Entity-Linking via Graph-Distance Minimization

Roi Blanco Paolo Boldi Andrea Marino*
Yahoo! Research Dipartimento di informatica Dipartimento di informatica
Barcelona, Spain Universita degli Studi di Milano Universita degli Studi di Milano

roi@yahoo-inc.com paolo.boldi@unimi.it marino@di.unimi.it

Entity-linking is a natural-language—processing task that consists in identifying the entities men-
tioned in a piece of text, linking each to an appropriate item in some knowledge base; when the
knowledge base is Wikipedia, the problem comes to be known as wikification (in this case, items are
wikipedia articles). One instance of entity-linking can be formalized as an optimization problem on
the underlying concept graph, where the quantity to be optimized is the average distance between
chosen items. Inspired by this application, we define a new graph problem which is a natural variant
of the Maximum Capacity Representative Set. We prove that our problem is NP-hard for general
graphs; nonetheless, under some restrictive assumptions, it turns out to be solvable in linear time.
For the general case, we propose two heuristics: one tries to enforce the above assumptions and an-
other one is based on the notion of hitting distance; we show experimentally how these approaches
perform with respect to some baselines on a real-world dataset.

1 Introduction

Wikipediamis a free, collaborative, hypertextual encyclopedia that aims at collecting articles on different
(virtually, all) branches of knowledge. The usage of wikipedia for automatically tagging documents is
a well-known methodology, that includes in particular a task called wikification [12]. Wikification is a
special instance of entity-linking: a textual document is given and within the document various fragments
are identified (either manually or automatically) as being (named) entities (e.g., names of people, brands,
places. . .); the purpose of entity-linking is assigning a specific reference (a wikipedia article, in the case
of wikification) as a tag to each entity in the document.

Entity-linking happens typically in two stages: in a first phase, every entity is assigned to a set
of items, e.g., wikipedia articles (the candidate nodes for that entity); then a second phase consists in
selecting a single node for each entity, from within the set of candidates. The latter task, called candidate
selection, is the topic on which this paper focuses.

To provide a concrete example, suppose that the target document contains the entity “jaguar” and the
entity “jungle”. Entity “jaguar” is assigned to a set of candidates that contains (among others) both the
wikipedia article about the feline living in America and the one about the Jaguar car producer. On the
other hand, “jungle” is assigned to the article about tropical forests and to the one about the electronic
music genre. Actually, there are more than 30 candidates for “jaguar”, and more about 20 for “jungle”.

In this paper, we study an instance of the candidate selection problem in which the selection takes
place based on some cost function that depends on the average distance between the selected candidates,
where the distance is measured on the wikipedia grap}ﬂ the rationale should be clear enough—concepts

*The second and third authors were supported by the EU-FET grant NADINE (GA 288956).
Ihttp://en.wikipedia.org/
2The undirected graph whose vertices are the wikipedia articles and whose edges represent hyperlinks between them.

© R. Blanco, P. Boldi, A. Marino
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
GRAPHITE 2014


http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://en.wikipedia.org/

2 Entity-Linking via Graph-Distance Minimization

appearing in the same text are related, and so we should choose, among the possible candidates for each
entity, those that are more closely related to one another.

Getting back to the example above, there is an edge connecting “jaguar” the feline with “jungle” the
tropical forest, whereas the distance between, say, the feline and the music genre is much larger.

The approach we assume here highlights the collective nature of the entity-linking problem, as men-
tioned already in [9]: accuracy of the selection can be improved by a global (rather than local) optimiza-
tion of the choices. As [9] observes, however, trying to optimize all-pair compatibility is a computation-
ally difficult problem.

In this paper, we prove that the problem itself, even in the simple instance we take into consideration,
is NP-hard; however, it becomes efficiently solvable under some special assumptions. We prove that,
although these assumptions fail to hold in real-world scenarios, we can still provide heuristics to solve
real instances.

We test our proposals on a real-world dataset showing that one of our heuristics is very effective,
actually more effective than other methods previously proposed in the literature, and more than a simple
greedy approach using the same cost function adopted here.

2 Related Work

Named-entity linking (NEL)- also referred to as named entity disambiguation grounds mentions of en-
tities in text (surface forms) into some knowledge base (e.g. Wikipedia, Freebase). Early approaches to
NEL [12] make use of measures derived from the frequency of the keywords to be linked in the text and in
different Wikipedia pages. These include tf-idf, x> and keyphraseness, which stands for a measure of how
much a certain word is used in Wikipedia links in relation to its frequency in general text. Cucerzan [6]]
employed the context in which words appears and Wikipedia page categories in order to create a richer
representation of the input text and candidate entities. These approaches were extended by Milne and
Witten [13] who combined commonness (i.e., prior probability) of an entity with its relatedness to the
surrounding context using machine learning. Further, Bunescu [4] employed a disambiguation kernel
which uses the hierarchy of classes in Wikipedia along with its word contents to derive a finer-grained
similarity measure between the candidate text and its context with the potential named entities to link
to. In this paper we will make use of Kulkarni et al.’s dataset [[10]. They propose a general collective
disambiguation approach, under the premise that coherent documents refer to entities from one or a few
related topics. They introduce formulations that account for the trade-off between local spot-to-entity
compatibility and measures of global coherence between entities. More recently, Han et al. [9] propose a
graph-based representation which exploits the global interdependence of different linking decisions. The
algorithm infers jointly the disambiguated named mentions by exploiting the graph.

It is worth to remark that NEL is a task somehow similar to Word Sense Disambiguation (deter-
mining the right sense of a word given its context) in which the role of the knowledge base is played
by Wordnet [[7]. WSD is a problem that has been extensively studied and its explicitly connection with
NEL was made by Hachey et al [8]. WSD has been an area of intense research in the past, so we will
review here the approaches that are directly relevant to our work. Graph-based approaches to word sense
disambiguation are pervasive and yield state of the art performance [[15]; however, its use for NEL has
been restricted to ranking candidate named entities with different flavors of centrality measures, such as
in-degree or PageRank [§]].

Mihalcea [11] introduced an unsupervised method for disambiguating the senses of words using
random walks on graphs that encode the dependencies between word senses.



R. Blanco, P. Boldi, A. Marino 3

Navigli and Lapata [[18] [16} [17] present subsequent approaches to WSD using graph connectivity
metrics, in which nodes are ranked with respect to their local importance, which is regarded using cen-
trality measures like in-degree, centrality, PageRank or HITS, among others.

Importantly, even if the experimental section of this paper deals with a NEL dataset exclusively,
the theoretical findings could be equally applied to WSD-style problems. Our greedy algorithm is an
adaptation of Navigli and Velardi’s Structural Semantic Interconnections algorithms for WSD [[18| [14].
The original algorithm receives an ordered list of words to disambiguate. The procedure first selects the
unambiguous words from the set (the ones with only one synset), and then for every ambiguous word, it
iteratively selects the sense that is closer to the sense of disambiguated words, and adds the word to the
unambiguous set. This works in the case that a sufficiently connected amount of words is unambiguous;
this is not the case in NEL and in our experimental set-up, where there could potentially exists hundreds
of candidates for a particular piece of text.

3 Problem statement and NP-completeness

In this section we will introduce the general formal definition of the problem, in the formulation we
decided to take into consideration. We will make use of the classical graph notation: in particular, given
an undirected graph G = (V,E), we will denote with G[W| the graph induced by the vertices in W, and
with d(u, v) the distance between the nodes u and v, that is, the number of edges in the shortest path from
u to v (or the sum of the weights of the lightest path, if G is weighted).

If G is a graph and e is an edge of G, G — e is the graph obtained by removing e from G; we say
that e is a bridge if the number of connected components of G — e is larger than that of G. A connected
bridgeless graph is called biconnected; a maximal set of vertices of G inducing a biconnected subgraph
is called a biconnected component of G.

We call our main problem the Minimum Distance Representative, in short MINDR, and we define it
as follows. Given an undirected graph G = (V,E) (possibly weighted) and k subsets of its set of vertices,
Xi,..., Xk CV, afeasible solution for MINDR is a multiseﬂS = {x1,...,x¢}, of vertices of G, such that
for any i, with 1 <i <k, x; € X; (i.e., the solution contains exactly one element from every set, possibly
with repetitions).

Given the instance G, {Xj,...,Xi}, the measure (the distance cost) of the solution S = {xi,...,x;}
is £(S) =Yk, ZIJ‘-ZI d(x;,x;). The goal is finding the solution of minimum distance cost, i.e., a feasible
solution S such that f(S) is minimum.

We call the restriction of this problem, in which the sets of vertices in input {Xj,...,X;} are disjoint,
MINDIR(Minimum Independent Distance Representative).

3.1 NP-completeness of MINDR

The MINDIR problem seems to be similar and related to the so-called Maximum Capacity Represen-
tatives [3], in short MAXCRS. The Maximum Capacity Representatives problem is defined as follows:
given some disjoint sets X,...,X,, and for any i # j, x € X;, and y € X, a nonnegative capacity c(x,y), a
solution is a set S = {x1,...x, }, such that, for any i, x; € X;; such a solution is called system of representa-
tives. The measure of a solution is the capacity of the system of representatives, that is },cg Y, esc(x,¥),

3In this paper, we shall make free use of multiset membership, intersection and union with their standard meaning: in
particular, if A and B are multisets with multiplicity function a and b, respectively, the multiplicity functions of AUB and ANB
are x — max(a(x),b(x)) and x — min(a(x),b(x)), respectively.



4 Entity-Linking via Graph-Distance Minimization

and the MAXCRS problem aims at maximizing it. The MAXCRS problem was introduced by [1], who
showed that it is NP-complete and gave some non-approximability results. Successively, in [19], tight
inapproximability results for the problem were presented.

The MINDIR problem differs from MAXCRS just for in the sense that we are dealing with distances
instead of capacities, and therefore we ask for a minimum instead of a maximum. Nonetheless the fol-
lowing Lemma, whose proof is given in Appendix |A] shows that also MINDIR problem is NP-complete.

Lemma 1. The MINDIR (hence, MINDR ) problem is NP-complete.

4 The decomposable case

In this section we study the MINDR problem under some restrictive hypothesis and we will show that in
this case a linear exact algorithm exists.

Even if it may seem that these hypothesis are too strong to make the algorithm useful in practice, in
the next section we will use our algorithm to design an effective heuristic for the general problem. In
particular, we assume that the graph G (possibly weighted) is such that:

e any set X; induces a connected subgraph on G, i.e., G[X;| is connected,
e forany i # j, for any x € X; and y € X;, x and y do not belong to the same biconnected component.

The problem, under these further restrictions, will be called decomposable MINDR. Note that the second
condition implies that a decomposable MINDR is in fact an instance of MINDIR, because it implies that
no two sets can have nonempty intersection.

Let us consider an instance (G,{Xi,...X;}) of decomposable MINDR problem on a graph G =
(V,E).

An edge e = (x,y) € E is called useful if it is a bridge, x and y do not belong to the same set X;, and
there are at least two indices 7 and j such that X; and X; are in different components of G — e (since e is
a bridge, the graph obtained removing the edge e from G is no more connected).

4.1 Decomposing the problem

The main trick that allows to obtain a linear-time solution for the decomposable case is that we can
actually decompose the problem (hence the name) through useful edges. First observe that, trivially:

Remark 1. Let e = (x,y) be a useful edge and let Z, and Z,, be the two connected components of G — e
containing x and y, respectively. In G, all paths from any X' € Z, to any y' € Z, must contain e.

Moreover:

Remark 2. Let e = (x,y) be a useful edge. There cannot be an index i such that X; has a nonempty
intersection with both components of G — e.

In fact, assume by contradiction that one such X; exists, and let u, w € X; be two vertices living in the
two different components of G — e: since G[X;] is connected, there must be a path connecting u and w
and made only of elements of X;; because of Remark I} this path passes through e, but this would imply
that x,y € X;, in contrast with the definition of useful edge.

Armed with the previous observations, we can give the following further definitions. Let Y, (respec-
tively, ¥,) be the set of sets X; such that X; C Z, (respectively, X; C Z,); we denote the sets of nodes in ¥,
and Y, by V(Y,) C Z, and V(Y,) C Z,, respectively.



R. Blanco, P. Boldi, A. Marino 5

By virtue of Remark (1] all the paths in G from any x" € V(¥;) to any y ev(yy) pass through e. This
implies also that there is no simple cycle in the graph including both x’ € V(Y;) and y’ € V (¥}).
Given a solution S for MINDIR (G, {Xi,...,Xk}), and a useful edge (x,y), we have:

Z d(xi,xj) = Z d(xi,x;)+ Z d(xi,x;)+

XiXj€S Xi X; €SNV (Yy) X X; €SNV (Yy)

2 Z (d(xi,x) +d(x,y) +d(y,x;)).
X ESV (Y),x; €SV (V)

Indeed all the shortest paths from any x; € SNV (Yy) to any x; € SNV (Y,) pass through the useful edge
(x,y) by Remark[I] Moreover, since the sets X, ..., X; are disjoint, we have that [SNV (Y;)| = |Y;| and
|SNV(Y,)| = |Yy|, that is, a solution has exactly one element for each set in Y, (respectively, Y;). Hence
we can rewrite the last summand of the above equation as follows:

) (d(xi,x) +d(y,x;) +d(x,y) = K-} dlx)+
xiESﬂV(YZ\-),XjESﬂV(Yv) xiESﬂV(Yx)
Yy - Z d(y,x])
x;eSNV(Yy)
Vel - [%y] - d(x,y).

By combining the two equations, we can conclude that finding a solution for MINDIR (G, {X1,...,Xi})
can be decomposed into the following two subproblems:

1. finding Sy minimizing ¥,  csnw(y,) d(%i:Xj) +2 Ly.esnwv(y,) [Yyld (xi; x) in the instance (G[Z], Y1);

2. finding Sy minimizing ¥, . .csnv(y,) d(Xi, %)) + 2 Xx esnv(y,) [Y2|d (1, x;) in the instance (G[Z,], Yy).

Note that both instances are smaller than the original one because of the definition of a useful edge.
The idea of our algorithm generalizes this principle; note that the new objective function we must take
into consideration is slightly more complex than the original one: in fact, besides the usual all-pair—
distance cost there is a further summand that is a weighted sum of distances from some fixed nodes (such
as x for the instance G|[Z,|,Y, and y for the instance G[Z,],Y,).

We hence define an extension of the MINDR problem, that we call EXTMINDR (for Extended
Minimum Distance Representatives). In this problem, we are given:

e an undirected graph G = (V,E) (possibly weighted)
e k subsets of its set of vertices, Xi,...,X; CV
e a multiset B of vertices, each x € B endowed with a weight b(x).

A feasible solution for the EXTMINDR is a multiset S = {xj,...,x} of vertices of G, such that for any
i, with 1 <i <k, SNX; # 0 (i.e., the set contains at least one element from every set). Its cost is

ok
=Y Y d(xix; +ZZb (xi,2)
i=1j=1

i=1zeB

The goal is finding the solution of minimum cost, i.e., a feasible solution S such that f(S) is minimum.
The original version of the problem is obtained by letting B = 0.

We are now ready to formalize our decomposition through the following Theorem, whose proof is
given in Appendix



6 Entity-Linking via Graph-Distance Minimization

Theorem 1. Let us be given a decomposable EXTMINDR instance (G,{X1,...,X;},B,b) and a useful
edge e = (to,t1). For every s € {0, 1}, let Z; be the connected component of G — e containing t;, Y be the
set of sets X; such that X; C Zs and V (Yy) be the union of those X;’s. Let also By be the intersection of B
with Z,. Define a new instance Iy = (T [Z;],{X;,i € Ys},BsU{ts},bs) where

by(ty) =2|Y1-s|+ Y b(z) and by(z) = b(z), for any z € B.

ZEBlﬁr

Then the cost f(S) of an optimal solution S of the original problem is equal to

f(So) +£(S1) +2[Yol[V1ld(to,1) + ) <SWV(Ys)\' ) b(Z)d(fsaZ)>

s€{0,1} 2€BNZi_,

where Ss is an optimal solution for the instance I;.

For completeness, we need to consider the base case of an instance with just one set G, {X, },B,b:
the solution in this case is just one node x € X; and the objective function to be minimized is simply
Y .cpd(x,2)b(z). The optimal solution can be found by performing a BFS from every z; € B (in increasing
order of /), maintaining for each node y € X1, g(y) = ¥, ep,<jd(x,2/)b(z), and picking the node having
maximum final g(y). This process takes O(|B| - |E(G[X1])|). It is worth observing that in our case the
size of the multiset B is always bounded by k. Moreover since YX_, |E(G[X;])| < |E(G)| = m, the overall
complexity for all these base cases is bounded by O(k - m).

4.2 Finding useful edges

For every instance with more than one set, given an useful edge e the creation of the subproblems as
described above is linear, so we are left with the issue of finding useful edges. This task can be seen as
a variant of the standard depth-first search of bridges, as shown in Algorithm [2] and [3] in Appendix [C|
Recall that bridges can be found by performing a standard DFS that numbers the nodes as they are found
(using the global counter visited, and keeping the DFS numbers in the array dfs); every visit returns the
index of the least ancestor reachable through a back edge while visiting the DFS-subtree rooted at the
node where the visit starts from. Every time a DFS returns a value that is larger than the number of the
node currently being visited, we have found a bridge.

The variant consists in returning not just the index of the least ancestor reachable, but also the set
of indices i that are found while visiting the subtree. If the set of indices and its complement are both
different from @ then the bridge is useful: at this point, a “rapid ascent” is performed to get out of the
recursive procedure.

4.3 The final algorithm

Combining the observations above, we can conclude that the overall complexity of the algorithm is
O(k-m). The algorithm is presented in Algorithm|1]

5 The general case

As we observed at the beginning, the MINDR problem is NP-complete in general, although the decom-
posable version turns out to be linear. We want to discuss how we can deal with a general instance of the
problem. To start with, let us consider a general connected MINDR instance, that is:



R. Blanco, P. Boldi, A. Marino 7

Algorithm 1: DECOMPOSABLEMINDR

Input: A graph G = (V,E), Xj ...,X; CV, a weighted multiset B of nodes in V, where each element in B has a weight
b. G[X;] is connected for every i and moreover for all i # j and x € X;, y € X}, the two vertices x and y do not
belong to the same biconnected component of G.
Output: A solution S = {x1,...,x;} such that for any i, with 1 <i <k, x; € X;, minimizing
EIy DA ) + X Eeepb(2)d(3i,2)
Find a useful edge e = (x,y), if it exists, using Algorithm 2]
if the useful edge does not exist then

if k # 1 then
| Fail!

end
Output the element x; € X| minimizing Y ,cpb(z)d(x1,2)

else
Let Z, (respectively Zy) be the connected component of 7' — e containing x (respectively y) .

Let Y, (respectively Yy) be the indices i such that X; C Y, (X; C Y, respectively)
B+ BU{x} (multiset union) with b(x) = 2[Yy| + L cpnz, b(z)

B' « B'NZ, (multiset intersection)

S" <~ DECOMPOSABLEMINDR(T'[Z,], Yy, B’)

B” < BU{x} (multiset union) with b(y) = 2|Y|+ ¥,epnz, b(2)

B" <+ B" NZ, (multiset intersection)

S < DECOMPOSABLEMINDR(T'[Z,],Y;,B")

return S’ US"

end

e a connected undirected (possibly weighted) graph G = (V,E),
e k subsets of its set of vertices, X;,...,X; CV,

with the additional assumption that G[X;] is connected for every i. Recall that a feasible solution is
a multiset S = {x,...,x;} of vertices of G, such that for any i, with 1 <i <k, we have x; € X;; its
(distance) cost is f(S) =YX, 21}21 d(x;,x;).

We shall discuss two heuristics to approach this problem: the first is related to Algorithm [I]in that
it tries to modify the problem to make it into a decomposable one, whereas the second is based on the
notion of hitting distance.

Before describing the two heuristics, let us briefly explain the rationale behind the additional as-
sumption (i.e., that every G[X;] be connected). In our main application (entity-linking) the structure of
the graph within each X; is not very important, and can actually be misleading: a very central node in a
large candidate set may seem very promising (and may actually minimize the distance to the other sets)
but can be blatantly wrong. It is pretty much like the distinction between nepotistic and non-nepotistic
links in PageRank computation: the links within each host are not very useful in determining the impor-
tance of a page—on the contrary, they may be confusing, and are thus often disregarded.

Based on this observation, we can (and probably want to) modify the structure of the graph within
each set X; to avoid this kind of trap. This is done by preserving the external links (those that connect
vertices of X; to the outside), but at the same time adding or deleting edges within each X; in a suitable
way. In our experiments, we considered two possible approaches:

e one consists in making G[X;| maximally connected, i.e., transforming it into a clique;

e the opposite approach makes G[X;| minimally connected by adding the minimum number of edges
needed to that purpose; this can be done by computing the connected components of G[X;] and
then adding enough edges to join them in a single connected component.



8 Entity-Linking via Graph-Distance Minimization

Both approaches guarantee that G[X;] is connected, so that the two heuristics described below can be
applied.

5.1 The spanning-tree heuristic

The first heuristic aims at modifying the graph G in such a way that the resulting instance becomes
decomposable. For the moment, let us assume that the sets X; are pairwise disjoint. To guarantee that
the problem be decomposable, we proceed as follows. Define an equivalence relation ~ on V by letting
x ~y whenever x and y belong to the same X,-EI The quotient graph G/ ~= (V/ ~,E/ ~) has vertices
V/ ~ and an edge between [x] and [y] whenever there is some edge (x',y) € E with X’ ~x and y ~y
(here, and in the following, [x] denotes the ~-equivalence class including x). Thus, there is a surjective
(but not injective) map 1 : E — E/ ~.

Since G is connected, so is G/ ~, and we perform a breadth-first traversal of G building a spanning
tree 7. Every tree edge is an edge of G/ ~, so its pre-image with respect to 1 is a nonempty set of edges
in G. Let us arbitrarily choose one edge of G from 1~!(¢) for every tree edge ¢, and let 7’ be the resulting
set of edges of G.

Define the new graph G’ = (V,E’) where E' = T'U{J‘_, E(G[X;]): this graph cointains all the edges
within each set X;, plus the set T’ of external edges.

It is easy to see that G'[X;] is connected (it is in fact equal to G[X;]), and moreover all the elements of
T’ are bridges dividing all the X;’s in distinct biconnected components. In other words, we have turned
the instance into a decomposable one, where Algorithm [I|can be run.

The non-disjoint case If the sets X; are not pairwise disjoint, we can proceed as follows. Let us define
maximal mutually disjoint sets of indices /1,...,l;, C{1,...,k} such that for all # # s, Ujc; X NUjec, X; = 0.

Now, take the new problem instance with the same graph and sets Y1,...,Y; where ¥; = U;c; X;: this
instance is disjoint, so the previous construction applies. The only difference is that, at the very last step
of Algorithm[I] when we are left with a graph and a single Y, we will not select a single y € ¥; optimizing

the cost function
Y b(z)d(,2)

ZEB

Rather, we will choose one element x; for every i € I; optimizing

Y ¥ blajdsic

i€l zeB

Discussion Both steps presented above introduce some level of imprecision, that make the algorithm
only a heuristic in the general case. The first approximation is due to the fact that building a tree on
G will produce distances (between vertices living in different X;) much larger than they are in G; the
second approximation is that when we have non-disjoint sets, we only optimize with respect to bridges,
disregarding the sum of distances of the nodes of different sets. Actually, we should optimize

ZZ]GII Xiy X +Zzb xla

icl; i€l zeB

but this would make the final optimization step NP-complete.

4Note that, since the sets X; are pairwise disjoint, ~ is transitive.



R. Blanco, P. Boldi, A. Marino 9

5.2 The hitting-distance heuristic

The second heuristic we propose is based on the notion of hitting distance: given a vertex x and a set
of vertices Y, define the hitting distance of x to Y as d(x,Y) = minycy d(x,y). The hitting distance can
be easily found by a breadth-first traversal starting at x and stopping as soon as an element of Y is hit.
Given a general connected instance of MINDR, as described above, we can consider, for every i and
every x € X;, the average hitting distance of x to the other sets:

YA dxX))
—

The element x; € X; minimizing the average hitting distance (or any such an element, if there are many)
is the candidate chosen for the set X; in that solution.

The main problem with this heuristic is related to its locality (optimization is performed separately
for each X;); moreover the worst-case complexity is O(mY; |X;|), that reduces to O(k - m) only under the
restriction that the sets X; have O(1) size.

6 Experiments

All our experiments were performed on a snapshot of the English portion of Wikipedia as of late Febru-
ary 2013; the graph (represented in the BVGraph format [3l]) was symmetrized and only the largest
component was kept. The undirected graph has 3 685 351 vertices (87.2% of the vertices of the original
graph) and 36 066 162 edges (99.9% of the edges of the original graph). Such a graph will be called the
“Wikipedia graph” and referred to as G throughout this experimental section.

Our experiments use actual real-world entity-linking problems for which we have a human judgment,
and tries the two heuristics proposed in Section[5] as well as a greedy baseline and other heuristics.

The greedy baseline works as follows: it first chooses an index i at random, and draws an element
x; € X; also at random. Then, it selects a vertex of x;.1 € Xj11,Xj12 € Xj12,..., Xk € Xg, X1 €X1,...,%i—1 €
X;—1 (in this order) minimizing each time the sum of the distances to the previously selected vertices;
the greedy algorithm continues doing the same also for x; € X; to get rid of the only element (the first
one) that was selected completely at random. Moreover we have considered also two other heuristics,
that have been observed to be effective in practice [8]]: these are degree and PageRank based. They
respectively select the highest degree and the highest PageRank vertex for each set.

The real-world entity-linking dataset has been taken from [10] which contains a larger number of
human-labelled annotations. For retrieving the candidates, we created an index over all Wikipedia pages
with different fields (title, body, anchor text) and used a variant of BM25F [2] for ranking, returning
the top 100 scoring candidate entities. Since the candidate selection method was the same for every
graph-based method employed, there should be no bias in the experimental outcomes.

The problem instances contained in the dataset have 11.73 entities on average (with a maximum of
53), and the average number of candidates per entity is 95.90 (with a maximum of 200). Each of the 100
problem instances in the NEL dataset is annotated, and in particular, for every i there is a subset X;" C X;
of fair vertices (that is, vertices that are good candidates for that set): typically |X;| = 1. Note that, for
every instance in the NEL dataset, we deleted the sets X; such that X;" were not included in the largest
connected component of the Wikipedia graph. The number of sets X; deleted was at maximum 2 (for two
instances). We have not considered instances in which, after these modifications, we have just one set X;:
this situation happened in 5 cases. So the problem set on which we actually ran our algorithm contains
95 instances.



10

Entity-Linking via Graph-Distance Minimization

DISTANCE-COST RATIO VALUE
MAXIMAL MINIMAL MAXIMAL MINIMAL
CONNECTION CONNECTION CONNECTION | CONNECTION
Average Average Average Average

HEURISTIC (& Std Error) (& Std Error) (£ Std Error) (& Std Error)
Spanning-tree 122.747(4+2.812) | 130.998 (£2.917) || 0.369 (+0.023) | 0.360 (£0.023)
Hitting-distance 103.945 (£1.320) | 105.797 (£2.322) || 0.454 (£0.027) | 0.459 (+0.027)
Greedy 101.969 (+0.429) | 102.785 (+ 0.426) || 0.428 (+0.025) | 0.426 (£+0.026)
Degree based 114.182 (£2.386) | 113.285 (4+2.305) || 0.411 (£0.024) | 0.394 (4+0.023)
PageRank based 114.894 (£2.452) | 112.392 (+2.266) || 0.407 (£0.025) | 0.398 (+0.023)

GROUND TRUTH || 115.117 (£1.782) | 119.243 (£1.873) ||

Table 1: Distance-cost ratio and value.

For every instance, we considered the maximal and minimal connectionE]approach, and then ran both
heuristics described in Section[5] comparing them with the greedy baseline, and also with the degree and
PageRank heuristics.

For any instance, when comparing the distance cost f of the solutions S; returned by some algorithm
A, we have computed the distance-cost ratio of each algorithm A ;, defined as

f(S))
min; £(S;)

Intuitively this corresponds to the approximation ratio of each solution with respect to the best solution
found by all the considered algorithms: hence the best algorithm has minimum distance-cost ratio and it
equals 100.

Besides evaluating the distance cost of the solutions found by the various heuristics, we can compute
how many of the elements found are fair: we normalize this quantity by k, so that 1.0 means that all the
k candidates selected are fair. We call such a quantity the value of a solution.

In the last two columns of Table [T] we report, for each heuristic, the average value (across all the
instances) along with the standard error. For both the connection approaches, we have that the hitting-
distance heuristic outperforms all the other heuristics, and it selects more than 45% of fair candidates.
The variability of the results seems not to differ too much for all the methods. The second best heuristic
is the greedy baseline, that selects almost 42.8% and 42.6% fair candidates respectively in a maximal
and minimal connected scenario.

It is worth observing that the greedy approach comes second (as far as the value is concerned),
and outperforms the baseline techniques (degree and PageRank). The spanning tree heuristic, instead,
perform worse than any other method.

The latter outcome is easily explained by the fact that it transforms completely the topology of
the graph in order to make the instance decomposable, and the distances between vertices are mostly
scrambled. This interpretation of the bad result obtained can also be seen looking at the distance cost
(central columns of Table [I): the spanning-tree heuristic is the one that is less respectful of distances,
selecting candidates that are far apart from one another.

In the central columns of Table |1} we report also the distance-cost ratio for all the other heuristics.
For both the maximal and the minimal connection approaches, the greedy baseline seems to obtain more

-100.

>To obtain the minimal connection of each G[X;], we chose to connect the vertex of maximum degree of its largest component
with an (arbitrary) vertex of each of its remaining components.



R. Blanco, P. Boldi, A. Marino 11

often a minimum distance cost solution. The second best option is the hitting distance heuristic, while
the other methods seems to be more far away from an optimal result.

In the last row of Table[I] we report the distance-cost ratio for the ground-truth solution given by the
fair candidates. It seems that for any instance, the ground truth has distance cost averagely 15%-20%
higher than the best solution we achieve by using the heuristics. This observation suggests that probably
our objective function (that simply aims at minimizing the graph distances) is too simplistic: the distance
cost is an important factor to be taken into account but certainly not the unique one.

It is interesting to remark, though, that the average Jaccard coefficient between the solution found
by the degree based and the hitting-distance heuristic is 0.3 (for both maximal and minimal connection
approaches): this fact means that the degree and distance can be probably used as complementary features
that hint at different good candidates, although we currently do not know how to combine these pieces
of information.

Finally, we remark that we also tried to apply the degree and PageRank based heuristics by using the
same problem set but in the original directed graph; in this case, we did not enforce any connectivity of
the subgraphs G[X;]: the resulting average values (& standard error) are respectively 0.327 (£0.020) and
0.336 (£0.022), and they are both worse than the values achieved by degree and PageRank heuristics in
Table[I] This fact suggests that our experimental approach (of considering the undirected version and of
enforcing some connectivity on the subgraphs) not only guarantees the applicability of our heuristics in
a more suitable scenario, but also improves the effectiveness of the other existing techniques.

7 Conclusions and future work

Inspired by the entity-linking task in NLP, we defined and studied a new graph problem related to Max-
imum Capacity Representative Set and we proved that this problem is NP-hard in general (although it
remains an open problem to determine its exact approximability). Morevoer, we showed that the problem
can be solved efficiently in some special case, and that we can anyway provide reasonable heuristics for
the general scenario. We tested our proposals on a real-world dataset showing that one of our heuristics
is very effective, actually more effective than other methods previously proposed in the literature, and
more than a simple greedy approach using the same cost function adopted here.

The other heuristic proposed in this paper seem to work poorly (albeit it reduces to a case where we
know how to produce the optimal solution), but we believe that this is just because of the very rough
preprocessing phase it adopts; we plan to devise a more refined way to induce the conditions needed for
Algorithm [I] to work, without having to resort to the usage of a spanning tree—the latter scrambles the
distances too much, resulting in a bad selection of candidates.

Finally, we observed that a distance-based approach is complementary to other methods (e.g., the
local techniques based solely on the vertex degree), hinting at the possibility of obtaining a new, better
cost function that exploits both features at the same time.

References

[1] Mihir Bellare (1993): Interactive Proofs and Approximation: Reduction from Two Provers in One Round. In:
ISTCS, pp. 266-274.

[2] Roi Blanco & Paolo Boldi (2012): Extending BM25 with Multiple Query Operators. In: Proceedings of the
35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR
12, ACM, New York, NY, USA, pp. 921-930.



12

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

Entity-Linking via Graph-Distance Minimization

Paolo Boldi & Sebastiano Vigna (2004): The WebGraph Framework I: Compression Techniques. In: Proc.
of the Thirteenth International World Wide Web Conference (WWW 2004), ACM Press, Manhattan, USA,
pp- 595-601.

Razvan C. Bunescu & Marius Pasca (2006): Using Encyclopedic Knowledge for Named entity Disambigua-
tion. In: EACL, The Association for Computer Linguistics.

Pierluigi Crescenzi & Viggo Kann (1997): Approximation on the Web: A Compendium of NP Optimization
Problems. In: RANDOM, pp. 111-118.

Silviu Cucerzan (2007): Large-scale named entity disambiguation based on Wikipedia data. In: In Proc.
2007 Joint Conference on EMNLP and CNLL, pp. 708-716.

Christiane Fellbaum, editor (1998): WordNet An Electronic Lexical Database. The MIT Press, Cambridge,
MA ; London.

Ben Hachey, Will Radford & James R. Curran (2011): Graph-based Named Entity Linking with Wikipedia.
In: Proceedings of the 12th International Conference on Web Information System Engineering, WISE’11,
Springer-Verlag, Berlin, Heidelberg, pp. 213-226.

Xianpei Han, Le Sun & Jun Zhao (2011): Collective Entity Linking in Web Text: A Graph-based Method. In:

Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR *11, ACM, pp. 765-774.

Sayali Kulkarni, Amit Singh, Ganesh Ramakrishnan & Soumen Chakrabarti (2009): Collective annotation
of Wikipedia entities in web text. In: Knowledge Discovery and Data Mining, pp. 457-466.

Rada Mihalcea (2005): Unsupervised Large-vocabulary Word Sense Disambiguation with Graph-based Al-
gorithms for Sequence Data Labeling. In: Proceedings of the Conference on Human Language Technology
and Empirical Methods in Natural Language Processing, HLT ’05, Association for Computational Linguis-
tics, Stroudsburg, PA, USA, pp. 411-418.

Rada Mihalcea & Andras Csomai (2007): Wikify!: Linking Documents to Encyclopedic Knowledge. In:
Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management,
CIKM ’07, ACM, New York, NY, USA, pp. 233-242.

David Milne & Ian H. Witten (2008): Learning to Link with Wikipedia. In: Proceedings of the 17th ACM
Conference on Information and Knowledge Management, CIKM 08, ACM, New York, NY, USA, pp. 509—
518.

Cuadros Montse & German Rigau (2008): KnowNet: a proposal for building knowledge bases from the web.
Roberto Navigli (2009): Word sense disambiguation: a survey. ACM COMPUTING SURVEYS 41(2), pp.
1-69.

Roberto Navigli & Mirella Lapata (2007): Graph Connectivity Measures for Unsupervised Word Sense Dis-
ambiguation. In: Proceedings of the 20th International Joint Conference on Atrtifical Intelligence, IJJCAT’07,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 1683—1688.

Roberto Navigli & Mirella Lapata (2010): An Experimental Study of Graph Connectivity for Unsupervised
Word Sense Disambiguation. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), pp. 678—692.

Roberto Navigli & Paola Velardi (2005): Structural Semantic Interconnections: A Knowledge-Based Ap-
proach to Word Sense Disambiguation. 1IEEE Trans. Pattern Anal. Mach. Intell. 27(7), pp. 1075-1086.

Maria Serna, Luca Trevisan & Fatos Xhafa (2005): The approximability of non-Boolean satisfiability prob-
lems and restricted integer programming. Theoretical Computer Science 332(13), pp. 123 — 139.



R. Blanco, P. Boldi, A. Marino 13

A  Proof of Lemma (1]

Proof. We reduce MAXCRS to MINDIR. Given an instance of MAXCRS, {Xj,... X} and for any i # j,
x € X;, and y € X;, a nonnegative capacity c(x,y), we construct the instance of MINDIR G, {Xi,...,Xi};
the vertices of G are X; U...UX;, and for any pair x € X;, y € X, with i # j, we add a weighted
edge between x and y, i.e., for each pair for which MAXCRS defines a capacity we create a corre-
sponding edge in G. In particular the weight of the edge between x and y is set to & — c(x,y), where
o = 2max;ex; ex; i4j €(2,1).

Observe that for any pair of nodes u € X;, v € X, with i # j, d(u,v) in G is equal to the weight of
(u,v), i.e., it is not convenient to pass through other nodes when going from u to v: in fact, for any path
21,...,2p from u to v in G, with p > 1, we always have o — c(u, v) <oa—c(u,z1)+...+a—c(zp,v),
since @ — ¢(u,v) < a and the weight of such a path is at least p La > a. Moreover, observe that any
optimal solution in G has exactly one element for each set X;: thus we have k(k — 1) pairs of elements
(x,y), whose distance is always given by the weight of the single edge (x,y), that is o — ¢(x,y).

Hence it is easy to see that MAXCRS admits a system of representatives whose capacity is greater
than 7, if and only if MINDIR admits a solution S such that f(S) is less than k(k — 1)o — h.

Since MINDIR is a restriction of MINDR we can conclude that also MINDR is NP-complete. [

B Proof of Theorem I

Proof. We can rewrite the objective function as follows.

Y dlix)+ Y, Y dxi2b(z) = 2Y|Vild,n)+ ), dlx)+ Y, dxix)+

X X;ES x;€Sz€B )C,',X_/GSQV(Y()) x,',x_,ESﬂV(Yl)

2vil ), d(xit)+ Y, ) d(xi,2)b(z) +

X €8NV (Yo) X, €SNV (Yy) zEB

2l Y, dmx)+ Y, Y dxi2)b

XjESﬁV(Yl) x €SNV (Y1) ZGB

This is because if z € BN Z;, for any node x; € SNV (Yy), we have d(x;,z) = d(xi,t0) + d(t9,z) (and
analogously, if z € BN Zy, for any node x; € SNV (Y;), we have d(x;,z) = d(x;,t;) +d(t1,z)). Hence:

Y Y dxiobi) = Y ) dxop+ ), ) d(xito)b(z) +d(to,2)b(2)

X €SNV (Yy) 2EB xiESﬁV(Yo)ZEBmZ() xiESﬁV(Yo)ZGBﬂZI
and
Y Ydiz = Y Y dxobp@)+ ), ) dxin)b(z) +d(t,2)b(z).
x €SNV (Y1) z€B X ESNV (Y1) 2€BNZ, X €8NV (Y1) 2€BNZy

Observe that 7y or #; might already belong to B: this is why we assumed that B is a multiset.
Then, we have that:

fS)= ), dx)+ ) ) dbl)+ ) d(Xi,to)'<2!Y1!+ )y b(Z))

xi,JCjGSﬂV(Yo) xiGSﬂV(Yo)ZGBmZO xiGSﬂV(Yo) ZEBNZ;



14 Entity-Linking via Graph-Distance Minimization

fSy= Y dxx)+ Y, Y dxb)+ ), dxn)- 2%+ Y b(z)

xi,XjESﬂV(Yl) xiGSﬂV(Yl)ZGBmZ] x,'ESﬂV(Yl)

ZEBOZO

Hence, by adding #, to BN Z; = By, with weight equal to by = 2|Y|_;| + ¥ .cpnz,_ b(2), f(S) can be

reduced to f(Sp) and f(S7).

C The algorithm for finding useful edges

O]

Algorithm 2: USEFULEDGE

Input: An instance G, {X{,...,X},B,b
Output: A useful edge, or null
Pick a node u of the set X; of the instance G, {Xi,...,X;},B,b
Mark all the nodes as unseen
dfs[] « —1, visited < 0, usefulEdgeFound < false, usefulEdge  null
DFS(u,—1)
if usefulEdgeFound then
| return usefulEdge

else
| return null

end

Algorithm 3: DFS

Input: A node u, its parent p

QOutput: A pair (z,Y), where ¢ is an integer and Y is a set of indices
if usefulEdgeFound then return null

Mark u as seen

dfs[u] + visited

visited < visited 4 1

furthestAncestor « visited

Y0

ift € X; then Y < Y U{i}

for v e N(u) s.t. w# p do

if v is unseen then

(¢',Y") < DFS(v,u)

if ¢/ > dfs[u] and 0 £Y' # {1,...,k} then

usefulEdgeFound «+ true
usefulEdge < (u,v)

return null
end

furthestAncestor < min(furthestAncestor,’)
Y < Yuy

else
| furthestAncestor < min(furthestAncestor, dfs[v])
end

end
return (furthestAncestor,Y)




	Introduction
	Related Work
	Problem statement and NP-completeness
	NP-completeness of MinDR

	The decomposable case
	Decomposing the problem
	Finding useful edges
	The final algorithm

	The general case
	The spanning-tree heuristic
	The hitting-distance heuristic

	Experiments
	Conclusions and future work
	Proof of Lemma 1
	Proof of Theorem 1
	The algorithm for finding useful edges

