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Predicate-based communication allows components of a system to send messages and requests
to ensembles of components that are determined at execution time through the evaluation of a
predicate, in a multicast fashion. Predicate-based communication can greatly simplify the pro-
gramming of autonomous and adaptive systems. We present a stochastically timed extension of
the Software Component Ensemble Language (SCEL) that was introduced in previous work. Such
an extension raises a number of non-trivial design and formal semantics issues with different op-
tions as possible solutions at different levels of abstraction. We discuss four of these options, of
which two in more detail. We provide a formal semantics and an illustration of the use of the
language modeling a variant of a bike sharing system, together with some preliminary analysis of
the system performance.

1 Introduction

The next generation of software-intensive distributed computing systems has to deal with issues that
arise from the presence of possibly large numbers of heterogeneous components, featuring complex
interactions, and operating in open and non-deterministic environments. A further challenge is to
deal with dynamic adaptation as response to evolving requirements and changes in the working en-
vironment [13, 14, 19]. Applications with the above characteristics are already being built and can
be found in, for example, smart spaces, sensor networks, and large online cloud systems. Devising
appropriate abstractions and linguistic primitives together with a consistent programming methodol-
ogy is essential for the structured and reliable design of these complex systems. One proposal that
has been put forward to this aim is the notion of ensemble, and in particular that of autonomic service
components (AC) and autonomic service-component ensembles (ACE). The former are autonomic
entities whereas the latter are collections of ACs with dedicated knowledge units and resources, and
with a goal-oriented execution. Both notions play a central role in the recently developed kernel lan-
guage SCEL (Software Component Ensemble Language) [5, 8] together with a number of abstractions
that are specifically designed for representing behaviours, knowledge, and aggregations according to
specific policies, and to support programming context-awareness, self-awareness, and dynamic adap-
tation. SCEL shares some features with KLAIM [4] but there are two novel key aspects of SCEL,
that distinguish it from KLAIM and other languages. They are predicate-based communication and
the notion of general component knowledge-base, and they are specifically designed to support the
development of autonomous, loosely-coupled, component-based software systems. Predicate-based
communication, allows to send messages to ensembles of components that are not predetermined at
modeling time, but are defined at execution time, depending on how the communication predicate
evaluates w.r.t. the receiver interface. The component knowledge-base provides the realisation of var-
ious adaptation patterns, by explicit separation of adaptation data in the spirit of [3], and to model
the components view on (and awareness of) the environment. SCEL has been used to specify many
scenarios related to the Case Studies of the ASCENS project [9]. These specifications witness how
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SCEL primitives, and in particular the property-based interaction paradigm, simplify the program-
ming of autonomous and adaptive systems.

In this paper we address the problem of enriching SCEL with information about action duration
by providing a stochastic semantics for the language. Such a semantics is important for the analysis
of the performance aspects of ensemble based systems. We focus mainly on the issues concerning
predicate-based communication, which are definitely more difficult to deal with then those related
to the knowledge-bases. There exist various frameworks that support the systematic development of
stochastic languages, such as [7]. However, the main challenge in developing a stochastic semantics
for SCEL is in making appropriate modeling choices, both taking into account the specific application
needs and allowing to manage model complexity and size. The main contribution in this work is the
proposal of four variants of STOCS, a Markovian extension of a significant fragment of SCEL, that
can be used to support quantitative analysis of adaptive systems composed of ensembles of cooper-
ating components. Providing suitable Markovian semantics to predicate based ensemble languages
poses a number of design challenges regarding the temporal ordering of multicast and information
request actions that differ considerably from traditional process algebras. The four variants adopt
the same language syntax of SCEL, or restrictions thereof, but denote different underlying stochastic
models, having a different level of granularity. We obtain these variants by modifying labels and re-
lations used to construct the transition systems. Finally, an important aspect in a modeling language
concerns the need of devising an appropriate syntax for the environment model. In STOCS and SCEL
the point of contact with the environment is the knowledge base, which contains both internal infor-
mation and externally-sensed events. In our approach, the knowledge is the most appropriate part of
the language to specify environment models. In summary, STOCS is essentially a modeling language
which inherits the purpose and focus of SCEL. STOCS extends SCEL by modeling the average time
duration of state-permanence and by replacing non-determinism by a probability distribution over
outgoing transitions, thus adopting a CTMC-based operational semantics [6]. In the current phase of
the design of STOCS, we deliberately omit to incorporate certain advanced features of SCEL, such
as the presence and role of policies. In the same vein, we limited our investigation to a CTMC-based
semantics at this stage, leaving for further study variants with a clear separation between stochasti-
cally timed actions and observable instantaneous actions, leading to a semantics based on IMCs or
CTMDPs [11].

The outline of the paper is as follows. Section 3 discusses the trade-offs between four stochastic
variants of SCEL, followed by the presentation of the key aspects of the formal semantics of two of
them in Section 4. Section 5 introduces a case study to illustrate various aspects of the use of the
design language in the context of a smart bike sharing system. Due to space limitation, in this paper
we cannot report all the details of the relevant definitions and examples; they can be found in [15],
which the interested reader is referred to.

2 Related work

An overview of related work on a language-based approach to autonomic computing beyond the works
cited in the introduction can be found in [8] and the references therein. Due to space limitations, here
we briefly mention a selection of directly relevant work that has not yet been addressed in the intro-
duction. To the best of our knowledge there is no work available in the literature that addresses the
stochastic extension of predicate based communication in the context of ensemble languages. There
are a number of formal core languages that address dynamically changing network topologies in the
context of mobile systems. This feature is directly relevant also to ensemble based systems. Examples
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are the calculus for wireless systems [16] and the ω-calculus [18], a calculus for mobile ad-hoc net-
works, which is a conservative extension of the π-calculus and which captures the ability of nodes to
broadcast messages to other nodes that are within its physical transmission range. The calculus does
not support general predicate-based communication and autonomic aspects of components.

3 STOCS: a Stochastic extension of SCEL

SCEL (Software Component Ensemble Language) [8] is a kernel language that takes a holistic ap-
proach to programming autonomic computing systems and aims at providing programmers with a
complete set of linguistic abstractions for programming the behavior of Autonomic Components (ACs)
and the formation of Autonomic Component Ensables (ACEs), and for controlling the interaction
among different ACs. A SCEL program consists of a set of components of the form I [K, P]. Each
component provides: a knowledge repository K, an interface I, and a process P.

The knowledge repository K manages both application data and awareness data. Application data
is used for enabling the progress of ACs’ computations, while awareness data provides information
about the environment in which the ACs are running (e.g. monitored data from sensors) or about
the status of an AC (e.g. its current location). The definition of SCEL abstracts from a specific
implementation of knowledge repository. It is only assumed that there are specific operations for
adding knowledge items in a repository (K⊕ t), for removing elements from a repository (K	T ), and
for inferring elements from a repository (K ` T ). In the sequel we let V denote the set of values, K
denote the set of possible knowledge states, I denote the set of knowledge items, T denote the set of
knowledge templates. The latter are used to retrieve data from the knowledge repository. We refer
to [5, 8] for a detailed discussion on motivations and role of knowledge repositories in SCEL.

The component interface I is used to publish and to make available structural and behavioral
information about the component in the form of attributes, i.e. names acting as references to infor-
mation stored in the component’s knowledge repository. Let A be the set of attribute names (which
include the constant id used to indicate the component identifier); an interface I is a function in the
set K→ (A→V). An interface defines a (partial) function from a pair knowledge-base and attribute-
name to the domain of values. Among the possible attributes, id is mandatory and is bound to the
name of the component. Component names are not required to be unique, so that replicated service
components can be modeled. The evaluation of an interface I in a knowledge state K is denoted
as I(K). The set of possible interface evaluations is denoted by E.

A process P, together with a set of process definitions, can be dynamically activated. Some
of the processes in P execute local computations, while others may coordinate interaction with the
knowledge repository or perform adaptation and reconfiguration. Interaction is obtained by allowing
ACs to access knowledge in the repositories of other ACs. Processes can perform three different kinds
of ACTIONS: get(T )@c, qry(T )@c and put(t)@c, used to act over shared knowledge repositories by,
respectively, withdrawing, retrieving, and adding information items from/to the knowledge repository
identified by c. We restrict targets c to the distinguished variable self, that is used by processes
to refer to the component hosting it, and to component predicates p, i.e. formulas on component
attributes. A component I [K, P] is identified by a predicate p if I(K) |= p, that is, the interpretation
defined by the evaluation of I in the knowledge state K is a model of the formula p. Note that here
we are assuming a fixed interpretation for functions and predicate symbols that are not within the
attributes (A). E.g. battery < 3 is a possible predicate, where < and 3 have a fixed interpretation,
while the value of battery depends on the specific component addressed.1

1For the sake of notational simplicity, in the present paper we assume that predicate p in process actions implicitly refers
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SYSTEMS: S ::= C
∣∣ S ‖ S

COMPONENTS: C ::= I [K, P]

PROCESSES: P ::= nil
∣∣ a.P

∣∣ P + P
∣∣ P | P

∣∣ X
∣∣ A(p̄)

ACTIONS: a ::= get(T )@c
∣∣ qry(T )@c

∣∣ put(t)@c

TARGETS: c ::= self
∣∣ p

ENSEMBLE PREDICATES: p ::= tt
∣∣ e ./ e

∣∣ ¬p
∣∣ p∧p with ./∈ {<,≤,>,≥}

EXPRESSIONS: e ::= v
∣∣ x

∣∣ a
∣∣ . . .

Table 1: STOCS syntax (KNOWLEDGE K, TEMPLATES T , and ITEMS t are parameters)

The syntax of STOCS, a Stochastic Extension of SCEL, is presented in Table 1, where the syn-
tactic categories of the language are defined. The basic category defines PROCESSES, used to specify
the order in which ACTIONS can be performed. Sets of processes are used to define the behavior of
COMPONENTS, that are used to define SYSTEMS. ACTIONS operate on local or remote knowledge-
bases and have a TARGET to determine which other components are involved in the action. As we
mentioned in the Introduction, for the sake of simplicity, in this version of STOCS we do not include
POLICIES, whereas, like SCEL, STOCS is parametric w.r.t. KNOWLEDGE, TEMPLATES and ITEMS.

3.1 From SCEL to STOCS

The semantics of SCEL does not consider any time related aspect of computation. More specifically,
the execution of an action of the form act(T )@c .P (for put/get/qry actions) is described by a single
transition of the underlying SCEL LTS semantics. In the system state reached by such a transition it
is guaranteed that the process which executed the action is in its local state P and that the knowledge
repositories of all components involved in the action execution have been modified accordingly. In
particular, SCEL abstracts from details concerning: (1) when the execution of the action starts, (2) if c
is a predicate p, when the possible destination components are required to satisfy p, and (3) when the
process executing the action resumes execution (i.e. becomes P).

In the extension of SCEL with an explicit notion of (stochastic) time, the time-related issues
mentioned above can be addressed at different levels of abstraction, reflecting different choices of
details in modeling SCEL actions. In this section, we discuss and motivate several design choices
of STOCS. In order to obtain an underlying CTMC semantics, we model state residence times in
a Markovian way. Therefore, whenever we indicate that an action has rate λ , we mean that the
duration of the action (or, equivalently, the state residence time before action execution) is modeled
by a random variable (RV, in the sequel) with negative exponential distribution having rate λ . Indeed,
the actual residence-time depends also on other conflicting actions the process may be engaged in,
and the resulting race-condition.

Depending on the degree of detail in modeling these aspects, we have four different semantics:
network-oriented (NET-OR), action-oriented (ACT-OR), interaction-oriented (INT-OR), and activity-
oriented (ACTIV-OR). These semantics have an increasing level of abstraction, facilitating the man-
agement of the complexity of the model according to the application of interest. In the remaining part
of this section we briefly discuss these four variants of the stochastic semantics and their motivations.
In Section 4 we will present the formal definition of the ACT-OR and NET-OR semantics for a substan-

only to the other components, excluding the one where the process is in execution.
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tial fragment of STOCS2. The complete formalization of the four variants can be found in [15]. We
selected the ACT-OR and NET-OR semantics for ease of presentation, given their intuitive flavour.

Network-oriented Semantics. This semantics takes into account points (1)–(3) mentioned previ-
ously and provides the most detailed modeling among the four semantics, which entails that actions
are non-atomic. Indeed, they are executed through several intermediate steps, each of which requires
appropriate time duration modeling. In particular, put actions are realized in two steps: (1) an enve-
lope preparation and shipping (one for each component in the system, other than the source), (2) en-
velope delivery, with its own delivery time, test of the truth value of the communication predicate,
and update of the knowledge-state. Also the actions get/qry are realized in two steps: (1) initiation
of the item retrieval by a source component by entering in a waiting state, (2) synchronization with a
destination component and exchange of the retrieved item. Since actions are not executed atomically,
their (partial) execution is interleaved with that of other actions executed in parallel.

Action-oriented Semantics. In this simplified semantics, an action of the form act(T )@c (for
put/get/qry actions) is described by a single transition and has a state residence time provided by
taking into account the source component interface, the target component interface, the cost of re-
trieved/transmitted knowledge item, and possibly other parameters. For example, this rate may take
into account the components locations and different response times of components. Upon item re-
trieval (by a get/qry action), eligible components (in terms of predicate satisfaction and availability
of requested item) are in a race for response, with rate assigned component-wise. The underlying
stochastic semantics drives the outcome of the race, with appropriate weighting depending on the
rates. Even if this semantics does not consider all the realistic aspects of predicate-based communica-
tion, it is simpler, it generates a smaller CTMC, and can be used in scenarios where actions average
execution time does not depend on the number of components involved in the communication.

Interaction-oriented Semantics. This is based on the action-oriented semantics and distinguishes
local and remote actions, by assuming that local actions are executed instantaneously. In some scenar-
ios, local actions happen in a time-scale which is very different (usually much smaller) from that of
remote actions. In these situations it is reasonable to consider as instantaneous the execution of local
actions, which is the idea we realize in the definition of the INT-OR semantics. As a useful side effect
of ignoring the duration of local actions, we obtain more concise models. This approximation can be
considered as an approach to reducing multi-scale models to single-scale models. In the latter, the
macro-scale of inter-component communication drives the execution of macro-actions. A similar idea
is explored for Bio-PEPA models in [10] and used to abstract away from fast reactions in biochemical
networks. There, under the so-called Quasi-Steady-State Assumption of the system, it is also defined
a form of bisimilarity between the abstract and the concrete model. The assumption we make for
defining this semantics is that each remote (stochastically timed) action is followed by a (possibly
empty) sequence of local (probabilistic) actions. We ensure this assumption is satisfied by imposing
syntactic restrictions on processes. Then, by realizing a form of maximal progress [12] we execute a
timed action and all of its subsequent probabilistic actions in a single transition of the STOCS LTS.

Activity-oriented Semantics. This semantics is very abstract and allows to explicitly declare
as atomic an entire sequence of actions, by assigning to it an execution rate of the entire sequence.
Since the execution of the sequence of actions is atomic, it allows no interleaving of other actions. As
an interesting consequence of this, we have a significant reduction in the state-space of the system.
This variant of the semantics is motivated by the fact that STOCS only provides primitives for asyn-
chronous communication. Synchronization, if needed, has to be encoded through a protocol using

2Due to lack of space, in the present paper we cannot provide all the details for all the variants.
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asynchronous communication primitives [17]. Whatever is the adopted semantics among the previous
ones (for example, the Action-oriented semantics), the protocol execution for the synchronization ac-
tion is interleaved with the execution of other actions. This leads to unclear dependencies of protocol
execution times from the environment. The Activity-oriented semantics allows us to declare as atomic
an entire sequence of actions and to assign a rate to it. More in general, the purpose of this semantics
is to have a very high-level abstraction of the interaction mechanisms. This must be handled with care
as potentially relevant system behaviors (and interleavings) may be no longer present in the model.
Therefore, properties of the model are not necessarily satisfied also by the system.

4 Stochastic Semantics of SCEL

In this section we present a significative fragment of the formal semantics rules for the action- and
network- oriented variants of stochastic SCEL. The interested reader is referred to [15] where all the
details of all the abstractions are presented.

In all of the four semantics, interface evaluations are used within the so-called rate function
R : E×Act×E→ R≥0, which defines the rates of actions depending on the interface evaluation of
the source of the action, the action (where Act denotes the set of possible actions), and the interface
evaluation of the destination. For this purpose, interface evaluations will be embedded within the
transition labels to exchange information about source/destination components in a synchronization
action. The rate function is not fixed but it is a parameter of the language. Considering interface
evaluations in the rate functions, together with the executed action, allows us to keep into account, in
the computation of actions rates, various aspects depending on the component state such as the posi-
tion/distance, as well as other time-dependent parameters. We also assume to have a loss probability
function ferr : E×Act×E→ [0,1] computing the probability of an error in message delivery.

In the semantics, we distinguish between output actions (those issued by a component) and in-
put actions (those accepted by a component). To simplify the synchronization of input and output
actions, we assume input actions are probabilistic, and output actions are stochastic, therefore their
composition is directly performed through a multiplication.

4.1 Preliminaries

Operational semantics of STOCS is given in the FUTSs style [7] and, in particular, using its Rate Tran-
sition Systems (RTS) instantiation [6]. We now briefly recall preliminary definitions and notations.

In RTSs a transition is a triple of the form (P,α,P), the first and second components of which
are the source state and the transition label, as usual, and the third component P is the continuation
function that associates a real non-negative value with each state P′. A non-zero value represents
the rate of the exponential distribution characterizing the time needed for the execution of the action
represented by α , necessary to reach P′ from P via the transition. Whenever P(P′) = 0, this means
that P′ is not reachable from P via α . RTS continuation functions are equipped with a rich set of
operations that help to define these functions over sets of processes, components, and systems. Below
we show the definition of those functions that we use in this paper, after having recalled some basic
notation, and we define them in an abstract way, with respect to a generic set X .

Let TF(X ,R≥0) denote the set of total functions from X to R≥0, and F ,P,Q,S range over it.
We define FTF(X ,R≥0) as the subset of TF(X ,R≥0) containing only functions with finite support:
function F is an element of FTF(X ,R≥0) if and only if there exists {d1, . . . ,dm} ⊆ X , the support of
F , such that F di 6= 0 for i = 1 . . .m and F d = 0 for all d ∈ X \{d1, . . . ,dm}. We equip FTF(X ,R≥0)



D. Latella, M. Loreti, M. Massink & V. Senni 7

with the operators defined below. The resulting algebraic structure of the set of finite support func-
tions will be crucial for the compositional features of our approach.

Def. 4.1 Let X be a set, and d,d1, . . . ,dm be distinct elements of X, γ1, . . . ,γm ∈ R≥0, • : X ×X → X
be an injective binary operator, F1 and F2 in FTF(X ,R≥0):
1. [d1 7→ γ1, . . . ,dm 7→ γm] denotes the function associating γi to di and 0 to the other elements; the 0

constant function in FTF(X ,R≥0) is denoted by [];
2. Function + is defined as (F1 +F2)d =def (F1 d)+(F2 d);
3. Function (F1 • F2) maps terms of the form d1 • d2 to (F1 d1) · (F2 d2) and the other terms to 0;
4. The characteristic function X : X → FTF(X ,R≥0) with X d =def [d 7→ 1].

Note that all the summations above are over finite sets, due to the definition of FTF(S,R≥0).

Def. 4.2 An A-labelled Rate Transition System (RTS) is a tuple (S,A,R≥0,�) where S and A are
countable, non-empty, sets of states and transition labels, respectively, and�⊆ S×A×FTF(S,R≥0)
is the A-labelled transition relation.

4.2 Knowledge repositories in STOCS

In STOCS, like in SCEL, no specific knowledge repository is defined. A knowledge repository type is
completely described by a tuple (K,I,T,⊕,	,`) where K is the set of possible knowledge states
(the variables K, K1, . . . , K′, . . . range over K), I is the set of knowledge items (the variables t,
t1,. . . ,t ′,. . . range over I) and T is the set of knowledge templates (the variables T , T1,. . . , T ′,. . . range
over T). Knowledge items have no variable, while knowledge templates have. We assume a partial
function match : T× I→ Subst(I) (where Subst(X) is the set of substitutions with range in X) and
we denote as match(T, t) = ϑ the substitution obtained by matching the pattern T against the item t,
if any. By a small abuse of notation, we write ¬match(T, t) to denote that match(T, t) is undefined.

The operators ⊕, 	, ` are used to add, withdraw, and infer knowledge items to/from knowledge
repositories in K, respectively. In this paper, we give a probabilistic interpretation of the above opera-
tors. This provides a uniform treatment of all the ingredients of the semantics definition and a simple
way for modelling probabilistic aspects of local computations (e.g. occurrence of errors); of course,
deterministic behavior of a knowledge repository is readily represented by using Dirac probability
distributions. The following are sufficient requirements on knowledge repository operators, for the
purposes of the present paper. The operators have the following signature, where Dist(X) denotes the
class of probability distributions on a set X with finite support:

⊕ : K× I→ Dist(K), 	 : K×T ↪→ Dist(K× I), `: K×T ↪→ Dist(I).
Function⊕ is total and defines how a knowledge item can be inserted into a knowledge repository:

K⊕ t = π is the probability distribution over knowledge states obtained as the effect of adding t. If the
item addition operation is modeled in a deterministic way, then the distribution π is a Dirac function.

Function 	 is partial and computes the result of withdrawing a template from a knowledge state
as a probability distribution K	 T over all pairs (K, t) ∈ (K× I) such that the item t matches the
template T . Intuitively, if K	T = π and π(K′, t) = p then, when one tries to remove an item matching
template T from K, with probability p item t is obtained and the resulting knowledge state is K′. If a
tuple matching template T is not found in K then K	T is undefined, which is indicated by K	T =⊥.

Function ` is partial and computes (similarly to 	) a probability distribution over the possible
knowledge items matching template T that can be inferred from K. Thus, if K ` T = π and π(t) = p
then the probability of inferring t when one tries to infer from K a tuple matching T is p. If no tuple
matching T can be inferred from K then K ` T is undefined, which is indicated by K ` T =⊥.



8 STOCS

4.3 Action-oriented Operational Semantics

This variant of the STOCS operational semantics (called ACT-OR) is defined according to the classical
principle adopted for the definition of stochastic variants of Process Algebras: the execution of each
action takes time, which is modeled by a RV exponentially distributed according to a rate λ .

In this semantics the rate associated to an action depends on the type of action performed (e.g. put,
get or qry), on the knowledge item involved in the action and on the evaluation interfaces of the in-
teracting components according to the rate function R : E×Act×E→R≥0 which takes the interface
evaluation of the source, an action in the set of labels

Act = {put(t)@c, get(T : t)@c, qry(T : t)@c | t ∈ I and T ∈ T and c ∈ TARGET}
and the interface evaluation of the destination, and returns a value in R≥0, which is the rate of execu-
tion of the given action with counterparts having those interface evaluations. Note that get/qry action
labels have argument T : t (rather than T as in Table 1) because the labels of the get/qry transition
will contain also the matching/retrieved term t.

4.3.1 Operational semantics of processes

The ACT-OR semantics of STOCS processes is the RTS (Proc,ActProc ,R≥0,−⇁e) where Proc is the set
of process terms defined according to the syntax of STOCS given in Table 1. The set ActProc of labels
is defined according to the grammar below (where e′ is the evaluation of an interface, t ∈ I, T ∈ T,
and c is a TARGET) and it is ranged over by α,α ′, . . . :

ActProc ::= put(t)@c
∣∣ e′ : get(T : t)@c

∣∣ e′ : qry(T : t)@c

The transition relation −⇁e⊆ Proc×ActProc×FTF(Proc,R≥0) is the least relation satisfying the rules
of Table 2. This relation describes how a process evolves when one of the STOCS actions is executed
and is parameterized by an interface evaluation e that is the one associated to the component where
the process is running. In the rest of this paper, we will omit the parameter if unnecessary.

Rule (NIL) states that nil is the terminated process, since no process is reachable from it via any
action. Rules (PUT) and (PUTB) describe possible transitions of a process of the form put(t)@c.P.
The first rule states that put(t)@c.P evolves with rate λ to P after a transition labeled put(t)@c. This
rate is computed by using rate function R. The execution of a put(t)@c action depends on the source
component and all the other componens in the system, which are involved as potential destinations.
Consequently, the execution rate λ can be seen as a function of the action and of the source component
(interface evaluation) only; in particular, the action rate does not depend on (the interface evaluation
of) a specific (destination) component; this is represented by using the symbol in the destination
argument of R. On the contrary, rule (PUTB) states that put(t)@c.P cannot reach any process after a
transition with a label that is different from put(t)@c.

Rules (GQ), (GQB1) and (GQB2) are similar and describe the evolution of a process of the form
gq(T )@c .P, where gq∈{get,qry}. In this case, a process is reachable from gq(T )@c .P only after
a transition labeled δ : gq(T : t)@c. The latter indicates a request for a knowledge item t matching
template T from a component identified by c. Note that, in the case of gq(T )@c the execution
rate depends also on the destination interface evaluation. This is because only one destination will be
involved in the completion of the execution of the action. Rules (CHO), (DEF) and (PAR) are standard.

4.3.2 Operational semantics of components and systems

The stochastic behaviour of STOCS systems is defined by the RTS (Sys,ActSys ,R≥0,−→) where Sys is
the set of system terms defined according to the syntax of STOCS given in Table 1. The set ActSys of
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Inactive process:

nil α−⇁ []
(NIL)

Actions (where, gq∈{get,qry} and c is a TARGET):

λ = R(σ ,put(t)@c, )

put(t)@c .P
put(t)@c−−−−−⇁σ [P 7→ λ ]

(PUT) α 6= put(t)@c

put(t)@c.P α−⇁ []
(PUTB)

match(T, t) = ϑ λ = R(σ ,gq(T : t)@c,δ )

gq(T )@c .P
δ :gq(T :t)@c−−−−−−−⇁σ [Pϑ 7→ λ ]

(GQ)

¬match(T, t)

gq(T )@c .P
:gq(T :t)@c−−−−−−−⇁ []

(GQB1) α 6= : gq(T : t)@c

gq(T )@c .P α−⇁ []
(GQB2)

Choice, definition, and parallel composition:

P α−⇁e P Q α−⇁e Q

P+Q α−⇁e P +Q
(CHO)

A(−→x )
de f
= P P[−→v /−→x ]

α−⇁e P

A(−→v )
α−⇁e P

(DEF)

P α−⇁e P Q α−⇁e Q

P | Q α−⇁e P | (X Q)+(X P) |Q
(PAR)

Table 2: Operational semantics of STOCS processes (ACT-OR).

labels consists of three groups of labels of the form α , α and ←→α formally defined according to the
grammar below (where gq∈{get,qry}, e′ is the evaluation of an interface, t ∈ I, T ∈ T, and p is a
PREDICATE):

ActSys ::= e′ : put(t)@p
∣∣ e′ : gq(T : t)@p

∣∣ (input actions)

e′ : put(t)@p
∣∣ e′ : gq(T : t)@p

∣∣ (output actions)
←−−−−−−−−−→
e′ : put(t)@self

∣∣ ←−−−−−−−−−→
e′ : gq(T : t)@c (synchronizations)

whereas −→⊆ Sys×ActSys ×FTF(Sys,R≥0). Due to limited space, in Table 3 we present only the
rules governing the execution of put actions at the level of components and systems. The complete
definition of the formal semantics can be found in [15].

Rule (C-PUTL) describes the execution of put actions operating at self. Let I [K, P] be a com-
ponent; this rule states that P executes action put(t)@self with local interface evaluation σ = I(K)
and evolves to P , then a local execution of the action can occur and the entire component evolves
with label

←−−−−−−−−−→
σ : put(t)@self to I[π,P], where π = K⊕ t is a probability distribution over the possi-

ble knowledge states obtained from K by adding the knowledge item t, while I[π,P] is the function
which maps any term of the form I [K, P] to (πK) · (PP) and any other term to 0.

When the target of a put is not self but a predicate p, rule (C-PUTO) is used. This rule simply lifts
an output put action from the process level to the component level and transmits to its counterpart its
current interface evaluation σ by including it in the transition label.

The fact that a component accepts a put is modelled via rules (C-PUTI) and C-PUTIR). The first
rule is applied when the component satisfies the predicate p. When the predicate is not satisfied the
second rule is applied.
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σ = I(K) P
put(t)@self−−−−−−⇁σ P K⊕ t = π

I [K, P]
←−−−−−−−−→
σ :put(t)@self−−−−−−−−→ I[π,P]

(C-PUTL)

σ = I(K) P
put(t)@p−−−−−⇁σ P

I [K, P]
σ :put(t)@p−−−−−−−→ I[(X K),P]

(C-PUTO)

δ = I(K) δ |= p K⊕ t = π perr = ferr(σ ,put(t)@p,δ )

I [K, P]
σ :put(t)@p−−−−−−−→ [ I [K, P] 7→ perr ]+ I[π,(X P)] · (1− perr)

(C-PUTI)

I(K) 6|= p

I [K, P]
σ :put(t)@p−−−−−−−→ [ I [K, P] 7→ 1 ]

(C-PUTIR)

Table 3: Operational semantics of STOCS components, put rules (ACT-OR).

S1
σ :put(t)@p−−−−−−−→S o

1 S1
σ :put(t)@p−−−−−−−→S i

1 S2
σ :put(t)@p−−−−−−−→S o

2 S2
σ :put(t)@p−−−−−−−→S i

2

S1 ‖ S2
σ :put(t)@p−−−−−−−→S o

1 ‖S i
2 +S i

1 ‖S o
2

(S-PO)

S1
σ :put(t)@p−−−−−−−→S1 S2

σ :put(t)@p−−−−−−−→S2

S1 ‖ S2
σ :put(t)@p−−−−−−−→S1 ‖S2

(S-PI)

Table 4: Operational semantics of STOCS systems, put synchronization (ACT-OR).

When predicate p is satisfied by I(K) and K⊕t = π , component I [K, P] accepts the put action and
evolves to [ I [K, P] 7→ perr ]+ I[π,(X P)] · (1− perr). The first term, that is selected with probability
perr, models a failure in the action execution, for instance due to a communication error. Value perr is
computed by the function ferr taking into account the source, the action performed, and the destination.
The second term identifies the different configurations the component can reach when knowledge item
t is added to the knowledge repository K. Finally, if p is not satisfied by I(K), the component accepts
an input put action producing no effect. It is worth noting that rules (C-PUTI) and (C-PUTIR) deal
with probability only. In fact, the actual rate of the action is the one which will result from system
synchronization (Rules (S-PO) and (S-PI) in Table 4) on the basis of the rates settled by the rule (PUT)
of Table 2.

Rule (S-PO) ensures that if any subsystem executes an output put action (i.e. a σ : put(t)@p
labeled transition), the remaining subsystem must execute the corresponding input put action (i.e. a
σ : put(t)@p labeled transition); the composed system does not exhibit a synchronization label,
but it rather propagates the output σ : put(t)@p to allow further synchronization with all the other
components in parallel; in the computation of the final rate it is necessary to consider output on the
left sub-system and input on the right as well as the symmetric case.

Rule (S-PI) ensures that all subcomponents of a system synchronize, all together, on a (specific)
input put action, completing the broadcast communication. Note that each component is constantly
enabled on the input label for any put action (rules (C-PUTI) and (C-PUTO).
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Figure 1: Dynamics of the put action.
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err2

err3

1-err2

1-err3

Figure 2: Actual model of put.

4.4 Network-oriented Operational Semantics

The Action-oriented operational semantics considered in the previous section completely abstracts
from the network structure and topology underlying a given STOCS specification. To make explicit
the relevant interactions occurring when one-to-many SCEL communications are performed, we in-
troduce Network-oriented operational semantics (called NET-OR).

Let us consider a process P, of the form put(v)@p .Q, and the execution of action put(v)@p, as
illustrated in Figure 1. If we consider all the interactions occurring at the network level, the execution
of this action begins with the creation of an envelope message that is shipped, typically in broadcast,
to all the system components. After this message is shipped, P can proceed behaving like Q. We
can assume that the time needed to send this message is exponentially distributed according to a rate
λ . When this message is received by a component, the latter first checks if its interface satisfies p,
and if so, it delivers t in its knowledge repository. We can assume that the time it takes the envelope
message to reach a component is exponentially distributed with rate µ , which may depend on t as well
as other parameters like, e.g., the distance between the sender and the receiver component. To model
this complex interaction we extend the syntax of processes by adding the new term {t@p}µ . This
term, that is not available at the user syntax level, identifies a pending request for a put(t)@p; the
parameter µ models the rate for transmission, predicate evaluation and repository update as discussed
previously. When the request is activated, satisfaction of predicate p is checked and, in the positive
case, knowledge item t is added to the local knowledge repository.

Let us consider three components: C1 = I1 [K1, P1 ], C2 = I2 [K2, P2 ], and C3 = I3 [K3, P3 ] and
assume process P1 is defined as put(v)@p .Q as described above. Note that different components
may be in different locations. The interaction we illustrate starts with process P1 executing the first
phase of put(v)@p, i.e. creating two copies of the special message {v@p}, one for component C2 and
one for component C3, and sending these messages. The time required for this phase (denoted in blue
in the figure) is modeled by a rate λ . The time for each message to arrive at component C j ( j = 2,3),
be evaluated against I j(K j) and possibly cause the update of K j is modeled by RVs with rates µ j (in
Figure 1 this is illustrated by two arrows). The delivery of the two messages fails with probability
err2 and err3, respectively, and succeeds with their complement (see Figure 2). The execution of
component C1 restarts as soon as the copies of the messages are sent, without waiting for their arrival
at the destination components (the red stripe in the figure illustrates the resumed execution of C1).
The evaluation of predicate p is performed when the message arrives at the corresponding component
so, for example, it may happen that C2 satisfies p at the time the message arrives (so K2 is updated
accordingly), while C3 does not satisfy p (thus leaving K3 unchanged).

The operational semantics of processes already presented in Section 4.3.1 is extended with the
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{t@p}µ

{t@p}−−−−⇁ [nil 7→ µ]

(ENV) α 6= {t@p}

{t@p}µ

α−⇁ []
(ENVB)

Table 5: Operational semantics of STOCS processes, put rules (NET-OR).

δ = I(K) µ = R(σ ,{t@p},δ ) perr = ferr(σ ,{t@p},δ )

I [K, P]
σ :put(t)@p−−−−−−−→ [ I [K, P] 7→ perr, I[K,P|{t@p}µ ] 7→ (1− perr) ]

(C-PUTI)

P
{t@p}−−−−⇁ P I(K) |= p K⊕ t = π

I [K, P]
{t@p}−−−−→ I[π,P]

(C-ENVA)
P
{t@p}−−−−⇁ P I(K) 6|= p

I [K, P]
{t@p}−−−−→ I[(X K),P]

(C-ENVR)

Table 6: Operational semantics of STOCS components, put rules (NET-OR).

rules in Table 5. These rules operate in combination with the new rules for components reported
in Table 6. Rule (C-PUTI) models the initiation of the execution of action put(t)@c; it allows the
reception of a put action, and it is responsible for the creation of the envelope (carrying the incoming
message) thus modeling its travel towards that component parametrized by rate µ . The fact that
the envelope is in parallel with the process of the potential receiver component by no means should
be interpreted as the representation of the fact that the message reached the component; simply, the
association between the message and the component is represented by means of a parallel composition
term; in other words, the fact that a specific message is ‘addressed’ to a component is represented
syntactically by such a parallel composition; this action will be executed with rate λ , computed using
the function R depending on the interface evaluation of the source σ (i.e. the container component)
and the sent item t. This is postulated by the rule (PUT) and realized at system level by the broadcast
rules of Table 4 that are part of the (NET-OR) semantics of the put operation. Rule (C-ENVA)/(C-
ENVR) realizes envelope delivery by specifying the conditions under which a component accepts or
refuses, respectively, an arriving envelope.

5 Case Study

We develop a model of a bike sharing service, where we assume a city with m parking stations,
each one with his location `i ∈ Loc = {`1, . . . , `m}, a number of available bikes bi, and a number of
available parking slots si (for i = 1, . . . ,m). Parking stations are in one-to-one correspondence with
the set of possible locations, which should be considered as (disjoint) areas of influence in the city.
We also assume to have n users of the bike sharing service: at any time, each user is positioned in
one location and can be in one of the two states Pedestrian and Biker. In each of the two states, the
user moves around the city (with speed depending on the state) according to its preferences, modeled
by two probability transition matrices Qb and Qp of size m×m for the biker and the pedestrian state,
respectively. Then, the user becomes a Biker or a Pedestrian by transitions named Borrow and Return.

A user in a location ` can borrow (or return) a bike by issuing a request (e.g. by means of a
mobile phone application) to the bike sharing system for a parking with an available bike (or slot)
within a neighborhood of `. The bike sharing system answers with the location of a parking sta-
tion having an available bike or an available parking slot, within a neighborhood of ` specified by a
neighborhood condition ϕn(`,`

′) (modeling, for example, that a parking station `′ is easily reachable
from `). This flexibility allows some control on which parking station is selected among those that
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Pu , Pedestrian

Pedestrian, get(p next,L)@self.
Borrow

Biker , get(b next,L)@self.
Return

Borrow, qry(loc,L)@self.
get(bike res, ID)@near(L).
put(go, ID)@self.
get(bike)@loc(ID).
put(b)@self.
Biker

Return, qry(loc,L)@self.
get(slot res, ID)@near(L).
put(go, ID)@self.
put(bike)@loc(ID).
put(p)@self.
Pedestrian

Figure 3: User behavior as a STOCS process.

are in the neighborhood of the current user location (including itself), which can be used to re-balance
slot/bike availability by redirecting users to parking station that have many available bikes (or slots).
Re-balancing performed by users can help reducing the cost of bike reallocation by means of trucks.

A single user is represented as a component Iu [Ku, Pu ], whose knowledge state Ku is an ele-
ment 〈s, `〉 in {b,p}×Loc denoting the user state (i.e. either being a pedestrian or a biker) and the user
location, and whose interface Iu, which defines the predicates biker, pedestrian, and loc(`) as follows:
Iu(〈b, `〉) |= biker, Iu(〈p, `〉) |= pedestrian, and Iu(〈s, `〉) |= loc(`), for every ` ∈ Loc and s ∈ {b,p}.
Let us summarize the role of the user knowledge operators (see [15] for details). The ⊕ operator
allows: to change state by ⊕(b) (change to biker state) and by ⊕(p) (change to pedestrian state),
and to move to a specified location `′ by ⊕(go, `′). The 	 operator allows to move to a location
according to the average user behavior in the pedestrian state, by 	(p next,L), and in the biker state,
by 	(b next,L). Finally, the ` operator allows to retrieve the current user location.

The users behaviour is given in Figure 3. Each user starts in the state Pedestrian, where move-
ment is possible through a local get of the item p next. The effect of this action is to change user
location into ` j. The latter is also returned as a binding for the variable L. This information will be
used to compute the rate of the action (i.e. of the movement) by a suitable rate function R3. The
process Borrow first retrieves the current location L then performs a bike reservation (bike res) from
a parking station ID satisfying predicate near(L). The actual rate of this action depends on available
bikes: the higher is the number of available bikes, the higher is the execution rate. As an effect of
this race condition, the ID of the near station containing more bikes is received by the user with a
higher probability than a near station with fewer bikes, causing a more balanced distribution of bikes
in the system. When the parking lot is reserved, the user moves towards the parking stations. The rate
of this action depends on the distance between the user and the parking station. After that process
Borrow takes a bike; this operation is performed via a get action that decrements the bikes available
and increments the slots available. Finally, the user status is updated to biker b. A biker moves around
the city and, then, leaves his bike in a parking station by executing the process Return. Its behavior is
similar to that of a pedestrian, except for the fact it reserves parking slots instead of bikes.

A parking station is represented as a component Ip[Kp,nil] that has no behavior (it is passive). Its
knowledge state is a vector 〈ba,br,sa,sr, `〉 ∈ N4×Loc denoting the number of available bikes (ba),
of reserved bikes (br), of available parking slots (sa), and of reserved parking slots (sr), as well as
the parking location `. The parking station interface Ip defines the predicates loc(`) and near(`) as
follows [15]: Ip(〈ba,br,sa,sr, `〉) |= loc(`) and Ip(〈ba,br,sa,sr, `〉) |= near(`′) if ϕn(`,`

′) holds, for
every `,`′ ∈ Loc and ba,br,sa,sr ∈ N.An initial state of this model is a term

‖m
i=1 ( (Iu[〈`i,p〉,Pu])[ki] ‖ Ip[〈bi,0,si,0, `i〉,nil] )

which denotes, for i = 1, . . . ,m: (i) ki pedestrians in locations `i, and (ii) bi available bikes and si

3Due to space limitation, we leave out the definition of R, which can be found in [15].
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Figure 4: Simulation of bike sharing service.

available parking slots in parking station at location `i. Note that the number of reserved bikes as well
as the number of reserved slots is set to zero at the initial state of the system in every parking station.
The overall number of bikes in the system is preserved by the knowledge-update rules. Some simple
simulation analyses of the considered system are reported in Figure 4. These simulations, based on
action oriented semantics, have been performed with jRESP4. This is a Java framework that can be
used to execute and simulate SCEL/STOCS specifications. Figure 4 compares the simulation results
of the considered case study where rates of bikes and slots reservations depend on the number of
available resources (on the left) with the one where these rates are constant5 (on the right). We can
notice that the average number of available bikes in parking stations is similar in the two simulations.
However, when the bikes/slots reservation rate depends on the available resources, the bikes are more
evenly distributed over the different parking stations.

6 Conclusions and Future Work

We have introduced STOCS, a stochastic extension of SCEL, for the modeling and analysis of perfor-
mance aspects of ensemble based autonomous systems. One of the original features of the language
is the use of stochastic predicate based multi-cast communication which poses particular challenges
concerning stochastically timed semantics. Four variants of the semantics, considering different levels
of abstraction, have been discussed and for two of them the main aspects of the formal semantics have
been provided. A case study concerning shared bikes systems was presented to illustrate the use of
the various language primitives of STOCS. The development of both numeric and statistical model-
checking tools for STOCS is in progress. In particular, (ACT-OR) and (INT-OR) semantics are well
suited for formal analysis techniques (e.g. probabilistic model-checking), while the more detailed
and complex (NET-OR) can be used for simulation-based techniques (e.g. statistical model-checking).
The formal relationship between the different semantics is a non trivial issue and it is left for future
work, as well as the development of fluid semantics and verification techniques to address large scale
collective systems along the lines of work in [1, 2].
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