
To appear in EPTCS.

Teaching Formal Methods and Discrete Mathematics

Mathieu Jaume1,2

1. Sorbonne Universités, UPMC Univ. Paris 06,
UMR 7606, LIP6, F-75005, Paris, France

2. CNRS, UMR 7606, LIP6, F-75005, Paris, France
Mathieu.Jaume@lip6.fr

Théo Laurent
Sorbonne Universités, UPMC Univ. Paris 06,

F-75005, Paris, France
Theo.Laurent@etu.upmc.fr

Despite significant advancements in the conception of (formal) integrated development environ-
ments, applying formal methods in software industry is still perceived as a difficult task. To make
the task easier, providing tools that help during the development cycle is essential but we think that
education of computer scientists and software engineers is also an important challenge to take up.
Indeed, we believe that formal methods courses do not appear sufficiently early in compter science
curricula and thus are not widely used and perceived as a valid professional skill. In this paper,
we claim that teaching formal methods could be done at the undergraduate level by mixing formal
methods and discrete mathematics courses and we illustrate such an approach with a small develop-
ment within FoCaLiZe. We also believe that this could considerably benefit the learning of discrete
mathematics.

1 Introduction

Nowadays, critical systems are evaluated according to some security standards like the Common Crite-
ria [7] or according to safety ones like the EN50128 for railways. To reach their high-level rates, these
standards require the use of formal methods in order to ensure that security and safety requirements are
effectively satisfied by these systems. Indeed, for large developments, ad hoc approaches have proven
to be inadequate to ensure that the delivered software truly satisfies safety and security requirements. In
fact, the lack of formalisation often leads to produce systems whose behaviors are not fully and precisely
understood and described. Formal methods aim at helping to build systems with high safety and security
assurances, and formal integrated development environments (F-IDE) embed a variety of such formal
methods to help to specify, to document, to implement, to test, to prove or to analyse critical systems.
Of course, such environments often ease (and partially automate) the application of formal methods dur-
ing the development cycle, but developing (and evaluating) critical systems is still a difficult task that
requires advanced technical knowledge and large amounts of time. This is certainly one of the reasons
why formal methods are still not sufficiently used in industrial software development.

Developing F-IDE that ease the application of formal methods is still a challenging issue but devel-
opping a F-IDE which helps to learn formal methods is also a true challenge. We believe that education
is the corner stone to promote the use of formal methods in the software creation process. The formal
methods community has not enough focused its attention to the education of computer scientists and
software engineers, especially at the undergraduate level. Indeed, many computer science curricula do
not contain formal methods courses, or such material is not introduced sufficiently early.

Presently, almost all these curricula include discrete mathematics courses but often in isolation from
computer science, leaving students understanding little about why (and how) mathematics applies to
computer science and vice versa. Moreover, teaching discrete mathematics is still often done in the
traditional way, using pen and paper, and many computer science students are rather “math-averse” (they

2 Teaching Formal Methods and Discrete Mathematics

are more familiar with ASCII characters than with greek alphabet!), perceive mathematics as a difficult
discipline and don’t understand its relevance in their curricula.

To address this issue, some discrete mathematics courses use functional programming languages
(such as ML, OCAML, HASKELL, etc.) to reinforce mathematical concepts. There exists now some
discrete mathematics textbooks [10, 19, 28] based on such an approach whose benefits are discussed
in [29, 26, 25, 13, 27, 20]. In [27], the author goes further by considering that computer science is also
a vital topic for contemporary mathematics students and that they will need some level of competency
in programming at some point in their professional practice. Hence, the author claims that the integrated
work of mathematics and computer science educators could considerably improve the learning of both
subjects: putting functional programming and discrete mathematics in the same course provides a useful
service for both computer science and mathematics students. In fact, functional programming languages
are high-level languages and thus are well suited to teach discrete mathematics. Indeed, they permit to
implement mathematical concepts without considering low level issues such as data representation and
memory allocation. Hence, mathematical notions can be easily introduced together with their implemen-
tations (that remain very close to the concepts that get implemented) and can be manipulated by students.
This is a true way to reinforce their understanding of mathematical concepts. The benefit is also great
on the programming side. Using a programming language to learn mathematical concepts leads to han-
dle these concepts as a specification for the program under development and introduce students to the
formal specification world. Then, reasoning on the specification and the associated program is a way to
smoothly introduce the students to induction, logics and semantics, all notions needed to demonstrate
that a program meets its specification. The goal on the computer science side is to put the emphasis
on the correctness of the computation which is one of the main purposes of formal methods. Currently,
when they are used, programming languages only serve as a formalism to manipulate the computational
part of mathematical objects but not to express specifications or to implement proofs. This may lead
students to view formal methods as a posteriori methods in the programming tasks. In this paper, we
claim that formal methods also provide an a priori help during the conception of software that can be
taught in discrete mathematics courses: specifying a hierarchy of mathematical discrete structures is a
good introduction to the design of software architecture.

Even if proof assistants seem now to be mature enough to be adaped to the education, at under-
graduate level, formal reasoning is seldom introduced and mostly appears in “pure” logic courses. For
example, in [14], the design of a web interface for Coq used to teach logic to undergraduate students
is presented. In the context of computer science teaching, formal reasoning is generally introduced at a
more advanced stage. This can be done by implementing some automated theorem proving techniques
(like in [12]) or by using proof assistants such as Coq or Isabelle. In this case, F-IDE and theorem prov-
ing are not objects of the study but are rather considered as a framework for teaching something else.
Hopefully, using a language as a vehicle for reinforcing concepts inevitably leads to learn some method-
ological and practical knowledges about it. For example, [18] is a semantics textbook (to master students)
which is entirely based on the proof assistant Isabelle. The main benefit of using a proof assistant in the
teaching of semantics is that it allows students to experiment their specifications and to make proofs by
using a computer program, which guides them through the development of a completely correct proof
and gives them immediate feedback. This avoids students to produce “almost-but-not-completely-right
proofs” (as called by Pierce in [21]) or even worse “LSD trip proofs” (as called by Nipkow in [17]).

As we said, we think that teaching formal methods to beginners is essential to disseminate their use in
the software industry. However, at the undergraduate level, no prerequesites on computer science can be
assumed and we can only suppose some very basic knowledges in mathematics that are also considered
as prerequisites for the first courses of discrete mathematics. Hence, we believe that using a F-IDE could

M. Jaume, T. Laurent 3

be helpful to teach both computer science and discrete mathematics in a mixed course.
This paper aims at presenting our pedagogical approach of both disciplines through a small math-

ematical development. In this context, the F-IDE used as a teaching tool must be suitable to express
specifications (i.e. properties), to write programs (i.e. definitions) and to make proofs. One of the main
issues is concerned with proofs. Within most theorem provers, proofs are sequences of commands (be-
longing to a scripting language) that are hard to read for the human: they lack the information what
is being proved at each point, and they lack structure. Such provers are clearly not suitable to teach
discrete mathematics at the undergraduate level since they do not provide a proof language close to
the informal language of mathematics. Furthermore, the proof language used must be abstract enough
to avoid to teach the fine structure of logic (the inference rules) and to automate the “trivial” steps of
proofs by allowing students to only express what intermediate steps might help the proof assistant to
complete proofs. For these reasons, we think that the FoCaLiZe [11] F-IDE is a good candidate to
teach both computer science and discrete mathematics at the undergraduate level. Indeed, FoCaLiZe is
an object-oriented programming environment that combines specifications, programs and proofs in the
same language, and permits declarative proof descriptions inspired by Lamport’s work [15, 6]. These
features can be used to formally express specifications and to develop the design and implementation of
software as well as some hierarchy of mathematical structures, while proving that implementations (i.e.
definitions) meet their specifications or design requirements (i.e. the properties that they are supposed
to satisfy). Moreover, the object-oriented features of this language enable the development of an imple-
mentation by iterative refinement of its specification: many software components implemented can be
built by inheritance and parameterization from already defined components.

2 From binary relations to functions

In this section, we present a small development illustrating how FoCaLiZe can be used to teach basic
notions on binary relations and functions and how, at the same time, some knowledge on F-IDE usage
can be introduced. To validate our approach we simultaneously introduce concepts involved in FoCaLiZe
and discrete mathematics.

Specification of binary relations In FoCaLiZe, the primitive entity of a development is the species.
Species are the nodes of the hierarchy of structures that makes up a development. A species can be seen
as a set of “things”, called methods, related to the same concept. As in most modular design systems
(i.e. object-oriented, abstract data types, etc.) the idea is to group a data structure with the operations
on the data structure, the specification of these operations (in the form of properties), the representation
requirements, and the proofs of the properties. Therefore there are three kinds of methods: the carrier
type, the programming methods which are functions and the logical methods which are statements, called
here properties, and proofs. Each method is identified by its name and can be either declared (primitive
constants, operations and properties) or defined (implementation of operations, proofs of theorems).

In discrete mathematics, objects are often defined at an abstract level. For example, a binary relation
R is generally defined as a subset of a cartesian product A×B. In fact, to define a relation we first
need two sets A and B from which the relation can be built: we don’t know anything about these sets
but we have to be able to manipulate their elements to describe elements belonging to R. Hence, the
species Binary relations of binary relations is parameterized by the sets A:Setoid and B:Setoid (where
the species Setoid specifies non-empty sets together with an equivalence relation equal, see table 1).

4 Teaching Formal Methods and Discrete Mathematics

Indeed, an important feature of FoCaLiZe is the ability to parameterize a species by generic col-
lections instanciating a species. Such a mechanism allows us to use a species, without embedding its
methods (which is the inheritance mechanism) in the new structure but to use it as a tool box to build
this new structure by calling its methods explicitly without knowing how the methods — the tools — are
built.

Each species must have one unique carrier method, or representation type: it corresponds to the
concrete representation of the elements of the set underlying the structure defined by the species. The
carrier is represented by the keyword Self inside the species and outside, by the name of the species
itself, so that we identify the set with the structure, as usual in mathematics. Like all the other methods,
the carrier can be either declared or defined. A declared carrier denotes any set (as in the sentence “let E
be a set”), while a defined one is a binding to a concrete type.

In the species Binary relations, nothing is said about how to implement relations and the carrier
method Self is only declared: we write R:Self to express that R is a relation belonging to the species
Binary relations. In this context, we are now in position to specify what is a binary relation by introduc-
ing a method relation: Self -> A -> B -> bool corresponding to characteristic functions of relations
(given a relation R:Self, for a : A and b : B, relation(R,a,b)=true iff (a,b) ∈ R). At this level of the
hierarchy, the method relation is only declared (we don’t describe particular relations but only what is
needed to define a relation).

Another important feature of FoCaLiZe is the inheritance mechanism: one can enrich a species with
additional operations (methods) and redefine some methods of the parent species, but one can also get
closer to a runnable implementation by providing explicit definitions to methods that were only declared
in the parents. A species can inherit the declarations and definitions of one or several already defined
species and is free to define or redefine an inherited method as long as such (re)definition does not change
the type of the method.

For example, in mathematics, the set of binary relations is endowed with a notion of equality derived
from the equalities of the two component sets. This equality turns this set of binary relations into a
setoid. We can easily express that point by indicating that the species Binary relations inherits from the
species Setoid. In this way, in Binary relations and in all species inheriting from it, the method equal

can be called to compare relations. Moreover, since the parameters A and B are also setoids, the syntactic
construction A!equal (resp. B!equal) can be used to call the method equal of the species A (resp. B) to
compare elements of A (resp. of B).

species Binary relations (A is Setoid, B is Setoid) =

inherit Setoid;

signature relation : Self -> A -> B -> bool;

end ;;

Of course, (we hope that) many students know what is a binary relation. However, here, introducing the
species of binary relations leads to introduce (at a very basic level) computer science concepts such as
parameters, inheritance, abstract and concrete data types, declarations and definitions.

Specifications, Definitions and Proofs At this point, the method equal is only declared in the species
Setoid and it remains to define it in the species Binary relations. To achieve this goal, we can declare
the method is contained : Self -> Self -> bool such that is contained(R1,R2)=true iff R1 ⊆ R2. Hence,
we add the signature of is contained together with a property expressing the specification of this method
in the species Binary relations.

signature is contained: Self -> Self -> bool ;

property is contained spec: all r1 r2: Self,

is contained(r1, r2) <-> all a: A, all b: B, relation(r1, a, b) -> relation(r2, a, b);

M. Jaume, T. Laurent 5

Declared methods are introduced by the keyword signature while defined methods are introduced by let

and recursive definitions must be explicitely flagged with the keyword rec. The method is contained spec

corresponds to a logical method. Such methods represent the properties of programming methods. The
declaration of a logical method is simply the statement of a property, while the definition is a proof of
this statement. In the first case, we speak of properties (property) that are still to be proved later in the
development, while in the second case we speak of theorems (theorem). The language also permits logical
definitions (logical let) to bind names to logical statements. The language used for the statements is
composed of the basic logical connectors \/, /\, ->, <->, not, and universal (all) and existential (ex)
quantification over a FoCaLiZe type.

As we can see in our example, as usual during a formal development (and as required as a good prac-
tice when applying formal methods), specifications are provided before implementations. Later, during
inheritance, the method is contained will have to be implemented and the proof of is contained spec

will have to be done. However, even if this method is only declared, it is possible to use it in a definition.
For example, we can now define the method equal (which is still only declared) over relations and we
can prove the required properties on this definition (as specified in the species Setoid, this method must
define a reflexive, symmetric and transitive relation over Self).

let equal(x, y) = is contained(x, y) && is contained(y, x) ;

theorem equal spec : all r1 r2 : Self,

equal (r1, r2) <-> (all a : A, all b : B, relation(r1, a, b) <-> relation (r2, a, b))

proof = by definition of equal

property is contained spec ;

proof of equal reflexive = by property equal spec;

proof of equal symmetric = by property equal spec;

proof of equal transitive = by property equal spec;

In fact, the method equal is defined together with a proved theorem equal spec corresponding to its
specification. The proof is obtained in an automatic way: we just specify here that it can be done by
considering the definition of equal and the specification is contained spec (we don’t specify how these
methods have to be used to make the proof). Thanks to this theorem, proofs of reflexivity, symmetry and
transitivity of equal are obvious and can also be automatically done (it suffices to indicate that they can
be obtained by considering the theorem equal spec).

There are no difficulties to do such mathematical proofs, which can be more detailed if needed to
point out the mathematical reasonment. Now, there is, on the computer science side, a question which
naturally arises from this tiny development. What is the consequence of redefining the equality in a
species inheriting from Binary relations? Any proof relying on the definition of equal should be redone
(and the compiler leaves no room to an attempt to keep the old version). This is the time to try another
version by directly using the definition of equal to prove reflexivity, symmetry and transitivity and to
find out that these proofs have to be invalidated when redefining equal. This puts the emphasis on the
benefit obtained from the introduction of the specification of equal: only the proof of equal spec is to be
redone in case of redefinition of equal while the proofs of reflexivity, symmetry and transitivity remain
valid since they do not depend on the definition of equal. Hence, it is demonstrated that, to minimize the
impact of redefinitions, proofs must rely on specification properties instead on definitions (this point is
discussed in [23]).

Therefore, as we can see here, even in a very simple and small example on discrete mathematics,
some non-trivial methodological issues in computer science can be addressed.

Formal reasoning on mathematical properties At an abstract level, FoCaLiZe allows us to introduce
some properties. For example, in the context of a discrete mathematics course, one can define what is

6 Teaching Formal Methods and Discrete Mathematics

species Setoid =

inherit Basic_object;

signature element : Self;

signature equal : Self -> Self -> bool;

property equal_reflexive : all x : Self, equal(x,x);

property equal_symmetric : all x y : Self, equal(x,y) -> equal(y,x);

property equal_transitive : all x y z : Self, equal(x,y) -> equal(y,z) -> equal(x,z);}

let different (x, y) = not (equal(x,y));

theorem same_is_not_different : all x y : Self, different(x,y) <-> not (equal(x,y))

proof = by definition of different;

end;;

Table 1: Species of setoids

an injective relation, a surjective relation, a deterministic relation and a left-total relation by adding the
following methods in the species Binary relations.

logical final let is_left_unique(r) = all a1 a2 : A, all b : B,

(relation(r,a1,b) /\ relation(r,a2,b)) -> A!equal(a1,a2);

logical final let is_right_total(r) = all b : B, ex a : A, relation(r,a,b);

logical final let is_right_unique(r) = all a : A, all b1 b2 : B,

(relation(r,a,b1) /\ relation(r,a,b2)) -> B!equal(b1,b2);

logical final let is_left_total(r) = all a : A, ex b : B, relation(r, a, b);

These methods correspond to definitions of logical properties: they only bind names to statements and
don’t intend to express that these properties are true or false (contrarily to the methods introduced by
property). The keyword final is used to forbid the redefinition of these methods in the species inheriting
from Binary relations. We can also describe the empty relation, the full relation, and singleton relations
as follows.

logical final let is_empty_r(r) = all a : A, all b : B, not relation(r,a,b) ;

logical final let is_full_r(r) = all a : A, all b : B, relation(r,a,b) ;

logical final let is_singleton_r(r,a,b) = all a1 : A, all b1 : B,

relation(r,a1,b1) <-> (A!equal(a,a1) /\ B!equal(b,b1));

Similarly, we can introduce operations by only specifying their properties (like in logic programming
languages). For example, we can describe union, intersection and difference of relations as follows.

logical final let is_union_r(r1,r2,r3) = all a : A, all b : B,

relation(r3,a,b) <-> (relation(r1,a,b) \/ relation(r2,a,b));

logical final let is_intersection_r(r1,r2,r3) = all a : A, all b : B,

relation(r3,a,b) <-> (relation(r1,a,b) /\ relation(r2,a,b));

logical final let is_diff_r(r1,r2,r3) = all a : A, all b : B,

relation(r3,a,b) <-> (relation(r1,a,b) /\ not relation(r2,a,b));

Thanks to these methods, it becomes possible to prove classical properties, often done as exercices during
discrete mathematics courses. For example we can prove the following property.(

R1 is injective∧R2 is injective
∧∀a1,a2 : A∀b : B ((a1,b) ∈ R1∧ (a2,b) ∈ R2)⇒ a1 = a2

)
⇔ R1∪R2 is injective

In the context of a discrete mathematics course, the goal is not here to make the proofs with the automatic
features of Zenon but to write a detailed proof of a mathematical property. Hence, we would like to
formally prove the following theorem.

theorem union is left unique : all r1 r2 r3 : Self,

is union r(r1,r2,r3) ->

((is left unique(r1) /\ is left unique(r2)

/\ (all a1 a2: A, all b: B,((relation (r1,a1,b) /\ relation(r2,a2,b)) -> A!equal(a1,a2))))

<-> is left unique(r3))

M. Jaume, T. Laurent 7

Within FoCaLiZe, a proof is a tree where the programmer introduces names (assume) and hypotheses
(hypothesis), gives a statement to prove (prove) and then provides justification for the statement. This
justification can be: (1) a “conclude” clause for fully automatic proof; (2) a “by” clause with a list
of definitions, properties, hypotheses, previous theorems, and previous steps (subject to some scoping
conditions) for use by the automatic prover; (3) a sequence of proofs (with their own assumptions,
statements, and proofs) whose statements will be used by the automatic prover to prove the current
statement. Hence, each step of a proof is independent of the others and can be reused in a similar
context1. Thanks to these features, as illustrated in table 2, a formal proof (left side of table 2), very
close to the informal proof (right side of table 2), of the theorem union is left unique can be done within
FoCaLiZe. As we can see, the structure of the proof appears clearly (proving an equivalence leads to
prove two implications, proving an implication leads to assume hypothesis and to prove the conclusion,
proving a conjunction leads to prove each member of the conjunction, using an implication to prove a
statement leads to prove hypothesis of this implication, etc.) and each step is clearly characterized by
some assumptions and a goal to prove. Hence, using FoCaLiZe during a mathematics course can guide
students when specifying and proving classical properties by providing some help to answer questions: is
this specification correct according to this property ? are these properties needed to prove this statement ?
is there an implicit assumption in this proof ? is this statement provable by using these proof steps ? etc.

Building a hierarchy of mathematical structures Adding the specifications of operations over rela-
tions and the classical properties over relations in the species Binary relations only leads to bind names
to properties without asserting if these properties are true or false. It is now possible to build a hierarchy
of species inheriting from Binary relations in order to constrain relations to satisfy some of these prop-
erties. For example, the species of injective relations can be introduced as follows (we just consider here
one theorem to illustrate exercices that can be done at this level).

species Injective_relations(A is Setoid, B is Setoid) =

inherit Binary_relations(A, B);

property left_unique : all r : Self, is_left_unique(r);

theorem injective_union : all r1 r2 r3 : Self,

is_union_r(r1,r2,r3)

-> (all a1 a2: A, all b: B,((relation(r1,a1,b) /\ relation(r2,a2,b))->A!equal(a1,a2)))

proof = by property left_unique, union_is_left_unique ;

end;;

Here, we can use the theorem union is left unique and the property left unique (necessarily satisfied
by all elements of type Self) to prove properties over union of relations (note that the definition of
is left unique is not used in this proof which is obtained by only considering properties of logical con-
nectors between statements). This can also be done for all the operations and properties previously
introduced. For example, we can introduce the species of deterministic and left-total relations as follows.

species Deterministic_relations (A is Setoid, B is Setoid) =

inherit Binary_relations (A, B);

property right_unique : all r : Self, is_right_unique (r);

end;;

species Left_total_relations (A is Setoid, B is Setoid) =

inherit Binary_relations (A, B);

property left_total : all r : Self, is_left_total (r);

end;;

Furthermore, we can go one step further and build a “complete” hierarchy by considering functions,
injective functions, surjective functions and bijective functions as particular cases of relations. This leads
to build the following hierarchy of relations corresponding to usual contents in a mathematics course.

1This eases maintenance of proofs, and allows us to use exactly the same proof for a statement based on an hypothesis A and
for the same statement based on a stronger hypothesis B, provided the automatic prover can make the inference from B to A.

8 Teaching Formal Methods and Discrete Mathematics

proof =
<0>1 assume r1 r2 r3 : Self, Let R1, R2 and R3 be binary relations.

hypothesis Hunion : is_union_r(r1,r2,r3), such that R3 = R1 ∪R2.
prove (is_left_unique(r1) /\ is_left_unique(r2) Let us prove the desired equivalence.

/\(all a1 a2 : A, all b : B,
((relation(r1,a1,b) /\ relation(r2,a2,b))
-> A!equal (a1, a2))))

<-> is_left_unique(r3)

<1>1 hypothesis Hlu1 : is_left_unique(r1), First, let us suppose that R1 is injective,
hypothesis Hlu2 : is_left_unique(r2), R2 is injective,
hypothesis Heq : all a1 a2 : A, all b : B, and that ∀a1,a2 : A∀b : B

((relation (r1,a1,b) /\ relation(r2,a2,b)) ((a1,b) ∈ R1 ∧ (a2,b) ∈ R2)⇒ a1 = a2
-> A!equal(a1,a2)),

prove is_left_unique(r3) and let us prove that R3 is injective.
<2>1 assume a1 a2 : A, assume b : B, Let a1,a2 : A and b : B be elements

hypothesis Ha1 : relation(r3,a1,b), such that (a1,b) ∈ R3
hypothesis Ha2 : relation(r3,a2,b), and (a2,b) ∈ R3,
prove A!equal(a1, a2) and let us prove that a1 = a2.

We consider 4 cases.
<3>1 hypothesis H11 : relation(r1,a1,b), If we suppose that (a1,b) ∈ R1,

hypothesis H12 : relation(r1,a2,b), and (a2,b) ∈ R1,
prove A!equal(a1,a2) then we can prove a1 = a2
by hypothesis H11, H12, Hlu1 since (by hypothesis) R1 is injective,

definition of is_left_unique and by definition of an injective relation.
<3>2 hypothesis H21 : relation(r2,a1,b), If we suppose that (a1,b) ∈ R2,

hypothesis H22 : relation(r2,a2,b), and (a2,b) ∈ R2,
prove A!equal(a1,a2) then we can prove a1 = a2
by hypothesis H21, H22, Hlu2 since (by hypothesis) R2 is injective,

definition of is_left_unique and by definition of an injective relation.
<3>3 hypothesis H31 : relation(r1,a1,b), If we suppose that (a1,b) ∈ R1,

hypothesis H32 : relation(r2,a2,b), and (a2,b) ∈ R2,
prove A!equal(a1,a2) then we can prove a1 = a2
by hypothesis H31, H32, Heq by using hypothesis (Heq).

<3>4 hypothesis H41 : relation(r2,a1,b), If we suppose that (a1,b) ∈ R2,
hypothesis H42 : relation(r1,a2,b), and (a2,b) ∈ R1,
prove A!equal(a1,a2) then we can prove a1 = a2
by hypothesis H41, H42, Heq by using hypothesis (Heq).

<3>f qed by step <3>1, <3>2, <3>3, <3>4 In these 4 cases, a1 = a2 and
hypothesis Hunion, since by hypothesis R3 = R1 ∪R2,

Ha1, Ha2 and (a1,b) ∈ R3 and (a2,b) ∈ R3,
definition of is_union_r we can conclude by definition of ∪.

<1>2 hypothesis Hlu3 : is_left_unique(r3), Now, let us suppose that R3 is injective,
prove is_left_unique(r1) /\ is_left_unique(r2) and let us prove that R1 and R2 are injective,
/\ (all a1 a2 : A, all b : B, and are such that ∀a1,a2 : A ∀b : B,
((relation(r1,a1,b)/\relation(r2,a2,b))->A!equal(a1,a2))) ((a1,b) ∈ R1 ∧ (a2,b) ∈ R2)⇒ a1 = a2

<2>1 prove is_left_unique(r1) We first prove that R1 is injective.
<3>1 assume a1 a2 : A, assume b : B, Let a1,a2 : A and b : B be elements

hypothesis Hr1:relation(r1,a1,b)/\relation(r1,a2,b), such that (a1,b) ∈ R1 ∧ (a2,b) ∈ R1,
prove A!equal(a1,a2) and let us prove that a1 = a2.

<4>1 prove relation(r3,a1,b) /\ relation(r3,a2,b) We prove that (a1,b) ∈ R3 ∧ (a2,b) ∈ R3
by hypothesis Hr1, Hunion definition of is_union_r since R3 = R1 ∪R2 and by definition of ∪.

<4>f qed by step <4>1 hypothesis Hlu3 Hence, since R3 is injective, we get a1 = a2
definition of is_left_unique by definition of an injective relation.

<3>f qed by step <3>1 definition of is_left_unique Thus, by definition, R1 is also injective.
<2>2 prove is_left_unique(r2) Similarly we prove that R2 is injective.

<3>1 assume a1 a2 : A, assume b : B, Let a1,a2 : A and b : B be elements
hypothesis Hr2:relation(r2,a1,b)/\relation(r2,a2,b), such that (a1,b) ∈ R2 ∧ (a2,b) ∈ R2,
prove A!equal(a1,a2) and let us prove that a1 = a2.

<4>1 prove relation(r3,a1,b) /\ relation(r3,a2,b) We prove that (a1,b) ∈ R3 ∧ (a2,b) ∈ R3
by hypothesis Hr2, Hunion definition of is_union_r since R3 = R1 ∪R2 and by definition of ∪.

<4>f qed by step <4>1 hypothesis Hlu3 Hence,since R3 is injective, we get a1 = a2
definition of is_left_unique by definition of an injective relation.

<3>f qed by step <3>1 definition of is_left_unique Thus, by definition, R2 is also injective.
<2>3 prove all a1 a2 : A, all b : B, It remains to prove that

((relation(r1,a1,b) /\ relation(r2,a2,b)) ∀a1,a2 : A∀b : B ((a1,b) ∈ R1 ∧ (a2,b) ∈ R2)
-> A!equal(a1,a2)) ⇒ a1 = a2

<3>1 assume a1 a2 : A, assume b : B, Let a1,a2 : A and b : B be elements
hypothesis H0:relation(r1,a1,b)/\relation(r2,a2,b), such that (a1,b) ∈ R1 ∧ (a2,b) ∈ R2.
prove relation(r3,a1,b) /\ relation(r3,a2,b) We can prove that (a1,b) ∈ R3 ∧ (a2,b) ∈ R3
by hypothesis H0, Hunion definition of is_union_r since R3 = R1 ∪R2 and by definition of ∪.

<3>f qed by step <3>1 hypothesis Hlu3 Hence,since R3 is injective, we get a1 = a2
definition of is_left_unique by definition of an injective relation.

<2>f conclude This concludes the proof of the conjunction <2>1.
<1>f conclude This concludes the proof of the equivalence <0>1.

<0>f conclude; This concludes the proof of the theorem.

Table 2: Proof of theorem union is left unique

M. Jaume, T. Laurent 9

Binary Relations

Injective
Relations

Deterministic
Relations

Left total
Relations

Surjective
Relations

Functions
Injective Functions Surjective Functions

Bijective Functions

However, in the species Functional relations of functions (and in all the species inheriting from it),
elements of type Self are still defined by their characterisitic functions relation: this leads to view
functions from A to B as particular cases of relations over A×B. However, it may be useful to declare a
method fct : Self -> A -> B corresponding to the usual concept of functions (known by students at the
undergraduate level). From this method, it becomes possible to define the method relation and to prove
the required properties. This can be easily done as follows.

species Functional_relations (A is Setoid, B is Setoid) =

inherit Left_total_relations(A, B), Deterministic_relations(A, B);

signature fct : Self -> A -> B;

let relation(r,x,y) = B!equal(fct(r,x),y);

proof of right_unique = by definition of relation, is_right_unique

property B!equal_symmetric, B!equal_transitive;

proof of left_total = by definition of relation, is_left_total property B!equal_reflexive;

end;;

In addition to the mathematical contents of these specifications (allowing students to understand at a
deep level the differences between functions and relations, and the main properties these objects), us-
ing FoCaLiZe to describe the hierarchy of relations and functions allows students to consider multiple-
inheritance and computational notions.

Implementations and their properties Until now, we have only used FoCaLiZe to express, to prove
and to design the architecture of mathematical properties. The next step consists in introducing concrete
data types, recursive programming and inductive proofs over mathematical objects. We show here how
to introduce these notions by implementing finite parts of a set by lists. We first define the species
(parameterized by a setoid S) of finite parts of S (due to space limitations, we only consider the methods
needed in our example, but, of course, this species contains many other methods).

species Finite_parts(S is Setoid) =

inherit Setoid ;

signature belongs: S -> Self -> bool;

signature cardinal: Self -> int;

signature empty : Self;

signature release : Self -> S -> Self;

property release_spec : all x : Self, all t1 t2 : S,

belongs(t1,release(x,t2)) <-> (S!different(t1,t2) /\ belongs(t1,x));

property empty_spec :all t: S, not belongs(t,empty);

signature from_list : list(S) -> Self ;

property belongs_spec: all t: list(S), all h x: S,

(belongs(x,from_list(t)) \/ S!equal(h,x)) <-> belongs(x,from_list(h::t));

end;;

Hence, a finite part P:Self of S is described by a membership relation (belongs(s,P)=true iff s ∈ P) and
by its cardinal (which is finite since it is represented here by an integer). In our example, we consider the

10 Teaching Formal Methods and Discrete Mathematics

methods empty (for the empty part) and release (that permits to remove an element from a finite part). At
this abstract level, these methods are only declared together with their specifications. Furthermore, we
declare a method from list that aims at building a finite part from elements belonging to a list and which
is used to specify the method belong. We can now refine this species by representing finite parts with the
concrete FoCaLiZe type list of lists. Within FoCaLiZe, the language used for the programming methods
is similar to the functional core of OCaml [16] (let-binding, pattern matching, conditional, higher order
functions, etc), with the addition of a construction to call a method from a given structure. Thanks to
these constructions, we can introduce the species Finite_parts_by_lists inheriting from Finite_parts

and providing definitions for the programming methods.

species Finite_parts_by_lists(S is Setoid) =

inherit Finite_parts(S);

representation = list(S);

let rec belongs(x:S,l) = match l with | [] -> false

| h :: q -> S!equal(h,x) || (belongs(x,q))

termination proof = structural l;
let rec cardinal(e) = match e with | [] -> 0

| _ ::t -> 1 + cardinal(t)

termination proof = structural e;

let empty = [];

let rec release(e,s) = match e with | [] -> []

| h::t -> if S!equal(s,h) then release(t,s) else h::release(t,s)

termination proof = structural e ;

let from_list (s:list(S)):Self = s;

end;;

In the context of a discrete mathematics course, this leads to introduce recursive definitions and to
(lightly) address termination issues of such definitions.

We are now in position to prove all the properties stated in the species Finite parts. We just present
here the proof of release spec. The proof is done by induction on lists, and, here again, as we can see in
table 3, the formal proof is very close to the informal one (in the informal proof we write e	 s instead
of release(e,s)): the empty list case and the inductive step are independently proved, and the properties
and definitions leading to intermediate results are made explicit, as well as the context in which such
results are proved. Each method of the species Finite parts by lists is now defined.

Within FoCaLiZe, a collection can be built upon a completely defined species. This means that every
method must be defined. In other words, in a collection, every operation has an implementation, and
every theorem is formally proved. In addition, a collection is “frozen”: it cannot be used as a parent
of a species in the inheritance graph. Moreover, to ensure modularity and abstraction, the carrier of a
collection is hidden: seen from the outside, it becomes an abstract type. This means that any software
component dealing with a collection will only be able to manipulate it through the operations it provides
(i.e. its methods). This point is especially important since it prevents other software components from
breaking representation invariants required by the internals of the collection.

3 Conclusion

Using a computer to teach discrete mathematics at the undergraduate level is usally done by considering
functionnal programming languages allowing students to formally express computational contents of
mathematical concepts by programs and to informally reason on these programs. In this paper, we go
one step futher by showing that abstract specifications and proofs can also be implemented at this level
whitout assuming some advanced theoretical background. Indeed, while teaching experiences using F-
IDE are mostly done at master level, we believe that such approaches can also be adopted for beginning

M. Jaume, T. Laurent 11

proof of release_spec =
<0>1 assume e1 e2 : S, Let e1,e2 be elements of S, and

prove all l:list(S),belongs(e1,release(l,e2)) and let us prove (by induction on l)
<-> (S!different (e1,e2) /\belongs(e1,l)) the desired equivalence.

<1>b prove belongs(e1,release([],e2)) First, let us prove the property
<-> (S!different(e1, e2) /\ belongs(e1,[])) for the empty list.

<2>1 prove not (belongs(e1, release([], e2))) Since e1 6∈ []	 e2 = []
by definition of release, empty by definition of 	 and []

property empty_spec (because ∀e : S e 6∈ [])
<2>2 prove not (S!different (e1,e2) /\ belongs(e1,[])) and since ¬(e1 6= e2 ∧ e1 ∈ [])

by definition of empty property empty_spec (by definition of [] and because ∀e : S e 6∈ [])
<2>f conclude we can conclude.

<1>i assume t: list(S), assume h: S, For the inductive step, let t be a list and h : S.
hypothesis HI : (belongs(e1, release(t, e2)) By induction hypothesis, we have:

<-> (S!different(e1,e2) /\ belongs(e1,t))), e1 ∈ t	 e2 ⇔ (e1 6= e2 ∧ e1 ∈ t),
prove (belongs(e1,release(h::t,e2)) and we prove that

<-> (S!different(e1,e2) /\ belongs(e1,h::t))) e1 ∈ h :: t	 e2 ⇔ (e1 6= e2 ∧ e1 ∈ h :: t)
<2>1 hypothesis H1 : belongs(e1,release(h::t,e2)), (⇒) Let us suppose that e1 ∈ h :: t	 e2 (H1) and

prove S!different(e1,e2) /\ belongs(e1,h::t) let us prove e1 6= e2 ∧ e1 ∈ h :: t. Two cases are possible
<3>1 hypothesis C1 : S!equal(e2,h), and we prove the property for these two cases. If e2 = h,

prove S!different(e1,e2) /\ belongs(e1,h::t)
<4>1 prove S!different(e1,e2) then we have e1 6= e2

by definition of release since, by definition of 	, h :: t	 e2 = t	 e2 , so by H1 ,
hypothesis H1, C1, HI we get e1 ∈ t	 e2 and by induction hypothesis e1 6= e2 .

<4>2 prove belongs(e1,h::t) In remains to prove e1 ∈ h :: t.
<5>1 prove belongs(e1,t) Indeed, we have e1 ∈ t since, by definition of 	,

by hypothesis HI, C1, H1 h :: t	 e2 = t	 e2 , so by H1 , we get e1 ∈ t	 e2
definition of release and by induction hypothesis e1 ∈ t.

<5>f qed by step <5>1 Hence, by definition of from_list and by
property belongs_spec property belongs_spec,
definition of from_list we get e1 ∈ h :: t.

<4>f conclude Hence, when e2 = h, we have e1 6= e2 ∧ e1 ∈ h :: t.
<3>2 hypothesis C2 : not S!equal(e2,h), Now, let us suppose that e2 6= h. Two subcases are

prove S!different(e1,e2) /\ belongs(e1,h::t) possible and we prove the property for both cases.
<4>1 hypothesis C21 : S!equal(e1,h), If e1 = h,

prove S!different(e1,e2) /\ belongs(e1,h::t)
<5>1 prove S!different(e1,e2) then e1 6= e2

by hypothesis C2, C21 since e2 6= h
property S!equal_symmetric, S!equal_transitive, and by properties of equality.

S!same_is_not_different
<5>2 prove belongs(e1,h::t) Furthermore we have e1 ∈ h :: t (since e1 = h)

by property belongs_spec, S!equal_symmetric by symmetry of equality and by definition
hypothesis C21 definition of from_list of from_list and property belongs_spec.

<5>f conclude
<4>2 hypothesis C22 : not S!equal(e1,h), Now, let us suppose that e1 6= h.

prove S!different(e1,e2) /\ belongs(e1,h::t)
<5>1 prove belongs(e1, h::release(t, e2)) We have e1 ∈ h :: (t	 e2) since e2 6= h

by hypothesis H1, C2 and e1 ∈ h :: t	 e2 (H1) and by
definition of release definition of 	, we get h :: t	 e2 = h :: (t	 e2).

<5>2 prove belongs(e1,release(t,e2)) Furthermore, it follows e1 ∈ t	 e2
by step <5>1 hypothesis C22 since e1 6= h

definition of belongs and by definition of the membership relation and
property belongs_spec, S!equal_symmetric by property belong_spec and by symmetry of equality.

<5>3 prove S!different(e1,e2) /\ belongs(e1,t) Hence, by induction hypothesis,
by step <5>2 hypothesis HI we get e1 6= e2 ∧ e1 ∈ t.

<5>4 prove belongs(e1,h::t) From e1 ∈ t, we get e1 ∈ h :: t
by step <5>3 definition of belongs by definition of the membership relation

property belongs_spec and by property belong_spec.
<5>f conclude

<4>f conclude Hence, when e2 6= h, we also have e1 6= e2 ∧ e1 ∈ h :: t.
<3>f conclude

<2>2 hypothesis H2: S!different(e1,e2) /\ belongs(e1,h::t), (⇐) Let us suppose that e1 6= e2 ∧ e1 ∈ h :: t (H2)
prove belongs(e1,release(h::t,e2)) and let us prove that e1 ∈ h :: t	 e2

<3>1 hypothesis C1 : S!equal(e1,h), Two cases are possible. If e1 = h,
prove belongs(e1,release(h::t,e2))

<4>1 prove not S!equal(e2,h) then e2 6= h
by hypothesis H2, C1 by hypothesis H2

property S!equal_transitive, S!equal_symmetric, and by properties of
S!same_is_not_different equality.

<4>2 prove release(h::t,e2)=h::release(t,e2) Hence it follows h :: t	 e2 = h :: (t	 e2)
by step <4>1 definition of release by definition of 	.

<4>3 prove belongs(e1,h::release(t,e2)) Furthermore, we get e1 ∈ h :: (t	 e2)
by definition of belongs hypothesis C1 since e1 = h and by definition of the membership relation

property belongs_spec, S!equal_symmetric and by property belongs_spec and symmetry of equality.
<4>f qed by step <4>2, <4>3 Hence, when e1 = h, we have e1 ∈ h :: t	 e2 .

<3>2 hypothesis C2 : not S!equal(e1,h), Now, let us suppose that e1 6= h.
prove belongs(e1,release(h::t,e2))

<4>1 prove belongs(e1,t) Then we get e1 ∈ t since e1 ∈ h :: t and e1 6= h
by definition of belongs hypothesis C2, H2 and by definition of the membership relation,

property belongs_spec, S!equal_symmetric and by property belongs_spec and symmetry of equality.
<4>2 prove belongs(e1,release(t,e2)) Hence, by induction hypothesis, and since e1 6= e2 (H2)

by step <4>1 hypothesis H2, HI it follows e1 ∈ t	 e2
<4>3 prove release(h::t,e2) = release(t,e2)

\/ release(h::t,e2) = h::release(t,e2) Moreover, by definition of 	 we have
by definition of release h :: t	 e2 = t	 e2 or h :: t	 e2 = h :: (t	 e2).

<4>f qed by step <4>3, <4>2 Hence, when e1 6= h, we have e1 ∈ h :: t	 e2
property belongs_spec definition of from_list (by definition of from_list and by property belongs_spec).

<3>f conclude
<2>f conclude This concludes the inductive step.

<1>f conclude This concludes the proof by induction.
<0>f conclude; This concludes the proof.

Table 3: Proof of release spec

12 Teaching Formal Methods and Discrete Mathematics

Figure 1: Formal development within FoCaLiZe

students. We claim here that teaching how to develop software with F-IDE to beginners is essential to
ease and to promote their use in industry.

FoCaLiZe was conceived from the beginning to help building systems with high safety and security
assurances. FoCaLiZe includes a language based on firm theoretical results [22], with a clear seman-
tics and provides an efficient implementation – via translation to OCaml [16]. It has functional and
object-oriented features and provides means for the programmers to write formal proofs of their code in
a more or less detailed way within a declarative proof language based on the Zenon automatic theorem
prover [2]. Zenon eases the task of writing formal proofs and translates them into Coq [8] for high-
assurance checking. FoCaLiZe also provides powerful features (such as inheritance, parameterization
and late-binding) that enable a stepwise refinement methodology to go from specification all the way
down to executable code. Indeed, thanks to the main features of FoCaLiZe, a formal development can
be organized as a hierarchy (as illustrated in figure 1) which may have several roots: the upper levels
of the hierarchy are built during the specification stage while the lower ones correspond to implemen-
tations. Thus, FoCaLiZe unifies within the same language the formal modeling work, the development
of the code, and the certification proofs. Very important is the ability in FoCaLiZe to have specifica-
tions, implementations and proofs within the same language, since it eliminates the errors introduced
between layers, at each switch between languages, during the development cycle. Other frameworks,
like Atelier B [1], also aims at implementing tools for making formal development a reality. FoCaLiZe
doesn’t follow the same path, trying to keep the means of expression close to what engineers usually
know: a programming language. Of course, nowadays, proof assistants also provide some features for
structuring code (module systems, type classes, etc), but most of them still cannot be used to obtain
efficient programs. Compilation of FoCaLiZe developments leads to efficient OCaml programs (which
are not obtained by extracting computational contents of proofs). It is this focus on efficiency that makes
FoCaLiZe a real programming language. To our knowledge, only the Agda [4] programming language,
based on dependent types and compiling via Haskell, has a comparable mix of features. Note that the
FoCaLiZe language is also based on a dependent type language, but with some restrictions on dependen-
cies. Furthermore, FoCaLiZe provides several automatic tools to ease the generation of programs from
specifications, the generation of documentation, and the production of test suites [5].

M. Jaume, T. Laurent 13

For all these reasons, we think that FoCaLiZe is not only well suited to develop critical systems but is
also a good framework to teach both computer science and discrete mathematics courses. For example,
we have already used [9] FoCaLiZe (together with Coq) to teach (at a master level) semantics of object-
oriented features of programming languages. In this paper, we consider FoCaLiZe as a teaching tool
at the undergraduate level and illustrate our approach with a small development introducing very basic
concepts of discrete mathematics and showing how to mix both formal methods and discrete mathematics
courses. Indeed, FoCaLiZe provides an environment simple enough to be usable by most students at
university (even if they are not fully acquainted with theoretical concepts such as higher-order logics),
in particular by making development of correct proofs as easy as possible and as readable as possible.
Moreover, FoCaLiZe leads to stress the process of abstraction through the construction, step by step,
of problem solutions from their specifications. This can be helpful to improve the learning process of
discrete mathematics but also to show to students that computer science involves a lot of mathematical
activities and vice versa.

In addition to pedagogical benefits, we believe that teaching how to use F-IDE as early as possible
leads to raise the level of mathematical rigor for computer science so as to ensure that formal methods
are perceived as valid professional disciplines by students. Formal methods will be of increasing value
in computer and software engineering (especially for safety-critical, security-sensitive, and embedded
systems) and we think that education is one challenge to take up in order to promote the dissemination of
formal methods in software industry. FoCaLiZe includes a computer algebra library, mostly developed
by R. Rioboo [3, 24], which implements mathematical structures up to multivariate polynomial rings
and includes complex algorithms with performance comparable to the best computer algebra systems
in existence. Hence, as future works, we believe that FoCaLiZe could be used to develop a complete
discrete mathematics course.

Acknowledgments The authors would like to thank Renaud Rioboo for his help and for enlightening
discussions about how to program with FoCaLiZe and about teaching discrete mathematics.

References

[1] J.R. Abrial (1996): The B Book: Assigning Programs to Meanings. Cambridge University Press.

[2] R. Bonichon, D. Delahaye & D. Doligez (2007): Zenon: An Extensible Automated Theorem Prover Produc-
ing Checkable Proofs. In: Logic for Programming, Artificial Intelligence, and Reasoning, 14th Int. Conf.,
LPAR, LNCS 4790, Springer, pp. 151–165.

[3] S. Boulmé, T. Hardin & R. Rioboo (2001): Some hints for polynomials in the Foc project. In: 9th Symp. on
the Integration of Symbolic Computation and Mechanized Reasoning, Calculemus 2001.

[4] A. Bove, P. Dybjer & U. Norell (2009): A Brief Overview of Agda - A Functional Language with Dependent
Types. In: Theorem Proving in Higher Order Logics, 22nd Int. Conf., TPHOLs 2009, Proceedings, LNCS
5674, Springer, pp. 73–78.

[5] M. Carlier, C. Dubois & A. Gotlieb (2010): Constraint Reasoning in FocalTest. In: ICSOFT 2010 - Proceed-
ings of the Fifth Int. Conf. on Software and Data Technologies, Volume 2, SciTePress, pp. 82–91.

[6] K. Chaudhuri, D. Doligez, L. Lamport & S. Merz (2008): A TLA+ Proof System. In: Proc. of the LPAR
Workshops: Knowledge Exchange: Automated Provers and Proof Assistants, and The 7th Int. Workshop on
the Implementation of Logics (KEAPPA).

[7] Common Criteria (2005): Common Criteria for Information Technology Security Evaluation, Norme ISO
15408 – Version 3.0 Rev 2.

14 Teaching Formal Methods and Discrete Mathematics

[8] Coq (2010): The Coq Proof Assistant, Tutorial and reference manual. Distribution available at:
http://coq.inria.fr/.

[9] D. Delahaye, M. Jaume & V. Prevosto (2005): Coq: un outil pour l’enseignement. Technique et Science
Informatiques (TSI) 24(9), pp. 1139–1160.

[10] K. Doets & J. van Eijck (2004): The Haskell Road to Logic, Maths and Programming. King’s College
Publications, London.

[11] Focalize (2010): Focalize, Tutorial and reference manual. Distribution available at:
http://focalize.inria.fr.

[12] J. Harrison (2009): Handbook of Practical Logic and Automated Reasoning. Cambridge University Press.
[13] P. B. Henderson (2002): Functional and declarative languages for learning discrete mathematics. In Pro-

ceedings of the Int. Workshop on Functional & Declarative Programming in Education (FDPE 2002), editors:
Published as Technical Report No. 0210 of the University of Kiel (Germany).

[14] M. Hendriks, C. Kaliszyk, F. van Raamsdonk & F. Wiedijk (2010): Teaching logic using a state-of-the-art
proof assistant. Acta Didactica Napocensia 3(2), pp. 35–48.

[15] L. Lamport (1995): How to Write a Proof. AMM: The American Mathematical Monthly 102(7), pp. 600–
608.

[16] X. Leroy, D. Doligez, J. Garrigue, D. Rémy & J. Vouillon (2003): The Objective Caml system, Documentation
and user’s manual, release 3.07 edition.

[17] T. Nipkow (2012): Teaching Semantics with a Proof Assistant: No more LSD Trip Proofs. In: Verification,
Model Checking, and Abstract Interpretation (VMCAI 2012), LNCS 7148, Springer, pp. 24–38.

[18] T. Nipkow & G. Klein (2013): Concrete Semantics. A proof assistant approach. Draft. Available at http:
//www21.in.tum.de/~nipkow/Concrete-Semantics/concrete_semantics.pdf.

[19] J. T. O’Donnell, C. V. Hall & R. Page (2006): Discrete mathematics using a computer. Springer.
[20] R.L. Page (2003): Software is discrete mathematics. In: Proc. of the Eighth ACM SIGPLAN Int. Conf. on

Functional Programming, ICFP 2003, ACM, pp. 79–86.
[21] B. C. Pierce (2009): Lambda, the ultimate TA: using a proof assistant to teach programming language

foundations. In: Proc. of the 14th ACM SIGPLAN Int. Conf. on Functional programming, ICFP 2009,
ACM, pp. 121–122.

[22] V. Prevosto & D. Doligez (2002): Algorithms and Proof Inheritance in the Foc language. Journal of Auto-
mated Reasoning 29(3-4), pp. 337–363.

[23] V. Prevosto & M. Jaume (2003): Making proofs in a hierarchy of mathematical structures. In: 11th Symp. on
the Integration of Symbolic Computation and Mechanized Reasoning, Calculemus 2003, Aracne, pp. 89–100.

[24] R. Rioboo (2009): Invariants for the FoCaL language. Annals of Mathematics and Artificial Intelligence
56(3-4), pp. 273–296. Available at http://dx.doi.org/10.1007/s10472-009-9156-3.

[25] S. Da Rosa (2002): The Role of Discrete Mathematics and Programming in Education. In Proceedings of the
Int. Workshop on Functional & Declarative Programming in Education (FDPE 2002), editors: Published as
Technical Report No. 0210 of the University of Kiel (Germany).

[26] C. Scharff & A. Wildenberg (2002): Teaching Discrete Structures with SML. In Proceedings of the Int. Work-
shop on Functional & Declarative Programming in Education (FDPE 2002), editors: Published as Technical
Report No. 0210 of the University of Kiel (Germany).

[27] T. VanDrunen (2011): The case for teaching functional programming in discrete math. In C. Videira Lopes
& K. Fisher, editors: Companion to the 26th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2011, part of SPLASH 2011, ACM, pp. 81–86.

[28] T. VanDrunen (2012): Discrete mathematics and Functional Programming. Franklin, Beedle and Associates.
[29] R. L. Wainwright (1992): Introducing functional programming in discrete mathematics. In N. B. Dale, editor:

Proc. of the 23rd SIGCSE Technical Symp. on Computer Science Education, ACM, pp. 147–152.

http://www21.in.tum.de/~nipkow/Concrete-Semantics/concrete_semantics.pdf
http://www21.in.tum.de/~nipkow/Concrete-Semantics/concrete_semantics.pdf
http://dx.doi.org/10.1007/s10472-009-9156-3

	Introduction
	From binary relations to functions
	Conclusion

