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Over the years, PROB has moved from a tool that complemented proving, to a development envi-
ronment that is now sometimes used instead of proving for applications, such as exhaustive model
checking or data validation. This has led to much more stringent requirements on the integrity of
PROB. In this paper we present a summary of our validation efforts for PROB, in particular within
the context of the norm EN 50128 and safety critical applications in the railway domain.

1 Introduction

Over the years, PROB has moved from being a tool that complemented proving, to being a tool that is
now sometimes used instead of proving for certain applications. PROB can be used as a plug-in for
proof-centric development environments like Rodin or Atelier-B, but it can also be used as a standalone
development environment that focuses on validation or verification using animation and model checking.
For example, PROB is sometimes used to exhaustively model check B specifications which are not easily
amenable to proving (e.g., where it is not easy to find inductive invariants). In 2009 PROB started to be
used for data validation within Siemens [8, 9], replacing custom proof procedures. In this application,
complicated properties had to be validated on concrete data values for safety critical railway applications.
As this turned out to be highly successful, PROB is now being used for data validation by a variety of
other companies (Alstom, ClearSy, Systerel) and for a variety of industrial end users (e.g., RATP).

All this means that we can now longer rely on the integrity of the B provers in case a bug in PROB
prevents the detection of an error. As such, validation of the PROB tool became very important and even
mandatory. Indeed, according to the railway norm EN 50128 [4] [Sect. 3.1], PROB is now being used as
a tool of class T2, which mandates a certain amount of documentation and validation. Our long term goal
is to enable PROB to also be used as a tool of class T3, i.e., moving from a tool of class T2 that “supports
the test or verification of the design or executable code, where errors in the tool can fail to reveal defects
but cannot directly create errors in the executable software” [4] to a tool that “generates outputs which
can directly or indirectly contribute to the executable code (including data) of the safety related system”
[4]. In addition to the validation efforts described in this paper, T3 would require a secondary toolchain
as described in “Checking Computations of Formal Method Tools - A Secondary Toolchain for PROB”.1

In this paper we outline the various validation efforts that have been conducted in that light, and present
a summary of our experiences.

∗This research is being carried out as part of the EU funded FP7 research project 287563 (Advance).
1To appear in proceedings of F-IDE 2014.



2 Architecture

2.1 Source Code

The kernel of PROB is developed in Prolog, but many other programming languages come into play.
More precisely, the source code of PROB contains more than 45,000 lines of Prolog, more than 15,000
lines of Tcl/Tk, more than 5,000 lines of C (for LTL and symmetry reduction), 1,951 lines of grammar
and more than 10,000 lines of Java that are expanded by the SableCC compiler generator [6] into about
91,000 lines of Java for our parsers. In addition, there are slightly more than 5,000 lines of Haskell code
for the CSP parser and about 70,000 lines of Java code for the Rodin [2] plugin. These are the statistics
for version 1.3.7-beta9 of PROB.

We use Git for our source code repositories, managing a history that traces back to 2005. The
repository has been ported to different SCMs multiple times, starting from an initial CVS repository,
to SVN and to GIT. In addition to our main Git repositories we manage several SVN repositories for
examples, test cases and documentation. These have not been moved to Git for practical reasons.

We have two versions of the PROB binary:

• the ProB Tcl/Tk version, which has a GUI and

• the probcli binary. It does not depend on Tcl/Tk and can be used from the command-line, from
within Makefiles and via a socket interface which listens to requests. The latter is used for inte-
grating PROB into the Rodin Eclipse platform.

Both binaries are used for industrial applications such as data validation; the Tcl/Tk version has the
additional benefit of providing a predicate debugger and graphical visualization of formulas.

2.2 Important Components

A graphical representation of the PROB architecture can be found in Figure 1. The most important
components are the following:

• The PROB kernel deals with B’s datatypes (integers, booleans, pairs, sets, ...) and the various
operations on them (arithmetic, set operations, ...).

• The B interpreter interprets the structure of a B machine to compute the initial states, the enabled
operations, the effect of performing an operation, etc. The B interpreter calls the PROB kernel (via
the kernel mappings interface file).

• The B Type Checker reads in the parsed abstract syntax tree (AST), type checks it and performs
certain pre-processing.

• The B Parser reads in a series of B files and produces an abstract syntax tree (AST) in Prolog form
(written into a file ending with “.prob”).

Any error in those components is likely to result in a potential error during data validation or model
checking, and as such these components need to be tested very thoroughly.

2.2.1 ProB kernel

The kernel supports the underlying data structures and operators of the B language: arithmetic, sets,
relations, functions and sequences. As such, the specification for the ProB kernel is the reference book



ProB Kernel

B Type
CheckerCSP Interpreter

Animator

Model Checker, Refinement Checker

Java Wrapper Eclipse GUI

sableCC B Parser

Rodin Event-B
Translator

Prolog

Graphical State Space Visualizer

Haskell
CSP Parser

Fuzz Parser +
Z->B Prolog Translator

Socket ServerCLI InterfaceTcl/Tk Interface

B Interpreter

Figure 1: Architecture of ProB with highlighting of critical components (for data validation)

by Abrial [1], in particular Chapters 2 and 3. As additional reference, the Atelier-B handbook [5] has
been used, for those operators not covered in [1].

Many of the laws from [1] are tested below, in various forms, e.g., instances are used as unit tests or
more systematically, in Section 3.4.2 we ensure that ProB can find no counter-example to those laws.
For example, on page 124 we can find the law union(SS) = {x| ∃ y . (y ∈ SS ∧ x∈y)}, which is
added as one of the laws in the machine checking set laws. The particular example from that page
— u = {{0,5,2,4}, {2,4,5}, {2,1,7,5}} with union(u) = {0,1,2,4,5,7} — is added as a
regression test to the machine checking explicit computations of laws.

Several mistakes in the B-Book were found in this process; e.g., the first definition of override on
page 80 uses p instead of r. In the second definition, it should be (a,b) instead of (x,y). On page 102, the
property involving ran(p;q) = ran(p) is false, it should be ran(q).

2.2.2 B Interpreter

The B interpreter evaluates B predicates, expressions2 and substitutions. As such, again the book by
Abrial [1] is the main specification.

In particular, Chapter 1.2 is used for predicates, and Chapter 4 is used for substitutions. As additional
reference, the Atelier-B handbook [5] has been used, for those aspects not covered in [1].

For substitutions, the definitions in [1] are in form of rules for the weakest pre-condition. PROB
uses an interpreter which, given a predecessor state, computes all possible successor states. (An alternate
view is that PROB finds solutions for the before-after predicate of a substitution.) As such, the weakest
pre-condition definitions do not apply directly, and PROB is validated in other ways.

2See page 31 of [1] for the difference.



Figure 2: Different web pages of our Jenkins server

2.2.3 Parser, Type Checker and Syntax Tree Manipulations

For the parser, the syntax of Atelier-B [5] is the reference specification. The type checking basics are
specified in [1]. For the visibility rules, the tables in [5] have been used as reference.

3 Building and Testing through Continuous Integration

PROB contains unit tests, integration and regression tests as well as self-model check tests for mathe-
matical laws (see below). All of these tests are run automatically on our continuous integration platform
“Jenkins”.3 The tests are run on all platforms for which we ship PROB. When a test fails, an email is
sent automatically to the PROB development team. The status of the tests can be monitored on the web
pages of our Jenkins instance (see Figure 2): http://cobra.cs.uni-duesseldorf.de/jenkins/.

Over the years many tests have been developed. They can be classified into unit tests for the PROB
kernel, parser tests, type checker tests, and system tests exercising the whole PROB tooling infrastructure.

3.1 Unit Tests for Kernel

PROB contains over a 1,000 manually entered unit tests at the Prolog level. Most of them check the
proper functioning of the various PROB kernel predicates operating on B’s data structures. For example,

3See http://en.wikipedia.org/wiki/Jenkins (software).
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the Prolog implementation of the union operator is exercised to check that among others {1} ∪ {2}
evaluates to {1,2}.

There are two situation in which we manually add tests. The first is to add unit tests following the
test-driven development process. The second is to add tests aiming to increase code coverage as we will
explain in Section 4.

In addition, we have developed an automatic unit test generator, which tests the PROB kernel pred-
icates for many different scenarios and different set representations. For example, starting from the
initial Prolog call union([int(1)],[int(2)],[int(1),int(2)]), the test generator will derive 1358
individual unit tests. The various tests will use different set representations (AVL-tree or symbolic rep-
resentations), will swap the order of the first two arguments as union is declared commutative, and will
check various orderings in which the sets are instantiated (e.g., it could be that first the result of the union
is known, then the second argument). The latter point is particularly important for the PROB kernel,
which relies on co-routines. Indeed, we have to check that the kernel predicates behave correctly no
matter in which order (partial) information is propagated.

3.2 Validation of the parser

The PROB parser is written in Java and has been developed using SableCC. We use about 1800 JUnit
based tests to check various parts of the parser for errors. While most of them verify the correct behavior
on small examples or single expressions, some employ full scale B machines. The unit tests are run
independently on both Windows and Linux. Several of these tests are automatically adopted to different
newline characters and encodings.

Additionally, we execute our parser on a large number of our regression test machines and pretty
print the internal representation. We then parse the internal representation and pretty print it again,
verifying (with diff) that we get exactly the same result (see Figure 3). This type of validation can
easily be applied to a large number of B machines, and will detect if the parser omits, reorders or modifies
expressions, provided that the pretty printer does not compensate errors of the parser. On the downside,
the validation will only detect those errors in machines generated by the pretty printer, which may prevent
us from catching errors which only appear in non-pretty printed machines, e.g., when parentheses in
expressions are set incorrectly.
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3.3 Validation of the type checker

For the moment we also read in a large number of our regression test machines and pretty print the
internal representation, this time with explicit typing information inserted. We now run this automatically
generated file through the Atelier B parser and type checker (see Figure 4). With this we test whether
the typing information inferred by our tool is compatible with the Atelier B type checker. (Of course,
we cannot use this approach in cases where our type checker detects a type error.) Also, as the pretty
printer only uses the minimal number of parentheses, we also ensure to some extent that our parser is
compatible with the Atelier B parser (see below). Again, this validation can easily be applied to a large
number of B machines. More importantly, it can be systematically applied to the particular B machines
that PROB validates: provided the parser and pretty printer are correct, this gives us a guarantee that the
typing information for those machines is correct. The latest version of PROB Tcl/Tk has a command to
cross check the typing of the internal representation with Atelier B in this manner.

Errors Detected During validation of the type checker we found several issues. (We did not detect
errors in the type checker, but rather differences between our parser and the Atelier B parser bcomp.)
For example, PROB accepts identifiers with single letter without warning and PROB accepts enumerated
set elements that are used as identifiers while bcomp does not. We also detected that bcomp reports a
lexical error (“illegal token |-”) if the vertical bar (|) of a lambda abstraction is followed directly by the
minus sign. Most importantly, however, we found errors in the priority table of the english Atelier B “B
Language Reference Manual 1.8.6” [5]. All in all there are 26 errors in the English reference manuals,
upon which our pretty printer and BParser was based. These issues have been fixed both in our parser
and in the handbook.

3.4 System Tests

These tests exercise the entire PROB tool chain, including the parser, the type checker, the PROB inter-
preter and the PROB kernel.

3.4.1 Regression Tests

PROB contains over 1100 regression tests which are made up of B models along with saved animation
traces. These models are loaded, the saved animation traces are replayed, and the models are also run
through the model checker. These tests have turned out to be extremely valuable in ensuring that a bug
once fixed remains fixed. They are also very effective at uncovering errors in arbitrary parts of the system
(e.g., the parser, type checker, the interpreter, the PROB kernel, etc.). The various features of PROB are



law1 == ( dom ( f f ∪ gg ) = dom ( f f ) ∪ dom ( gg ) ) ;
law2 == ( r a n ( f f ∪ gg ) = r a n ( f f ) ∪ r a n ( gg ) ) ;
law3 == ( dom ( f f ∩ gg ) ⊆ dom ( f f ) ∩ dom ( gg ) ) ;
law4 == ( r a n ( f f ∩ gg ) ⊆ r a n ( f f ) ∩ r a n ( gg ) ) ;
. . . .

Figure 5: A small selection of the laws about B functions

also checked here: there are tests to check that PROB’s visualization features work as expected, there are
tests for PROB’s test case generation algorithms, there are tests for the various constraint-based checks
that PROB can perform, etc.

3.4.2 Self-Model Check with Mathematical Laws

With this approach we use PROB’s model checker to check itself, in particular the PROB kernel and
the B interpreter. The idea is to formulate a wide variety of mathematical laws and then use the model
checker to ensure that no counterexample to these laws can be found.

Concretely, PROB now checks itself for over 500 mathematical laws. In version 1.3.3 there were laws
for booleans (39 laws), arithmetic laws (40 laws), laws for sets (81 laws), relations (189 laws), functions
(73 laws) and sequences (61 laws), as well as some specific laws about integer ranges (24 laws) and
the various basic integer sets (7 laws). The number of laws is continuously being expanded. Figure 5
contains some of these laws about function.4

This technique can be viewed as using the model checker to generate a very large number of tests
from the mathematical laws. The self-model check has been very effective at uncovering errors in the
PROB kernel and interpreter. Furthermore, the self-model checking tests rely on every component of
the PROB execution environment working perfectly; otherwise a violation to a mathematical law could
be found. In addition to the PROB main code, the parser, type checker, Prolog compiler, hardware and
operating system all have to work perfectly. Indeed, we have identified a bug in our parser (FIN was
treated the same as FIN1) using the self-model check. Furthermore, we have even uncovered two bugs
in the underlying SICStus Prolog compiler using self-model check:

• The Prolog findall did sometimes drop a list constructor, meaning that instead of [[]] it some-
times returned []. In terms of B, this meant that instead of {∅} we received the empty set ∅. This
violated some of our mathematical laws about sets, notably the law POW1(SS) = POW(SS) - {{}}.
This bug was reported to SICS and it was fixed in SICStus Prolog 4.0.2.

• A bug in the AVL library (notably in the predicate avl max computing the maximum element of
an AVL-tree) was found and reported to SICS. The bug was fixed in SICStus Prolog 4.0.5.

Note that these problems would not have been detected by validating or proving the code of PROB
correct. It was essential to test the actual code of PROB along with the entire execution environment. The
model checker together with the mathematical laws enabled this testing to be performed very effectively
(see also Example 1 below).

We also applied some of these tests to other tools. For example, we found various bugs in the
first implementation of the JEB animator [10], and the TLC [11] model checker when applied to TLA
translations of our B laws.

4Throughout the paper, we replaced B-style notation with mathematical notation for better comprehensibility.



4 Coverage

The validation techniques explained above are complemented by code coverage analysis techniques. In
particular, we try to ensure that the unit tests (Section 3.1) and the self-model checks (Section 3.4.2)
above cover all predicates and clauses of the PROB kernel.5 We count a clause as covered if it has been
executed successfully by at least one test case. A predicate is regarded as covered if at least one of the
clauses belonging to it is covered.

Initially, we have developed our own code coverage tool for SICStus Prolog. The tool uses Pro-
log’s term expansion facility to keep a record of which program points are covered. As of version
4.2, SICStus Prolog now provides code coverage profiling, along with visualizations in Eclipse and
Emacs. The coverage is slightly less fine-grained than our original implementation, but it is much
faster (as the profiling is directly supported by the Prolog abstract machine) and supports all of Pro-
log’s features out of the box. We have thus decided to switch to SICStus’ code coverage profiler,
but have implemented various backends to output the information in HTML, LaTeX, or other formats
(see http://nightly.cobra.cs.uni-duesseldorf.de/coverage/). One of the backends features a col-
orized version of our source code, highlighting the coverage status. With this backend, it is possible to
inspect the source code itself, finding out exactly which parts of the code are covered. This can be used
to identify poorly tested source code and helps in adding missing test cases.

The code coverage statistics are also systematically computed by our continuous integration server
(see Section 3). As of version 1.3.5 of PROB, we now also keep track of clauses which should not be
covered as they relate to internal errors:
• the error manager module was extended to distinguish internal and normal errors. A normal error

is, for example, a division by zero in a B machine. An internal error would be a typing error or
unexpected failure within a piece of PROB Prolog code. Normal errors can be covered by tests;
internal errors must not be coverable.

• a Prolog term expander keeps track of clauses and execution paths which relate to internal errors,
and excludes those from the coverage statistics.

So far, the code coverage analysis has been very useful in extending our unit tests and mathematical
laws. As an example, 96.5 % of the clauses of the kernel mappings module are now covered by the
unit tests and the mathematical laws. The only uncovered clauses relate to the Z compaction operator,
and one error condition that was not triggered by the tests. In summary, the code coverage has helped us
write better tests and has allowed us to uncover a few undetected errors in the kernel.

However, even fully covered code might still contain errors. Executing all parts of the source code
does not necessarily mean that all paths were covered. There might, for instance, be bugs that only
occur if certain combinations of branches are executed. Thus we can not rely solely on the coverage
reports to judge the effectiveness of our test suite. We experimented with artificially introduced bugs
to evaluate how certain classes of programming errors can be found. The following section will give a
small overview.

4.1 Judging Effectiveness of Tests

In Section 3 we already described the effectiveness of the current testing procedure at uncovering various
errors in PROB and in the underlying compiler. We now check the effectiveness for artificially introduced
errors.

5We do not count the regression tests towards coverage, as there we basically compare against previous versions of PROB,
which could in theory already contain a serious bug.



The tests in this subsection were conducted on PROB version 1.3.4-rc1, svn revision 9543.

Error Unit Tests Regression Laws
Replaced ∩ by set difference Passed Passed Failed
Subtle error in integer multiplication Failed Passed Failed
Interchanged argument in not partial function test Passed Passed Failed
Skip values when enumerating a variable Failed Passed Passed

As you can see, all errors were detected and the mathematical laws checks detected most of the
errors. However, as checking the mathematical laws is based on searching for counter-examples, there is
a certain class of errors that can not be found. If due to a bug the search space is pruned, mathematical
law checking will obviously not be able to find more counter-examples within the pruned area. Therefore
the mathematical law checks do not make the unit tests obsolete.

In the future, we plan to conduct a more extensive study about the effectiveness of our tests.

5 Performance and Codespeed

We run several benchmarks for PROB on a daily basis. The results are stored using the codespeed web
application6 which allows us to compare selected revisions on selected benchmarks. Furthermore, an
unusual increase or decrease in performance is reported right on the front page. Strictly speaking this
does not add value to our test infrastructure, as the benchmarks do not report error or success. However,
in several occasions the existence of a bug in PROB lead to strange speed-ups or slowdowns, for instance,
if a bug causes PROB to check every possible value of an existential quantification instead of stopping
after finding a solution. Therefore, monitoring the overall speed of our applications is a useful addition
to testing.

In order to identify the particular revision causing unexpected benchmark results, we have found
git bisect to be useful. It allows us to mark certain revisions as good (i.e. the last benchmarked
revision that returned the expected results) and certain other revisions as bad (i.e. the revision showing
strange behavior). Git then performs an interactive binary search, checking out revisions in between until
the one responsible has been found.

The process of comparing certain revisions of PROB has been partly automated by several scripts
that control checkout, benchmarking and result reporting.

6 Static Analysis

Some bugs are hard to detect by testing but easy to detect with static analysis. For instance, we had some
calls to error handling predicates that were not used correctly, e.g., they were called with the wrong arity.
In most cases these calls happened in source code locations that are unreachable unless a previous bug
occurs in the underlying execution engine. There were also bugs in the reachable parts of ProB that were
not well tested, i.e., those parts that are of a more experimental nature.

Prolog is not statically typed and therefore we cannot rely on a typechecker to identify incorrect calls
to predicates, however it is very easy to implement an analysis for these sort of problems in Prolog by
augmenting the interpreter with a term expander. Term expansion is very similar to macro expansion
in Lisp. A term expander hooks into the loading process of a Prolog file and allows modification of

6https://github.com/tobami/codespeed/

https://github.com/tobami/codespeed/


a term while it is being loaded. In our case, we did not modify the terms, but extract information
from it. Hence, the expanded code is equal to the code used in production. This allows us to relate
all detected bugs directly to our code. For instance, if we analyze the term :- dynamic foo/1 in
a module bar, we store the information that a predicate foo of arity 1 exists in the module bar and
that it is a dynamic predicate. We also extract information about predicate and fact definitions, mode
declarations, multifile and meta annotations, exported and imported predicates, blocking declarations for
co-routines and most importantly calls. Strictly speaking this is not traditional static analysis, because
Prolog directives such as use module are executed while loading the Prolog program. But the program
is not run either, so we think it is appropriate to classify the approach as a static analysis. To run the
analyzer, we first load our term expander and then the entry point module of ProB. During loading the
module, the term expander inspects all terms that are being loaded and stores the extracted information
in a Prolog database. The analyzer automatically detects calls where no definition is known at compile
time. These calls are potential bugs. Using the tool, we were able to find 17 missing import statements, 9
cases where predicates are used with the wrong arity, 5 cases where the wrong predicate was called and
5 missing dynamic declarations. The missing imports did not actually cause wrong behavior at runtime
because of a Sicstus Prolog implementation detail. As long as a module is loaded (even if it was loaded
by any other module ), a predicate can be called using a fully qualified form module:predicate(...)

at runtime. This is rather fragile because if for some reasons the module is not loaded the calls will break.
Each module should declare its dependencies explicitly. The calls to predicates with wrong arity were
also not critical because they were in dead code (if the Prolog engine works properly).

Three cases where the wrong predicate was called were actual bugs in some experimental features
of ProB. One feature was removed, the other two were fixed. The other two cases were dead code. The
missing dynamic declarations are not dangerous in the current version of Sicstus Prolog, but there is no
guarantee that this won’t cause actual bugs in future versions. The problems we found using the tool are
summarized in the following table:

Problem Type Fragile code/Bad practice Bug Dead code
Import missing 17 0 0
Wrong arity 0 0 9
Wrong predicate 0 3 2
Missing dynamic declaration 5 0 0

Because Prolog is a dynamic language, finding dead code is harder than in a static language such as
Java. The compiler cannot know if a call is produced dynamically at runtime. This can easily lead to
dead code, if we change our code. For instance, if we replace a call to predicate p by a call to predicate
q, is p now dead code or is it used somewhere else? Using our analysis we get a list of predicates that
are not being called in a static way. This clearly produces false positives, but it is possible to manually
inspect the candidates. We think that we can further improve the analysis by detecting typical dynamic
usage pattern such as using a predicate in a higher order predicate, e.g. maplist.

In addition to the static analysis, we are currently working on a tool that can be used to inspect the
ProB source code. The tool should contain a code browser that allows to directly navigate beween caller
and callee, search for predicates, filter according to specific criteria (e.g., parts of the name). This tool
should also incorporate the documentation. We want to display certain properties of the source code
(e.g., percentage of predicates that are documented or percentage of predicates with a mode declaration)
to encourage the developers to increase the quality of the documentation and code.

Our custom tools are accompanied by Spider, an Eclipse based IDE specifically developed by SIC-



Stus for Prolog development. It features several static analyses, including calling mode and checks for
potential non-determinacy and potential non-termination. In addition, there is an option to check for
common mistakes and bad practice.

7 Dynamic Runtime Analysis

In this section we examine various ways we ensure consistency of PROB’s output at runtime.

7.1 Double chain

One way to dramatically increase the confidence in PROB’s output is to double check the result with a
separately developed tool. Thus far, this has been done with the following three tools:

1. PredicateB. Together with the company ClearSy we have performed Data Validation tasks for Al-
stom [7]. Here, the Java based tool PredicateB was used to double check PROB’s output. Quite
often, PredicateB took considerably more time than PROB to check the properties. Some prop-
erties needed to be rewritten to be suitable for PredicateB (whose constraint solving capabilities
are much weaker). Overall, this approach was very successful and led to the development of the
DTVT (Data Table Validation Tool) which integrates PROB and PredicateB.

2. Ovado. In this work [3], the company Systerel is using the tool Ovado as primary tool, and uses
PROB to double check Ovado’s output.

3. PyB. Finally, in recent work we are developing an independent tool written in Python to check B
predicates. The idea is to feed PROB’s output into PyB (in a more integrated fashion, e.g., passing
witnesses for existential predicates) and to let PyB check the output. An independent companion
paper about PyB has been submitted to this workshop.

7.2 Run Time Checking

The Prolog code contains a monitoring module which — when turned on — will check pre- and post-
conditions of certain predicate calls and also detect unexpected failures. Many kernel predicates also
check for unexpected arguments. All of this overcomes the fact that Prolog has no static typing to some
extent. So far we have not systematically relied on this feature; but we could turn the run time checking
on during property validation. The only drawback is that the runtimes will be increased.

7.3 Positive and Negative Evaluation

As already mentioned, all properties and assertions were checked twice, both positively and negatively
(see Figure 6). Indeed, PROB has two Prolog predicates to evaluate B predicates: one positive version
which will succeed and enumerate solutions if the predicate is true and a negative version, which will
succeed if the predicate is false and then enumerate solutions to the negation of the predicate. The
reason for the existence of these two Prolog predicates is that Prolog’s built-in negation is generally
unsound and cannot be used to enumerate solutions in case of failure. For example, given the Prolog rule
p(eq(X,Y)) :- X=Y. the query not(p(eq(X,0))) would fail, i.e., one could erroneously conclude
that there is no value X which is different from 0. In PROB, we have a dedicated predicate for the
negation, which will suspend until it can determine the result correctly. For the above example, one
could write not p(eq(X,Y)) :- dif(X,Y).



P ¬P Conclusion
true true bug in PROB
true false P is true
false true P is false
false false P is not well-defined
true timeout P is (probably) true
false timeout P is false or undefined
timeout true P is (probably) false
timeout false P is true or undefined
timeout timeout P is unknown

Figure 6: Positive and negative evaluation of predicates
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Figure 7: Visualizing an undefined property

With these two predicates we can uncover undefined predicates: if for a given B predicate both the
positive and negative Prolog predicates fail then the formula is undefined. For example, the property
x = 2/y & y = x-x over the constants x and y would be detected as being undefined, and would be
visualized by our graphical formula viewer as in Figure 7 (yellow and orange parts are undefined).

In the context of validation, this approach has another advantage: for a formula to be classified as
true the positive Prolog predicate must succeed and the negative Prolog predicate must fail, introducing
a certain amount of redundancy (admittedly with common error modes). In fact, if both the positive and
negative Prolog predicates would succeed for a particular B predicate then a bug in PROB would have
been uncovered. If both fail, then either the B predicate is undefined or we have a bug in PROB.7

This validation aspect can detect errors in the predicate evaluation parts of PROB, i.e., the treatment
of the Boolean connectives ∨, ∧, ⇒, ¬, ⇔, quantification ∀, ∃, and the various predicate operators
such as ∈, 6∈, =, 6=, <, ... This redundancy can not detect bugs inside expressions (e.g., +, −, ...) or
substitutions (but the other validation aspects mentioned above can).

Example 1. We want to illustrate the error detection of double evaluation by a simple example. Take the
following very simple B machine, with two assertions which should obviously be true.

MACHINE D o u b l e E v a l u a t i o n T e s t
SETS ID={aa , bb}
CONSTANTS i v

7Typically, PROB would also generate error messages for well-definedness problems. Currently, there is however no guar-
antee that all well-definedness problems will result in an error message; the only certain way to detect them is to do both
positive and negative evaluation.



PROPERTIES i v ∈ ID & i v 6= bb
ASSERTIONS i v ∈ { aa } ; i v /∈ {bb}
END

Say that we introduce an error in the part of the source code that deals with testing membership of
elements in a singleton set. An element is a member of a singleton set if it is equal to the single element.
We replaced this test by its negation, and thus introduced an error into the PROB kernel. When analyzing
the assertions, we now get the following result, which tells us that there is a bug in the ProB kernel,
because the assertion stating that iv is not a member of the set {bb} is both true and false at the same
time:

i v ∈ { aa}
== unknown

i v /∈ {bb}
== b o t h t r u e f a l s e

Also note that the self-model checking described in Section 3.4.2 immediately provides a counter
example (SS={el1}, TT=∅) for several of the mathematical laws for sets, for example:

{xx | xx ∈ SS ∨ xx ∈ TT } = SS ∪ TT
== f a l s e

8 Future Work and Discussion

In the longer term we want to further increase the confidence in PROB’s output so that it can eventually
be used as a tool of class T3 within the railway norm EN 50128.

In addition to the development of the double chain PyB, there are several techniques that might help
to increase the confidence in our primary validation tool even more. One of these techniques is fuzzing
or robustness testing. The idea behind fuzzing would be to generate random input data and feed it to
PROB. As mentioned before, test coverage of error cases is hard to archive. Random inputs of data could
help us to identify cases in which some part of our tool chain crashes instead of reaching a controlled
error state.

We could also further refine the results of the coverage analysis mentioned in Section 4. Instead of
just observing which predicates were executed we could strive for coverage of possible execution paths
or the evaluation of each branch. However, this would again increase the complexity of the analysis.

Aside from improving the static checks strengthening the run time checks would be another reason-
able approach. With the increased usage of our code documentation tools more annotations will be added
to the source code. The correctness of several of these annotations, could be enforced at runtime. One
example, is the Prolog mode declaration which specifies which arguments are input arguments or output
arguments respectively.

9 Conclusion

In summary, the following points increase our confidence in the proper working for PROB in general and
for data validation in particular:

1. repeated successful application on case studies (e.g., by Siemens on the lines of San Juan, Paris
Line 1, Sao Paolo, Barcelona Line 9, ... [8, 9]), discovering all known problems and in some cases
even discovering previously unknown problems in the data properties.



2. extensive regression, unit-tests, automated unit-test generation, and validation via mathematical
laws and model checking (see Section 3). These tests have even discovered several errors in the
underlying Prolog compiler.

3. coverage analysis of the testing, ensuring that all critical parts are covered by the tests; this has
enabled us to detect a few more issues (and has prompted us to develop the automated unit-test
generator).

4. validation of the parser and type-checker via pretty-printing and cross-checking with the Atelier-
B parser (bcomp) (see Section 3.2). The internal representation of PROB for a particular model
can be fed at runtime to bcomp, for additional validation that the type inference was properly
conducted.

5. double evaluation of predicates (see Section 7.3), to catch undefined predicates as well as errors in
the PROB kernel and interpreter relating to predicates.
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