Compositional metric reasoning with
Probabilistic Process Calculi

Daniel Gebler Kim G. Larsen Simone Tini
VU University Amsterdam (NL) Aalborg University (DK) University of Insubria (IT)

Probabilistic process calculi are algebraic theories to specify and verify probabilistic concurrent sys-
tems. Bisimulation metric is a fundamental semantic notion that defines the behavioral distance of
probabilistic processes. We study which operators of probabilistic process calculi allow for com-
positional reasoning with respect to bisimulation metric semantics. Moreover, we characterize the
distance between probabilistic processes composed by standard process algebra operators.

1 Introduction

Process algebra is undoubtedly one of the most successful formalism to specify and verify concurrent sys-
tems. Processes are described as algebraic terms with a formal semantics provided by either operational
semantics (e.g. process graph as labelled transition system), denotational semantics (e.g. decorated trace
models), or axiomatic semantics (e.g. equational characterization of process equivalence). For many
process algebras there are appropriate operational, denotational and axiomatic semantics available such
that the respective equivalence notions coincide.

We will study various probabilistic process algebras from the perspective of operational semantics.
The operational semantics of a process term is a probabilistic nondeterministic transition system [|14]]
with transitions derived from SOS rules in the probabilistic GSOS format [2{12]]. The SOS rules specify
for each process combinator the set of transitions that processes combined by that process combinator
can perform. The probabilistic GSOS format is expressive enough for all standard probabilistic process
algebra operators.

Behavioral equivalences equate processes that are indistinguishable to any external observer. The
most prominent example is bisimulation equivalence [11}|{14]] which provides a well-established theory
of the behavior of probabilistic nondeterministic transition systems. However, bisimulation equivalence
is too sensitive to the exact probabilities of transitions. The slightest perturbation of the probabilities can
destroy bisimilarity. Bisimulation metric [|7,8l/13]] provides a robust semantics for probabilistic processes.
It is the quantitative analogue to bisimulation equivalence and assigns to each pair of processes a distance
which measures the proximity of their quantitative properties. The distances form a pseudometric with
bisimilar processes at distance 0.

In order to specify and verify systems in a compositional manner, it is necessary that the behavioral
semantics is compatible with all operators of the language that describe these systems. For behavioral
equivalence semantics there is the common agreement that compositional reasoning requires that the
considered behavioral equivalence is a congruence wrt. all operators. On the other hand, for behavioral
metric semantics there are several proposals of properties that process combinator should satisfy in order
to facilitate compositional reasoning. Most prominent examples are non-expansiveness [8] and non-
extensiveness [[1]]. We discuss these compositionality criteria and propose continuity as the most natural
property of process combinators to facilitate compositional reasoning wrt. behavioral pseudometrics.
Continuity generalizes non-extensiveness and non-expansiveness and captures the essential nature of
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compositional reasoning with respect to behavioral pseudometrics. A continuous binary process com-
binator f ensures that for any bisimulation distance € (understood as the admissible tolerance from the
operational behavior of the composed process f(pi,p>)) there are non-zero bisimulation distances 0
and ¢, (understood as the admissible tolerance from the operational behavior of the to be combined pro-
cesses) such that the distance between f(p1,p2) and f(p], p}) is at most € whenever p| (resp. p}) is in
distance of at most §; from p; (resp. at most 6, from p»).

Our first main result is that the non-recursive fragments of standard probabilistic process algebras,
i.e. process algebras including operators for (nondeterministic and probabilistic variants of) sequential,
alternative and parallel composition, allow for compositional reasoning wrt. the compositionality criteria
of non-expansiveness (and hence also wrt. continuity). Moreover, recursive operators like Kleene-star
iteration and m-calculus bang replication allow for compositional reasoning wrt. the compositionality
criteria of continuity (but not wrt. non-expansiveness).

Our second main result is an upper bound on the bisimulation distance between composed processes.
The distance between composed processes is a function of the distances between its parts in terms of the
‘degree of continuity’ that the process combinator ensures.

2 Preliminaries

We consider transition systems with process terms as states and a transition relation from states to dis-
tributions inductively defined by means of SOS rules. Process terms are inductively defined from base
processes that are composed by process combinators. The SOS rules are syntax-driven inference rules
that define the behavior of complex processes in terms of the behavior of their components. We denote
by T(X) the set of all closed terms and by A(T(X)) the set of all discrete probability distributions over
closed terms. Further motivation, notation and technical details may be found in [5}/9,/12].

A bisimulation metric is the quantitative analogue to the relational notion of bisimulation equivalence
[8]. A 1-bounded pseudometric d is a bisimulation metric if or all states s and ¢ each transition from s
can be mimicked by a transition from ¢ with the same label such that the distance between the reached
distributions does not exceed the distance between s and ¢ (quantitative transfer condition).

Definition 1 (Bisimulation metric) A 1-bounded pseudometric d on T(X) is a bisimulation metric if for
all s,t € T(Z) with d(s,t) < 1, if s 2, 1 then there exists a transition t — 1’ with K(d)(m,n") < d(s,t) and
K(d): A(T(Z)) X A(T(Z)) — [0, 1] the Kantorovich pseudometric of d.

The smallest bisimulation metric is denoted by d.

We introduce as running example a probabilistic process algebra that comprises many of the proba-
bilistic CCS [2,/6]] process combinators. Let Zpa be the signature with the following operators: i) O (stop
process); ii) a family of n-ary prefix operators a.([p1]-®---®[p,].) withae€ A, n> 1, py,...,p, € (0,1]
and )", p; = 1; iii) binary operators _; _ (sequential composition), _+ _ (alternative composition), _+,
(probabilistic alternative composition), _ | _ (synchronous parallel composition), iv) " (finite iteration),
and v) _“ (infinite iteration). The PTSS Ppa = (Xpa,A,Rpa) is given by the rules Rpy in Table I} The
probabilistic prefix operator expresses that the term a.([p1]t; @ --- @ [pn]t,) can perform action a and
evolves to process t; with probability p;. The sequential composition and the alternative composition are
as usual. The synchronous parallel composition ¢ | ¢ describes the simultaneous evolution of processes
t1 and 1. The probabilistic alternative composition ¢+, " evolves to the probabilistic choice between
the evolution of process ¢ (with probability p) and the evolution of process ' (with probability 1 — p) for
actions which can be performed by both processes. For actions which only one of the summands can



D. Gebler, K.G. Larsen & S. Tini 3

a \/ a
x—>p a#+/ X—>u y—v

n n a a
a X3y = ;6 Xy —v
a. @[Pi]xi - Z pio(x;) Y= 1:00) Y
i=1 i=1
xi>/4 yin/ xi>,u y—L/l—> x—7—> yin/ xgu yin/
x+yi>,u x+yi>v x+pyi>,u x+pyi>v x+pyi>u69pv
a a a a
xop yov xX—op xX—p
xlySuly S sy xS 6

Table 1: Standard probabilistic process combinators

perform, the probabilistic alternative composition ¢+, ¢’ behaves just like the nondeterministic alterna-
tive composition 7+ ¢'. The finite iteration ¢ (resp. infinite iteration ) of process ¢ expresses that ¢ is
performed n times (resp. infinitely often).

3 Specification of Compositional Process Combinators

SOS researchers developed over the last decades numerous rule formats that allow for compositional
reasoning wrt. various behavioral equivalences (e.g. [3H5}(10,/12]]). We develop rule and specification
formats that allow for compositional reasoning wrt. bisimulation metric. More precisely, for each compo-
sitionality property we provide a specification format such that the specified process combinators satisfy
the respective compositionality property.

In essence, SOS rules that specify one among non-extensive, non-expansive or Lipschitz-continuous
process combinator ensure that combined processes replicate its parts only a limited number of times
along their evolution. In detail, a rule specifies an p-non-extensive operator if at most one of the com-
bined processes evolves, it specifies a non-expansive operator if only one instance of each of the com-
bined processes evolves, and it specifies a Lipschitz-continuous operator if only one source and one
derived instance of each of the combined processes evolves. The essence of specifications of uniform-
continuous process combinators is that both the replication of source processes as well as the depth of
the derivation tree of each transition is finitely bounded.

Theorem 2 The non-deterministic and probabilistic alternative composition is co-non-extensive. All
variants of parallel composition are non-expansive but not p-non-extensive if p > 1. The finite iteration
operator is Lipschitz-continuous but not non-expansive if n > 2.

4 Distance between probabilistic processes

The compositionality properties of process combinators allows us to derive an upper bound on the dis-
tance of composed processes. The distance of processes combined by non-recursive process combinators
is as follows:
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Theorem 3 Let s;,t; € T(Zpa) be non-recursive nondeterministic probabilistic processes. Then

o d(a. B, [pilsi.a. B [pil) < By pid(si. 1)
o d(si5s2,71502) < 1= (1 —d(s1,21))(1 = d(s2,12))
o d(s;+s2,t +12) < max(d(sy,t1),d(s2,%))

o d(sy+p 52,11 +p 1) < pd(s1,11) + (1 — p)d(s2,12)
o d(si | s2,01182) < 1—=(1—=d(s1,1))(1 = d(s2,72))

The distance of processes combined by recursive process combinators is as follows:

Theorem 4 Let s,t € T(Xpy) be non-recursive nondeterministic probabilistic processes. Then

o d(s", ") <1-(1—-d(s,0)"
o d(s¥,1“)<1

The upper bounds on the behavioral distances in Theorem [3]and ] are optimal.
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