Probabilistic Software Product Line Model Checking

Clemens Dubslaff, Sascha Kliippeholz, Christel Baier*

Institute for Theoretical Computer Science
Technische Universitit Dresden, Germany

{dubslaff,klueppel,baier}@tcs.inf.tu-dresden.de

In a software product line (SPL), a collection of software products is defined by their commonalities
in terms of features rather than explicitly specifying all products one-by-one.

Several verification techniques were adapted to establish temporal properties of SPLs. Symbolic
and family-based model checking have been proven to be successful for tackling the combinatorial
blow-up arising when reasoning about several feature combinations. However, most formal verifi-
cation approaches for SPLs presented in the literature focus on the static SPLs, where the features
of a product are fixed and cannot be changed during runtime. This is in contrast to dynamic SPLs,
allowing to adapt feature combinations of a product dynamically after deployment.

The presentation deals with a compositional modeling framework for dynamic SPLs, which sup-
ports probabilistic and nondeterministic behaviors and allows for gquantitative analysis. Feature
changes during runtime are modeled within an automata-based coordination component, enabling
to reason over strategies how to trigger dynamic feature changes for optimizing various quantitative
objectives, e.g., energy or monetary costs and reliability. There is a natural and conceptually sim-
ple translation from the presented framework into the input language of the prominent probabilistic
model checker PRISM. This facilitates the application of PRISM to verify the operational behavior
of dynamic probabilistic SPLs against various quantitative queries. Feasibility of this approach is
demonstrated by means of a case study issuing an energy-aware bonding network device.

1 Introduction

In order to meet economic requirements and to provide customers individualized solutions, the devel-
opment and marketing of modern hardware and software products often follows the concept of product
lines. Within this concept, customers purchase a base system extendible and customizable with additional
functionalities, called features. Although product lines are commonly established in both, hardware and
software development, they have been first and foremost considered in the area of software engineering.
A software product line (SPL) (see, e.g., [4]) specifies a collection of software systems built from features
according to rules describing realizable feature combinations. It is rather natural to consider features as
basic modules for a compositional structure of SPLs. Such rules for the composition of features are
typically provided using feature diagrams [11]. Feature combinations are often assumed to be static,
i.e., some realizable feature combination is fixed when the product is purchased by a customer and is
never changed afterwards. However, this do not faithfully reflect adaptations of modern software during
its lifetime. For instance, when a software is updated or when a free trial version expires, features are
activated or deactivated during runtime of the system. SPLs which model such adaptations are called
dynamic SPLs [[]]], for which the design of specification formalisms is an active and emerging field in
SPL engineering.

*This work is partly supported by Deutsche Telekom Stiftung, the German Research Foundation (the SFB 912 HAEC,
DFG/NWO-project ROCKS, cluster of excellence cfAED), and the EU 7th Framework Programme grant no. 295261 (MEALS).

Submitted to:

QAPL 2014 © Clemens Dubslaff



2 Probabilistic Software Product Line Model Checking

Besides extending SPLs by dynamic feature adaptations, also quantitative aspects of the operational
behavior in SPLs are of increasing interest [12} |6, [16]. However, existing models are limited to static
SPLs and are not compositional. This limits their application in terms of family-based quantitative
analysis, i.e., reason about quantitative properties for all systems in an SPL by using the commonalities
between them rather than checking them one-by-one [14].

Based on a recent publication [3]], the goal of this presentation is to provide a compositional frame-
work for modeling dynamic SPLs which allows for a quantitative analysis in order to reason, e.g., about
system’s resource requirements.

2 The Compositional Framework

For the compositional design of software products with parallel components, Markov chains are known
to be less adequate than operational models supporting both, nondeterministic and probabilistic choices
(see, e.g., [15]). A Markov decision process (MDP) is such a formalism, extending labeled transition
systems by internal probabilistic choices taken after resolving nondeterminism between actions of the
system. The presented compositional framework for dynamic SPLs relies on MDPs with annotated costs,
used, e.g., to reason about resource requirements, energy consumption or monetary costs. In particular:

(1) feature modules: MDP-like models for the operational feature-dependent behavior of the compo-
nents and their interactions,

(2) aparallel operator for feature modules that represents the parallel execution of independent actions
by interleaving, supporting communication according to the handshaking principle and over shared
variables, and

(3) afeature controller: an MDP-like model for the dynamic switches of feature combinations.

An SPL naturally induces a compositional structure over features, where features or collections thereof
correspond to components. In the framework, these components are called feature modules (1), which
can contain both, nondeterministic and probabilistic choices. The former might be useful in early design
stages, whereas probabilistic choices can be used to model the likelihood of exceptional behaviors (e.g., if
some failure appears) or to represent randomized activities (e.g., coin tossing actions to break symmetry).
Both kinds of choices may depend on other features of the SPL — for instance, whether another feature
is activated during runtime or not.

Feature Modules are composed using a parallel operator (2), which combines the operational behav-
iors of all features represented by the feature modules into another feature module. This composition
is defined upon compatible feature interfaces of the feature modules, which keep track of the features
owned by the feature modules and those which the behavior of the feature modules depends on.

Feature activation and deactivation is described through a feature controller (3), which is a state-
based model controlling valid changes in the feature combinations. As within feature modules, choices
between feature combinations can be probabilistically (e.g., on the basis of statistical information on
feature combinations and their adaptations over time) or nondeterministically (e.g., if feature changes
rely on internal choices of the controller or are triggered from outside by an unknown or unpredictable
environment) and combinations thereof.



Clemens Dubslaff 3

3 Verification of SPLs

In order to meet requirements in safety-critical parts of SPLs or to guarantee overall quality, verification
is highly desirable. This is especially the case for dynamic SPLs, where side-effects arising from dy-
namic feature changes are difficult to predict in development phases. Model checking [10, [1] is a fully
automatic verification technique for establishing temporal properties of systems (e.g., safety or liveness
properties). Indeed, it has been successively applied to integrate features in components and to detect
feature interactions [13]. However, as observed by Classen et al. [3 2], the typical task for reasoning
about static SPLs is to solve the so-called featured model-checking problem:

Compute the set of all feature combinations such that the considered temporal property ¢ holds
for the corresponding software products.

This is in contrast to the classical model-checking problem that amounts to prove that ¢ holds for some
fixed system, such as one software product obtained from a feature combination. The standard approach
solving the featured model-checking problem is to verify the products in the SPL one-by-one (see, e.g.,
[14])). However, already within static SPLs this approach certainly suffers from an exponential blow-
up, since the number of different software products may rise exponentially in the number of features.
To tackle this potential combinatorial blow-up, family-based [14] and symbolic approaches are very
successful. Within family-based analysis, all products in an SPL are checked at once rather than one-by-
one. This requires a model which represents all behaviors of all the products of the SPL.

Quantitative Analysis. Fortunately, the semantics of SPLs according to the proposed framework rise a
standard MDP, which permits the application of standard but sophisticated probabilistic model-checking
techniques to reason about quantitative properties. This is in contrast to existing (nonprobabilistic) ap-
proaches, which require model-checking algorithms specialized for SPLs. Within our approach, tem-
poral or quantitative queries such as “minimize the energy consumption until reaching a target state” or
“maximize the utility value to reach a target state for a given initial energy budget” can be answered.
Corresponding to the nonprobabilistic case, the solution of the featured model-checking problem would
then provide answers of these queries for all initial feature combinations. In the setting of dynamic
SPLs, we go a step further and define the strategy synthesis problem aiming to find an optimal strategy
of resolving the nondeterminism between feature combination switches in the feature controller. This
strategy includes the initial step of the dynamic SPL by selecting an initial feature combination, which
suffices to solve the featured model-checking problem. However, this approach additionally provides
the possibility to reason over worst-case scenarios concerning feature changes during runtime. Note that
solving the strategy synthesis problem imposes a family-based analysis approach of the dynamic SPL,
which is also novel in the nonprobabilistic setting.

As in the nonprobabilistic case, symbolic techniques can help to avoid the exponential blow-up
when analyzing probabilistic SPLs. The presented compositional framework nicely fits with guarded-
command languages such as the input language of the symbolic probabilistic model checker PRISM [9]].
We carried out a case study based on a real-case scenario from the hardware domain according to our
framework to demonstrate applicability of PRISM. This case study details the energy-aware network
device EBOND+, an extension of the recently presented EBOND device [8]]. It is explained how PRISM
can be used to solve the aforementioned strategy synthesis problem w.r.t. to several quantitative queries
formalizing requirements, e.g., on the energy consumption of the EBOND+ device.



Probabilistic Software Product Line Model Checking

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

Christel Baier & Joost-Pieter Katoen (2008): Principles of model checking. The MIT Press.

Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens & Axel Legay (2011): Symbolic Model Checking
of Software Product Lines. In: ICSE’2011, ACM, pp. 321-330.

Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay & Jean-Francois Raskin (2010):
Model Checking Lots of Systems: Efficient Verification of Temporal Properties in Software Product Lines. In:
ICSE’2010, ACM, pp. 335-344.

Paul Clements & Linda Northrop (2001): Software Product Lines : Practices and Patterns. Addison-Wesley
Professional.

Clemens Dubslaff, Sascha Kliippelholz & Christel Baier (2014): Probabilistic Model Checking for Energy
Analysis in Software Product Lines. In: Proc. 13th International Conference on Modularity (MODULAR-
ITY’14). To appear.

Carlo Ghezzi & Amir Molzam Sharifloo (2013): Model-based verification of quantitative non-functional
properties for software product lines. Information & Software Technology 55(3), pp. 508-524.

Hassan Gomaa & Mohamed Hussein (2003): Dynamic Software Reconfiguration in Software Product Fami-
lies. In: PFE, pp. 435-444.

Marcus Héhnel, Bjorn Débel, Marcus Volp & Hermann Hértig (2013): eBond: Energy Saving in Heteroge-
neous R.A.LN. In: Proceedings of the Fourth International Conference on Future Energy Systems, e-Energy
13, ACM, New York, NY, USA, pp. 193-202.

Andrew Hinton, Marta Kwiatkowska, Gethin Norman & David Parker (2006): PRISM: A Tool for Automatic
Verification of Probabilistic Systems. In Holger Hermanns & Jens Palsberg, editors: Tools and Algorithms
for the Construction and Analysis of Systems, Lecture Notes in Computer Science 3920, Springer Berlin
Heidelberg, pp. 441-444.

Edmund M. Clarke Jr., Orna Grumberg & Doron A. Peled (1999): Model Checking. The MIT Press.

Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak & A. Spencer Peterson (1990): Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report, Carnegie-Mellon University Soft-
ware Engineering Institute.

Mahdi Noorian, Ebrahim Bagheri & Weichang Du (2012): Non-functional Properties in Software Product
Lines: A Taxonomy for Classification. In: SEKE’12, Knowledge Systems Institute Graduate School, pp.
663-667.

Malte Plath & Mark Ryan (2001): Feature integration using a feature construct. Science of Computer
Programming 41(1), pp. 53 — 84.

Alexander von Rhein, Sven Apel, Christian Késtner, Thomas Thiim & Ina Schaefer (2013): The PLA Model:
On the Combination of Product-line Analyses. In: Proceedings of the Seventh International Workshop on
Variability Modelling of Software-intensive Systems, VaMoS *13, ACM, New York, NY, USA, pp. 14:1-8.
Roberto Segala (1995): Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D.
thesis, Massachusetts Institute of Technology.

Norbert Siegmund, Marko Rosenmiiller, Christian Késtner, Paolo G. Giarrusso, Sven Apel & Sergiy S.
Kolesnikov (2013): Scalable prediction of non-functional properties in software product lines: Footprint
and memory consumption. Information & Software Technology 55(3), pp. 491-507.



	Introduction
	The Compositional Framework
	Verification of SPLs

