Entropy model checking*(presentation report)

Eugene Asarinf, Michel Blockeletf, Aldric Degorret, Catalin Dimaf, and Chunyan Mu§,}
tLIAFA, University Paris Diderot & CNRS, France
{LACL, University Paris-Est Créteil Val-de-Marne, France

§School of Computer Science, University of Birmingham, UK

We present an ongoing work on a new, entropy-based, paradigm in quantitative model-checking.

1 Introduction

Classical model-checking answers whether the behaviour(s) of a given system S satisfy a property P.
Quantitative model-checking, see e.g. [4} 3], tries instead to give a quantitative measure characterizing
to which extent § satisfies P. One of the approaches is to quantify how many behaviours of § satisfy (or
violate) P, and the most popular way of such a quantification is to compute probabilities. In many situa-
tions probabilistic verification is highly relevant, but it has one important limitation: for many interesting
properties, the probability (on infinite behaviours) is either 0 or 1 — and thus no quantitative analysis is
possible.

Consider indeed the following simple but very typical example. The system § has 4 states labelled
Pq. pd,.pq and pg (we denote this set of 4 states by X) where p,q are atomic predicates. It can make
transitions from each state to each state. The property P is just [g, that is only two out of four states (pg
and pg, we denote this subset of states by I') are allowed. Thus the set of executions is Lg = L® and the
set of good executions, satisfying the property is Lp = I'®. For any reasonable probability measure P on
L (for example corresponding to a Markov chain with all non-zero transition probabilities), the chance
for an infinite run to satisfy P, that is P(Lp), is 0.

However, in many situations it seems counter-intuitive to say that it is almost impossible to satisfy
P. Indeed, it suffices never to go to the right half of the automaton. This can be seen just as a certain
restriction of the set of runs, and could be measured. Indeed, let us count the finite behaviours of the
system S (i.e. prefixes of words in Lg): for a given length n there are 4" such behaviours. Among them
2" satisfy the specification P. Comparing these two asymptotics (2" out of 4") provides a quantitative
answer to the question “How much should we restrict behaviours of § to satisfy P”.

In this presentation we introduce an alternative approach to the quantitative “model-measuring”,
generalizing and formalizing the previous example and based on the notion of entropy.

In the presentation we will recall the notion of the entropy of an @w-language, explain how to compute
the entropy, describe its application to model-checking, formulate its basic properties in model-checking
context, and apply the approach to a simplified version of dining philosophers problem.

2 Entropy

Given a finite automaton <7 we denote its language by £ (/). For a language .¥ C X* or .£ C X9,
we define .2, = £ NY", and pref(.Z) denotes the set of (finite) prefixes of (w-) words in ., while
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pref, (.Z) denotes the set of prefixes of length n of words in .Z.
The entropy of a language (of finite words) .Z C X* ([2])) is defined as:

H(ZL) :limsup%
n

n—soo
(with the logarithm taken in base 2). Intuitively, the entropy of a language is the amount of information
(in bits per symbol) in typical words of the language. An alternative interpretation is that the entropy of
a language is the “growth rate” of the language.

For a regular language . € L* accepted by a finite automaton, its entropy can be effectively com-
puted. More precisely, given a deterministic automaton 7, we say that 7 is trimmed if all its states
are reachable from the initial state and co-reachable to a final state. Furthermore, let M(.</) denote its
extended adjacency matrix, M(</);; = [{a €L |i % j € S}

Then:

Theorem 1 ([2]) For any finite deterministic trimmed automaton <7,

H(ZL (o)) =logp(M()),

where p(M) stands for the spectral radius the matrix M (i.e. maximal modulus of its eigenvalues).
Note that ##’(.27) can be found as maximum of .7#(S) over all strongly connected components S of o7 .

The entropy of an @-language . C X? is defined by () = 7 (pref(.Z)) []. In particular, if
£ =X? and |X| = k then 5 (L) = logk.

Whenever . is an @-regular language recognized by a Biichi automaton .7, its entropy can be
computed as follows: compute the (finite) automaton 2//™ recognizing pref (), determinize it and
compute the entropy as the logarithm of a spectral radius using Thm |1 It is easy to see that 77 (.¥) =
H(cl(.Z)), where cl stands for topological closure.

3 Entropy in model-checking context

Consider a system S presented as a Kripke structure and a property P presented as an LTL formula. We
naturally associate to them two @-regular languages: Lg is a (topologically closed) language of all the
behaviours of the system ; and Lp of all the infinite words satisfying the property. The entropy-based
model-checking consists in comparing a couple of real numbers:

o 7 (Zs) which characterizes the quantity of behaviours of the system.

o (LN £p) which characterizes the quantity of behaviours, of the system, satisfying the prop-
erty. The defect 77 (%s) — H#(Ls N £p) quantifies how difficult is to steer the system into satis-
fying the property.

e In case when the defect is zero, the entropy (%5 \ -£p) characterizes the quantity of behaviours
of the systems violating the property. We prefer it to be small, at least much smaller than J7(.%5).

In the example of the introduction, .77’ (Ls) = 2 and .7 (Zs N %p) = 1, the defect is 1. This means that
in order to steer the system into the property one should cut in average 1/2 of its transitions at each
execution step.

All the quantities mentioned above can be computed via building a (generalized) Biichi automaton
for the language, and applying the algorithm sketched in the previous section. In the presentation we will
discuss basic properties of these three quantities, their relation to topology, to probability and to fairness.

Any w-regular property P can be represented as a conjunction of P; which is closed (safety property),
and P, which is dense (livenesse property). The entropy ¢ (-%sN_%p) only depends on Ps but not on P,.
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4 Dining philosophers

To illustrate the approach we consider a case study, a simplified version of dining philosophers problem.
We fix the number of philosophers and consider several languages:

e _Zs of all the behaviours of the system.

o 7\ Zp of all the behaviours which do not enter the deadlock state.

o 25N . %ys of all the behaviours where no philosopher ever starves.

o ZsN .2k, of all the behaviours where philosopher 1 eats at least every ¢ time units.

The entropies of the three first languages coincide, since (informally) entropy is too rough to analyse
liveness. It can be said that few effort is necessary to avoid deadlock and starvation. The things become
more interesting with the fourth language when we want to feed every ¢ units. If ¢ is small, this is difficult,
when ¢ grows, it becomes easier and easier. As follows from our results presented in [[1[], for # — oo the
entropy converges: (. %s N Lg) — H(ZLs). The experimental graph below represents this entropy
for different numbers of philosophers and values of parameter ¢,
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5 Conclusions

We presented an entropy-based approach to quantitative verification which applies to a class of problems
where probability approach fails.

This research is still in its initial phase, and entropy-based methodology is to be developed. It would
be interesting to relate entropy to other quantitative approaches. We believe that defect of entropy can
be naturally interpreted in Ramadge-Wonham framework (see [6]), as well as in terms of Kolmogorov
complexity. In [[1]] entropy approach allowed us to reason on asymptotics in LTL.
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