
Submitted to:
QAPL 2014

c© D. Spieler, E. M. Hahn & L. Zhang

Model Checking CSL for Markov Population Models

David Spieler
Modeling and Simulation Group
Computer Science Department

Saarland University
Saarbrücken, Germany

spieler@cs.uni-saarland.de

Ernst Moritz Hahn Lijun Zhang
State Key Laboratory of Computer Science

Institute of Software
Chinese Academy of Sciences

Beijing, China
moritz@ios.ac.cn zhanglj@ios.ac.cn

Markov population models (MPMs) are a widely used modelling formalism in the area of compu-
tational biology and related areas. The semantics of a MPM is an infinite-state continuous-time
Markov chain. In this paper, we use the established continuous stochastic logic (CSL) to express
properties of Markov population models. This allows us to express important measures of biological
systems, such as probabilistic reachability, survivability, oscillations, switching times between attrac-
tor regions, and various others. Because of the infinite state space, available analysis techniques only
apply to a very restricted subset of CSL properties. We present a full algorithm for model checking
CSL for MPMs, and provide experimental evidence showing that our method is effective.

1 Introduction

In the context of continuous-time Markov chains (CTMCs), properties of interest can be specified using
continuous stochastic logic (CSL) [2, 3]. CSL is a branching-time temporal logic inspired by CTL [9].
It allows to reason about properties of states (state labels), like the number of certain molecules given
in this state, about what may happen in the next state (next operator), what may happen within a certain
time (bounded until), what may finally happen (unbounded until) or about the long-run average behavior
of a model (steady state). Because the underlying semantics of a Markov population model is given as a
CTMC, we can also use CSL to reason about properties of such models, when interpreting CSL formulae
on the CTMC semantics.

We consider the complete set of CSL formulae, including the steady-state operator and in certain
cases also the unbounded until operator [3]. The resulting logic can express (nested) probabilistic prop-
erties such as “the long-run probability is at least 0.4 that we reach Ψ-states along Φ-states within time
interval [6.5,8.5] with a probability larger than 0.98” via S≥0.4(P>0.98(Φ U [6.5,8.5] Ψ)). Using CSL,
we can express many measures important for biological models, including oscillation [4].

Previous works [11, 20, 21] have already considered techniques for the transient analysis of infinite-
state CTMCs. These techniques are based on truncation. This means that only a finite relevant subset
of the states of the infinite CTMC is taken into account. The extent to which these models are explored
depends on the rates occurring there, as well as on the time bound of the transient analysis. Using
truncation, techniques for the analysis of finite CTMCs [24] can be used for the analysis of properties of
infinite-state models.

In a previous publication [15], we have extended these results such that we were able to do approx-
imate model checking for a subset of CSL. This subset excluded the steady-state operator as well as the
unbounded until operator. We have implemented these techniques in the model checker INFAMY [14].
On the other hand, we recently developed means to find subsets of states of Markov population model
CTMCs which contain the relevant steady-state probability mass [7]. For each of these states, we also

2 Model Checking CSL for Markov Population Models

t ⊥ ? >
⊥ ⊥ ? >
? ? ? >
> > > >

u ⊥ ? >
⊥ ⊥ ⊥ ⊥
? ⊥ ? ?
> ⊥ ? >

C
⊥ >
? ?
> ⊥

Table 1: Truth values of ternary logic operations.

obtain lower and upper bounds of the steady state probability. These techniques have been implemented
in the tool GEOBOUND [23].

In this paper, we combine GEOBOUND and INFAMY, such that we can also handle the CSL steady-
state operator. In addition, we introduce advanced truncation techniques which allow us to explore the
model in a more advanced way, leading to a smaller number of states being necessary to check properties.
By also taking into account not only the time bound of CSL properties, but also the atomic propositions,
we can further restrict the state space to be explored. In certain cases, this also allows us to handle
the unbounded until operator. Using a ternary logic [16, 17], in contrast to previous publications, we
can compute safe lower and upper bounds for probabilities. In turn, we can decide exactly whether a
certain formula holds, does not hold or whether this cannot be decided on the finite truncation of the
current model. Apart from this, we have also made some technical improvements, applying for instance
to the portability and robustness of INFAMY. We show the applicability of the approach on a number of
biological models.

Organization of the paper We give background on Markov population models, CTMCs and CSL in
Section 2, and also recall the established CSL model checking algorithm for finite CTMCs. In Section 3,
we give the main contribution of the paper, CSL model checking for infinite CTMCs. Section 4 reports
experimental results. Section 5 gives related work and Section 6 concludes.

2 Preliminaries

2.1 Ternary Logic

We consider a ternary logic [16, 17] with values B3 := {>,⊥,?}. With the ordering ⊥ < ? < >, B3
forms a complete lattice. We interpret u as the meet (“and” operator), and ·c as the complement (“not”)
operation, with the usual definitions. Other operators like t (“or” operator) can be derived. Then, > and
⊥ can be interpreted as values definitely true or false respectively, and ? is interpreted as an unknown
value. We give an overview of the truth values in Table 1. Consider a formula over a number of values
some of which are ?. If the value of this formula is different from ?, we know that when inserting ⊥ or
> instead of some of these values, the result would still be the same. This way, in some cases we can
obtain a truth value even though we do not known the truth values of some formula parts.

2.2 Markov Chains

We define some basics of Markov chains and CSL. Let AP denote a set of atomic propositions. For
a countable set S, a distribution µ over S is a function µ : S → [0,1] with µ(S) = 1, and we define
µ(A) := ∑s∈A µ(s) for A⊆ S.

D. Spieler, E. M. Hahn & L. Zhang 3

Definition 1 A labelled continuous-time Markov chain (CTMC) is a tuple C = (S,sinit,R,L) where S
is a countable set of states, sinit is an initial state, L : (S×AP)→ B3 is a labelling function, and R :
(S×S)→ R≥0 is the rate matrix.

In the stochastic process which the CTMC represents, sinit is the state we start in. The labelling function
tells us for each state s and atomic proposition a whether a holds in s, does not hold in s, or whether this
is not known or not specified. We say that the rate matrix is rate-bounded if the supremum sups∈S R(s,S)
is finite, otherwise, it is called rate-unbounded. If R(s,s′) > 0, we say that there is a transition from
s to s′. For s ∈ S, let post(s) := {s′ | R(s,s′) > 0} denote the set of successor states of s. A state s is
called absorbing if post(s) = /0. A CTMC is finitely branching if for each state s the set of successors
post(s) is finite. In this paper, we consider rate-unbounded, finitely-branching CTMCs which do not
explode [1, 8]. Roughly speaking, if the CTMC explodes, then there is a positive, non-zero probability
of infinitely many jumps in finite time. On the contrary, the fact that a CTMC does not explode implies
that in finite time with probability one only a finite number of states can be reached.

Transition probabilities in CTMCs are exponentially distributed over time. The probability that an
arbitrary transition is triggered within time t is given by 1− e−R(s,S)t , where R(s,A) := ∑s′∈A R(s,s′) for
A⊆ S. The probability of taking a particular transition from s to s′ within time t is R(s,s′)

R(s,S)

(
1− e−R(s,S)t

)
.

State s′ is reachable from s if there exists a sequence of states s1, . . . ,sn with n ≥ 1, s1 = s, sn = s′, and
for each i = 1, . . . ,n−1 it is R(si,si+1)> 0.

For a set of states A, by C [A] we denote the CTMC in which states of A have been made absorbing.
For C = (S,sinit,R,L) and A ⊆ S we have C [A] := (S,sinit,R′,L) with R′(s,s′) := R(s,s′) for s /∈ A and
R′(s,s′) := 0 else, for all s,s′ ∈ S. Given a rate matrix R, we define the corresponding infinitesimal gener-
ator matrix Q such that for s, s′ if s 6= s′ then Q(s,s′) := R(s,s′) and we let Q(s,s) :=−∑s′∈S,s′ 6=s R(s,s′).

Paths and probabilistic measure Let C = (S,sinit,R,L) be a CTMC. A path is a sequence σ =
s1t1s2t2 . . . satisfying R(si,si+1) > 0, and ti ∈ R≥0. Paths are either infinite or have a last state sn with
R(sn,S) = 0. For the path σ and i ∈ N, let σ [i] = si denote the i-th state, and let δ (σ , i) = ti denote
the time spent in si. For t ∈ R≥0, let σ@t denote σ [i] such that i is the smallest index with t ≤ ∑

i
j=1 t j.

For C , let PathC denote the set of all paths, and PathC (s) denote the set of all paths starting from s. A
probability measure PrC

s on measurable subsets of PathC (s) is uniquely defined. We omit the superscript
C if it is clear from context.

2.3 Markov Population Models

In this paper, we will consider Markov population models (MPMs), a sub-class of CTMC, where states
encode the number of individuals of certain population types represented by a vector over the natural
numbers. Transitions between those states are defined by a change vector that characterizes the successor
state and a rate determined by a propensity function that is evaluated in the predecessor state.

Formally, a MPM with d population types is a CTMC C = (S,sinit,R,L) with S ⊆ Nd . The rate
matrix R will be induced by transition classes.

Definition 2 (Transition Class) A transition class is a tuple (α,v) where α :Nd→R≥0 is the propensity
function and v ∈ Zd \{0} is the change vector.

For the propensity functions, we will restrict to multivariate polynomials in Nd . Given a set of transition
classes {τ1, . . . ,τm}, we define the entries of R via R(x,x+ v) = ∑{ j | v j=v}α j(x) for τ j = (α j,v j) and
1 ≤ j ≤ m. In order to ensure R is well defined, we demand that for all states x ∈ S and all transition

4 Model Checking CSL for Markov Population Models

Js,aK := L(s,a), Js,Φ1∧Φ2K := Js,Φ1Ku Js,Φ2K, Js,¬ΦK := Js,ΦKc,

Js,P./p(φ)K:=

>, Prs{σ |Jσ ,φK=>}./p∧Prs{σ |Jσ ,φK6=⊥}./p,
⊥, Prs{σ |Jσ ,φK=>}6./p∧Prs{σ |Jσ ,φK6=⊥}6./p,
? else,

Js,S./p(Φ)K:=

>, SL(Φ)./p∧SU(Φ)./p,
⊥, SL(Φ)6./p∧SU(Φ)6./p,
? else,

where
SL(Φ) := lim

t→∞
Prs{σ | Jσ@t,ΦK =>},

SU(Φ) := lim
t→∞

Prs{σ | Jσ@t,ΦK 6=⊥},
Jσ ,X IΦK := (> iff δ (σ ,0) ∈ I,⊥ else)u Jσ [1],ΦK,

Jσ ,Φ1 U I Φ2K:=

>, ∃t∈I.Jσ@t,Φ2K=>∧∀t ′<t.Jσ@t ′,Φ1K=>,
⊥, ∀t∈I.Jσ@t,Φ2K=⊥∨∃t ′<t.Jσ@t ′,Φ1K=⊥,
? else.

Table 2: CSL semantics.

classes (α j,v j) of our model α j(x)> 0 only holds if x+v j ∈ S. For the labelling L we demand that each
state is labelled by those boolean expressions over population counts and constants that evaluate to true.
We also refer to the populations by their name. For example, if we have a MPM with populations A (x0)
and B (x1), then state (3,4) would be labelled by e.g. A≥ c for all c≥ 3, A+B≤ 7 and A2 +B2 < 30 to
name just a few.

2.4 CSL Model Checking

We consider the logic CSL [3] interpreted over a ternary logic [16, 17]. Let I = [t, t ′] be an interval with
t, t ′ ∈R≥0∪{∞} with t ′ = ∞⇒ t = 0 and t ≤ t ′. Let p ∈ [0,1] and ./ ∈ {≤,<,>,≥}. The syntax of state
formulae (Φ) and path formulae (φ) is:

Φ = a | ¬Φ |Φ∧Φ |P./p(φ) |S./p(Φ),

φ = X I
Φ |ΦU I

Φ.

Let F be the set of all CSL formulae. The truth value J·KC : ((S∪Path)×F)→ B3 of formulae is defined
inductively in Table 2. If the model under consideration is clear from the context, we leave out the index
C . The model C satisfies a formula Φ if the initial state sinit does. We specify the unbounded until as
Φ1 U Φ2 := Φ1 U [0,∞) Φ2 and the eventually operator as ♦IΦ := true U I Φ where true = a∨¬a. Let
B ⊆ S be a set of states. For better readability, we use the name of the set B as an atomic proposition in
formulae to characterize that the system is in a state contained in B.

Model checking CSL formulae without the operators X and S on a finite CTMC over a ternary logic
has already been used before to handle a different abstraction technique for CTMCs [16, 17]. Adding
routines to handle X and S is straightforward.

D. Spieler, E. M. Hahn & L. Zhang 5

3 Model Checking based on Truncations

Now we discuss how to model check CSL formulae on infinite CTMCs. To this end, our goal is to
operate on a finite truncation instead of the original infinite CTMC. In a nutshell, starting from the initial
state, we explore the states of the infinite model until we assume that we have explored enough of them
to obtain a useful result in the following steps. Then, we remove all transitions from the states at the
border and set all of their atomic propositions to ?. In previous works [15] we already discussed some
variants of such a model exploration. In Subsection 3.1 we give another such technique, which is more
efficient, because it needs to explore less states. Afterwards, we discuss how to build a finite CTMC
truncation for a nested CSL formula. Finally, in Subsection 3.3, we explain how to obtain results for the
infinite-state CTMC only using the finite submodel.

3.1 Truncation-based Reachability Analysis

Given a set of states W0, a CTMC C = (S,sinit,R,L) and CSL formula of the form Φ =P./p(Φ1 U Φ2),
we want to compute a finite submodel C |W = (W ∪W ,RW ,LW) sufficient to decide Φ on all states of
W0. We define finite truncations of a CTMC.

Definition 3 Let C = (S,sinit,R,L) be a CTMC. Let W ⊆ S be a finite subset of S, and let W :=
post(W)\W . The finite truncation of C is the finite CTMC C |W :=(W ∪W ,RW ,LW) where LW (s, ·) :=
L(s, ·) if s ∈W , and LW (s, ·) = ? else. The rate matrix is defined by RW (s,s′) := R(s,s′) if s ∈W , and
RW (s, ·) := 0 else.

We build the truncation of the model iteratively, using the high-level (transition class) description of
the model. Starting from states A, we explore the model until for all s∈W0 the probability to reach states
in W is below an accuracy ε , which we may choose as a fixed value or due to the probability bound p.

Algorithm 1 describes how we can obtain a sufficiently large state set W . For s ∈ S, s′ ∈ W and
t ∈ R≥0∪{∞} we use πC (s, t,s′) to denote the probability that at time t ∈ R≥0, the CTMC C is in state
s′, under the condition that it was in s initially. For t = ∞, we let π denote the limit for t → ∞. As s′ is
absorbing, this value exists. Further, for a set of absorbing states B, we let ξC (s, t,B) := ∑s′∈B πC (s, t,s′)
denote the probability to reach B within time t ∈ R≥0 ∪{∞}. Given a fixed s and t, we can compute
πC (s, t,s′) for all s′ at once effectively, and given B and t we can compute ξ (s, t,B) for all s at once
effectively [3].

The algorithm is started on a CTMC C and a set of states W0, for which we want to decide the
property. We also provide the time bound t as well as the accuracy ε . With Ŵ we denote a set of states
for which the exploration algorithm may stop immediately, as further exploration is not needed to decide
the given property. For Φ above and I = [0,a],a ∈ R≥0∪{∞}, we could specify Ŵ as the states which
fulfill Φ2 ∨ (¬Φ1 ∧¬Φ2). For all paths of the model, the truth value is independent of the states after
such a state.

3.2 Truncation-based Steady-state Analysis

In the following, we will develop a technique to retrieve a finite subset of states W ⊆ S that contains
most of the total steady-state probability mass, i.e. ∑c∈W π(c) > 1− ε for a given ε < 1. The next step
will be to derive lower and upper bounds on the state-wise steady-state probabilities inside that window
W .

6 Model Checking CSL for Markov Population Models

Algorithm 1: TRANSIENTTRUNC(C ,W0,Ŵ , t,ε).

W := W0

W := post(W)\W
while maxs∈W0 ξC [W](s, t,W \ Ŵ)≥ ε do

choose s from argmaxs∈W0 ξC [W](s, t,W \ Ŵ)

while ξC [W](s, t,W \ Ŵ)≥ ε do
choose A⊆ (W \ Ŵ) such that πC [W](s, t,A)≥ ε

W := W ∪A
W := post(W)\W

return W ∪ (post(W)∩ Ŵ)

Geometric Bounds For the presented methodology to be applicable, we have to restrict our models to
ergodic MPMs, since for steady-state analysis the equilibrium distribution has to exist uniquely. Ergod-
icity can be verified by the means of Lyapunov functions and the following theorem. In the following,
by X(t) we refer to the stochastic process underlying the MPM, and by E to the expectation of a random
variable.

Definition 4 (Lyapunov Function) A Lyapunov function is a function g : Nd → R≥0.

Theorem 1 (Tweedie [26]) Assuming that X(t) is irreducible, it is also ergodic and uniquely determined
by its infinitesimal generator iff there exists a Lyapunov function g∗, a finite subset W ⊆ S, and a constant
λ > 0 such that

1. d
dt E[g∗(X(t)) | X(t) = x]≤−λ for all x ∈ Nd \W ,

2. d
dt E[g∗(X(t)) | X(t) = x]< ∞ for all x ∈W ,

3. the set {x ∈ Nd | g∗(x)≤ l} is finite for all l < ∞.

Therefore, given a MPM C = (S,sinit,R,L) induced by a set of transition classes {τ1, . . . ,τm}, we can use
Theorem 1 for a semi-decision procedure to check ergodicity by choosing candidates for Lyapunov func-
tions. Our experience has shown that in most cases rather simple functions, i.e. multivariate polynomials
of degree two, already suffice for usual models from systems biology and queuing theory. Consequently,
we restrict the choice of Lyapunov functions to that class.

We can exploit Theorem 1 also to retrieve the aforementioned window W that encloses most of the
steady-state probability mass. At first, let the drift d∗(x) in state x ∈ Nd be defined as

d∗(x) :=
d
dt

E[g∗(X(t)) | X(t) = x] = (Qg∗)(x).

Due to the transition class induced structure of Q, the drift is given as

d∗(x) =
m

∑
j=1

α j(x)(g∗(x+ v j)−g∗(x))

and can easily be represented symbolically in a state x. Since the propensity functions of our models as
well as the Lyapunov function are multivariate polynomials, so is the drift. The next step is to retrieve
a positive real number c ≥ maxx∈Nd d∗(x). In order to find that global maximal drift, common global

D. Spieler, E. M. Hahn & L. Zhang 7

optimization techniques like gradient based methods and simulated annealing can not be used, since there
is no guarantee to get the real global maximum. What we propose instead is to solve ∇d∗(x)|p = 0 for
all p ∈ 2{x1,...,xm}, where f (x)|p denotes the projection of the multivariate function f onto the subspace
spanned by xi ∈ p to retrieve all K possible candidates mk. In order to solve the equation systems
∇d∗(x)|p = 0, we suggest the use of the polyhedral homotopy continuation method, which is guaranteed
to find all roots. For implementations, we refer to [13] and [18]. Finally, after restricting the candidate set
to M = {mk | mk ∈ Rd

≥0}, we set c = maxm∈M d∗(m). Please note, that due to the existence of a maximal
value c, the chosen Lyapunov function serves as a witness for ergodicity assuming an irreducible MPM.
By scaling the Lyapunov function by 1

c+γ
we retrieve the normalized drift

d(x) =
d
dt

E[g(X(t)) | X(t) = x]

and using conditions 1 and 2 from Theorem 1 we get

d(x)≤ c
c+ γ

− χ̄W (x), (1)

where χ̄W (x) = 1 if c 6∈W and 0 else. Multiplying Inequality 1 with π(x) and summing over x leads us
to

π(W̄) = ∑
x 6∈W

π(x)≤ c
c+ γ

.

Convergence of this sum is guaranteed for (infinite) ergodic MPMs as stated in [10]. Consequently, we
can exploit this inequality by directly choosing d(x) = ε

c d∗(x), i.e. setting λ > 0 such that ε = c
c+γ

, to
get π(W)> 1− ε for

W = {x ∈ Nd | d(x)> ε−1}.

State-wise Bounds Given our state space window W , our next goal is to get lower (l(x)) and upper
(u(x)) bounds on the steady-state probabilities inside W , i.e. probability vectors l and u such that l(x)≤
π(x)≤ u(x) for all c ∈W . For this, we will employ the methodology developed by Courtois and Semal
[5] [6] which we have extended to infinite state MPMs in [7]:

Theorem 2 ([7]) Let Q be the infinitesimal generator of an ergodic CTMC X(t) with countably infinite
state space S and let W ⊆ S be a finite subset of the state space. Further, we let the matrix C be the finite
submatrix of Q containing exactly the states in W . If by U we refer to the uniformized CTMC of C, i.e.

U = I+α
−1C with α > max

i
−C(i, i),

then for all x ∈W we have

min
j

π
Uj(x)≤ π(x)

∑x∈W π(x)
≤max

j
π

Uj(x)

where πUj is the steady-state distribution of matrix Uj which is matrix U made stochastic by increasing
column j.

As presented in the previous paragraph, we have 1− ε < ∑x∈W π(x)≤ 1. Consequently, we can use the
geometric bounding technique to obtain the unconditional state-wise bounds from Theorem 2, that is to
retrieve for all states x ∈W

l(x) = (1− ε)min
j

π
Uj(x)≤ π(x)≤max

j
π

Uj(x) = u(x).

8 Model Checking CSL for Markov Population Models

Geobound All these presented techniques, i.e., the retrieval of geometric bound via Lyapunov func-
tions and the computation of state-wise steady-state bounds via the methodology of the previous para-
graph have been implemented in a prototypical tool called GEOBOUND [23].

3.3 Truncation-based CSL Model Checking

Given a CTMC C , we want to check whether C satisfies Φ. This is done in two phases. At first, we
construct a finite truncation that is sufficient to check the formula. To this end, we employ an algorithm
to determine suitable truncations. The states explored depend on the specific CSL formula analyzed.
The computation works by recursive descent into sub-formulae. The most intricate formulae are the
probabilistic operators, for which we use the technique from Section 3.1. After the exploration, we can
compute Jsinit,ΦK on the finite truncation.

Algorithm 2: TRUNCATE(C = (S,sinit,R,L),Φ). CSL state space exploration.

function TRUNC(C ,W ,Φ)
switch Φ do

case a return W
case ¬Ψ return TRUNC(C ,W ,Ψ)
case Φ1∧Φ2 return TRUNC(C ,W ,Φ1)∪TRUNC(C ,W ,Φ2)

case P./p(X IΨ) return TRUNC(C ,W ∪W ,Ψ)

case P./p(Φ1 U [t,t ′] Φ2)
Wt = TRANSIENTTRUNC(C ,W ,stop(Φ), t,ε)
Wt ′ = TRANSIENTTRUNC(C ,Wt ,stop(Φ), t ′− t,ε)
return TRUNC(C ,Wt ′ ,Φ1)∪TRUNC(C ,Wt ′ ,Φ2)

case S./p(Ψ) return TRUNC(C ,post(W)\W ,Ψ)

return C |TRUNC(C ,{sinit},Φ)

Algorithm 2 describes the exploration component. Given a CTMC C = (S,sinit,R,L) be a CTMC
and a state formula Φ, we call TRUNC(C ,{sinit},Φ). Afterwards, we can use the CSL model checking
algorithm for a ternary logic on the model obtained this way. With stop(Φ) we denote a set of states for
which we can stop the exploration immediately, as exemplified in Section 3.1. For nested formulae, this
value is computed by a simple precomputation in a recursive manner.

We employ ternary CSL model checking on the finite model obtained. However, we have already
obtained the steady-state probabilities beforehand. Thus, to obtain the lower bound probabilities of
S./p(Ψ), we sum up the lower bound steady-state probabilities of states s ∈ W with Jx,ΨK = >. For
the upper probability bound, we sum upper steady-state probabilities of states s with Jx,ΨK 6=⊥ and add
the probability ε that limits the steady-state probability outside W . The probabilities computed are the
probabilities for all states, because the model is ergodic.

Correctness Consider a truncation C |W = (W ∪W ,RW ,LW) constructed for the input CTMC C and
a state formula Φ. If we obtain the truth value Js,ΦK 6=? in CW , then this is also the truth value in C :
The correctness is independent of the exploration algorithm, which plays a role for performance and
applicability of the approach. If too many states are explored, we may run out of memory, but if too
few are explored, we are unable to decide the value in the original model. As a result, the correctness of
the algorithm for CSL without steady state follows by giving a simulation relation [17, Definition 3.4.2]

D. Spieler, E. M. Hahn & L. Zhang 9

between C and C |W and [17, Theorem 4.5.2]. The correctness of the steady-state extension follows as
we give safe upper and lower bounds in exactly the same way as it is done in [17, Theorem 4.5.2].

4 Experimental Results

Using several case studies, we assess the effectiveness of our technique. For that, we have combined the
tool GEOBOUND [23] to compute bounds on steady-state probabilities for Markov population models
with the infinite-state model checker INFAMY [14]. This way, we can effectively handle the combination
of models and properties described in this paper. To show the efficiency of the approach, we applied our
tool chain on a number of models from different areas. The results were obtained on an Ubuntu 10.04
machine with an Intel dual-core processor at 2.66 GHz equipped with 3 GB of RAM. The tools used are
available1. Instead of the truth value for the formula under considerations, in the result tables we give
intervals of the probability measure of the outer formula. We also make use of a derived operator for
conditional steady-state measures defined as

Js,S./p(Φ1 | Φ2)K=

>, SL(Φ1|Φ2)./p∧SU(Φ1|Φ2)./p,
⊥, SL(Φ1|Φ2)6./p∧SU(Φ1|Φ2)6./p,
? else,

where

SL(Φ1 | Φ2) :=
SL(Φ1∧Φ2)

SU(Φ2)
,

SU(Φ1 | Φ2) :=
SU(Φ1∧Φ2)

SL(Φ2)
.

Protein Synthesis [12] We analyze the MPM encoding protein synthesis, as depicted in Table 3. In
biological cells, each protein (P, x2) is encoded by a gene (G, x1). If the gene is active (G = 1), the
corresponding protein will be synthesized with rate ν = 1.0. Proteins may degenerate with rate δ = 0.02
and thus disappear after a time. The gene switches from active state to inactive (G = 0) with rate µ = 5.0
and vice versa with rate λ = 1.0. Note that in a previous paper, this model has been presented as a
stochastic Petri net (SPN). Often, transition class models and SPN (without zero-arcs) can trivially be
encoded within each other.

j τ j α j(x) v(j)

1 (α1,v1) λ (1− x1) eT
1

2 (α2,v2) µx1 −eT
1

3 (α3,v3) νx1 eT
2

4 (α4,v4) δx2 −eT
2

Table 3: Transition classes of the protein synthesis model.

We consider the property that on the long run, given that there are more than 20 proteins, a state with
20 or less proteins is most likely (with a probability of at least 0.9) reached within t time units:

S>p(P>0.9(♦
[0,t]P≤ 20) | P > 20).

1 http://alma.cs.uni-saarland.de/?page_id=74

http://alma.cs.uni-saarland.de/?page_id=74

10 Model Checking CSL for Markov Population Models

Table 4: Protein synthesis results.

ε t depth time
n

probability bounds
GEOBOUND INFAMY [SL, SU]

10−1
10 8

0.9
0.1 217 [0.002, 1.0]

20 8 0.1 217 [0.003, 1.0]
60 8 0.1 217 [0.004, 1.0]

10−3
10 5

3.2
0.3 1531 [0.144, 1.0]

20 5 0.4 1531 [0.259, 0.816]
60 5 0.7 1531 [0.317, 1.0]

10−6
10 3

7.8
34.3 46431 [0.451350,

0.454779]
20 3 67.0 46431 [0.813116,

0.817401]
60 3 257.5 46431 [0.997642, 1.0]

We give results in Table 4. The shortcut stop of Algorithm 2 was not used for the analysis. With
“depth” we specify the number of states of the shortest path from the initial state to any other state of the
truncation. The runtimes of GEOBOUND and INFAMY is given in seconds. The rate of decay of proteins
depends on the number of proteins existing. For the states on the border of W , we have large rates back
to existing states. Because of this, for the given parameters the state space exploration algorithm does
not need to explore further states, and the total number states explored n does not increase with the time
bound. To obtain different n, we would have needed to choose extremely large time bounds, for which
analysis would be on the one hand infeasible and on the other hand would lead to results extremely close
to 1. The lower and upper bounds are further away than ε . This results, because we have to divide by
SU(Φ2) for the lower and by SL(Φ2) for the lower bound. In turn, this may lead to a much larger error
than ε .

Gene Expression [25] Next, we analyze a network of chemical reactions where a gene is transcribed
into mRNA (M) with rate λ = 25.0 and the mRNA is translated into proteins (P) with rate µ = 1.0.
Both populations can degrade at rates δM = 2.0 and δP = 1.0, respectively. The corresponding transition
classes are listed in Table 5. The property of interest is the steady-state probability of leaving a certain

j τ j α j(x) v(j)

1 (α1,v1) λ eT
1

2 (α2,v2) µx1 eT
2

3 (α3,v3) δMx1 −eT
1

4 (α4,v4) δPx2 −eT
2

Table 5: Transition classes of the gene expression model.

set of states W enclosing more than 80% of the steady-state probability mass most likely within t time
units, i.e.,

S>p(P>0.9(♦
[0,t]¬W) |W),

D. Spieler, E. M. Hahn & L. Zhang 11

where

W := M > 5∧M < 20∧P > 5∧P < 20

with S>0.8(W) =>.

Table 6: Gene expression results.

ε t depth time
n

probability bounds
GEOBOUND INFAMY [SL, SU]

10−1
2 24

3.4
5.2 2558 [0.01, 0.2]

4 24 6.0 2558 [0.3, 0.6]
8 24 8.5 2558 [0.8, 1.0]

5 ·10−2
2 20

6.1
11.9 3663 [0.015, 0.078]

4 20 15.4 3663 [0.34, 0.46]
8 20 22.1 3663 [0.90, 1.0]

10−2
2 15

8.5
99.3 11736 [0.015, 0.029]

4 15 139.9 11736 [0.37, 0.40]
8 15 219.5 11736 [0.97, 1.0]

Table 7: Gene expression - comparison of methods.

T
FSP Advanced Advanced+AP

time n time n time n
1 0.3 1223 0.5 803 0.3 495
2 0.8 1889 1.1 1257 0.6 838
3 1.2 2209 1.5 1460 0.8 945
4 1.5 2344 1.9 1557 0.9 971
5 1.8 2483 2.1 1610 0.9 974
6 2.1 2483 2.4 1647 1.0 974
7 2.4 2554 2.7 1674 1.1 974
8 2.7 2554 2.9 1690 1.2 974
9 3.0 2626 3.2 1707 1.2 974

10 3.2 2626 3.3 1720 1.3 974

The results are stated in Table 6. Similar to the protein synthesis case study, we see that there is
no increase in the number of states, because the window size already comprises enough states for the
transient analysis. In Table 7 we consider results for the subformula P>0.9(♦[0,t]¬W). We compare the
methods to explore states for the transient until described in this paper (Advanced) with the finite state
projection [21] (FSP) previously used in INFAMY. We see that the time needed is comparable, but the
new algorithm needs to explore less states. This is the case because with the method introduced here
when building the finite truncation we have more control into which direction we explore. In contrast,
the FSP explores the model into all directions at the same time, until enough precision is reached. When
we use the shortcut stop (Advanced+AP), we will not explore states further in which ¬W holds. When
exploring the model, for larger time bounds there is some point at which there are almost only states of
which all successors have been completely explored and states for which ¬W holds. Thus, the maximal
number of states to be explored is constant with this optimization, except for very large time bounds.

12 Model Checking CSL for Markov Population Models

For the protein synthesis, there is almost no difference in the number of states needed by the new
method and FSP. Because it has only one infinite variable, there is just one direction to be explored.
Thus, the new method performs worse, as it needs more effort to explore into this direction.

Using the shortcut method also allows us to handle the formula P>0.9(♦¬W), involving the un-
bounded until operator. Using a precision of 10−6, we needed a total time of 1.5 seconds, reached
974 states and obtained a reachability probability almost 1.0. Using a precision of 10−10, we needed
3.7 seconds and explored 1823 states. For the computation of unbounded until probabilities, efficient
specialized algorithms were used, which explains that we needed less time than for some of the time
bounded experiments.

Exclusive Switch [19] The exclusive switch is a gene regulatory network with one promotor region
shared by two genes. That promotor region can either be unbound (G = 1,G.P1 = 0,G.P2 = 0) or bound
by a protein expressed by gene 1 (G = 0,G.P1 = 1,G.P2 = 0) or gene 2 (G = 0,G.P1 = 0,G.P2 = 1).
If the promotor is unbound, both proteins are expressed, each with rate ρ = 0.05, otherwise only the
protein that is currently bound to the promotor is produced at rate ρ . Proteins degrade at rate δ = 0.005.
Binding happens at rate λ = 0.01 and unbinding at rate µ = 0.008. The transition class structure is given
in Table 8.

j τ j α j(x) v(j)

1 (α1,v1) ρx3 eT
1

2 (α2,v2) ρx3 eT
2

3 (α3,v3) δx1 −eT
1

4 (α4,v4) δx2 −eT
2

5 (α5,v5) λx1x3 (−e1− e3 +
e4)

T

6 (α6,v6) λx2x3 (−e2− e3 +
e5)

T

7 (α7,v7) µx4 (−e4 + e1 +
e3)

T

8 (α8,v8) µx5 (−e5 + e2 +
e3)

T

9 (α9,v9) ρx4 eT
1

10 (α10,v10) ρx5 eT
2

Table 8: Transition classes of the exclusive switch.

This system has two attractor regions, i.e., two spatial maxima in the steady-state probability dis-
tribution over the protein levels, one at P1 = 10,P2 = 0 and the other one at P1 = 0,P2 = 10. We are
interested in the switching time between these two regions. For this, we estimate the time needed for a
90%-quantile of the steady-state probability mass of one of the two attractors to reach the other attractor
region. More precisely, let

start := ||(P1,P2)− (10,0)||22 ≤ 4

end := ||(P1,P2)− (0,10)||22 ≤ 4.

Then, the formula to check is
S>p(P>0.9(♦

[0,t]end) | start).

D. Spieler, E. M. Hahn & L. Zhang 13

Note that since the model is symmetric we only have to check one formula from one attractor to the
other. The corresponding results are depicted in Table 9.

Table 9: Exclusive switch results.

ε t depth time
n

probability bounds
GEOBOUND INFAMY [SL, SU]

10−1

7700 14

5.8

47.9 3414 [0.2, 0.7]
7800 14 48.0 3414 [0.3, 0.9]
7900 14 47.6 3414 [0.5, 1.0]
8000 14 48.1 3414 [0.6, 1.0]

5 ·10−2

7700 12

6.9

128.3 4848 [0.26, 0.49]
7800 12 129.7 4848 [0.43, 0.70]
7900 12 130.5 4848 [0.64, 0.98]
8000 12 131.0 4848 [0.83, 1.0]

10−2

7700 8

86.2

1881.6 14806 [0.30, 0.35]
7800 8 1904.5 14806 [0.50, 0.56]
7900 8 1930.1 14806 [0.75, 0.82]
8000 8 1942.9 14806 [0.96, 1.0]

From these results we may conclude that in half of the cases, most likely the switching time between
the attractor regions is at most 7800 time units, while in almost all cases the switching time is most likely
below 8000 time units, assuming the system has stabilized to a steady state.

5 Related Work

The techniques of this paper are derived from combinations of our previous works [14, 15] and [7, 23].
This work has been inspired and is related by a number of other works.

Finite state projection (FSP) by Munsky and Khammash [21] is closely related. The method also
works on building a finite truncation of the original model. The proofs given work for general truncations,
but in their publications they always use an algorithm which explores the model in a breadth-first way.
They consider time-bounded reachability and no logic like CSL. Adaptive uniformization for CTMCs
was introduced by van Moorsel and Sanders [20]. In this approach uniformization is recalibrated to
perform well when exploring the state space on the fly. Remke et al. [22] have developed algorithms
for model checking CSL against infinite-state CTMCs of QBDs and JQNs. The systems to which the
method is applicable are less general, but the approach is less expensive than our method. To the best of
the authors knowledge, the method to bound the steady-state probabilities using Lyapunov functions is
used here for the first time for general MPMs.

6 Conclusion

In this paper, we have shown how to model check CSL on Markov population models of infinite size.
Without the steady-state operator, the method is also applicable for general CTMC derived from a high-
level specification. We have evaluated our method on models from the biological domain. The method
extends previous related publications by means to check the steady-state operator and gives guarantees
for the truth value obtained.

14 Model Checking CSL for Markov Population Models

References

[1] William J. Anderson (1991): Continuous-Time Markov Chains: An Applications-Oriented Approach.
Springer Verlag.

[2] Adnan Aziz, Kumud Sanwal, Vigyan Singhal & Robert K. Brayton (2000): Model-Checking Continuous-
Time Markov Chains. ACM Trans. Comput. Log 1(1), pp. 162–170.

[3] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns & Joost-Pieter Katoen (2003): Model-Checking
Algorithms for Continuous-Time Markov Chains. IEEE Trans. Software Eng 29(6), pp. 524–541.

[4] P. Ballarini, R. Mardare & I. Mura (2009): Analysing Biochemical Oscillation through Probabilistic Model
Checking. In: Proc. 2nd Workshop From Biology to Concurrency and Back (FBTC’08), Electronic Notes in
Theoretical Computer Science 229 (issue 1), Elsevier, pp. 3–19.

[5] P.-J. Courtois & P Semal (1984): Bounds for the Positive Eigenvectors of Nonnegative Matrices and for their
Approximations by Decomposition. J. ACM 31(4), pp. 804–825, doi:http://doi.acm.org/10.1145/1634.1637.

[6] Pierre-Jacques Courtois (1985): Analysis of Large Markovian Models by Parts. Applications to Queueing
Network Models. In: Messung, Modellierung und Bewertung von Rechensystemen, 3. GI/NTG-Fachtagung,
pp. 1–10.

[7] Tuğrul Dayar, Holger Hermanns, David Spieler & Verena Wolf (2011): Bounding the equilibrium distribution
of Markov population models. Numerical Linear Algebra with Applications 18(6), pp. 931–946.

[8] Nico M. van Dijk (1988): On the finite horizon Bellman equation for controlled Markov jump models with
unbounded characteristics. Stochastic Proc. Appl 28, pp. 141–157.

[9] E. Allen Emerson & Edmund M. Clarke (1982): Using Branching Time Temporal Logic to Synthesize Syn-
chronization Skeletons. Sci. Comput. Program 2(3), pp. 241–266.

[10] P. Glynn & A. Zeevi (2008): Bounding stationary expectations of Markov processes. IMS Collections:
Markov Processes and Related Topics 4, pp. 195–214.

[11] Winfried K. Grassmann (1991): Finding Transient Solutions in Markovian Event Systems Through Random-
ization. In: Numerical Solution of Markov Chains, pp. 357–371.

[12] Peter J. E. Gross & Jean Peccoud (1998): Quantitative modeling of stochastic systems in molecular biology
by using stochastic Petri nets. Proc. Natl. Acad. Sci. 95, pp. 6750–6755.

[13] Takayuki Gunji, Sunyoung Kim, Masakazu Kojima, Akiko Takeda, Katsuki Fujisawa & Tomohiko Mizutani
(2004): PHoM – a Polyhedral Homotopy Continuation Method for Polynomial Systems. Computing 73(1),
pp. 57–77, doi:http://dx.doi.org/10.1007/s00607-003-0032-4.

[14] E. Moritz Hahn, Holger Hermanns, Björn Wachter & Lijun Zhang (2009): INFAMY: An Infinite-State Markov
Model Checker. In: CAV, Springer, pp. 641–647.

[15] E. Moritz Hahn, Holger Hermanns, Björn Wachter & Lijun Zhang (2009): Time-Bounded Model Checking
of Infinite-State Continuous-Time Markov Chains. Fundamenta Informaticae 95, pp. 129–155.

[16] Joost-Pieter Katoen, Daniel Klink, Martin Leucker & Verena Wolf (2007): Three-Valued Abstraction for
Continuous-Time Markov Chains. In: CAV, Lecture Notes in Computer Science 4590, Springer, pp. 311–
324.

[17] Daniel Klink (2010): Three-Valued Abstraction for Stochastic Systems. Ph.D. thesis, RWTH Aachen.

[18] T. L. Lee, T. Y. Li & C. H. Tsai (2008): HOM4PS-2.0: a software package for solving polyno-
mial systems by the polyhedral homotopy continuation method. Computing 83(2-3), pp. 109–133,
doi:http://dx.doi.org/10.1007/s00607-008-0015-6.

[19] A. Loinger, A. Lipshtat, N. Q. Balaban & O. Biham (2007): Stochastic simulations of genetic switch systems.
Physical Review E 75(2), p. 021904.

[20] Aad P. A. van Moorsel & William H. Sanders (1994): Adaptive Uniformization. Communications in Statistics
- Stochastic Models 10(3), pp. 619–647.

http://dx.doi.org/http://doi.acm.org/10.1145/1634.1637
http://dx.doi.org/http://dx.doi.org/10.1007/s00607-003-0032-4
http://dx.doi.org/http://dx.doi.org/10.1007/s00607-008-0015-6

D. Spieler, E. M. Hahn & L. Zhang 15

[21] Brian Munsky & Mustafa Khammash (2006): The Finite State Projection Algorithm for the Solution of the
Chemical Master Equation. Journal of Chemical Physics 124(044104).

[22] Anne Remke, Boudewijn R. Haverkort & Lucia Cloth (2007): CSL Model Checking Algorithms for QBDs.
Theor. Comput. Sci 382(1), pp. 24–41. Available at http://dx.doi.org/10.1016/j.tcs.2007.
05.007.

[23] D. Spieler (2011): Geobound. http://mosi.cs.uni-saarland.de/?page_id=74.
[24] William J. Stewart (1994): Introduction to the Numerical Solution of Markov Chains. Princeton University

Press.
[25] M. Thattai & A. van Oudenaarden (2001): Intrinsic noise in gene regulatory networks. Proceedings of the

National Academy of Science, USA 98(15), pp. 8614–8619.
[26] R. Tweedie (1975): Sufficient conditions for regularity, recurrence and ergodicity of Markov processes. Math.

Proc. Camb. Phil. Soc. 78, pp. 125–130.

http://dx.doi.org/10.1016/j.tcs.2007.05.007
http://dx.doi.org/10.1016/j.tcs.2007.05.007
http://mosi.cs.uni-saarland.de/?page_id=74

	Introduction
	Preliminaries
	Ternary Logic
	Markov Chains
	Markov Population Models
	CSL Model Checking

	Model Checking based on Truncations
	Truncation-based Reachability Analysis
	Truncation-based Steady-state Analysis
	Truncation-based CSL Model Checking

	Experimental Results
	Related Work
	Conclusion

