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Originally proposed for privacy protection in the context of statistical databases, differential privacy
is now widely adopted in various models of computation. In this paper we investigate techniques for
proving differential privacy in the context of concurrent systems containing both probabilistic and
non-deterministic behavior. We consider a pseudometric on probabilistic automata which is inspired
by the Kantorovich-based bisimulation pseudometric proposed by Desharnais et al. We cannot adopt
this notion directly because it does not imply differential privacy. Thus we propose a multiplicative
variant of it, which can be characterized in the form of programming problem as well as 1-Lipschitz
function, shedding light on the extension to the standard Kantorovich distance. We prove that this
multiplicative variant is still an extension of weak bisimulation. Finally we show that the level of
differential privacy is continuous on the distance between the starting states in the pseudometric,
which makes it suitable for verification.
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1 Motivation

Differential privacy [7] was originally proposed for privacy protection in the context of statistical databas-
es, but nowadays it is becoming increasingly popular in many other fields, ranging from programming
languages [12] to social networks [10] and geolocation [9]. One of the reasons of its success is its inde-
pendence from side knowledge, which makes it robust to attacks based on combining various sources of
information.

In the original definition, a query mechanism .27 is e-differentially private if for any two databases
u; and up which are adjacent, i.e., differ only for one individual, and any property Z, the probability
distributions of <7 (u;), </ (uz) differ on Z at most by €. Namely, Pr[.e7 (u;) € Z] < €° - Pr[o/ (u) € Z].
This means that the presence (or the data) of an individual cannot be revealed by querying the database.
In [4], the principle of differential privacy has been formally extended to measure the degree of protection
of secrets in more general settings.

In this paper we deal with the problem of verifying differential privacy properties for concurrent
systems, modeled as probabilistic automata admitting both nondeterministic and probabilistic behavior.
The property of differential privacy requires that the observations generated by two different adjacent
secret values be probabilistically similar. In standard concurrent systems the notion of similarity is usu-
ally formalized as an equivalence, preferably preserved under composition, i.e., a congruence. Process
equivalences have been extensively used to formalize security properties like secrecy [1] and noninter-
ference [8, 13, 14].

In probabilistic systems, we need notions which are robust with respect to small variations in the
probabilities, and therefore we usually prefer metric notions over equivalences. In their seminal work,
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H Kantorovich metric ‘ The multiplicative variant ‘
Y M (si)xi
maximize Y ; (1 (s;) — p'(s;))x; maximize |In L
Xip (si)xi
Primal subjectto  Vi.0<ux; <1 subjectto  Vi.0<x; <1
Vi, j.xi—xj <m(s;,s;) Vi, jox < em(“""sf')xj
minimize Y; ; 1jjm(s;,s;) + XX+ Xy, minimize Inz
Dual subjectto  Vi. ¥ ;lij+x; = u(s;) subjectto  Vi.Y ;i —ri = u(s;)
Vi Xilij+y;= w1 (s;)) Vj. Yilijemis) —r; < z-p!(s))
Vi, j. lij,xi,y; >0 Vi, j. lij,ri > 0
m is the smallest metric satisfying: m is the smallest metric satisfying:
1-Lipschitz Vi f(s) = F(s)] <m(s,s) Vi Ingf(s) —Inf(s")] < m(s,s’)
function = [f(u) = fF()] < m(u,p') = [Inf(u) —Inf(u')| < m(p,p)

Figure 1: m(u, ') in the Kantorovich metric and its multiplicative variant.

Desharnais et al. [6] proposed a pseudometric based on the Kantorovich metric, which is particularly
appealing because it extends weak bisimilarity (captured by the property of having distance 0) and it
is based on a natural way of relating probability masses distributed on a metric space. It also satisfies
the property that the composition does not increase the distance, which can be considered the metric
generalization of the congruence property.

In order to capture the degree of differential privacy, it is therefore natural to explore also the use
of bisimulation metrics, and to consider the metric a la Kantorovic proposed in [6], which represents a
cornerstone in this area. However, we cannot use directly the metric of [6] because it does not imply
differential privacy: the problem is that the difference in probabilities in this metric is accounted for
additively, while differential privacy is a property about their ratio. Thus, we propose a multiplicative
variant of it, and obtain a pseudometric that, to the best of our knowledge, is new.

2 A multiplicative variant of the Kantorovich distance

In this section we present a multiplicative variant of the Kantorovich distance in three different charac-
terizations, juxtaposed with the counterparts of the standard Kantorovich distance, displaying clearly the
correlation between them.

The Kantorovich metric is a widely used construction for “lifting” a distance from a set of states to
distributions over this set. Briefly speaking, it provides a way of measuring the distance between two
distributions. Given a set S, we denote by Disc(S) the set of discrete sub-probability measures over S. Let
m be a pseudometric on states in S, and m be a pseudometric on distributions in Disc(S). The standard
notion of the Kantorovich metric is shown in the left column of Fig. 1 in three forms. Our multiplicative
variant is placed in the right column, explained in detail as follows.

Three characterizations

- Primal problem: Initially our pseudometric is obtained by replacing with the ratio the statistical differ-
ence in the objective function and the constraints in the primal problem of the standard Kantorovich
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metric, which turns out to be sufficient to prove the differential privacy property (introduced later).

- Dual problem: Although the primal form can be used to ensure differential privacy, it is not a linear
programming problem, thus unpleasant from the point of view of computability. We observe that since
In is a monotonically increasing function, the primal problem is actually a linear-fractional program. It
can be converted to an equivalent linear programming problem and therefore a dual program as shown
in Fig. 1. This characterization provides a way to compute the distance by using linear programming
solution method.

- 1-Lipschitz function characterization: The standard Kantorovich distance has a characterization in
terms of 1-Lipschitz function [11]. We consider its discrete setting. Given two metric spaces (S,m)
and (R,d), where d denotes the metric on set R, a function f : § — R is called 1-Lipschitz continuous
if for all s and s’ in S,

d(f(s), f(s")) < m(s,s).
For simplicity, we overload f on Disc(s) and define f (1) = Yicqupp(u) H(si) f(si)-

Let d(x,y) = |x —y|, then the standard Kantorovich metric i is the smallest metric satisfying

d(f(p), f(u) <m(p,p)

where f is an arbitrary 1-Lipschitz function with respect to d.

We find as well a characterization for our multiplicative variant in the form of 1-Lipschitz function.
Consider a metric space (R*,d,). Let d,(x,y) = |Inx — Iny| (which can be proved to be a metric), then
our multiplicative variant m is the smallest metric satisfying

dy(f (), f(W') < mu, ')

where f is an arbitrary 1-Lipschitz function with respect to d,,.

The primal linear program is actually the problem for obtaining the smallest required pseudometric in
the 1-Lipschitz function characterization, meaning that the three forms are equivalent.

Pseudometric on states Based on this multiplicative variant Kantorovich distance, we can define a
pseudometric on states of probabilistic automata following the standard line in [6]. We show that our
variant satisfies most of the properties of the metric in [6]: in particular, it can be characterized by a
fixed-point construction, and it extends weak bisimilarity.

3 Verification of differential privacy

Finally we show that our pseudometric is suitable for verifying differential privacy. Namely, the distance
in the pseudometric between two processes determines an upper bound on the ratio of the probabilities
of the respective observables.

In concurrent systems, reasoning about the probabilities requires solving the nondeterminism first,
and to such purpose the usual technique is to consider functions, called schedulers, which select the next
step based on the history of the computation. However, in our context, as well as in security in general,
we need to restrict the power of the schedulers and make them unable to distinguish between secrets in
the histories, or otherwise they would plainly reveal them by their choice of the step. See for instance
[3, 2, 5] for a discussion on this issue. Thus we consider a restricted class of schedulers, called admissible
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schedulers, following the definition of [2]. Essentially this definition requires that whenever given two
adjacent states s,s’, namely, differing only for the choice for some secret value, then the choice made by
the scheduler on s and s’ should be consistent, i.e. the scheduler should not be able to make a different
choice on the basis of the secret.

Given a state s, an admissible scheduler {, a finite trace 7, we denote by Pre[s > 7] the probability
of producing the trace 7 starting from s under the scheduler {. The following theorem shows that our
multiplicative version of the Kantorovich metric enjoys a key property:

Theorem 3.1 For any admissible scheduler {, finite trace t, and adjacent states s, s',

1 : < Pl’g[sbf] <em(S,S,)
emn(ss') — Pré, [S/ |>;] —

From the above result, we derive that to test e-differential privacy it is sufficient to compute the metric:
Corollary 3.2 Ifm(s,s’) < € for any adjancent s,s', then the system is €-differentially private.
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