
Submitted to:
QAPL 2014

c© D. Guck, M. Timmer & S.C.C. Blom
This work is licensed under the
Creative Commons Attribution License.

Extending Markov Automata with State and Action Rewards∗

Dennis Guck Mark Timmer Stefan Blom

Formal Methods and Tools, Faculty of EEMCS
University of Twente, The Netherlands

{d.guck,m.timmer,s.c.c.blom}@utwente.nl

This presentation introduces the Markov Reward Automaton (MRA), an extension of the Markov
automaton that allows the modelling of systems incorporating rewards in addition to nondeterminism,
discrete probabilistic choice and continuous stochastic timing. Our models support both rewards that
are acquired instantaneously when taking certain transitions (action rewards) and rewards that are
based on the duration that certain conditions hold (state rewards).

In addition to introducing the MRA model, we extend the process-algebraic language MAPA to
easily specify MRAs. Also, we provide algorithms for computing the expected reward until reaching
one of a certain set of goal states, as well as the long-run average reward. We extended the MAMA
tool chain (consisting of the tools SCOOP and IMCA) to implement the reward extension of MAPA
and these algorithms.

1 Introduction

The Markov automaton [7] is a novel formalism for modelling systems incorporating nondeterminism,
discrete probabilistic choice as well as continuous stochastic timing. They provide a well-defined seman-
tics for generalised stochastic Petri nets (GSPNs) [6], dynamic fault trees [3] and the domain-specific
language AADL [4]. Recent work demonstrated that they are suitable for modelling and analysing dis-
tributed algorithms such as a leader election protocol, performance models such as a polling system and
even hardware models such as a processor grid [15].

Notions of strong, weak and branching bisimulation have been defined to equate behaviourally equiv-
alent Markov automata [7, 13, 5, 15], and the process algebra MAPA has been defined for easily specify-
ing large Markov automata in a concise manner [16]. Several types of reduction techniques [12, 17] have
been defined for the MAPA language and implemented in the tool SCOOP, optimising specifications to
decrease the state space of the corresponding Markov automaton while staying bisimilar [14, 9]. This
way, Markov automata can be generated efficiently in a direct way (as opposed to first generating a large
model and then reducing), thus partly circumventing the omnipresent state space explosion. The tool
IMCA [8, 9] was developed to analyse the concrete Markov automata that are generated by SCOOP. It
includes algorithms for computing time-bounded reachability probabilities, expected times and long-run
averages for sets of goal states within an MA.

While the framework in place already works well for computing probabilities and expected durations
until certain events, it did not yet support rewards or costs. Such extensions have shown valuable in
the past, for instance leading to the tool MRMC [11] for model checking reward-based properties over
CTMCs [10] and DTMCs [1] with rewards.

∗This work has been supported by the NWO project SYRUP (612.063.817), by the STW-ProRail partnership program
ExploRail under the project ArRangeer (12238), and by the DFG/NWO bilateral project ROCKS (DN 63-257).

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


2 Extending Markov Automata with State and Action Rewards

2 Approach

We extend the formalism of Markov automata with two reward functions: an action-reward function
and a state-reward function. The action-reward function assigns a rational number to each transition,
representing an instantaneous reward that is obtained directly when taking that transition1. The state-
reward function assigns a rational number to each state, representing a reward that is obtained over time
during a stay of one time unit in that state.

We lifted most of the existing framework for efficiently modelling, generating and analysing Markov
automata to the realm of rewards. Three main improvements were made: (1) the MAPA language was
extended to include rewards, (2) the SCOOP tool including most of its reduction techniques was extended
to efficiently generate MRAs, and (3) the IMCA tool was extended with algorithms for computing ex-
pected and long-run rewards. We discuss these extensions in more detail below. The only aspect that
was not generalised yet was confluence reduction. It requires a generalised notion of weak or branching
bisimulation that is beyond the scope of this paper and left for future work.

2.1 Modelling MRAs with MAPA

The MAPA language is based on a small core of process operators, modelling nondeterministic choice,
probabilistic choice and stochastic delay. Additionally, it supports multiple processes to be defined,
each having its own set of data parameters. Processes can call each other sequentially or be composed in
parallel. Additionally, the data parameters of a process can be used for conditionally restricting behaviour
and for parameterising actions. We refer to [16] for the detailed syntax and semantics.

We extended the MAPA language in two ways: (1) actions can now be decorated with a numerical
expression to generate action-based rewards, and (2) state-based rewards can now be modelled by provid-
ing pairs of conditions and numerical expressions — to each state that satisfies one of these conditions,
the corresponding reward is assigned. All conditions and numerical expressions may depend on one or
more of a process’ data variables, allowing rewards to be modelled concisely. If a state satisfies multiple
conditions, the sum of their rewards is taken.

Example 2.1. Consider a salesman that has a certain hourly rate and a bonus for every sale he makes.
He can concisely be modelled by the following MAPA specification (with the extensions underlined).

Salesman(hourlyRate : {10..20}, working : Boolean) =

not(working) =⇒ startWorking · Salesman(working := true )

+ working =⇒ (0.2) · stopWorking · Salesman(working := false)

+ (1.0) · sell@10 · Salesman
stateReward working -> hourlyRate

init Salesman(15, false)

Note that we included an action-based reward of 10 for the action sell and a state reward equal to
the hourly rate for each state in which the variable working is set to true. The parenthesized rational
numbers indicate Markovian rates; a sale is made on average once per time unit, while the salesman on
average works 1

0.2 = 5 time units.

1In the formalism of Markov automata there may be several transitions from a state all having the same action label. We
allow these to have distinct rewards. Hence, the term transition-reward function would have made more sense, but for historical
reasons we decided to stick with the more common terminology of action rewards.



D. Guck, M. Timmer & S.C.C. Blom 3

2.2 Generating MRAs with SCOOP

The framework implemented by SCOOP was extended with rewards relatively easily. The action-based
rewards are stored as part of the transitions, and the state-based rewards are represented internally by
self-loops. During state space generation (constructing an IMCA input file), these self-loops are removed
again and the state rewards are incorporated in the output.

We generalised most of the reduction techniques implemented by SCOOP: constant elimination,
summation elimination, expression simplification and dead variable reduction. These techniques mainly
reduce MAPA specifications by either omitting or resetting variables, based on their value (temporarily)
not being relevant anymore. We updated the heuristics for checking this relevance by including the use of
variables in rewards. Additionally, at this point we excluded confluence reduction from being used in the
presence of rewards, since the correctness of this technique relies branching bisimulation — a concept
that has not yet been defined for MRAs.

2.3 Analysing MRAs with IMCA

The analysis capabilities of IMCA are extended to deal with MRAs. It is possible to compute the ex-
pected reward — the expected reward gained until reaching a set of goal states — as well as the expected
long-run average reward — the expected average reward gained in a set of goal states in the long run.

The algorithm for expected reward is an extension of the existing expected time computation [9].
The basic idea is to accumulate the action and state rewards until a goal state is reached. Therefore, we
distinguish between probabilistic and Markovian states. For probabilistic states we have to consider the
reward of an action when resolving a nondeterministic choice and for Markovian states the sojourn time
must be weighted with the state reward.

The algorithm for the expected long-run average reward is an extension of the long-run average
computation [9]. The main idea here is to not only consider the time spent in a state, but also the
reward gained by staying in that state, as well as the impact of taking a specific action. Therefore, the
cost function of the long-run average computation must be adjusted, such that we consider the average
reward in the goal states against the average time spent in all states in the long run. Additional, we can
give the long-run reward ratio by comparing the average reward in the goal states against the average
reward in all states in the long run.

3 Conclusions and Challenges

We extended a framework for efficient modelling, generation and analysis of Markov automata with
state-based and action-based rewards. We generalised the formal model, as well as the MAPA language
and most of its reduction techniques. Also, we implemented algorithms for computing expected rewards
as well as long-run average rewards.

Future work may focus on case studies demonstrating the benefits of our extensions. Additionally,
it would be useful to define notions of weak and branching bisimulation for MRAs and generalise con-
fluence reduction for an even more efficient framework for working with rewards. We are also currently
working on incorporating SCOOP in the LTSmin toolset [2]. This tool has extensive functionality for
very efficient state space generation, optimising memory usage and employing multi-core and distributed
model checking techniques. Preliminary results indicate significant speedups when generating MRAs.



4 Extending Markov Automata with State and Action Rewards

References
[1] S. Andova, H. Hermanns & J.-P. Katoen (2003): Discrete-Time Rewards Model-Checked. In: Proc. of the 1st

Int. Workshop on Formal Modeling and Analysis of Timed Systems (FORMATS), LNCS 2791, Springer, pp.
88–104, doi:10.1007/978-3-540-40903-8 8.

[2] S. C. C. Blom, J. C. van de Pol & M. Weber (2010): LTSmin: Distributed and Symbolic Reachability. In:
Proc. of the 22nd Int. Conf. on Computer Aided Verification (CAV), LNCS 6174, Springer, pp. 354–359.

[3] H. Boudali, P. Crouzen & M. I. A. Stoelinga (2010): A Rigorous, Compositional, and Extensible Framework
for Dynamic Fault Tree Analysis. IEEE Transactions on Dependable and Secure Computing 7(2), pp. 128–
143, doi:10.1109/TDSC.2009.45.

[4] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll & M. Roveri (2011): Safety, Dependabil-
ity and Performance Analysis of Extended AADL Models. The Computer Journal 54(5), pp. 754–775,
doi:10.1093/comjnl/bxq024.

[5] Y. Deng & M. Hennessy (2013): On the semantics of Markov automata. Information and Computation 222,
pp. 139–168, doi:10.1016/j.ic.2012.10.010.

[6] C. Eisentraut, H. Hermanns, J.-P. Katoen & L. Zhang (2013): A Semantics for Every GSPN. In: Proc. of the
34th Int. Conf. on Application and Theory of Petri Nets and Other Models of Concurrency (ICATPN), LNCS
7927, Springer, pp. 90–109, doi:10.1007/978-3-642-38697-8 6.

[7] C. Eisentraut, H. Hermanns & L. Zhang (2010): On Probabilistic Automata in Continuous Time. In:
Proc. of the 25th Annual IEEE Symposium on Logic in Computer Science (LICS), IEEE, pp. 342–351,
doi:10.1109/LICS.2010.41.

[8] D. Guck, T. Han, J.-P. Katoen & M. R. Neuhäußer (2012): Quantitative Timed Analysis of Interactive Markov
Chains. In: Proc. of the 4th Int. NASA Formal Methods Symposium (NFM), LNCS 7226, Springer, pp. 8–23,
doi:10.1007/978-3-642-28891-3 4.

[9] D. Guck, H. Hatefi, H. Hermanns, J.-P. Katoen & M. Timmer (2013): Modelling, Reduction and Analysis of
Markov Automata. In: Proc. of the 10th Int. Conf. on Quantitative Evaluation of Systems (QEST), LNCS
8054, Springer, pp. 55–71, doi:10.1007/978-3-642-40196-1 5.

[10] B. R. Haverkort, L. Cloth, H. Hermanns, J.-P. Katoen & C. Baier (2002): Model Checking Performability
Properties. In: Proc. of the 2002 Int. Conf. on Dependable Systems and Networks (DSN), IEEE Computer
Society, pp. 103–112, doi:10.1109/DSN.2002.1028891.

[11] J.-P. Katoen, I. S. Zapreev, E. Moritz Hahn, H. Hermanns & D. N. Jansen (2011): The ins and outs of the prob-
abilistic model checker MRMC. Performance Evaluation 68(2), pp. 90–104, doi:10.1016/j.peva.2010.04.001.

[12] J. C. van de Pol & M. Timmer (2009): State Space Reduction of Linear Processes using Control Flow
Reconstruction. In: Proc. of the 7th Int. Symposium on Automated Technology for Verification and Analysis
(ATVA), LNCS 5799, Springer, pp. 54–68, doi:10.1007/978-3-642-04761-9 5.

[13] L. Song, L. Zhang & J. C. Godskesen (2012): Late Weak Bisimulation for Markov Automata. Technical
Report, ArXiv e-prints. Available at http://arxiv.org/abs/1202.4116.

[14] M. Timmer (2011): SCOOP: A Tool for SymboliC Optimisations of Probabilistic Processes. In:
Proc. of the 8th Int. Conf. on Quantitative Evaluation of Systems (QEST), IEEE, pp. 149–150,
doi:10.1109/QEST.2011.27.

[15] M. Timmer (2013): Efficient Modelling, Generation and Analysis of Markov Automata. Ph.D. thesis, Uni-
versity of Twente, doi:10.3990/1.9789036505925.

[16] M. Timmer, J.-P. Katoen, J. C. van de Pol & M. I. A. Stoelinga (2012): Efficient Modelling and Generation
of Markov Automata. In: Proc. of the 23rd Int. Conf. on Concurrency Theory (CONCUR), LNCS 7454,
Springer, pp. 364–379, doi:10.1007/978-3-642-32940-1 26.

[17] M. Timmer, M. I. A. Stoelinga & J. C. van de Pol (2013): Confluence Reduction for Markov Automata. In:
Proc. of the 11th Int. Conf. on Formal Modeling and Analysis of Timed Systems (FORMATS), LNCS 8053,
Springer, pp. 243–257, doi:10.1007/978-3-642-40229-6 17.

http://dx.doi.org/10.1007/978-3-540-40903-8_8
http://dx.doi.org/10.1109/TDSC.2009.45
http://dx.doi.org/10.1093/comjnl/bxq024
http://dx.doi.org/10.1016/j.ic.2012.10.010
http://dx.doi.org/10.1007/978-3-642-38697-8_6
http://dx.doi.org/10.1109/LICS.2010.41
http://dx.doi.org/10.1007/978-3-642-28891-3_4
http://dx.doi.org/10.1007/978-3-642-40196-1_5
http://dx.doi.org/10.1109/DSN.2002.1028891
http://dx.doi.org/10.1016/j.peva.2010.04.001
http://dx.doi.org/10.1007/978-3-642-04761-9_5
http://arxiv.org/abs/1202.4116
http://dx.doi.org/10.1109/QEST.2011.27
http://dx.doi.org/10.3990/1.9789036505925
http://dx.doi.org/10.1007/978-3-642-32940-1_26
http://dx.doi.org/10.1007/978-3-642-40229-6_17

	Introduction
	Approach
	Modelling MRAs with MAPA
	Generating MRAs with SCOOP
	Analysing MRAs with IMCA

	Conclusions and Challenges

