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Exploiting the algebraic structure of the set of bimatrix games, a divide-and-conquer algorithm for
finding Nash equilibria is proposed. The algorithm is fixed-parameter tractable with the size of the
largest irreducible component of a game as parameter. An implementation of the algorithm is shown
to yield a significant performance increase on inputs with small parameters.

1 Introduction

A bimatrix game is given by two matrices (A,B) of identical dimensions. The first player picks a row
i, the second player independently picks a column j. As a consequence, the first player receives the
payoff Ai j, the second player Bi j. Both player are allowed to randomize over their choices, and will
strive to maximize their expected payoff. A Nash equilibrium is a pair of strategies, such that no player
can improve her expected payoff by deviating unilaterally.

If the payoff matrices are given by natural numbers, then there always is a Nash equilibrium using
only rational probabilities. The computational task to find a Nash equilibrium of a bimatrix game is
complete for the complexity class PPAD [21, 7, 6]. PPAD is contained in FNP, and commonly believed
to exceed FP. In particular, it is deemed unlikely that a polynomial-time algorithm for finding Nash
equilibria exists.

The next-best algorithmic result to hope for could be a fixed-parameter tractable (fpt) algorithm [8],
that is an algorithm running in time f (k)p(n) where n is the size of the game, p a polynomial and k a
parameter. For such an algorithm to be useful, the assumption the parameter were usually small needs
to be sustainable. The existence of fpt algorithms for finding Nash equilibria with various choices of
parameters has been studied in [9, 13, 10].

In the present paper we demonstrate how products and sums of games – and their inverse operations
– can be used to obtain a divide-and-conquer algorithm to find Nash equilibria. This algorithm is fpt, if
the size of the largest component not further dividable is chosen as a parameter. Products of games were
introduced in [23] as a means to classify the Weihrauch-degree [4, 3, 5, 14] of finding Nash equilibria
for real-valued payoff matrices. Sums appear originally in the PhD thesis [24] of the second author; the
algorithm we discuss was implemented in the Bachelor’s thesis [15] of the first author.

2 Products and Sums of Games

Both products and sums admit an intuitive explanation: The product of two games corresponds to playing
both games at the same time, while the sum involves playing matching pennies to determine which game
to play, with one player being rewarded and the other one punished in the case of a failure to agree.
∗A full version including proofs omitted here is available as [16].
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2 Decomposing bimatrix games

2.1 Products

In our definition of products, we let [ , ] : {1, . . . ,n}×{1, . . . ,m}→{1, . . . ,nm} denote the usual bijection
[i, j] = (i−1)n+ j. The relevant values of n,m will be clear from the context. We point out that [ , ] is
polynomial-time computable and polynomial-time invertible.

Definition 1. Given an n1 ×m1 bimatrix game (A1,B1) and an n2 ×m2 bimatrix game (A2,B2), we
define the (n1n2)×(m1m2) product game (A1,B1)×(A2,B2) as (A,B) with A[i1,i2][ j1, j2] = A1

i1 j1 +A2
i2 j2 and

B[i1,i2][ j1, j2] = B1
i1 j1 +B2

i2 j2 .

Theorem 2. If (xk,yk) is a Nash equilibrium of (Ak,Bk) for both k ∈ {1,2}, then (x,y) is a Nash equilib-
rium of (A,B), where x[i1i2] = x1

i1x2
i2 and y[m1m2] = y1

m1
y2

m2
.

Theorem 3. If (x,y) is a Nash equilibrium of (A,B), then (x1,y1) given by x1
i =

n2

∑
l=1

x[i,l] and y1
j =

m2

∑
l=1

y[ j,l]

is a Nash equilibrium of (A1,B1).

2.2 Sums

The sum of games involves another parameter besides the two component games, which just is a number
exceeding the absolute value of all the payoffs.

Definition 4. Given an n1×m1 bimatrix game (A1,B1) and an n2×m2 bimatrix game (A2,B2), we define
the (n1+n2)×(m1+m2) sum game (A1,B1)+(A2,B2) via the constant K > maxi, j{|Ai, j|,Bi, j|} as (A,B)
with:

Ai, j =


A1

i j if i≤ n1, j ≤ m1

A2
(i−n1),( j−m1)

if i > n1, j > m1

K otherwise

Bi, j =


B1

i j if i≤ n1, j ≤ m1

B2
(i−n1),( j−m1)

if i > n1, j > m1

−K otherwise

Lemma 5. Let (x,y) be a Nash equilibrium of (A1,B1) + (A2,B2). Then 0 <
(
∑

n1
i=1 xi

)
< 1 and 0 <(

∑
m1
j=1 y j

)
< 1.

Theorem 6. If (x,y) is a Nash equilibrium of (A1,B1)+ (A2,B2), then a Nash equilibrium (x1,y1) of
(A1,B1) can be obtained as x1

i =
xi

∑
n1
l=1 xl

and y1
j =

yi

∑
m1
l=1 yl

.

Theorem 7. Let (xk,yk) be a Nash equilibrium of (Ak,Bk) resulting in payoffs (Pk,Qk) for both k ∈
{1,2}. Then (x,y) is a Nash equilibrium of (A1,B1) + (A2,B2), where xi = x1

i
K−Q2

2K−Q1−Q2 for i ≤ n1,

xi = x2
i−n1

K−Q1

2K−Q1−Q2 for i > n1, y j = y1
j

K−P2

2K−P1−P2 for j ≤ m1, y j = y2
j−m1

K−P1

2K−P1−P2 for j > m1.

If a game is iteratively decomposed into sums, the resulting structure corresponds to a Blackwell
game [1, 19] of finite length. The reasoning underlying the theorems above then provides a means of
backwards-induction to show that such games always admit Nash equilibria without a direct appeal to
their normal form version. The latter observation is the foundation for [18, Corollary 8].
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3 Examples

In order to illuminate both how the operations work, and how the component games can be recovered
from the compound game, we shall briefly consider some examples. As all relevant features already
appear for zero-sum games, we shall restrict the examples to this case, and suppress explicit reference to
the second player’s payoffs.

A :=


1 2 3 4
0 1 0 1
2 2 2 2
4 1 2 3

 B :=

 0 0 0
1 0 1
1 2 3



A×B =



1 2 3 4 1 2 3 4 1 2 3 4
2 3 4 5 1 2 3 4 2 3 4 5
2 3 4 5 3 4 5 6 4 5 6 7
0 1 0 1 0 1 0 1 0 1 0 1
1 2 1 2 0 1 0 1 1 2 1 2
1 2 1 2 2 3 2 3 3 4 3 4
2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 2 2 2 2 3 3 3 3
3 3 3 3 4 4 4 4 5 5 5 5
4 1 2 3 4 1 2 3 4 1 2 3
5 2 3 4 4 1 2 3 5 2 3 4
5 2 3 4 6 3 4 5 7 4 5 6



Ai j +B11 = (A×B)3i−2, j
Bi j +A21 = (A×B)3+i,4 j−3

As demonstrated by the colour-markings in the product game, if a game is indeed a product game,
then the payoffs of the components can be read off from the payoff matrix of the composed game (plus
some constant). Indeed, there are many different positions where the component games are found. Veri-
fying that a game indeed is a product requires to ensure the consistency of these answers.

A+B =



1 2 3 4 K K K
0 1 0 1 K K K
2 2 2 2 K K K
4 1 2 3 K K K
K K K K 0 0 0
K K K K 1 0 1
K K K K 1 2 3


Recovering the component games from a sum is even simpler: The payoff matrices are found in the

left-upper and right-lower corner, while the remaining two cornes are covered by a suitable constant K.
The latter allows us to determine the precise size of the corners.

4 The algorithm

Our basic algorithm proceeds as follows: To solve a game (A,B)
1. test whether (A,B) is the sum of (A1,B1) and (A2,B2) via some constant K. If yes, solve (A1,B1)

and (A2,B2) and combine their Nash equilibria to an equilibrium of (A,B) via Theorem 7. If no,
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2. test whether (A,B) is the product of (A1,B1) and (A2,B2). If yes, solve (A1,B1) and (A2,B2) and
combine their Nash equilibria to an equilibrium of (A,B) via Theorem 2. If no,

3. find a Nash equilibrium of (A,B) by some other means.

For some n×m game (A,B) let let S(A,B) denote its size, i.e. S(A,B) = nm, and let λ (A,B) be the
size of the largest game for which 3. in our algorithm is called. Let f (k) be the time needed for the
external algorithm called in 3. on a game of size k. Then the runtime of our algorithm is bounded by
O(S2 f (λ )), in particular, it is an f pt-algorithm:

Testing whether a game is a sum, and computing the components, if applicable, can be done in
linear time: As the value K has to appear in the corner, one look up whether two suitable rectangular
regions have payoffs K and−K. If this is the case, the remaining two rectangular regions contain the two
subgames, provided they do not contain payoffs p with |p| ≥ K. The sum of the sizes of the components
is less than the size of the original game. Finally, combining Nash equilibria can be done in linear time,
too. Only this case for yield quadratic runtime.

Whether a game is a product of factors of a fixed size can also be tested in linear time. Essentially,
the payoffs of the putative component games are found as differences between corresponding payoffs in
the original game. Then the product of the two component games can be computed, and finally compared
to the original game to verify the decomposition. Testing the different possible factors adds an additional
factor

√
S for this part. The product of the sizes of the factors is equal to size of the original game.

Again, combining the Nash equilibria takes linear time. The underlying recurrence relation on its own
would yield a time bound of O(S1.5 logS), hence the quadratic runtime bound from the first relation is
dominating.

Note that a game cannot simultaneously be the result of a sum and a product of smaller games. Thus,
a full decomposition (and the size of the largest component) of a game is independent of the order in
which decomposability is tested.

As a slight modification of our algorithm, one can eliminate (iteratively) strictly dominated strategies
at each stage of the algorithm. We recall that a strategy i of some player is called strictly dominated by
some other strategy j, if against any strategy chosen by the opponent, i provides its player with a strictly
better payoff than j. A strictly dominated strategy can never be used in a Nash equilibrium. It is easy
to verify that a game decomposable as a sum never has any strictly dominated strategies, but may occur
as the result of the elimination of such strategies. Hence, including an elimination step for each stage
increases the potential for decomposability.

Proposition 8. Elimination of strictly dominated strategies commutes with decomposition of products,
i.e. the reduced form of the product is the product of the reduced forms of the factors.

The algorithm remains f pt if such a step is included, using e.g. the algorithm presented in [17]. The
exponent would presumably increase to O(S4 f (λ )) though. Discussion of complexity issues regarding
removal of dominated strategies can be found in e.g. [2, 22].

5 Empirical evaluation

Only a small fraction of the bimatrix games of a given size and bounded integer payoffs will be decom-
posable by our techniques, this limiting the applicability of the algorithm in Section 4. In particular,
if sample games were drawn from a uniform distribution, one should not expect any speedup using
decomposability-tests. However, to some extent we can expect patterns in the definitions of real-world
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game situation to increase the decomposability of the derived bimatrix games. For example, the struc-
ture of Poker-style games implies decomposability, as can be concluded from the considerations1 in [11].
Note that an explicit understanding of such patterns is not required to benefit from our algorithm – a rea-
sonable expectation that suitable patterns could occur is enough to justify the use of our algorithm, which
then identifies the actual patterns.

To obtain a first impression whether using the decomposition algorithm is indeed beneficial for com-
puting Nash equilibria, a collection of 100 random decomposable games was created. Each game has
95-105 strategies per player, and payoff values range from 0 to 50. The decomposability was ensure by
creating a random tree representing the relevant decomposition structure first, using probabilities of 0.4
each for sum and product decomposition, and of 0.2 for an elimination of strictly dominated strategies
step. The height of the trees was limited to 80, additionally vertices corresponding to games of size
up to 6 were turned into leaves. At the leaves, the payoffs were chosen uniformly subject to the con-
straints derived from the structure and the overall constraint of payoff values being between 0 and 50.
Finally, the corresponding bimatrix games were computed. As the payoffs for both players were chosen
independently, the expected fraction of zero-sum games in the sample set is negligible.

Both as a benchmark, and in order to compute Nash equilibria of the irreducible component games,
the tool GAMBIT [20] was used. GAMBIT offers a variety of algorithm for computing Nash equilibria of
bimatrix games, we used:

1. gambit-enummixed: using extreme point enumeration

2. gambit-gnm: using a global Newton method approach

3. gambit-lcp: using linear complementarity

4. gambit-simpdiv: using simplicial subdivision

Figure 1: gambit-gnm

Figures 1. & 2. show for gambit-gmn and gambit-lcp how many of our decomposable example
games could be solved in some given time bound (per game, not total) using only the GAMBIT algorithm
directly, or exploiting decomposition implemented in C++ first. Despite the fact that our decomposition
algorithm was not optimized, it turned out that using decomposition almost all games could be solved

1Making decisions on whether to fold, call or raise corresponds to choosing the type of the remaining game, i.e. a sum
decomposition. Similarly, the cards chosen by chance induce a product decomposition of the expected values of the game.
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Figure 2: gambit-lcp

in under 3 seconds, whereas even gambit-gnm2 as the fastest GAMBIT algorithm on the sample took
30 seconds for a similar feat. Neither gambit-enummixed nor gambit-subdiv were able to solve any of
the example games in less than 90 seconds without decomposition. Note that the GAMBIT algorithms
generally include elimination of strictly dominated strategies as well, so this alone cannot account for
the differences. Thus, there is clear indication that on suitable data, exploiting the algebraic structure
underlying the decomposition algorithm yields a significant increase in performance.
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