
Submitted to:
QAPL’14

c© H. Wiklicky
This work is licensed under the
Creative Commons Attribution License.

Quantitative Aspects in Program Synthesis

Herbert Wiklicky
Department of Computing, Imperial College London, London, United Kingdom

herbert@imperial.ac.uk

1 Introduction

The automatic generation or synthesis and optimisation of code is an extremely complex task, neverthe-
less it constitutes to some extend the holy grail of software engineering. In this paper we consider an
approach to this problem via a non-standard semantical model of programs in terms of linear operator
or, simply, as matrices. This allows us to employ well-developed techniques of classical mathemati-
cal (non-linear) optimisation. More concretely we describe here an experimental implementation of the
framework which treats programs more than dynamical systems than as logical entities. In this setting
we then aim in generating or transforming programs on the basis of optimising some of their properties.
In this way we try to end up with code that exhibits the desired properties (at least as much as possible).

The initial motivation of this approach can be traced back to when we considered Kocher’s attack on
the RSA algorithm [3, 5]. In very simple terms [7]: the problems is that the execution time of a certain
algorithm (e.g. modular exponentiation) is based on some secrete or high information (concretely, the
bits in a secrete key) and thus it is possible to reveal or extract the secret by analysing the running time.
For example we have repeatedly, for each bit k[i] to execute code which takes very little or a lot of time:
if k[i] then 〈short〉 else 〈long〉 fi.

In, for example, [1] it has been suggested to obfuscate the time signature by using depleted versions
[short] and [long] of 〈short〉 and 〈long〉, respectively; i.e. code which is executed in the same time as the
original version but which does otherwise not change the state in any way. This padding means that we
are replacing if k[i] then 〈short〉 else 〈long〉 fi by if k[i] then 〈short〉; [long] else [short]; 〈long〉 fi.
The result is then that both branches always take the same maximal time to execute.

As there is a tradeoff between how easy it is to obtain the secrete (key) from the time signature and
the increased running time we suggested to introduce the extra time randomly. The result is a whole
manifold of programs P(p) in which the padding is performed with a certain probability p or the original
code is executed with probability 1− p. The idea is now to find the p∗ for which we have the optimal
balance between extra cost and security.

The purpose of this paper is to extend this idea to allow the generation or transformation of programs
as an optimisation problem. We will consider a whole family of programs parameterised by a large
number of variables λi and try to identify those which fulfil certain requirements in an optimal way.

2 The Language(s)

Program synthesis goes back to the work by Manna and Waldinger in the late 1960s and 70s. It received
renewed interest in the last years, in particular in the area of protocol and controller synthesis, see e.g.
the recent special issue on Synthesis [2] where various approaches towards program synthesis presented.
To some degree our approach is related to Program Sketching [10], we only provide a ‘sketch’ of a

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Quantitative Aspects in Program Synthesis

program which leaves certain parts (blocks, statements) open. In order to fulfil a given specification
or to meet certain performance objectives one can employ various algorithms in order to determine the
appropriate concrete statements, chosen from a set of potential, possible implementations. In this setting
one can distinguish between an implementation language and a specification language which allows
the description of certain templates (including valid alternative implementations) and of assertions, i.e.
constraints the implementation should ultimately fulfil.

Our approach uses the same language to specify implementations and templates. We use a language
which allows for a probabilistic (rather than a non-deterministic) choice. If we utilise this to describe
an implementation the idea is that the choice is made at run time according to a given probability (by a
‘coin-flipping’ device) while as a specification language the probabilities are chosen a priori, at compile-
time such as to optimise the behaviour or performance. This could be summarised as: Probabilities are
variables in the context of synthesis and constants when executed. The objectives of a synthesis tasks
can be expressed by any appropriate function on the space of possible semantics (which in our case has
the structure of a vector space or linear algebra), which we see as some kind of semantical abstraction.

We consider a labelled version of the standard (probabilistic) procedural language as one can find it
for example in [8]. Further details can be found in the appendix or e.g. in [4, 6].

S ::= [skip]` | [x := f (x1, . . . ,xn)]
` | [x ?= ρ]` | S1; S2 | [choose]` p1 : S1 or p2 : S2 ro

| if [b]` then S1 else S2 fi | while [b]` do S od

The Linear Operator Semantics (LOS) is intended to model probabilistic computations we therefore
have to consider probabilistic states. These describe the situation about the computation ate any given
moment in time. A classical state s∈ State = Var→Value associates a certain value s(x) with a variable
x. We assume, in order to keep the mathematical treatment as simple as possible, that the possible values
are finite, e.g. Value = {−MININT, . . . ,MAXINT}. A probabilistic state σ ∈ ProbState = State→
[0,1] can be seen as a probability distribution on classical states or as a (normalised) vector in the free
vector space V (Value) over Value.

The set of probabilistic states forms a (sub-set) of a (finite-dimensional) vector (Hilbert) space. The
semantics T(P) = [[P]] of a program P is a linear map or operator on this vector space which encodes the
generator of a Discrete Time Markov Chain (DTMC). The construction of the LOS semantics utilises
the tensor product construction “⊗”. The tensor product – more precisely, the Kronecker product –
of an n×m matrix A = (Ai j) and an n′×m′ matrix B = (Bkl) is constructed as an nn′×mm′ matrix
A⊗B = (Ai jB), i.e. each entry Ai j in A is multiplied with a copy of the matrix or block B. For further
details we refer e.g to [9, Chap. 14].

Given a program P, our aim is to define compositionally a matrix representing the program behaviour
as a DTMC. The domain of the associated linear operator T(P) is the space of probabilistic configura-
tions, that is distributions over classical configurations, defined by Dist(Conf) = Dist(Xv ×Lab) ⊆
`2(Xv×Lab), where we identify a statement with its label, or more precisely, an SOS configuration
〈S,s〉 ∈ Conf with the pair 〈s, init(S)〉 ∈ Xv×Lab. The basic building blocks are the identity matrix I
and the matrix units Ei j, a basic update matrix U(c) which assigns to some variable a constant value c,
and for Boolean expression b a diagonal projection matrix P(b) which filters out those (classical) states
which fulfil b, cf. the appendix or e.g. [4, 6]. We denote by ei the unit vector with (ei)i = 1 and zero
otherwise. As we represent distributions by row vectors we use post-multiplication, i.e. T(x) = x ·T.

We first define a multi-variable versions of test matrices P and update matrices U via the tensor
product (see in the appendix or e.g. [4, 6]). With the help of these auxiliary matrices we can then define
for every program P the matrix T(P) of the DTMC representing the program executions as the sum of
the effects of the individual control flow steps. For each individual control flow step it is of the form
[[[B]`]]⊗E`,`′ or [[[B]`]]⊗E`,`′ , where (`,`′) or (`,`′) ∈F (P) and [[[B]`]] represents the semantics of the

H. Wiklicky 3

[[[x := e]`]]] = U(x← e) [[[v ?= ρ]`]] = ∑c∈X ρ(c)U(x← c)
[[[b]`]] = P(b = false) [[[b]`]] = P(b = true)

[[[skip]`]] = [[[skip]`]] = [[[x := e]`]]] = [[[v ?= ρ]`]] = I

Table 1: Elements of the LOS

block B labelled by `. The matrix E`,`′ represents the control flow from label ` to `′; it is a finite l× l
matrix, where l is the number of (unique) distinct labels in P. The definitions of [[[B]`]] and [[[B]`]] are
given in Table 3. Based on the local semantics of each labelled block, i.e. [[[B]`]] and [[[B]`]], in P we can
define the LOS semantics of P as:

T(P) = ∑
(`,`′)∈F (P)

[[[B]`]]⊗E`,`′+ ∑
(`,`′)∈F (P)

[[[B]`]]⊗E`,`′

3 An Example: Swapping Variables

We consider a simple situation to illustrate how non-linear optimisation can be used to general or trans-
form programs such that certain requirements are fulfilled.

Given a number of basic blocks we aim in constructing a (small) program which exchanges two
variables x and y. We assume – to keep the setting as simple as possible – that x and y can only take
two values 0 and 1. If we consider the state space for these two variables we need to consider the
tensor product V ({0,1}×{0,1}) = V ({0,1})⊗V ({0,1}) = R2⊗R2 = R4. In this four dimensional
space the first dimension corresponds to the (classical) state s1 = [x 7→ 0,y 7→ 0], the second one to
s2 = [x 7→ 0,y 7→ 0], the third to s3 = [x 7→ 1,y 7→ 0], and the forth to s4 = [x 7→ 1,y 7→ 1].

The swapping operation we aim to implement is thus represented by the matrix

S =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

If the values of x and y are the same nothing happens when we swap them, thus the entry 1 in the diagonal
corresponding to the first and forth classical state. For the second and third coordinate we only have to
exchange the probabilities associated to these two classical states.

We consider a few basic building blocks with which we aim to achieve the task of implementing this
simple specification. We try to have several options to achieve our aim and thus allow also for a buffer
variable z which we might use to swap x and y. Another well known way is to use the ‘exclusive or’ (xor)
to swap x and y. In our case we implement xor as x⊕ y = (x+ y) mod 2.

What we aim for is a program P of the form (allowing in the obvious way for an n-array choice):

choose λ1,1 : S1 or . . . or λ1,13 : S23; choose λ2,1 : S1 or . . . or λ2,13 : S13; choose λ3,1 : S1 or . . . or λ3,13 : S13

where we have 13 different elementary blocks Si, j which we enumerate as follows:

[skip]1 [x := y]2 [x := z]3 [y := x]4 [y := z]5 [z := x]6 [z := y]7

[x := (x+ y) mod 2]8 [x := (x+ z) mod 2]9 [y := (y+ x) mod 2]10

[y := (y+ z) mod 2]11 [z := (z+ x) mod 2]12 [z := (z+ y) mod 2]13

4 Quantitative Aspects in Program Synthesis

such that limt→∞ T(P)t = S⊗Ei, f , i.e. the program does in three steps what we expect from S (and
control transfers from the initial label i to the final f). We ignore the control flow, we are just interested
in the transfer functions associated to the basic blocks. The LOS program semantics of the program we
aim in generating is made up from this 13 transfer functions F1 . . .F13 with F j = [[S j]], i.e.

T =
3

∑
i=1

Ti with Ti =
13

∑
j=1

λi jF j

Each of the Fi are constructed as 8× 8 matrices on the tensor product space V ({0,1}× {0,1}×
{0,1}) = V ({0,1})⊗V ({0,1})⊗V ({0,1}) =R2⊗R2⊗R2 =R8. As we do not care what value z has
in the end we can abstract it away using a technique called Probabilistic Abstract Interpretation (PAI)
using the abstraction operator A = I⊗ I⊗A f (with A f the forgetful abstraction) and its concretisation G
given by the Moore-Penrose pseudo-inverse (see [4] or appendix).

With this our main objective function, describing the requirement that we want a program T(λi j)
which implements the swap of x and y, is given by: [Φ00(λi j) = ‖A†T(λi j)A− S‖2.We also use a
general objective function which penalises for reading or writing to the third variable z: Φρω(λi j) =
‖A†T(λi j)A− S‖2 + ρR(λi j) + ωW (λi j),where the function R and W determine the probability that
in each step of our program the variable z is read or written to respectively. Define two projections
Pr = diag(0,0,1,0,1,0,0,0,1,0,1,1,1) and Pw = diag(0,0,0,0,0,1,1,0,0,0,0,1,1) then R(λi j) =
‖∑

3
i=1(λ1 j)Pr‖1 and W (λi j) = ‖∑

3
i=1(λ1 j)Pw‖1.

The optimisation problem we thus have to solve is given by

minΦρω(λi j) subject to: ∑
j

λi j = 1 ∀i = 1,2,3 and 0≤ λi j ≤ 1 ∀i = 1,2,3, j = 1, . . . ,13

Successful Transformation If we start with a swap which uses z, like [z := x]6; [x := y]2; [y := z]5

which corresponds to 39 values for λi j below (each row corresponds to the three computational steps, and
each column to the weight of each of the 13 possible blocks).For minΦ11 we get after 12 iterations of the
standard non-linear optimisation algorithm in octave a program transformation namely the following
set of λi j: 0 0 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0

 7→
 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0

This corresponds to the program: [y := (y+ x) mod 2]10; [x := (x+ y) mod 2]8; [y := (y+ x) mod 2]10

which indeed also swaps x and y but does not use the variable z in any way.

Stuck Transformations. However, sometimes the optimisation does not work, we get stuck in a local
minimum. For example, in the case we start with [y := x]4; [x := y]2; [z := y]7 and try to minimise Φ00
we get (in 14 iterations) indeed a program which satisfies the swapping condition: 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0

 7→
 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0

corresponding to [z := y]7; [y := x]4; [x := z]3. But for Φ11 or Φ100,100 we get no improvement, we
remain stuck with the initial program.

H. Wiklicky 5

References
[1] Johan Agat (2000): Transforming out timing leaks. In: Proceedings of POPL’00, ACM Press, pp. 40–53.
[2] Rastislav Bodik & Barabara Jobstmann (2013): Algorithmic Program Synthesis: Introduction. Int. J. Softw.

Tools Technol. Transfer 15, pp. 397–411.
[3] Alessandra Di Pierro, Chris Hankin & Herbert Wiklicky (2008): Quantifying Timing Leaks and Cost Opti-

misation. In: Proceedings of ICICS’08, LNCS 5308, Springer Verlag, pp. 81–96.
[4] Alessandra Di Pierro, Chris Hankin & Herbert Wiklicky (2010): Probabilistic Semantics and Analysis. In:

Formal Methods for Quantitative Aspects of Programming Languages, LNCS 6155, Springer Verlag, pp.
1–42.

[5] Alessandra Di Pierro, Chris Hankin & Herbert Wiklicky (2011): Probabilistic timing covert channels: to
close or not to close? International Journal of Information Security 10(2), pp. 83–106.

[6] Alessandra Di Pierro & Herbert Wiklicky (2013): Semantics of Probabilistic Programs: A Weak Limit Ap-
proach. In Chung chieh Shan, editor: Proceedings of APLAS13 – 11th Asian Symposium on Programming
Languages and Systems, Lecture Notes in Computer Science 8301, Springer Verlag, pp. 241–256.

[7] Paul C. Kocher (1996): Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems.
Lecture Notes in Computer Science 1109, pp. 104–113.

[8] Dexter Kozen (1981): Semantics of Probabilistic Programs. J. Comput. Syst. Sci. 22(3), pp. 328–350.
[9] S. Roman (2005): Advanced Linear Algebra, 2nd edition. Springer Verlag.

[10] Armando Solar-Lezama (2013): Program Sketching. Int. J. Softw. Tools Technol. Transfer 15, pp. 475–495.

6 Quantitative Aspects in Program Synthesis

A The Language

A.1 Syntax

We consider a labelled version of the standard (probabilistic) procedural language as one can find it for
example in [8]. Further details can be found, e.g., [4]

S ::= [skip]`

| [x := f (x1, . . . ,xn)]
`

| [x ?= ρ]`

| S1; S2
| [choose]` p1 : S1 or p2 : S2 ro

| if [b]` then S1 else S2 fi

| while [b]` do S od

Table 2: The Labelled Syntax

The statement skip does not have any operational effect but can be used, for example, as a place-
holder in conditional statements. We have the usual (deterministic) assignment x := e, sometimes also in
the form x := f (x1, . . . ,xn).

In the random assignment x ?= ρ , the value of a variable x is set to a value according to some
random distribution ρ . In [8] it is left open how to define or specify distributions ρ in detail. We will
use occasionally an ad-hoc notation as sets of tuples {(vi, pi)} expressing the fact that value vi will be
selected with probability pi; or just as a set {vi} assuming a uniform distribution on the values vi. It might
be useful to assume that the random number generator or scheduler which implements this construct can
only implement choices over finite ranges, but in principle we can also use distributions with infinite
support. For the rest we have the usual sequential composition, conditional statement and loop. We leave
the detailed syntax of functions f or expressions e open as well as for boolean expressions or test b in
conditionals and loop statements. For each (labelled) statement in this language we identify the initial
and final label

A.2 Semantics

The Linear Operator Semantics (LOS) is intended to model probabilistic computations we therefore have
to consider probabilistic states. These describe the situation about the computation at any given moment
in time. Our model is based on a discrete time model. The information will specify the probability that
the computational system in question is in a particular classical state.

A classical state s ∈ State = Var→ Value associates a certain value s(x) with a variable x. We
assume, in order to keep the mathematical treatment as simple as possible, that the possible values are
finite, e.g. Value = {−MININT, . . . ,MAXINT}. A probabilistic state σ ∈ ProbState = State→ [0,1]
can be seen as a probability distribution on classical states or as a (normalised) vector in the free vector
space V (Value) over Value.

The set of probabilistic states forms a (sub-set) of a (finite-dimensional) vector (Hilbert) space. The
semantics T(P) = [[P]] of a program P is a linear map or operator on this vector space which encodes
the generator of a Discrete Time Markov Chain (DTMC). DTMC are non-terminating processes: it is
assumed that there is always a next state and the process goes on forever. In order to reflect this property
in our semantics, we introduce a terminal statement stop which indicates successful termination. Then

H. Wiklicky 7

the termination with a state s in the classical setting is represented here by reaching the final configuration
〈stop,s〉which then ‘loops’ forever after. This means that we implicitly extend a statement S to construct
full programs of the form P≡ S; [stop]`

∗
.

The tensor product is an essential element of the description of probabilistic states and the semantical
operator T(P). The tensor product – more precisely, the Kronecker product, i.e. the coordinate based
version of the abstract concept of a tensor product – of two vectors (x1, . . . ,xn) and (y1, . . . ,ym) is given
by (x1y1, . . . ,x1ym, . . . ,xny1, . . . ,xnym) an nm dimensional vector. For an n×m matrix A = (Ai j) and an
n′×m′ matrix B = (Bkl) we construct similarly an nn′×mm′ matrix A⊗B = (Ai jB), i.e. each entry Ai j

in A is multiplied with a copy of the matrix or block B. For further details we refer e.g to [9, Chap. 14].
Given a program P, our aim is to define compositionally an infinite matrix representing the pro-

gram behaviour as a DTMC. The domain of the associated linear operator T(P) is the space of prob-
abilistic configurations, that is distributions over classical configurations, defined by Dist(Conf) =
Dist(Xv×Lab) ⊆ `2(Xv×Lab), where we identify a statement with its label, or more precisely, an
SOS configuration 〈S,s〉 ∈ Conf with the pair 〈s, init(S)〉 ∈ Xv×Lab.

Among the building blocks of the construction of T (P) are the identity matrix I and the matrix units
Ei j containing only a single non zero entry (Ei j)i j = 1 and zero otherwise. We denote by ei the unit
vector with (ei)i = 1 and zero otherwise. As we represent distributions by row vectors we use post-
multiplication, i.e. T(x) = x ·T.

A basic operator is the update matrix U(c) which implements state changes. The intention is that
from an initial probabilistic state σ , e.g. a distribution over classical states, we get a new probabilistic
state σ ′ by the product σ ′ = σ ·U. The matrix U(c) implements the deterministic update of a variable to
a constant c via (U(c))i j = 1 if ξ (c) = j and 0 otherwise, with ξ : X→N the underlying enumeration of
values in X. In other words, this is a matrix which has only one column (corresponding to c) containing
1s while all other entries are 0. Whatever the value of a variable is, after applying U(c) to the state
vector describing the current situation we get a point distribution expressing the fact that the value of our
variable is now c.

We also define for any Boolean expression b on X a diagonal projection matrix P with (P(b))ii = 1 if
b(c) holds and ξ (c) = i and 0 otherwise. The purpose of this diagonal matrix is to “filter out” only those
states which fulfil the condition b. If we want to apply an operator with matrix representation T only if
a certain condition b is fulfilled then pre-multiplying this P(b) ·T achieves this effect.

In Table 3 we first define a multi-variable versions of the test matrices and the update matrices via
the tensor product ‘⊗’.

With the help of the auxiliary matrices we can now define for every program P the matrix T(P) of
the DTMC representing the program executions as the sum of the effects of the individual control flow
steps. For each individual control flow step it is of the form [[[B]`]]⊗E`,`′ or [[[B]`]]⊗E`,`′ , where (`,`′)

or (`,`′) ∈ F (P) and [[[B]`]] represents the semantics of the block B labelled by `. The matrix E`,`′

represents the control flow from label ` to `′; it is a finite l× l matrix, where l is the number of (unique)
distinct labels in P.

The definitions of [[[B]`]] and [[[B]`]] are given in Table 3. The semantics of an assignment block is
obviously given by U(x← e). For the random assignment we simply take the linear combination of
assignments to all possible values, weighted by the corresponding probability given by the distribution
ρ . The semantics of a test block [b]` is given by its positive and its negative part, both are test operators
P(b = true) and P(b = false) as described before. The meaning of [[[B]`]] is non-trivial only for tests
b while it is the identity for all the other blocks. The positive and negative semantics of all blocks is
independent of the context and can be studied and analysed in isolation from the rest of the program P.

8 Quantitative Aspects in Program Synthesis

P(s) =
v⊗

i=1

P(s(xi))

P(e = c) = ∑
E (e)s=c

P(s)

U(xk← c) =
k−1⊗
i=1

I⊗U(c)⊗
v⊗

i=k+1

I

U(xk← e) = ∑
c

P(e = c)U(xk← c)

[[[x := e]`]]] = U(x← e) [[[v ?= ρ]`]] = ∑c∈X ρ(c)U(x← c)
[[[b]`]] = P(b = false) [[[b]`]] = P(b = true)

[[[skip]`]] = [[[skip]`]] = [[[x := e]`]]] = [[[v ?= ρ]`]] = I

Table 3: Elements of the LOS

Based on the local (forward) semantics of each labelled block, i.e. [[[B]`]] and [[[B]`]], in P we can
define the LOS semantics of P as:

T(P) = ∑
(`,`′)∈F (P)

[[[B]`]]⊗E`,`′+ ∑
(`,`′)∈F (P)

[[[B]`]]⊗E`,`′

A minor adjustment is required to make our semantics conform to the DTMC model. As paths in a
DTMC are maximal (i.e. infinite) in the underlying directed graph, we will add a single final loop via a
virtual label `∗. This corresponds to adding to T(P) the factor I⊗E`∗,`∗ .

B The XOR Example

B.1 Further Details

The eight dimensional state space has a base which corresponds to the (classical) states:

s1 . . . [x 7→ 0,y 7→ 0,z 7→ 0]

s2 . . . [x 7→ 0,y 7→ 0,z 7→ 1]

s3 . . . [x 7→ 0,y 7→ 1,z 7→ 0]

s4 . . . [x 7→ 0,y 7→ 1,z 7→ 1]

s5 . . . [x 7→ 1,y 7→ 0,z 7→ 0]

s6 . . . [x 7→ 1,y 7→ 0,z 7→ 1]

s7 . . . [x 7→ 1,y 7→ 1,z 7→ 0]

s8 . . . [x 7→ 1,y 7→ 1,z 7→ 1]

The abstraction A and its concretisation A† are concretely given by:

A =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⊗(1
1

)

H. Wiklicky 9

and its concretisation function given by the Moore-Penrose pseudo-inverse:

G = A† =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⊗ (1
2

1
2

)

B.2 Concrete Implementation

The program we implement concretely with and which contains all our basic blocks is:

var

x : {0,1};

y : {0,1};

z : {0,1};

begin

skip;

#

x := y;

x := z;

y := x;

y := z;

z := x;

z := y;

#

x := (x+y)%2;

x := (x+z)%2;

y := (y+x)%2;

y := (y+z)%2;

z := (z+x)%2;

z := (z+y)%2;

end

Executing a OCAML tool pwc on this program results in the output

pwc 0.95 - pWhile compiler - (c) 2008-13 H.Wiklicky

1: skip

2: x := y

3: x := z

4: y := x

5: y := z

6: z := x

7: z := y

8: x := ((x + y) % 2)

9: x := ((x + z) % 2)

10: y := ((y + x) % 2)

10 Quantitative Aspects in Program Synthesis

11: y := ((y + z) % 2)

12: z := ((z + x) % 2)

13: z := ((z + y) % 2)

(1, 1., 2)

(2, 1., 3)

(3, 1., 4)

(4, 1., 5)

(5, 1., 6)

(6, 1., 7)

(7, 1., 8)

(8, 1., 9)

(9, 1., 10)

(10, 1., 11)

(11, 1., 12)

(12, 1., 13)

Identifiers:

x in {0, 1}

y in {0, 1}

z in {0, 1}

x starts at 1

y starts at 2

z starts at 3

Done with ‘XOREx.pw’.

	Introduction
	The Language(s)
	An Example: Swapping Variables
	The Language
	Syntax
	Semantics

	The XOR Example
	Further Details
	Concrete Implementation

