
Submitted to:
QAPL 2014

c© A. Di Pierro, F. Panarotto
This work is licensed under the
Creative Commons Attribution License.

A Calculus for
Topological Quantum Computation

Alessandra Di Pierro Federica Panarotto
Dipartimento di Informatica, Università di Verona,

Strada le Grazie, 15 – 37134 Verona, Italy
alessandra.dipierro@univr.it federica.panarotto@univr.it

Recent developments in theoretical physics have highlighted interesting topological features of some
particular two-dimensional entities called anyons. Kitaev suggested that these features can be used
to realise robust quantum computation, thus introducing the paradigm of topological quantum com-
putation (TQC). The mathematics and physics of anyons is currently subject to intense investigations
in all areas related to the study of quantum computation from both the foundational and the imple-
mentation viewpoint. In this paper we take a computer science viewpoint of TQC by presenting a
quantum calculus whose terms are anyons and operations are suitable representations of the braid
group on the terms.

1 Introduction

Topological quantum computation (TQC) is the name given to an alternative approach to quantum com-
putation [8] where the elementary computational units are so-called anyons rather than qubits. It is called
‘topological’ because of the particular properties of anyons, that are physically realisable as quasiparti-
cles in topological systems [11, 9]. More precisely, anyons behave differently from the more familiar
three-dimensional particles (such as electrons, photons etc.). Their main features (and difference from
qubits) is that they live in a two-dimensional space, and their ‘charge’ cannot be changed by local inter-
actions. This is partly why they were suggested as a base for fault-tolerant quantum computation [5]. In
this work we will abstract from the physical description of anyons as quasiparticles and consider them
as classical fundamental particles with an internal quantum dimension. The quantum dimension of an
anyon is an important notion for our treatment as it is used to calculate the dimension of the compu-
tational space. Its intuitive meaning is the asymptotic degeneracy of the ground state for that particle,
and is in general very hard to calculate. For the simplest kind of anyons, that is the Fibonacci anyons,
the quantum dimension grows like the Fibonacci numbers. The evolution of an anyon system occurs
by braiding the particle trajectories according to rules which specify how pairs (or bipartite subsystems)
behave under exchange. The mathematics of anyons and the relations with braids, topology and modular
tensor categories is discussed in [11, 10]. In [7] Kauffman gived showed and efficient solution using
anyons for the algorithm for the Jones polynomial problem. A discussion on the complexity of this al-
gorithm is presented in [1, 6]. Here we are going to present an operational semantics for TQC which
enlightens the programming language aspects of this paradigm. More precisely, we propose an encoding
of anyons systems and their evolution in a calculus whose terms are made of anyons and computational
steps corresponds to braiding of anyons. This will provide a general setting where important questions
can be addressed and formally studied which are related to the universal computer and to the effective
computational power of TQC (e.g. do anyons allow for more powerful algorithmic techniques than the
circuit models?).

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 TQC Calculus

2 Anyons Systems

As already mentioned, we will look at anyons as the unit elements of our calculus, which derive their
properties from the physics behind their realisation as quasiparticles. Each anyon has associated a type,
i.e. a label specifying the possible values of the physical charges, which we denote by using an enumer-
ation a1,a2, . . . ,an, or simply by a,b,c, We call Types the set of all the anyon types and we denote by
x,y, . . . a variable representing an anyon of any type, while we use the subscript i to denotes an anyon of
type ai. In the following we will often use the term ‘anyon’ to indicate its type.

2.1 Anyons composition

From two anyons we can generate a new one by applying the fusion rules a⊗b = Nc
abc, where the number

Nc
ab(∈N) indicates the different ways of fusing a and b into c. These rules give the charge of a composed

particle in terms of its constituents, and determine the particular anyonic model. We can use them in the
opposite direction in order to split c into a and b and obtain two anyons from one. In this case we refer
to the rules as splitting rules.

An anyon type a for which
∑

c Nc
ab > 1, for every b is called non-Abelian. In other words, a non-

abelian anyon is one for which the fusion with another anyon may result in anyons of more than one
type. This property is essential for computation because it implies a quantum dimension greater than 1
and therefore allows us to construct non-trivial computational spaces, i.e. spaces of dimension n ≥ 1 of
ground states where to store and elaborate information.

Considering the dual splitting process, a non-abelian anyon can therefore have more than one splitting
rule that applies to it, e.g. a⊗b = c and e⊗g = c.

Definition 1. An anyon tree is a tree where every internal node has two children labelled by the two
anyons resulting from a splitting rule applied to the anyon labelling the node.

We obtain different trees depending on

• the shape of the tree resulting from the choice the anyon x to which we apply the fusion rules;

• the type of the anyons in the tree, resulting from the fusion rule chosen at every step of the con-
struction of the tree.

We call the anyons at the leaves of the tree leaf anyons, the anyon at the root root anyon and the remaining
anyons internal anyons.

2.2 Splitting space

In physical terms a system of anyons consists of a closed oriented surface Σ with anyons of types
a1, . . . ,am located at distinct points p1, . . . , pm. In our setting, we look at these anyons as the leaves
of a tree constructed according to the splitting rules of a given model, that is as the final configuration of
ground states at the end of the splitting process. This is the configuration to which unitary transforma-
tions can now be applied in order to perform the desired elaboration of the information encoded in the
anyonic system.

As we work with non-abelian anyons, the splitting process applied to c generates as many trees as the
number of splitting rules for c. If we now consider the leaves of each trees and apply again the splitting
rules we obtain a bigger anyon system that we can still graphically represent by a tree. Again there will
be as many trees as the number of splitting rules for each leaf. These trees representing the same global

A. Di Pierro, F. Panarotto 3

charge, namely the root, are orthogonal to each other as they have different internal nodes. We use the
orthogonal trees with the same shape as a base of our computational space.

In general, given n anyons in the plane, we can arrange them along the real axis of the plane. If
we fuse them consecutively, we obtain the fusion tree in Figure (a). Alternatively, we can consider the
Hermitian conjugate of the fusion operator, i.e. splitting, and interpret fusion trees as splitting of one
anyon into many, as in Figure (b). We will consider the tree in Figure (b) as the standard form of the
terms of the calculus we introduce in the next section. For non-abelian anyons, there is of course a
combinatorial number of ways of fusing (splitting) n anyons into a given anyon (the root of the tree or
total charge). This number corresponds to the dimension D(n) of the fusion (splitting) space, that is the
Hilbert space with orthogonal basis given by all the fusion paths over the fixed fusion tree.

1

a1

i

a4a3

a5

a2

a6

Figure 1: (a) Fusion Tree.

a1

i

a2

a6

a3

a5

a4

Figure 2: (b) Splitting Tree.

1

a1

i

a4a3

a5

a2

a6

Figure 1: (a) Fusion Tree.

a1

i

a2

a6

a3

a5

a4

Figure 2: (b) Splitting Tree.

Definition 2 (Splitting space). Given an anyon model that specifies the set Types and the fusion rules,
the splitting space Vsplit is the set of all the anyon trees obtained by fixing the number m and types of the
leaf anyons and the root anyon.

Vsplit := V x0
x1⊗x2⊗x3···⊗xm

, where xi ∈ Types.

We say that a tree is in standard form if the tree is constructed by selecting at each level i always the
leftmost anyon as the splitting element xi. The tree that we obtain is a (unbalanced) binary tree which
grows only on the left. In the splitting space there are also other (non orthogonal) trees which have
different shapes and contain only copies of information. This is because the total charge is conserved
by locally exchanging two anyons. Thus, trees with different shapes which are obtained by applying the
same splitting rules are ‘equivalent’ from a computational viewpoint, since they have the same informa-
tion content.

3 A Calculus of Anyons

Computations with anyons is typically expressed in the languages of physics, abstract algebra or category
theory. However, the typical approach to expressing computation in computer science is by means of
programming languages. In this section we present a formal calculus for TQC which makes this new
paradigm more amenable to investigations in the realm of theoretical computer science (such as the study
of computability and complexity issues), and provides a more suitable base for the design of quantum
programming languages.

We define our calculus in analogy with the classical Lambda calculus [2], i.e. as a calculus of terms
with operations on them corresponding to the lambda-abstraction and function application.

3.1 The Language of terms

The following definition introduces the notion of anyonic term. Intuitively, an anyonic term represents
an element in a subspace of the Hilbert space of trees associated to an anyon system. We assume a fixed

4 TQC Calculus

set of types, T = {a,b, . . .}, or an enumeration of them T = {a1,a2, . . . ,am}. We also assume an anyon
system of n distinct particles and denote by Hn, the associated splitting space of dimension D(n).
Definition 3 (Anyonic terms). Anyonic terms are inductively defined by:
Simple terms For any type a ∈ T , the trees with root a, in Hn are anyonic terms.

Abstraction If T is a simple term in Hn and x is a variable tree in Hk, with k < n, T (x) defined as the
tree T with a sub-tree x is an anyonic term.

Composition If T1 and T2 are simple terms, then T1 ·T2, defined as the tree with root a fusion result of
the roots of T1 and T2, is an anyonic term.

Superposition Any vector in Hn (complex linear combination of simple terms) is an anyonic term.
Because of the tree equivalence mentioned before, we define the computational space of our calculus

as the quotient space S = Vsplit |∼, where T1 ∼ T2 iff in the internal anyons of T1 and T2 have identical
types in each position. We chose as a representative of each equivalence class the tree in standard form
in that class.

A computational state (state) s is a superposition of classes, i.e. vectors, with amplitudes α1, · · · ,αw ∈

C, i.e. s = α1v1⊕ · · ·⊕αwvw.

3.2 Computing with anyons

A computation on a system of non-Abelian anyons is performed by creating quasiparticles, braiding
them and measuring their final result. Braiding can be seen as consisting in a twist or rotations of leaf
anyons. Rotations on anyon trees are described by a braid group with the leaf anyons as objects and
generators1 σi. Thus we only need a finite set of generators {σi }i<n to construct all the rotations on
terms. To manipulate the information stored in the trees in standard form we define a rotation σi as a
matrix operator Bi that acts on the computational states. The Bi operations are the reductions of our
calculus and they change the terms passing from one state to another. In fact, when we rotate two leaf
anyons xi and xi+1 we might change the type of the internal anyon x j in some of their trajectories, thus
transforming the original state (anyon tree) in a new one. We can however guarantee that this doesn’t
bring us outside the computational space.
Proposition 1. The operators Bi : S → S transform computational states (classes) in computational
states.

The operators Bi represents the computational steps of our calculus and therefore the core of the
operational semantics we are going to define. Informally, it consists in function application: Given an
abstraction term M(x) and a term N, the application of M(x) to N is obtained in three steps: (1) ‘binding’
x to N, (2) ‘evaluate’ M after the instantiation, (3) ‘read’ the result. In the classical lambda-calculus this
is called the β-reduction, and is the base of its operational semantics (in any of the different forms it is
defined) [3]. In order to define an operational semantics for our anyonic calculus we therefore only need
to specify (and formally define) what ‘binding’, ‘evaluate’ and ‘read’ means when we work with anyonic
terms. We will only give here an informal explanation of our semantics and we refer to the full paper for
the formal treatment.

Given an abstraction term M(x) (as in the picture below), we denote its type by b→ a indicating the
subset inside the computational space for M where every trees in standard form has the internal anyon
in position k of type a. The sub-tree (in blue) is constrained to have a root of type a in order to correctly
replace the anyon x7 of type a.

1A generator σi of braid group rotates the ith with the i + 1th strand of a braid.

A. Di Pierro, F. Panarotto 5

x1

x0
x6

x2

x8

x3

a

x4 x5

Suppose that we apply M(x) to a term N of type a. Binding means that we instantiate the subtree rooted in
x7 in M with N. We can now apply the braiding, i.e. sequence of computational steps, to the instantiated
tree M(N). Intuitively this braiding represents the procedure M and realises the evaluation step. Finally,
we read the result, which in quantum computation essentially means measuring the final state. We can
obtain this by applying the same fusion rules used for constructing the term M(N) in the reverse order
and then extract the result from the resulting phase.

4 An Example

We consider a simple example of computation in the Fibonacci anyon model that we borrowed from
[4], and we show how this can be implemented in our calculus. The following operator represents a
controlled-phase gate, C-iP, on two quits:

eiα 0 0 0
0 eiα 0 0
0 0 1 0
0 0 0 e−iα

 ,
expressed with respect to the basis {00,01,10,11}. If we take the first qubit as the control qubit and the
second as the target qubit, this gate for α = π corresponds to the controlled-iZ operation, where Z is the
Pauli matrix[

0 1
1 0

]
.

In our calculus this can be expressed as an abstraction term representing a function of the sub-term
corresponding to the first qubit. Depending on this latter being 1 or 0, the iZ operation is applied or not
to the term corresponding to the second qubit. The overal computation is depicted in Fig. 1.

The initial term is a composition of two terms representing a variable x and a simple term N, respec-
tively, and both rooted in τ. Composition is obtained by applying to the root the fusion rule τ⊗ τ = 1.
The term N is a simple term that simulates the qubit 0, while the variable x of type τ can be 1, 0 or any
superposition.

We express the C-iZ gate as a function of the variable x (abstraction term). The sequence of basic
steps implementing this operation can be obtained by means of the following distinct sequences (cf. [4]):

Controller = B2 ∗B4
3 ∗B2

2 ∗B−4
3 ∗B2

2 ∗B2
3 ∗B2

2 ∗B6
3 ∗B2

2 ∗B−2
3 ∗

B2
2 ∗B−2

3 ∗B4
2 ∗B−4

3 ∗B4
2 ∗B−2

3 ∗B−2
2 ∗B3

i−P = B−2
4 ∗B2

3 ∗B4
4 ∗B4

3 ∗B2
4 ∗B4

3 ∗B4
4 ∗B2

3 ∗B−2
4 ∗B2

3 ∗B4
4 ∗B4

3 ∗B2
4 ∗B4

3 ∗B4
4.

For the reading process (i.e. the final measurement) we use the fusion space, whose states are duals
to the states of the splitting space and are represented by inverse trees. We draw these trees at the end to
close the computation and bring the system back to the vacuum (i.e. the anyon type 1. We now project

6 TQC Calculus

x = τ

τ3τ1 τ2

x9

τ

τ6τ4 τ5

τ

1

Controller

i-P

Controller−1

τ1 τ6τ2 τ3 τ4 τ5

x9

x y

1

Figure 1: C-iP operator for a generic phase α.

the state after the computation using the dual states of the fusion space, in order to get the amplitudes
associated with it.

We now show the numerical results that we obtain by applying the computation in Fig. 1 to the
(anyonic encoding of the) initial state |x1〉.

We first apply the matrix corresponding to the function to the input state:
eiα 0 0 0
0 eiα 0 0
0 0 1 0
0 0 0 e−iα

∗ |x1〉 = eiα |01〉+ e−iα |01〉 ,

and calculate the total probability as:

〈ψ|C− iP|ψ〉 = tr(C− iP) = eiα + 1,

where |ψ〉 = |00〉+ |01〉+ |10〉+ |11〉. In order to read the result we project the final state into the dual state
and divide it by the total probability:

〈01|
〈ψ|C− iP|ψ〉

(eiα |01〉+ eiα |11〉) =
eiα 〈01|01〉

eiα + 1
=

eiα

eiα + 1
,

〈11|
〈ψ|C− iP|ψ〉

(eiα |01〉+ eiα |11〉) =
eiα 〈11|11〉

eiα + 1
=

e−iα

eiα + 1
,

According to the function definition, we obtain the change of phase of e−iα for the state |11〉, while for
the state |01〉 we only get the overall phase produced by the C-iP operator.

A. Di Pierro, F. Panarotto 7

References
[1] Dorit Aharonov, Vaughan Jones & Zeph Landau (2006): A polynomial quantum algorithm for approximating

the Jones polynomial. In: Proceedings of the thirty-eighth annual ACM symposium on Theory of comput-
ing, STOC ’06, ACM, New York, NY, USA, pp. 427–436, doi:http://doi.acm.org/10.1145/1132516.1132579.
Available at http://doi.acm.org/10.1145/1132516.1132579.

[2] H. P. Barendregt (1991): The Lambda Calculus, revised edition. Studies in Logic and the Foundations of
Mathematics 103, North-Holland, Amsterdam.

[3] Hendrik Pieter Barendregt (1984): The Lambda Calculus – Its Syntax and Semantics. Studies in Logic and
the Foundations of Mathematics 103, North-Holland.

[4] Layla Hormozi, Georgios Zikos, Nicholas E Bonesteel & Steven H Simon (2007): Topological quantum
compiling. Physical Review B 75(16), p. 165310. Available at http://prb.aps.org/abstract/PRB/
v75/i16/e165310.

[5] Alexei Kitaev (1997): Fault-tolerant quantum computation by anyons. Annals of Physics 303(1), p. 27.
Available at http://arxiv.org/abs/quant-ph/9707021.

[6] Greg Kuperberg (2009): How hard is it to approximate the Jones Polynomial? CoRR abs/0908.0512. Avail-
able at http://arxiv.org/abs/0908.0512.

[7] Louis & H. Kauffman (1987): State models and the Jones polynomial. Topology 26(3), pp. 395
– 407, doi:10.1016/0040-9383(87)90009-7. Available at http://www.sciencedirect.com/science/
article/pii/0040938387900097.

[8] M.A. Nielsen & I.L. Chuang (2000): Quantum Computation and Quantum Information. Cambridge Univer-
sity Press, Cambridge, UK.

[9] Jiannis K. Pachos (2012): Introduction to Topological Quantum Computation. Cambridge University Press.
[10] Prakash Panangaden & Éric Oliver Paquette (2011): A Categorical Presentation of Quantum Computation

with Anyons. In Bob Coecke, editor: New Structures for Physics, Lecture Notes in Physics 813, Springer
Berlin / Heidelberg, pp. 983–1025. Available at http://dx.doi.org/10.1007/978-3-642-12821-9_
15. 10.1007/978-3-642-12821-915.

[11] Zhenghan Wang (2010): Topological Quantum Computation. American Mathematical Soc.

http://dx.doi.org/http://doi.acm.org/10.1145/1132516.1132579
http://doi.acm.org/10.1145/1132516.1132579
http://prb.aps.org/abstract/PRB/v75/i16/e165310
http://prb.aps.org/abstract/PRB/v75/i16/e165310
http://arxiv.org/abs/quant-ph/9707021
http://arxiv.org/abs/0908.0512
http://dx.doi.org/10.1016/0040-9383(87)90009-7
http://www.sciencedirect.com/science/article/pii/0040938387900097
http://www.sciencedirect.com/science/article/pii/0040938387900097
http://dx.doi.org/10.1007/978-3-642-12821-9_15
http://dx.doi.org/10.1007/978-3-642-12821-9_15

	Introduction
	Anyons Systems
	Anyons composition
	Splitting space

	A Calculus of Anyons
	The Language of terms
	Computing with anyons

	An Example

