stands
for the subvector o& consisting of the actions for the memberd ofGiven disjointl",A C X, we write
ar - by for ¢ € Actra Which is defined by putting; = g fori € I’ andc; = b; fori € A.

Definition 2 (ATL on CGMs) The syntax ofAT L formulas¢ is given by the BNF
o wi=Llpl(d=u) (Mo [(M)(eUy)[[T(¢UY)

where p ranges over atomic propositions ahdanges over finite sets of agents. SatisfactioADE
formulas are defined in terms of strategiesstategyfor i € ~ in CGM M = (W, (Act @i € Z),0,V) is
a function fromW to Act. Given a vector of strategies = (s : i € ') for the members of C Z, the
possible outcomes df starting from statev and followingsr is the set of infinite runs

out(w,sr) = {wow!... e W@ : wPl = wwk! = o(wK &), &%l ... € Act?, ak = st (WP...wK),k < w}.

Assuming a fixedM, we write S for the set of all vectors of strategies foin M. Satisfaction is defined
on CGMsM, statesv € W and formulasp:

M,w = L
M,w = p iff  V(w,p)
MwgE¢ =y iff either M,w = @ orM,w = ¢

M,wE (T od iff there exists ars- € § s. t.wPw? ... € out(w, 1) impliesM,w! = ¢
M,w = (M) (¢Uw) iff there exists arsr € S s. t. for anywPw? . .. € out(w,sr)

there exists k< ws. t MW = ¢,...,M WK = ¢ andM, WK |=
M,w= [F](¢Uy) iff forevery s € S there exists aPw!. .. € out(w,s)

andak < ws. t MW = ¢,..., MWK = ¢ andM, WK |=



D. P. Guelev 3

T, -, V, A and< and the remaining combinations {f)) and{.] with the temporal connectives <
andd are regarded as derived constructs. See, AblKD2] for the definitions.

We writeZ(¢) for the set of agents which are mentioned in formpila

2 Refining Strategic Ability in ATL: ATLc

Definition 3 (I'-to-i homomorphisms of CGMs) Given Z and AP, ani € ¥ and some non-empty set
of agent name§ which is disjoint withX, consider CGMIM = (W, (Act; : j € Z),0,V) andM’ =
(W', (Act; : j €%),0,V’) for AP, andZ andZ’ = (X\ {i}) UT, respectively. A mapping: _|‘|rAc1’j —
je
Act; is alr-to-i homomorphism frorW’ to M, if
W' =W, V' =V andActj = Act; for j € 2\ {i};
rangeh = Act ando’(w,a) = o(w, as\ gy - h(ar)) for all w € W and alla € Act;,.

Informally, if M is al'-to-i homomorphism oM, then the strategic ability afin M is distributed among
the new agentge I' in M’. For each actiom; of i in M there exists a vector of actioas for the members

of ' in M’ such that(ar) = a. Together with the correspondence between the outcome functemd

o of the two models, this means that the combined powers of the membeia M’ are equal to those

of i in M, but proper sub-coalitions &f may be less powerful. Next we introduce the operator which is
central to this work.

Definition 4 (refinement operator) Let M, i andl' be as above. Lei(¢) C (X\ {i})UTl. Then

MW (iC)¢
iff there exist anM’ for ¥’ andAP such thaM’,w |= ¢, and al -to-i homomorphism fronM’ to M.

The occurrences of € ' in (i C IM)¢ areboundin the usual sense. Informallyi C I')¢ means that
can distribute its powers among the members sb thatp holds in about the new set of agents. Its dual
[i C I'l¢ means thay holds regardless of how the powers @ire distributed among the agents frém

3 Model-checking(. C .)-Flat ATL -

(. C .)-flat ATL is the subset oATL c in which no occurrences df C .) are allowed in the scope of
(. C.). Therefore our task amounts to providing an algorithm for deciding whéter|= (i C M) ¢
for ¢ with no further occurrences df C .). Our algorithm combineATL model checking and solving
satisfiability in the((.))o-subset ofATL, or, equivalently, in Coalition LogicHau02.

We only do the case df C I")¢ with ¢ being a boolean combination @f))o-formulas with boolean
combinations of atomic propositions as the argument$.pb in detail here. Let CGMV be as above
and consider a CGMWI' = (W, (Act :i € ¥'),0,V), ¥ =Z\ {i} U, and & -to-i homomorphisni from
M’ to M. Consider &(A)) o x € Subf(¢). For M’ ;w |= ((A)) o x to hold, there should be a vector of
actionsaa such that, for anyor\a, aa\r - h(@anr - br\a) givesA\ T U {i} a strategy to achievex in M.
For a fixeday,r this means

h(aanr -br\a) € {a € Act : Vez\ (augipM, 0(Waa\r - & - Cx\ augiy) F X} 1)
Henceforth we writé?; 4, wx for the subset oAct in (1).

Now consider a CGM = (W, (Act :i € '),0,V) for I as the set of agent&P = Act as the set
of atomic propositions and/ = Act U {w°} as the set of states. L&{w,a) be equivalent tav = a for
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a € Act, thus enabling reference to each individual action dfhe intended meaning of the statesvbf
from Act; is to represent the possible choices'®hctions by the members Bf andw? is a distinguished
reference state. Lefctj = Act] for j € I, and leto(w?,a) = h(a) for all a € Actr. Then

MW = (@)o \/ an A (@)o-(anb)a A (M)ea )
acAct; a,beAct ,a£b acAct;
since each off's actions can be enforced by its representing coalifion
Let the translation replace subformulas gf of the form((A)) o x by their corresponding
\V  (@anmoe \/ a.
an\r €ACH - B €A ap r wx
ThenM,w = (i C ") ¢ is equivalent tavl, w° = t(¢).

Conversely, let a modéll = (W, (Act :i € '), 0,V) exist such thaM,wP |= t(¢) and @) hold. Then
we can define aM’ and a -to-i homomorphisni to witnessM, w = (i C T") ¢ as follows. We puBct; =
Actj, j €T. For everyar € Actr, we definen(ar) as the unique; € Act; such thaiv, owl,ar) = a. We
determineo’ from the identityo’ (w,a) = o(wP, h(a)). Now a direct check shows thit,w = (i C ) ¢.

Hence, the existence of a moddl which satisfies(¢) and @) at some state is equivalent to the
satisfaction ofp at the given states of the givenM. Since satisfiability of formulas such &%) and @)
is solvable, this entails the solvability of model-checking: .)-formulas.

4 Concluding Remarks

Related Work There is an analogy between ourC .) and the refinement quantifier 8fefinement
Modal Logic[BvDF™12] and its extensions to special classes of multimodal frara#D[LZ]. For-

mal studies focusing on controlling the decisions of self-interested delegates can be fodhdli2, [
EPW13. A notion of refinemenbf alternating transition systemA&TL’s original type of models from
[AHK97], allowing, unlike AHKV98], different sets of agents to be related, was studiedR80].
Abstraction techniques with the agents being jkusbwerswere studied in[EDQO7, CDLRQOY. Ab-
straction involving over- and under-approximation of coalitions to contain model size was proposed
in [KL11]. A formalization of teaming sub-agents under a scheduler as turn-based simulation was pro-
posed in[GF1Q/GPS13. The revised formIMS13 of modular interpreted systenjdA07] looks more

fit to capture varying numbers of agents. Distinctively, our setting is about varying the set of agents in a
system by just redistributing strategic ability, with the overall activities which the system unchanged.

The Model-checking Algorithm By a routine effort, our model-checking algorithm extends to for-
mulas of the form(i; T I'1)...(im C 'm)¢, which are needed for modelling several parties interacting
through representatives. However, in its part beyond{the subset, which is not included here, the
algorithm is nowhere close to optimal and therefore can mostly serve as proof of the decidability of
model-checking fof. C .)-flat ATL - in principle.

Some Work in Progress (. C .) admits a definition with no referenceffeto-i homomorphisms, which
enables translating th¢.))o-subset ofATL  into a promising looking subset of many-sorted predicate
logic or, similarly, into((.))o-subsets of explicit strategy languages such a€HR07 MMV10]. Ex-

ploring the tractability of the translated formulas is one way of addressing satisfiabiffLin, which

is yet to be done. The translation gives rise to a companion operator, which holds some promise as the
means for indirect axiomatization. Regarding direct axiomatization, for any fizedl", (i C ') is a
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KD- and, with some adjustment to compensate for switching to the local agent vocabyléryUT,

also aT-modality. We have also established some non-trivial specific basic equivalences leading to a
normal form, and a conventional-looking rule for introducing negative occurrences-of), but still

lack sufficiently strong axioms for the positive occurrences.
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