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Individual-based hybrid modelling of spatially distributed systems is usually expensive. Here,
we consider a hybrid system in which mobile agents spread over the space and interact with
each other when in close proximity. An individual-based model for this system needs to cap-
ture the spatial attributes of every agent and monitor the interaction between each pair of them.
As a result, the cost of simulating this model grows exponentially as the number of agents
increases. For this reason, a patch-based model with more abstraction but better scalability is
advantageous. In a patch-based model, instead of representing each agent separately, we model
the agents in a patch as an aggregation. This property significantly enhances the scalability of
the model. In this paper, we convert an individual-based model for a spatially distributed net-
work system for wild-life monitoring, ZebraNet, to a patch-based stochastic HYPE model with
accurate performance evaluation. We show the ease and expressiveness of stochastic HYPE
for patch-based modelling of hybrid systems. Moreover, a mean-field analytical model is pro-
posed as the fluid flow approximation of the stochastic HYPE model, which can be used to
investigate the average behaviour of the modelled system over an infinite number of simula-
tion runs of the stochastic HYPE model.

1 Introduction

Spatially distributed systems are encountered in a variety of natural and engineering scenarios.
Individual-based modelling of such systems suffers from its low level scalability as the cost of
analysing these models depends on the number of entities in the system. Thus, patch-based mod-
elling in which entities are grouped according to their physical positions can be superior. More
specifically, in a patch-based model, the space is divided into discrete patches (locations, cells,
islands, etc.), the entities within a patch are assumed to share similar attributes. As a result, there is
no need to capture the attributes of every individual. The cost of analysing the model is dependent
on the number of patches instead of entities in the system. This property significantly improves the
scalability of the model.

In this paper, we present a patch-based stochastic HYPE model for a spatially distributed sys-
tem which is originally analysed by an individual-based simulation program. The modelling lan-
guage, stochastic HYPE [9, 2], is a process algebra, meaning that it is equipped with a formal
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interpretation in terms of an underlying mathematical model and equivalence relations. We will
show the ease and expressiveness of stochastic HYPE in patch-based hybrid modelling through the
introduction of the model.

The example system which we consider is ZebraNet [16], a sensor network deployed in central
Kenya to collect data on zebras for biological research. In ZebraNet, zebras are fitted with collars
which collect and transmit data about zebras’ movements, temperatures, etc. Zebras are naturally
distributed over a large area. Whenever two zebras are in close proximity, they exchange all their
stored data (relating to themselves and other zebras) with each other (using a flooding protocol).
Periodically, a mobile base station circulates to collect data from zebras for further biological re-
search. The reason why we choose ZebraNet as our case study is because there is a well-described
existing individual-based simulation program, ZNetSim [16] (written in C) for ZebraNet. In ZNet-
Sim, each zebra’s behaviour is simulated explicitly and separately. This approach is not suitable
for analysing the system when the number of zebras in the system is large. Thus, we build a patch-
based stochastic HYPE model for ZebraNet in which the map is represented by patches and the
zebras’ movement is captured in terms of going from one patch to another. We assume that all
zebras within a patch share data and therefore we can think in terms of the data of that patch. We
use the age of data to denote the length of time since the last time the mobile base station or other
patches received fresh data from a particular patch and use it to compute the success rate of data
delivery to the mobile base station. The patch-based HYPE model is suitable for analysing the
system with an arbitrary number of zebras, and can give accurate performance evaluation, which is
validated by comparing our simulation results with ZNetSim.

In addition, a mean-field analytical model is presented to describe the stochastic HYPE model
for ZebraNet by a set of ordinary differential equations (ODEs). In the mean-field model, we treat
the evolution of all the variables in the stochastic HYPE model as fluid flows. The mean-field
model reveals the average value of the variables in the stochastic HYPE model over an infinite
number of simulation runs. It can give a computationally efficient way for evaluating the average
behaviour of the underlying modelled system.

The paper is structured as follows. After introducing the background of ZebraNet and HYPE
in more detail, we present the patch-based stochastic HYPE model for ZebraNet. We evaluate the
model and compare our experiment result with the original simulation program ZNetSim [16] in
Section 4. Section 5 presents the mean-field analytical model. Finally, Sections 6 and 7 discuss
related work, future research and draw final conclusions.

2 Background

2.1 ZebraNet

ZebraNet is an opportunistic sensor network that is deployed in central Kenya to collect data on
zebras for biological research. In the original simulation program ZNetSim, 50 zebras wearing
special collars, as well as 10 water sources, are randomly placed across a 20km×20km map. Zebras
have three movement patterns, which are grazing, grazing-walking and fast-moving. Different
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movement patterns mean different moving speed and frequency of turning angles. Zebras also get
thirsty once each day. When they get thirsty, they head to their nearest water source directly using
constant speed. After they reach the water source, they move randomly on the map as usual1. The
collars collect data on zebras every three minutes. Moreover, zebras will flood their stored data
for themselves and others to all neighbours when they are discovered within the 100 meters peer
discovery range. A mobile base station, which follows a rectangular route, will periodically collect
data from zebras. More specifically, the zebras transmit all their stored data to the mobile base
station when they are within the radio range of the mobile base station.

The rate of successful data delivery to the mobile base station is one of the most important
performance metrics in ZNetSim. It is strongly related to the radio range of the mobile base station.
The larger the radio range is, the higher rate of data collection that can be achieved. However, larger
radio range also means more battery power consumption of zebra collars. Thus, achieving a high
rate of data collection with a radio range that is as small as possible, is the key design issue of
ZebraNet. Due to limited space, we are only interested in the rate of data delivery to the mobile
base station in this work; other aspects such as bandwidth and storage issues are disregarded.

2.2 HYPE

HYPE is a process algebra designed to capture the behaviour of hybrid systems [9]. A hybrid sys-
tem is one in which both discrete and continuous behaviour are exhibited. In HYPE, the behaviour
of a system is represented by interacting components which may consist of discrete events and
continuous flows. Continuous flows are values in the system that change continuously over time
whereas discrete events are actions that only take place when their activation conditions are satis-
fied. Once the events are activated, they can reset the value of some variables within the system. In
[2], stochastic event conditions are introduced into HYPE so that discrete events can be activated
at a rate that is governed by an exponential distribution. We will show how this stochastic property
makes HYPE suitable for patch-based modelling through the definition of the patch-based HYPE
model in this paper.

In our earlier modelling work on ZebraNet [8], we build an individual-based HYPE model
which captures the dynamics of each zebra in the system. The expressiveness of HYPE can be
seen from the script size of the resulting HYPE model which consists of 440 lines of definition,
compared with ZNetSim which has 5941 lines of code in C. Unfortunately, the individual-based
HYPE model suffers from flow and event explosion. For example, suppose there are n zebras in the
system, the resulting model needs O(n2) number of continuous flows (transmission of data) and
discrete events (activation of peer data exchange) to capture the data exchange between each pair
of zebras. Consequently, when the number of zebras is large, it is extremely expensive to simulate
the model in the simulation tool, SimHyA [3]. This motivates us to build a patch-based model for
ZebraNet which is able to model an arbitrary number of zebras.

1A detailed introduction of zebras’ movement patterns can be found in [16]
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3 The patch-based stochastic HYPE Model

In this section, we present the patch-based stochastic HYPE model for ZebraNet.

3.1 Division of ZebraNet Map into Patches

The first step is to divide the ZebraNet map into patches. As zebras get thirsty and go to their
nearest water source on each day, we infer that if there was only one water source, the distance
between a zebra and the water source should follow a stationary distribution. In order to validate
our inference, we wrote a simulation program (in Java) with only one zebra and one water source
on the map and recorded the distance between the zebra and the water source over a long period.
The zebra’s movement pattern in our simulation program is consistent with [16]. Due to limited
space, we do not introduce the zebras’ movement pattern in detail in this paper.

Figure 1 illustrates the probability distribution of the distance between the zebra and the water
source in two separate simulation runs, which confirms our inference. According to the unique
movement pattern of zebras, we divide the 20km× 20km ZebraNet map into 10 patches based on
the position of the water sources. More specifically, each point in the map belongs to the patch
of its nearest water source. For instance, the map will be divided into patches as is shown in the
Voronoi digram[1] in Figure 2. The positions of water sources tagged with stars are the Voronoi
seeds; the solid black lines denote the rectangular route of the mobile base station.

Figure 1: The probability distribution of the
distance between the zebra and the water source
of two separate simulation runs

Figure 2: The patch-based map of ZebraNet

3.2 Key Parameters

Some key parameters need to be calculated for the patch-based model of ZebraNet. They are:
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• α i: a zebra’s contact rate with the mobile base station in the ith patch.

• β i
j: the peer contact rate between a zebra in the ith patch and a zebra in the jth patch.

• γ i
j: the rate at which a zebra in the ith patch moves to the jth patch.

We wrote a Java simulation program to obtain these parameters. In the simulation, we put the 10
water sources and the mobile base station in the map. There is only one zebra placed in each patch.
The movement of zebras and the mobile base station is simulated following the movement pattern
described in [16]. Contact events between a zebra and the mobile base station are activated when
the zebra is within the radio range of the base station. Zebras’ peer contact events take place when
the zebras in the ith and jth patches are within the peer contact range2. Patch move events occur
when a zebra in the ith patch moves towards the water source of jth patch. In the next day, we
put this zebra migrating from the ith patch to the jth patch back to a random position in the ith
patch again to make sure that there is always one zebra in each patch at the start of a day. As there
are only 10 zebras in this simulation program, the simulation cost is quite low. More specifically,
it only costs about 30 seconds to run a simulation for 10 years’ simulation time length on a dual
CORE i5 machine with 2GB RAM.

3.3 Variables

Next, we present the discrete and continuous variables in the patch-based stochastic HYPE model:

• Ni: the current number of zebras in the ith patch.

• Ai: the current age of data at the mobile base station for the ith patch. It indicates the length
of time since the last time the mobile base station received fresh data (directly or indirectly)
from the ith patch.

• Ai
j: the current age of data at the jth patch for the ith patch. It indicates the length of time

since the zebras in the jth patch received fresh data from the ith patch.

Note that within our model, we assume that each zebra shares all data in its current patch so that
the age of data at the mobile base station for the ith patch can be captured by a single variable
Ai, which is similar for Ai

j. This assumption is validated by a similar simple simulation program
with only one water source and two zebras. The simulation result shows that there are 23,793 out
of 36,500 days that these two zebras have at least one chance to contact each other. According to
the flooding protocol, the frequency that one zebra gets fresh data from another zebra will increase
when the number of zebras grows. As a result, it is reasonable that we treat data of zebras within
one patch as an aggregation.

2To make the contact events countable, the contact event (between two zebras or a zebra and the mobile base station)
is prohibited for 30 minutes after a contact event occurs.
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3.4 Main Ingredients of the HYPE Model

The main ingredients of a HYPE model are: a) the subcomponents which consist of continu-
ous flows and discrete events, b) the event conditions which presents the activation conditions for
each event, c) the controllers which indicate the constraints on events, d) the uncontrolled system
which is the combination of subcomponents, e) the controlled system which is constructed by syn-
chronization of the uncontrolled system and controllers. We will present these ingredients for the
patch-based HYPE model for ZebraNet one by one later in this section.

3.4.1 Subcomponents

Continuous flows are represented by subcomponents in a HYPE model. There are two types of
continuous flows in the model. The first one is the increasing of the age variables Ai, whereas the
second one is the increasing of the age variables Ai

j. We give the definition of the subcomponents
for these flows as follows:

IncAi
def
= init :(Ai,1,const).IncAi i ∈ (0,1, . . . ,n)

IncAi
j

def
= init :(Ai

j,1,const).IncAi
j i, j ∈ (0,1, . . . ,n), i 6= j

where n is a parameter equals to 9, which is always the case hereinafter in this paper. A sub-
component is made up of prefixes. Each prefix consists of two actions. Events are actions which
happen either stochastically or deterministically according to their activation conditions. In the
above subcomponents, the event is init, which is the default initialisation event. Activities are flows
which influence the evolution of the continuous part of the system. An activity is defined as a tuple,
α(X) = (ι ,r, I(X)) which consists of an influence name ι , a rate of change (or influence strength)
r and an influence type name I(X) which indicates how that rate is to be applied to the variable
involved. In the above definition, there is only one distinct activity in each subcomponent. The
influence names are the variables Ai and Ai

j respectively. The influence strength is 1. The influence
type name is the function const3. This means that the age variables Ai and Ai

j increases constantly

from the beginning of the simulation. More specifically, dAi
dt = 1×1 and

dAi
j

dt = 1×1, where t is the
inherent time variable in the simulation.

3.5 Event Conditions

Event conditions capture the discrete behaviour of the system. Each event condition consists of an
activation condition and several variable resets. An activation condition can be either stochastic or
deterministic. A deterministic activation condition is a positive boolean formula containing equal-
ities and inequalities on system variables whereas a stochastic activation condition is a rate that is
governed by an exponential distribution. A variable reset is a conjunction of equality predicates

3[const] = 1
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on variables V and V ′ where V ′ denotes the new value that V will have after the reset, whereas V
denotes the previous value before reset.

In this model, three series of event conditions are required to capture the discrete dynamics of
the system.

First of all, we need event conditions to represent the contact events between the mobile base
station and the zebras in a patch. Thus, for 0≤ i≤ n, for Patch i we have

ec(BaseContact i) =(αi×Ni, A′i = 0∧A′j = min(A j
i ,A j)∧ . . .) j ∈ (0,1, . . . ,n), j 6= i

in which the overline denotation means that the corresponding event is activated stochastically.
Here, as the rate of contact between a patch and the mobile base station depends on the current
number of zebras within the patch, the event BaseContact i will be activated at a rate of αi×Ni

governed by an exponential distribution. On firing, the event will set the age of data for the ith
patch at the base station to 0, which means that the zebras in this patch transfer all their own data to
the base station. Moreover, the age of data for other patches at the base station will also be updated
if the age of data for that patch at the ith patch is smaller than the age of data at the base station.
This captures that the zebra will transfer its stored data for other patches to the base station if it is
fresher than the corresponding data at the base station.

Several event conditions are also required to represent the peer contact events between zebras in
different patches. For example, for i ∈ (0,1, . . . ,n−1), j ∈ (1,2, . . . ,n) and i < j, the peer contact
events between the zebras in Patch i and Patch j can be denoted by the following definition:

ec(PeerContact i j) =(β i
j×Ni×N j, A j′

i = 0∧Ai′
j = 0∧Ak′

i = min(Ak
i ,A

k
j)∧Ak′

j = min(Ak
i ,A

k
j)

∧ . . .) k ∈ (0,1, . . . ,n),k 6= i,k 6= j

Note that this is also a stochastic event governed by an exponential distribution. The activation rate
is β i

j×Ni×N j as it depends on the current number of zebras in both patches. Once the peer contact
event between Patch i and j is activated, the zebras in these two patches will exchange their data.
Therefore, the age of data at the ith patch for the jth patch and the age of data at the jth patch for
the ith patch will be set to 0. Meanwhile, according to the flooding protocol, the zebras will also
exchange their data for other patches. Hence, the age of data for other patches at both patches will
be updated to the smaller one between them.

Lastly, zebras will occasionally move to their neighbouring patches. Thus, for i ∈ (0,1, . . . ,n),
j ∈ (0,1, . . . ,n) and i 6= j, movement of a zebra from the ith patch to the jth patch is captured by
the event condition shown below:

ec(PatchMove i j) =(γ i
j×Ni, N′i = Ni−1∧N′j = N j +1∧Ai′

j = 0∧Ak′
j = min(Ak

j,A
k
i )∧ . . .)

k ∈ (0,1, . . . ,n),k 6= i,k 6= j

PatchMove i j is also a stochastic event with activation rate γ i
j×Ni, as the rate is dependent of the

current number of zebras in the ith patch. Clearly, when a zebra moves from the ith patch to the
jth patch, the number of zebras in the ith patch will decrease by one and the number of zebras in
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the jth patch will increase by one. Moreover, the zebra will bring its data from the ith patch to the
jth patch. Thus, the age of data for the ith patch at the jth patch will be set to 0. Additionally, the
age of data for other patches in the jth patch will also be updated if it is larger than its counterpart
in the ith patch.

3.6 Controllers

Controllers are used to impose causal or temporal constraints on events in HYPE. The controllers
in this model are quite straightforward. They only guarantee that the events in the model take place
in parallel. We give their definition below:

Conbci
def
= BaseContact i.Conbci i ∈ (0,1, ...,n)

Conpci
j

def
= PeerContact i j.Conpci

j
i ∈ (0, ..,n−1), j ∈ (1, ..,n), i < j

Conpmi
j

def
= PatchMove i j.Conpmi

j
i ∈ (0,1, ...,n), j ∈ (0,1, ...,n), i 6= j

Con def
= ...Conbci ...||...Conpc j

i
...||...Conpm j

i
...

where Con is the overall controller, which is the parallel combination of all the controllers in the
model.

3.7 Controlled System

A HYPE model consists of the uncontrolled system in cooperation with controllers. We get the
uncontrolled system by synchronizing the subcomponents in the system:

Sys def
= ...IncAi...BCinit

...IncA j
i ... i ∈ (0,1, ..,n), j ∈ (0,1, ..,n), i 6= j

Finally, the controlled system of the model is described by:

ZebraNetCtrl def
= Sys BC

∗
init.Con

4 Evaluation of the patch-based HYPE Model

The evaluation of the patch-based stochastic HYPE model for ZebraNet is based on four aspects.
The first aspect is the scalability of the model. One can easily find that the model size of the
patch-based model will stay almost invariant as the number of zebras grows, which means that
the scalability of the patch-based model is largely enhanced compared with the individual-based
model. As mentioned previously, the model size is mostly decided by the number of patches in
the model. According to our test, currently the simulation tool for HYPE, SimHyA can load and
simulate the ZebraNet model with at most 35 patches. The second aspect is the ease of building
the model. This can be seen through the model definition, in which different kinds of continuous
flows and discrete events are modelled separately, and are composed to capture the dynamics of
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the whole system. The third aspect is the generality of the model. We believe the framework of
our patch-based stochastic HYPE model can be used to model many systems with similar spatial
features. For example, in the field of opportunistic networks [13], systems such as DakNet [15],
SNC [7] and SWIM [17] can also be modelled in a similar way. The last aspect is the accuracy of
the model in terms of performance evaluation of the modelled system. In this model, the measure
of interest is the rate of data delivery, i.e. the proportion of data collected which is successfully
transferred to the mobile base station. We will explain how this measure is computed from the
patch-based HYPE model later in this section. Furthermore, we will also validate the simulation
result of the patch-based HYPE model by comparing it with ZNetSim.

4.1 Rate of Data Delivery

As mentioned above, we are interested in the rate of data collection in this model. Assume that
each zebra generates k amount of data every time unit, then the total amount of data generated by
the zebras in the whole system is N× k× t, in which N is the total number of zebras in the system,
t is the time length of the simulation. For Patch i, Ai indicates the length of time since the last time
the base station received fresh data from this patch. In other words, Ai denotes for how long the
base station has not received any fresh data from the ith patch. Hence, there is Ni×k×Ai amount of
data that has not been collected from the ith patch at a given moment. Therefore, the total success
rate of data collection by the mobile base station is:

R = 1− ∑
n
i=0 Ni× k×Ai

N× k× t

Clearly, the patch-based HYPE model contains enough information to compute the rate of data
collection by the mobile base station. Moreover, although Ai

j is not very meaningful in the context
of ZebraNet, it might also be very useful in other contexts where the data delivery between patches
is of interest.

4.2 Simulation Result

The simulation tool that is used to run HYPE models is called SimHyA, which was introduced in
[3]. In our simulation, we set the time length of each simulation run to 3 months, and the number of
zebras in the model to 50, to keep it consistent with ZNetSim. The radio range of the mobile base
station is set between 1,000 meters and 10,000 meters in 10 steps. The parameter αi for each radio
range is obtained by the simulation program mentioned in Section 3.2. The rate of data delivery
to the mobile base station for each radio range is obtained from the simulation of the patch-based
HYPE model. For each radio range, we take the average over 20 simulation runs (each simulation
run costs about 30 seconds) with different random positions of water sources and random initial
positions of zebras (in terms of which patch the zebras are initially in). Figure 3 shows our simu-
lation result compared with ZNetSim. As can be seen from the figure, our simulation result is well
matched with ZNetSim. This shows the accuracy of the patch-based HYPE model for ZebraNet.
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Figure 3: Rate of data collection by the mobile base station

5 The Patch-based Mean-field Model

As getting performance metrics from stochastic models often requires to simulate the model a large
number of times and calculate the mean, thus, it is advantageous to represent the stochastic HYPE
model by an analytical model, and draw performance metrics from the analytical model which
needs much smaller computation cost. In this section, we show how to use a mean-field analytical
model to represent the patch-based stochastic HYPE model for ZebraNet. In the mean-field model,
we capture the expected evolution of the data age for patches and the movement of zebras across
patches over time as a set of ODEs.

First of all, the value of variables can be updated both in the continuous flows (the activity
tuples of subcomponents) and the discrete events (the variable resets of event conditions) in the
stochastic HYPE model. Thus, by searching the appearance of a variable in all the continuous
flows and discrete events (more specifically, the influence name in the activity tuples and the left
side of reset equations) in the stochastic HYPE model, we can summarize how this variable evolves
globally in the model. We capture this information in the evolution matrix of the variable.

Here, we illustrate the evolution matrices of variable Ni, Ai and Ai
j in the stochastic HYPE

model for ZebraNet in Table 1, 2, 3 respectively. The type of change or influence type indicates
how the value of the variables is updated by the influence of the discrete events or continuous flows
in the stochastic HYPE model respectively, whereas the rate of change denotes the occurrence rate
of the stochastic events or the influence strength of the continuous flows on the variable. If we
treat the evolution of the variables caused by the discrete events in the stochastic HYPE model as
continuous fluid flows, then, the evolution matrices can be used to generate ODEs that describe
the evolution of variables in the stochastic HYPE model. More specifically, if we denote type of
change by x = x+e, the influence type by e, the rate of change by r, then, the influence of a discrete
event or continuous flow on the variable x can be denoted by e× r. Therefore, the ODE to describe
the evolution of variable x can be obtained by summing up all the influence of the continuous flows
and discrete events on x, which can be represented by dx

dt = ∑e× r.
For example, the evolution of variables in the patch-based stochastic HYPE model for ZebraNet

can be described by the following ODEs, which can be readily derived from the evolution matrices
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Event or flow name Type of change or Influence type Rate of change
PatchMove i j Ni = Ni−1 γ i

j×Ni

PatchMove j i Ni = Ni +1 γ
j

i ×N j

Table 1: The evolution matrix of Ni

in Table 1, 2, 3 respectively.

dNi

dt
= ∑

j 6=i
γ

j
i ×N j−∑

j 6=i
γ

i
j×Ni i ∈ (0,1, ..,n) (1)

dAi

dt
= 1−αi×Ni×Ai−∑

j 6=i
α j×N j×

|Ai−Ai
j|+Ai−Ai

j

2
i ∈ (0,1, ..,n) (2)

dAi
j

dt
= 1−β

i
j×Ni×N j×Ai

j− γ
i
j×Ni×Ai

j− ∑
k 6=i, j

β
j

k ×N j×Nk×
|Ai

j−Ai
k|+Ai

j−Ai
k

2

− ∑
k 6=i, j

γ
k
j ×Nk×

|Ai
j−Ai

k|+Ai
j−Ai

k

2
i ∈ (0,1, ..,n), j ∈ (0,1, ..,n), i 6= j (3)

The ODE for Ni consists of two parts. The first part captures zebras moving from other patches
to Patch i (PatchMove j i), whereas the second part captures zebras moving from Patch i to other
patches (PatchMove i j).

The ODE for Ai consists of three terms. The first term is a constant which describes the rate of
age growth over time (IncAi). The second term denotes the zebras in Patch i directly transmitting
data to the base station (BaseContact i). The third term denotes zebras in other patches sending
their data for Patch i to the base station if their data for Patch i is fresher than the counterpart at the
base station (BaseContact j).

The ODE for Ai
j is made up by five parts. The first part is also a constant describing the rate of

age growth over time (IncAi
j). The second part denotes zebras in the ith patch having peer contact

with zebras in Patch j (PeerContact i j). The third part denotes zebras moving from Patch i to
Patch j, and bringing their data to Patch j (PatchMove i j). The fourth part denotes zebras in the
kth patch having peer contact with zebras in the jth patch (k 6= i,k 6= j), and the zebras in the kth
patch have fresher data for Patch i, thus they transfer their fresher data to the zebras in the jth
patch (PeerContact k j). The last part denotes zebras move from the kth patch to the jth patch
(k 6= i,k 6= j), and the zebras from the kth patch have fresher data for Patch i than the counterpart
at the jth patch, thus they bring their data for Patch i to the jth patch (PatchMove k j).

5.1 Analysis of the Mean-Field Model

The mean-field model is the fluid flow approximation of the stochastic HYPE model. It treats the
evolution of the variables caused by the discrete events in the stochastic HYPE model as fluid flows.
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Event or flow name Type of change or Influence type Rate of change
IncAi 1 1

BaseContact i Ai = 0 (Ai = Ai−Ai) αi×Ni

BaseContact j Ai = min(Ai
j,Ai) (Ai = Ai−

|Ai−Ai
j|+Ai−Ai

j
2 ) α j×N j

Table 2: The evolution matrix of Ai

Event or flow name Type of change or Influence type Rate of change
IncAi

j 1 1
PeerContact i j Ai

j = 0 (Ai
j = Ai

j−Ai
j) β i

j×Ni×N j

PatchMove i j Ai
j = 0 (Ai

j = Ai
j−Ai

j) γ i
j×Ni

PeerContact k j Ai
j = min(Ai

k,A
i
j) (Ai

j = Ai
j−
|Ai

j−Ai
k|+Ai

j−Ai
k

2 ) β
j

k ×N j×Nk

PatchMove k j Ai′
j = min(Ai

j,A
i
k) (Ai

j = Ai
j−
|Ai

j−Ai
k|+Ai

j−Ai
k

2 ) γ k
j ×Nk

Table 3: The evolution matrix of Ai
j

As a result, the mean-field model gives the expected average value of the variables in the stochastic
HYPE model over an infinite number of simulation runs. Figure 4 compares the trajectories of the
average value of A0, A1, A2, A3 generated by the stochastic HYPE model over different numbers
of simulation runs with the corresponding trajectories generated by the mean-field model. It is
clear that with more simulation runs, the trajectories generated by the stochastic HYPE model
become closer to the trajectories from the mean-field model. Thus, the mean-field model provides
an efficient approach to analyse the expected average behaviour of the modelled system.

6 Related Works

There has been some previous work which adopted a similar approach to model spatially distributed
systems. For instance, in [14], the authors use the modelling framework asCSL [5] to characterize
delay in a generic Delay-Tolerant network comprising a mixture of fixed and mobile nodes, in
which they also aggregate nodes as patches (islands). In [6], a patch-based mean-field model is
developed for a gossip network system in which data ageing using real data collected from cabs
in the San Francisco Bay area is studied. The region is divided into 15 regular patches in a grid
with a sixteenth patch representing the rest of the world. In this work, the authors also use the
age of data to measure the efficiency of information dissemination in the network system. Our
work is distinguished from the previous works by the modelling language we used to model the
system, the process algebra stochastic HYPE. By using stochastic HYPE, the patch-based model of
the complex spatially distributed system can be constructed intuitively and compositionally, which
significantly reduces the burden on the modeller.
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(a) value of 1 simulation run compared with mean-field
analysis.

(b) average value of 10 simulation runs compared with
mean-field analysis.

(c) average value of 50 simulation runs compared with
mean-field analysis.

(d) average value of 100 simulation runs compared with
mean-field analysis.

Figure 4: The trajectory of the average value of age of data for Patch 0,1,2,3 at the mobile base sta-
tion over multiple number of simulation runs of the patch-based stochastic HYPE model compared
with the mean-field analysis.

The mean-field model, which is the fluid flow approximation of the stochastic HYPE model,
is inspired by the work in [12], where the author presented a systematic approach to translate
discrete PEPA models to fluid flows described by ODEs. The modelling framework, Markovian
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Agents (MAs), which has been widely used to model spatially distributed wireless sensor networks
[10, 4], is also able to derive patch-based mean-field analytical model for the spatially distributed
systems. In the MA formalism, each agent is described by a CTMC. Agents have their location
attributes and can interact with other agents both locally and in other locations by message passing.
The ODEs are derived to describe the evolution of the agent populations in the same states and
locations, in which fluid analysis method is also used. More recently, a process algebra, MASSPA,
has been defined for this formalism in [11]. In this work, we adopt a similar approach to derive fluid
analysis for a hybrid model in which not only discrete behaviour, but aslo continuous behaviour is
captured.

7 Conclusion and Future Work

We have shown how to use the process algebra, stochastic HYPE to build a patch-based hybrid
model for a spatially distributed system, ZebraNet. The merit of the model is that it significantly
improves the scalability of the model but without significant loss of accuracy, compared with the
individual-based simulation model, ZNetSim. The expressiveness of stochastic HYPE for patch-
based hybrid modelling can be seen through the definition of the model, in which various con-
tinuous flows and discrete events are defined separately and are easily composed to capture the
dynamics of the whole system.

Additionally, we use the evolution matrices of the variables to derive a mean-field analytical
model to represent the patch-based stochastic HYPE model for ZebraNet. The mean-field model
is the fluid flow approximation of the stochastic HYPE model. It can give efficient analysis of the
expected average behaviour of the modelled system over infinite simulation runs. As the mean-
field model is efficient yet accurate in many cases, it is advantageous to design approaches to
derive mean-field models from the definition of stochastic HYPE models systematically. We will
aim to formally define this derivation and add it as a new feature of the SimHyA tool for analysing
stochastic HYPE models in the near future.
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