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In recent years, program verifiers and interactive theorem provers have become more powerful and
more suitable for verifying large programs or proofs. This has demonstrated the need for improving
the user experience of these tools to increase productivity and to make them more accessible to non-
experts. This paper presents an integrated development environment for Dafny—a programming
language, verifier, and proof assistant—that addresses issues present in most state-of-the-art verifiers:
low responsiveness and lack of support for understanding non-obvious verification failures. The
paper demonstrates several new features that move the state-of-the-art closer towards a verification
environment that can provide verification feedback as the user types and can present more helpful
information about the program or failed verifications in a demand-driven and unobtrusive way.

0 Introduction

Program verifiers and proof assistants integrate three major subsystems. At the foundation of the tool
lies the logic it uses, for example a Hoare-style program logic or a logic centered around type theory. On
top of the logic sits some mechanism for automation, such as a set of cooperating decision procedures or
some proof search strategies (e.g., programmable tactics). The logic and automation subsystems affect
how a user interacts with the verification system, as is directly evident in the tool’s input language. The
third subsystem is the tool’s integrated development environment (IDE), which in a variety of ways tries
to reduce the effort required by the user to understand and make use of the proof system.

In this paper, we present the IDE for the program verifier Dafny [15, 13]. The IDE is an extension of
Microsoft Visual Studio (VS). It goes beyond what has been done in previous IDEs (for Dafny and other
verification systems) in several substantial ways.

continuous processing The IDE runs the program verifier in the background, thus providing design-
time feedback. The user does not need to reach for a “Verify now” button.

Design-time feedback is common in many tools. For example, the spell checker in Microsoft
Word is always on in this way. Anyone who remembers from the 1980s having to invoke the
spell checker explicitly knows what a difference this can make in how we think about the in-
teraction with the tool; the burden of having to go through separate spelling sessions was trans-
formed into the interaction process that is hardly noticeable. Parsing and type checking in many
programming-language IDEs is done this way, enabling completion and other kinds of IntelliSense
context-sensitive editing and documentation assistance. The Spec# verifier was the first to integrate
design-time feedback for a verifier [0]. The jEdit editor for Isabelle [23] also provides continuous
processing in the background by running both a proof search and the Nitpick [2] checker which
searches for counterexamples to the proof goal.

non-linear editing The text buffer can be edited anywhere, just like in usual programming-language
editors. Any change in the buffer will cause the verifier to reconsider proof obligations anywhere



in the buffer. (Since the Dafny language is insensitive to the order of declarations, the proof
obligations that have to be reconsidered can occur both earlier and later in the buffer.)

Although such non-linear editing seems obvious, it is worth noting that it is in stark contrast to
common theorem prover IDEs like ProofGeneral 0 and CoqIde 1, where the user manually moves
a high water mark in the buffer—anything preceding this mark in the buffer has already been
processed by the system and is locked down to prevent editing, and anything following the mark
has not been processed and can be freely edited.

multi-threading The Dafny IDE makes more aggressive and informed use of available multi-threaded
hardware. The number of concurrent threads used is adjusted dynamically, depending on what the
verification tasks at hand are able to saturate.

Although conceptually an obvious thing to do, the Dafny tool chain previously lacked the features
to run separate verification tasks in parallel. The use of multiple threads is especially noticeable
when a file is just opened in the editor, since caches are cold at that time and everything needs to
be verified.

The Isabelle/jEdit editor [23, 22] comes with support for multi-threading, which is motivated by
the fact that it also supports non-linear editing and therefore offers more opportunities to parallelize
verification tasks. The SPARK 2014 toolset [7] also supports multi-threading, both in its transla-
tion from SPARK into the intermediate verification language Why3 and in the Why3 processing
itself.

dependency analysis and caching The Dafny IDE caches verification results along with computed de-
pendencies of what is being verified. Before starting a new verification task, the system first
consults the cache. This feature makes the tool more responsive and reduces the user’s wait times.

Our users have found this to be the most useful of our features for making the interaction between
user and system more effective. It is also what makes continuous processing desirable for large
files. When a user gets stuck during a verification attempt, a typical response is to try many little
input variations that might explain or remove the obstacle at hand. It is during these times that the
user needs the tool the most, so supporting fluid interactions at this time is of utmost importance.

There has been a lot of work on caching, modifying, and replaying proofs for interactive proof
assistants. For proofs performed by SMT solvers, Grigore and Moskal worked on these things in
the context of ESC/Java2 [10].

showing information Commonly, a verification system can supply various associated declarations au-
tomatically. For example, common induction schemes may be constructed by default, some types
and loop invariants may be inferred, and syntactic shorthands can reduce clutter in the program
text. Sometimes, a user may find it necessary to inspect this information. The Dafny IDE attempts
to make this information available via hover text—when the user hovers the mouse cursor over a
part of the program text, say, an identifier, any additional information about that identifier is dis-
played. This makes the information easily accessible to users, but is at the same time not cluttering
up the view of the program text.

Note that in console-based interactive tools, for example like ACL2 [11], the unobtrusive nature of
information in hover text is difficult to achieve. Such a tool has to either provide a set of commands
that can be used to query information gathered by the tool or optimistically spill out a stream of
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information to the console window in the off-chance that a user wants to see some part of that
information.
An important consequence of making additional information easily accessible to the user is that
it gives the verification system greater freedom in what can be computed automatically. Users
no longer need to fully understand the creative and elaborate schemes employed to compute this
information, because whatever is computed can be viewed by the user, if needed.
This feature is also common in programming-language IDEs, where inferred types or fully quali-
fied identifier names are displayed as hover text. The Dafny IDE takes this a step further, showing
information such as default termination measures, specifications of implicit methods (such as those
generated for iterators), which calls are classified as co-recursive, and code inherited by Dafny’s
“. . .” construct from a refined module.

integrated debugging Verification error messages can have a lot of associated information, some of
which can be useful to users. Previously, the Dafny IDE would highlight, directly in the IDE
editor, the error trace leading to a reported error. SPARK 2014 also does this, for example. To
get information about the possible values of variables for the reported error, a Dafny user can use
the Boogie Verification Debugger (BVD) [9], which presents this information in a format akin to
that provided in modern source-level debuggers. We have done a deep integration of BVD into the
Dafny IDE.
Previously, BVD was accessible for Dafny only as a standalone tool, which meant the user manu-
ally had to correlate the source lines reported by BVD with the text buffer containing the program
in the IDE. The program verifier VCC [4] integrates BVD into its Visual Studio IDE. The Dafny
IDE now goes further, for example letting the user select which program state to inspect by click-
ing in the program text itself. It also uses hover text to present values of variables in the selected
state. OpenJML [5, 6] also presents error information in this way, letting users inspect values of
any subexpression and letting the source code location of the expressions hovered over determine
which execution state is used to look up the value to be displayed.

As an alternative to running Dafny in Visual Studio, Dafny can also be run from within a web browser
(http://rise4fun.com/dafny) and from the command line. However, the bulk of the features we men-
tion in this paper are available only in the Visual Studio IDE extension. Dafny, including its IDE, is
available as open source from http://dafny.codeplex.com/.

1 Tool Architecture

Before presenting the new tool architecture, we will give an overview of the underlying components and
the tool architecture that was used in the past (see Fig. 0); it is similar to the architecture of other veri-
fication tools that are built on top of the Boogie verification engine [0], such as Spec# [1] and VCC [4].
As the user is editing the program, the VS extension continuously sends snapshots of the program to
the underlying Dafny verifier, which encodes the correctness proof obligations as a translation into Boo-
gie. Boogie is an intermediate language [19] for program verification (similar to Why3 [8]). Boogie
programs typically consist of several top-level declarations (e.g., axioms, variables, procedures) that are
used to formalize programs in a higher-level language, such as Dafny. For instance, each Dafny method
is translated to a Boogie procedure implementation that captures the well-definedness conditions of the
method’s specification, a Boogie procedure specification that captures the method specification to be
used by callers, and a Boogie procedure implementation that captures the method body and checks that it
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Figure 0: Comparison of initial and current tool architecture. Arrows indicate data that is passed from one
component to another, where dashed arrows indicate that data is transferred asynchronously. Less thick,
red arrows indicate error information (including counterexamples for BVD in the current architecture)
that is returned.

satisfies the method specification [14]. Similarly, each Dafny function is translated to a Boogie function
and a Boogie procedure implementation that captures the corresponding well-definedness conditions.
The resulting Boogie program is sent to the Boogie verifier, which generates verification conditions for
each Boogie implementation to discharge them using an automatic reasoning engine, typically the SMT-
solver Z3 [20]. Verification errors that are revealed during this process are propagated up to the VS
extension, which displays them to the user.

This architecture gives rise to a pleasant and highly responsive user interaction for small programs,
but does not scale well to larger programs that consist of many methods and functions. Since the requests
to the underlying solver can easily be parallelized, we have extended the Boogie verification engine to
make use of separate tasks for verifying Boogie implementations in parallel (using the .NET Task Parallel
Library). Each task may discharge its verification conditions using one or more solver instances that are
managed in a dynamically allocated pool of solvers. To take full advantage of this architectural change,
we made the propagation of verification errors to the user fully asynchronous (see dashed arrows in
Fig. 0). This lets error messages show up as soon as the corresponding verification condition has been
processed by the solver. (Previously, Boogie only made use of multi-threading in one place, namely in
its mode for verification-condition splitting [18]. We have preserved that functionality and integrated it
into the new task-based architecture.)

The Visual Studio extension for Dafny gets notified anytime there is a new snapshot, that is, anytime
the text buffer changes. Upon each such change, the extension recomputes syntax highlighting, which
is done through a simple lexical scan (that is, the parser is not invoked and no abstract syntax tree
is built). After 0.5 seconds of inactivity, the Dafny IDE invokes the Dafny parser, resolver, and type
checker on the current buffer snapshot. If the snapshot passes these phases without error, the additional
information computed during these phases (e.g., which calls are co-recursive) is made available to the
user in hover text. Also, the snapshot is then asynchronously sent to the Dafny verifier, unless the verifier
is already running on a previous snapshot. As verification errors are reported by the asynchronously
running verifier, they are displayed in the IDE. Once a snapshot has been fully processed by the verifier,
a new verification task is started for the current snapshot, unless that is the snapshot that was just verified.

A constant question that users would have about Dafny’s previous IDE was, “Is the verifier done



Figure 1: Progress indication via colors in the margins. The three program snapshots of the buffer
are shown in chronological order (from left to right). The dark-orange margin in the middle snapshot
indicates that changes have not yet been sent to the prover, while the purple margin in the right snapshot
indicates that the verifier has started processing this snapshot.

yet?”. To give the user a sense of the processing that is taking place in the background, the new Dafny
IDE uses colors in the margin (see Figure 1). A dark-orange color in the margin shows a line that has
been edited in a snapshot that has not yet been sent to the verifier, and a violet color in the margin shows
a line that has been edited in a snapshot that is currently being processed by the verifier.

We also changed the tool architecture to integrate the Boogie Verification Debugger (BVD) [9] di-
rectly. Under this change, which is independent of the parallelization, the solver is asked to include the
counterexample information needed by BVD with each verification error.

2 On-demand Re-verification

Caching is a popular technique for improving the responsiveness of systems that would need to repeatedly
perform expensive computations whose output is a function of the given input. Since in a modular
verification approach different entities of a program (e.g., modules, classes, or—as in Dafny—methods
and functions) are verified in isolation, changes to one program entity usually invalidate only a small
fraction of the verification results previously obtained for other program entities. More specifically, one
can safely avoid re-verification of an entity by caching previously computed verification results, except
when the user has changed some other program entity on which it depends. This optimization is crucial
in providing rapid feedback when the program is larger than just a handful of entities.

Our technique for avoiding re-verification of methods and functions in Dafny deals with two core
issues: 0) detecting changes to program entities and 1) tracking dependencies between different program
entities to determine what needs to be re-verified. To solve the first issue, we extended Dafny to compute
an entity checksum for each function, each method, and the specification (e.g., pre- and postconditions)
of each method. This checksum is insensitive to various minor changes of the specific program text,
because it is computed based on the Dafny abstract syntax tree. For instance, the checksum of a method
does not change if a comment is edited by the user. To deal with the second issue, these entity checksums
are used to track dependencies by computing dependency checksums for each program entity (function,
method, or method specification) based on its own entity checksum and the dependency checksums of
other entities on which it depends directly (e.g., methods it calls). This lets us compare the dependency
checksum of a given entity for the current program snapshot with the one stored in our verification result
cache to determine if it needs to be re-verified.

In our implementation, we chose to compute the dependency checksums at the level of Boogie enti-
ties, thus making this feature available to other verifiers that target Boogie. To set an entity checksum, a
Boogie client (here, Dafny) tags the entity with a particular custom attribute—a general mechanism sup-
ported by Boogie for attaching directives to declarations—and gives the checksum as an integer argument



Snapshot 0

method Foo()

ensures P();

{ }

method Bar() { }

function P(): bool { true }

Snapshot 1

method Foo()

ensures P();

{ }

method Bar() { Foo(); }

function P(): bool { true }

Snapshot 2

method Foo()

ensures P();

{ }

method Bar() { Foo(); }

function P(): bool { false }

Figure 2: Example of on-demand re-verification. The three program snapshots are ordered chronolog-
ically (i.e., snapshot 0 is the initial program and snapshot 2 is the final program) and changes between
snapshots are underlined. All entities in snapshot 0 need to be verified, while for snapshot 1 only method
Bar needs to be re-verified. Finally, for snapshot 2 all entities need to be re-verified since all of them
depend directly or indirectly on the modified function P.

to this attribute.
Figure 2 illustrates how our technique works on a concrete verification session that consists of three

program snapshot, which are sent to the prover in chronological order (i.e., snapshot 0 is the initial
program and snapshot 2 is the final program). All entities of the initial program snapshot need to be
verified, since nothing has been cached yet. For snapshot 1, only method Bar needs to be re-verified:
the corresponding Boogie implementations (for checking the correctness and well-definedness of the
method body) are tagged with an entity checksum that is different from the one in the cache, but the
entity checksum of the corresponding Boogie procedure (for capturing the method specification) stays
the same. For snapshot 2, all entities need to be re-verified: the entity checksum of the Boogie function
that corresponds to the Dafny function P changes with respect to the previous snapshot, which affects the
dependency checksums of all remaining Boogie implementations.

One interesting application of this technique has to do with prioritizing the program entities that are
being verified. Ideally, we want to prioritize entities that are more directly affected by the latest change
to the program text, because that is where the user is likely to want to see the effect of the re-verification
first. To do that, we assign different levels of priority to an entity based on its current checksums and
the ones stored in the verification result cache: 0) low (current entity checksum is identical to the one in
the cache, but the dependency checksum is different; entity was unchanged, but some dependency was
changed), 1) medium (current entity checksum is different from the one in the cache; i.e., entity was
changed directly), 2) high (no cache entry found; i.e., entity was added recently), and 3) highest (current
dependency checksum of the entity is identical to the one in the cache). This prioritization scheme is
motivated by the observation that users usually prefer to get rapid feedback regarding the entities that
were recently added or changed directly. Note that we assign the highest priority to entities that were
not affected by the change at all, since displaying the corresponding verification results only requires a
simple cache lookup and we want to minimize the time during which the corresponding errors are not
displayed to the user. This prioritization scheme could be extended easily to support more fine-grained
priority levels.

Other verification systems have also used forms of checksums and dependencies in order to reduce
the need to construct new proofs. In the heterogeneous Why3 system, both the construction and ver-
ification of proof obligations can be parameterized by different transformations and different solvers.



To maintain proofs as much as possible when any subsystem changes, or if the program under scrutiny
changes, Why3 uses a scheme of proof sessions and goal shapes for tracking dependencies [3]. This has
let more than 100 program proofs be automatically maintained over a period of more than two years. For
Dafny, we have focused on reducing turnaround time for the user, rather than trying to be robust against
changes in components of Dafny itself. Still, perhaps Dafny could benefit from proof sessions and goal
shapes as we, in the future, move to tracking finer-grain dependencies.

Change management is also important in interactive proof assistants where large parts of proofs are
authored by users. Work on such change management has been done, for example, in the context of
KIV [21] and KeY [12].

3 User Interaction

3.0 Computed Information as Hover Text

A verification system typically computes various properties that determine how verification conditions
are formulated. For example, Dafny uses heuristics to determine automatically generated induction
hypotheses [16]. Sometimes, it can be unclear to the user which properties were computed. For instance,
Dafny uses some rules that determine if a function self-call is recursive or co-recursive; a user who does
not know the precise rules may want to find out which calls have been determined to be co-recursive.

We devised a simple mechanism by which the Dafny resolver and type checker can associate any
information with any AST node. When Dafny is running in the IDE, this information then gets displayed
as hover text for the region in the text buffer that corresponds to the respective AST node. We use this
mechanism to display the type and kinds of variables (e.g., “(ghost local variable) x: List〈int〉” or
“(destructor) List.head: T”), the default decreases clauses for methods and functions [15], the auto-
matically generated conclusions of forall statements, which methods are tail recursive, which function
calls are co-recursive, the expansion of the syntactic sugar for calls to prefix predicates and prefix meth-
ods [17], the class expansion of iterators, and code inherited from a refined module through Dafny’s “. . .”
construct.

3.1 Error Reporting

When a verification attempt is not going through, a user has to debug the cause. For example, the
executable program may be wrong, the specifications may be wrong, the given proof of a lemma may
be incorrect, more information may be needed to make the proof go through, or the problem could be
caused by some incompleteness of the SMT solver.

One way to debug such a situation is to ask the verifier questions like “does the following condition
hold here?” (which is done by adding an assert statement in the program text) and “can the proof goal
be met under this additional assumption?” (which is done by temporarily adding an assume statement in
the program text). This kind of interactive dialog with the verifier is supported well in the Dafny IDE,
because the caching (and sometimes parallelization) makes the interaction swift and fluid.

It is also possible to obtain more information about the failing situation. This is done by exploring
the counterexample produced by the solver. The Boogie Verification Debugger (BVD), via a Dafny plug-
in, makes this counterexample intelligible at the source context [9]. BVD was previously available for
Dafny only as a standalone tool, but we have now integrated it directly in the IDE.

Let us describe our interface to BVD. When an attempted verification fails, like the postcondition
violation shown in Fig. 3, a red dot (and a red squiggly line) indicate the return path along which the



error is reported. The error pane at the bottom of the screen shows the error message, which also appears
as hover text for the squiggly line. The error pane also lists source locations related to the error, in this
case showing the particular postcondition that could not be verified.

By clicking on a red dot, the Dafny IDE will display more information related to that error, resulting
in the screen shown in Fig. 4. The blue dots that now appear in the program text trace the control path
from the start of the enclosing routine and leading to the error. There is state information associated with
each blue dot and the user can click on a blue dot to select a particular state (by default, the last state is
selected, which is the state in which the error was detected).

In addition to the blue dots, BVD is brought up in a pane to the right. BVD shows the variables
in scope, in a familiar debugger-like fashion, but with two conspicuous differences: some of the values
shown are underspecified (the names of these values begin with an apostrophe, like ’7 and ’8; distinct
names refer to distinct values), and some values are not shown at all, because they are not relevant to the
counterexample (like all of the array elements of a, except the one at index 2804).

The “Value” column in the BVD pane shows values in the currently selected state, whereas the
“Previous” column shows the values in the previously selected state. This gives a simple way to compare
the values in two states. In the example in the figure, we had first had the error state selected and then
selected the state one line earlier.

Finally, the figure illustrates how values for variables of primitive types (in the currently selected
state) are also displayed as hover text.

What all of this tells us for the example is that the postcondition cannot be verified when the bound
variable i in the postcondition is 2804. That index of the array is set by the assignment to a[end], but
is then changed (from ’7 to ’8) in the next line where a recursive call to Fill is made. Some thinking
then reveals that the cause of the verification error is that the postcondition of Fill is too weak. We can
fix the problem by adding a postcondition about the array indices between 0 and start, in particular by
saying that Fill leaves those array elements unchanged:

ensures ∀ i • 0 ≤ i < start =⇒ a[i] = old(a[i]);

By simply typing in this extra postcondition and then waiting a split second, the error goes away.

4 Experience

Figure 5 shows some preliminary performance numbers, comparing for some long-running verification
tasks the effect of using one solver versus three solvers. Two of the four programs (ParallelBuilds.dfy
and LnSystemF.dfy) were developed by users of our tool, whereas the two other programs contain solu-
tions to several verification challenges from two different verification competitions.

As a proof that the cache is very important (actually, even more important than parallelization) for
enabling a highly responsive user interaction, we measured the performance improvements gained by
using the cache. We considered 5 “versions” of two long-running verification tasks. The 5 versions are
5 copies of the same program, but randomly changing one of the checksums, as if a user had edited the
program. Figure 6 gives the results, which show that using the cache allows the 5 versions to be verified
in a total time that is a small increment over verifying the program once. We did not perform these
measurements for the two other programs (VSComp2010.dfy and VSTTE2012.dfy), since they contain
collections of independent programs, which might not be a representative use case.

The largest single project using Dafny is the Ironclad project in the systems and security research
groups at Microsoft Research, which currently comprises about 30,000 lines of Dafny specifications,
code, and proofs. The current Dafny IDE has benefited from feedback from the Ironclad team.



Figure 3: A screenshot of the Dafny IDE. The verification error is displayed in the text buffer as a red
dot, which can be selected to obtain more information.

Figure 4: A screenshot showing additional information obtained by selecting an error (red dot). The blue
dots show the program states along the control path leading to the error, and the BVD pane to the right
shows values of variables in the selected state of the selected error.



Program LOC 1 solver instance 3 solver instances
ParallelBuilds.dfy 881 572 269
LnSystemF.dfy 1736 354 109
VSComp2010.dfy 536 34 26
VSTTE2012.dfy 1063 110 71

Figure 5: Preliminary performance numbers showing the effect of parallelization. Times are in seconds.

Program 3 solver instances (5 runs) 3 solver instances (5 snapshots)
LnSystemF.dfy 510 (5∗102) 123
ParallelBuilds.dfy 1345 (5∗269) 311

Figure 6: Comparison of verifying five versions of two programs with (third column) and without (second
column) using the cache. Times are in seconds.

5 Conclusions and Future Work

The Dafny IDE represents a new generation of interaction between user and verification system. We
have built dependency analysis, caching, and concurrent verification into the design-time feedback loop
to make re-verification responsive with minimal user effort. We have provided a deeper integration of
the Boogie Verification Debugger, whereby it both displays information in the program text and can be
controlled directly from within the program text. And using hover text, we have given easy access to
computed information without cluttering up the user display.

The new IDE provides many significant improvements. It has also let us discover a number of areas
where the user interaction can be improved further. We will mention a number of them here.

The most pressing problem is what to do with verification tasks that require a long time. At the
moment, our IDE performs all verification on a per-method (or per-function) basis. When a method is
long and difficult, we often wish for breaking up the verification task into smaller pieces. Boogie has
some facilities for verification-condition (VC) splitting [18] and selective checking, but our Dafny IDE
is currently not taking advantage of these. We would like to dynamically adjust the parameters of VC
splitting and selective checking based on previous verification attempts, and we would like to fit this into
a finer granularity of caching.

An important special case is where the verifier runs out of time. Subjectively, we find that time-outs
occur in some part of any larger proof attempt, especially those that involve large recursive functions
or non-linear arithmetic, while the user is working on getting the verification through. That is, time-
outs are often a symptom of missing proof ingredients, and good performance tends to be restored once
the necessary ingredients have been supplied by the user. Time-outs during this time are bad, since
they are on the user’s time. We set the solver time-out to 10 seconds. We do allow this default to be
overridden through Dafny custom attributes, but making it longer rarely seems to help in situations where
the verification attempt is really missing information. For a user to figure out what information is missing
(let alone which proof obligations are taking a long time), the solver must end its proof search and return
a counterexample. Currently, the verifier does not produce as much information for verification attempts
that time out as it does for attempts that fail. A more ambitious goal would be to try to determine the
cause of the time outs, perhaps by automatically trying to analyze the solver logs that the Z3 Axiom
Profiler gives access to. The Why3 system guards against time-outs by being able to run several solvers



at the same time [8].
There are also a number of places where we would like to improve the Dafny plug-in for BVD. For

example, the current version does not let users inspect values of functions in the counterexample. We
could also imagine a special BVD mode targeted to illustrate the proof state when Dafny is used to prove
theorems (not verify programs).

Currently, all additional information that we display is computed during Dafny’s resolution and type
checking phases. There is also some information that Dafny computes during the verification phase, but
our current machinery has no hooks for displaying this information to the user.

While we hope to work on these items to further improve the Dafny IDE, we hope that the current
IDE will continue to be useful and that it will inspire the IDEs of other verification systems.
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