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Business analysts and domain experts are often sketching the behaviors of a software system
using high-level models that are technology- and platform-independent. The developers will
refine and enrich these high-level models with technical details. As a consequence, the refined
models can deviate from the original models over time, especially when the two kinds of
models evolve independently. In this context, we focus on behavior models; that is, we aim to
ensure that the refined, low-level behavior models conform to the corresponding high-level
behavior models. Based on existing formal verification techniques, we propose containment
checking as a means to assess whether the system’s behaviors described by the low-level
models satisfy what has been specified in the high-level counterparts. One of the major
obstacles is how to lessen the burden of creating formal specifications of the behavior models
as well as consistency constraints, which is a tedious and error-prone task when done manually.
Our approach presented in this paper aims at alleviating the aforementioned challenges by
considering the behavior models as verification inputs and devising automated mappings of
behavior models onto formal properties and descriptions that can be directly used by model
checkers. We discuss various challenges in our approach and show the applicability of our
approach in illustrative scenarios.

1 Introduction

Behavior models are used in many areas of software engineering. Examples of behavior models
are UML activity diagrams, sequence diagrams, and state charts [12] as well as BPMN business
processes1, BPEL business processes2, Event-driven Process Chains (EPCs) [19], to name but a
few. Many models are created as “high-level” models. That is, they are mainly used to convey the
core concepts or principles of the reality they represent in an abstract and/or concise way. They
are used for tasks such as defining core concepts and principles of a domain, enabling stakeholders
to discuss them for instance in the course of a system design, or creating a common terminology.
Also, high-level models are used as abstractions. For example, in design and architecture patterns
high-level models are used as abstract representations of a best practice which need to be
concretized in real systems. On the other hand, technical or “low-level” models are often created
with purposes such as providing a precise specification of the source code, executing the model
(e.g., in a process engine, interpreter, or virtual machine), or generating executable code directly
from the model, e.g., in model-driven development (MDD).

1http://www.omg.org/spec/BPMN/2.0
2https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
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Unfortunately, the high-level models and their low-level counterpart are often drifting apart
over time if, for example, contradictory specifications are defined. Therefore, it is important
to ensure that the behaviors represented by the low-level models conform to what has been
specified in the high-level models. In the literature, several techniques have been exploited to check
the consistency and containment of different types of behavioral models [15]. Essentially, these
approaches represent behavioral models in terms of formal specifications and/or properties and
perform model checking to verify whether the formal specifications and properties are consistent.
Most of these approaches assume that the formal specifications and properties are readily available
or can be easily created beforehand. In reality, however, achieving such formal specifications is a
tedious and challenging task because it often requires considerable knowledge on the leveraged
formal techniques and it is often accomplished in a laborious, manual manner.

In this paper, we propose a novel approach to alleviating the aforementioned problems. First,
unlike most of existing approaches, we consider the high-level and low-level behavior models
as inputs for checking containment. Thus, extra effort in creating consistency constraints that
are widely used in the existing approaches can be reduced. Second, we devise an automated
mapping of behavior models to formal specifications that can be used directly by model checkers
for containment verification purpose. In particular, we derive primitive patterns for representing
fundamental behavioral constructs such as sequences, parallel structures, and branches. These
patterns are associated with formal description structures, for instance, linear temporal logic
(LTL) [16, 18] and the symbolic model language SMV [3, 4]. Based on model-driven transformation
techniques, our approach enables automated generation of SMV descriptions and LTL formulas
from given input behavioral models such as (in our case) UML activity diagrams [12]. Using the
NuSMV model checker3, we can assess whether a low-level technical model or implementation
is consistent with the specification provided by a high-level, behavior model. In our work, we
target UML activity diagrams because they are widely used in both industry and academia for
representing software systems behavior. Linear temporal logic and SMV are used as the underlying
formalism because, on the one hand, their expressiveness is suitable for model consistency and
containment checking. On the other hand, we can leverage existing powerful tools for LTL and
SMV model checking. Please note that our approach is also applicable for other behavioral models,
such as the ones mentioned above, and can also be realized with different formal techniques with
reasonable extra effort.

The paper is structured as follows. In Section 2, we review the related approaches on supporting
behavioral consistency checking in general and containment checking in particular. Our approach
for automatically translating software behavior models onto formal properties and specifications
is presented in detail in Section 3 along with illustrative examples. Afterwards, we discuss various
challenges in supporting the aforementioned automated mappings in Section 4. Finally, we
summarize the main contributions and discuss the planned future work in Section 5.

2 Related Work

A considerable amount of consistency checking approaches have been proposed so far. Finkelstein et
al. present an approach using temporal logic for checking the consistency of different viewpoints [10].
Similar approaches targeting different kinds of models or model checking techniques exist [15].
While some of those focus on behavior models, the major difference to our work is that those

3http://nusmv.fbk.eu

http://nusmv.fbk.eu
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other approaches mainly consider the consistency between different kinds of models (or models
and other representations of the same reality such as the implementations or requirements)
but not the consistency of the same model at different abstraction levels. That is, we focus
on checking the consistency of the containment of the high-level model in the low-level model,
rather than checking the consistency of elements of two different representations. According to
the methodology to handle consistency problems proposed by Engels et al. [8], we address the
“vertical consistency”—in contrast to “horizontal consistency” which checks consistency between
models.

Additionally, most of the existing approaches require the specification of a consistency
condition for each consistency problem addressed. The goal of our approach in contrast is to use
a high-level model, which is automatically translated to formal descriptions, as the specification
of the consistency problem and check the low-level model whether it contains the high-level
specifications.

There are only a few approaches for containment checking that use high-level models as inputs
but they merely focus on structural models. Egyed introduces an approach based on structural
transformation rules and transitive reasoning to check whether an UML class diagram conforms
to another more abstract class diagram [6]. Unfortunately, this approach alone does not suffice
for the behavior models addressed in our work because we must assume that behavior models
contain control structures, such as sequences, links, parallel gateways, and so on, which cannot
be matched by structure only.

Many other consistency checking approaches focus on different types of consistency but
containment. Van Der Straeten et al. check the consistency of different UML models using a
description logic based approach [20]. This approach does not focus on consistency of high-level
and low-level models, but rather on model-model, model-instance, and instance-instance conflicts.
Ehrig and Tsiolakis use attributed graphs and graphical constraints to check the consistency
of UML class and sequence diagrams [21]. In particular, the existence, correct multiplicity, and
valid scoping of model elements are checked. Graaf and van Deursen introduce a model-driven
consistency checking approach for checking the consistency of various behavior models among
each other [11]. The approach first normalizes the input models, then performs an automated
model transformation to a state machine, and then compares the different state machines to
detect inconsistencies.

There are a number of efforts on translating manually described constraints to formal
representations. For instance, Czarnecki and Pietroszek check the well-formedness of feature
diagrams using OCL constraints (i.e. structural models) [5]. Engels et al. check contracts between
Web services and business processes (i.e., consistency between behavior and structural models) [7].
Campbell et al. check for and visualize errors in UML diagrams [2]. Köhler et al. introduce an
approach to verifying a business process model and its implementation but merely concentrate
on checking the termination property [13]. Eshuis considered using NuSMV for checking data
integrity constraints between an activity diagram and a set of class diagrams [9].

We note that, in most of the aforementioned approaches, the availability of the input formal
specifications is often taken for granted. Unfortunately, achieving the formal specifications as
inputs for model checking techniques is challenging and error-prone for the majority of developers
as reasonable knowledge of formal languages and verification techniques is always necessary. Our
approach aims at filling this gap by introducing primitive behavior patterns grounded on formal
expressions that can support the automated mapping of the high-level and low-level behavior
models to formal specifications.
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3 Approach

In this section, we firstly present an overview of our approach focusing on the automated
mapping of behavior models into formal descriptions for containment checking. Afterwards,
we elaborate on our proposed techniques for mapping high-level behavior models onto formal
property specifications (i.e. LTL formulas in our case) and the low-level counterparts into formal
SMV specifications.

3.1 Approach overview

Our containment checking approach addresses the consistency problems existing between high-
level and low-level behavior models. The low-level counterparts are often resulting from various
steps of refining and enriching the high-level models. In most of the cases, models evolve, often
independently, over time. For instance, high-level models are changed according to new require-
ments, and low-level models are changed as the implementation is modified. As a consequence,
the evolved models may include inconsistencies, such as the order of activities swaps during
refinement of one of the models, some new activities are added in the high-level model but are
not present in the low-level model, or some low-level activities are deleted without updating the
high-level model.

The main goal of checking containment is to verify whether the behavior described by a
low-level model still satisfies the behavior specified by a corresponding high-level model. In other
words, containment checking will assess if the execution traces produced by the low-level model
contain those produced by the high-level counterpart. Assuming that the low-level behavior model
is represented by a formal specification, we could achieve containment checking by checking that
the high-level model’s desired properties are satisfied by this formal specification. As a result, a
model checker can be used to answer whether the formal specification satisfies these properties,
i.e., the low-level behavior model conforms to the corresponding high-level model. Unfortunately,
achieving formal representations and properties of behavior models under consideration is a
challenging and error-prone task because it requires deep knowledge of the formal verification
techniques.

Therefore, we present an approach to address this challenge by supporting automated trans-
lation of behavior models into formal specifications and properties that can be used by model
checkers for containment checking. The main focus of our approach is represented by the grey box
shown in Figure 1. In particular, we introduce primitives for representing fundamental behavioral
constructs, such as sequences, parallel structures, and branches, in terms of LTL formulas. These
primitives will be used to transform high-level UML activity diagrams into LTL properties. The
low-level UML activity diagrams under consideration will be transformed to symbolic formal
specifications. We note that these transformations are represented as solid arrows in Figure 1 as
they will be performed automatically.

Finally, containment checking is performed on these models by using the NuSMV model
checker, which supports symbolic model verification [4]. By analyzing the verification results
reported by the NuSMV model checker, one can assess whether the input behavior models are
consistent as well as reason about their inconsistency (if any exists) through the generated
counterexamples. Verification and reasoning with the NuSMV model checker is, however, beyond
the scope of this paper and will be part of our follow-on endeavor.

The aforementioned concepts have been realized in our prototypical implementation. In
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Figure 1: Overview of the approach

our implementation, we exploit model-driven development techniques to support automated
transformations of UML activity diagrams. In particular, we leverage Eclipse Xtend framework4,
which provides powerful and expressive languages and techniques for defining and executing
transformation rules. As a result, our implementation can be easily integrated in the Eclipse
development environment.

3.2 Transformation of High-level UML Activity Diagrams into LTL Formulas

The first aspect of our approach is to map a set of fundamental behavioral constructs of UML
activity diagrams, such as sequences, parallel structures, and branches, into LTL-based properties.
LTL is an expressive formalism that is widely used in formal verification tools. Formulas in LTL
are usually constructed from boolean predicates and logical operators such as not (!), or (|),
and (&), xor, and implication (→). LTL also supports the specification of future with temporal
operators such as ‘always’ (G), ‘next’ (X), ‘eventually’ (F), and so on. For more details on LTL
formulas as well as their semantics, please refer to [18].

According to the OMG UML 2.4 specification [12], UML activity diagrams provide several
constructs for describing the behavior of software systems. Without loss of generality, we consider
a set of fundamental elements and control structures such as activities, actions, sequences, parallel
structures (fork and join), branching (decision and merge) in the scope of this paper. Other
constructs are also applicable using our approach in similar manner with little extra effort. The
xor operator is often used in the LTL-based primitive for representing decision [1].

In Table 1, we present these constructs of UML activity diagrams and their informal description
extracted from the UML specification [12]. The right-hand side column contains the corresponding
LTL-based primitive patterns for formally representing these constructs. Using these patterns,

4http://www.eclipse.org/xtend/documentation/2.4.3/Documentation.pdf

http://www.eclipse.org/xtend/documentation/2.4.3/Documentation.pdf
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Table 1: Representation of UML activity diagram’s elements using LTL primitives

Description Modeling Notation LTL Primitive

Sequence: A set of actions exe-
cuted in sequential order. E.g., the
action A1 will be performed before
A2.

A1

A2

G (A1 -> F A2)

Fork Node: The execution of a
fork node leads to the parallel
execution of subsequent actions
(B1...Bn).

B1

Bn

A

G (A -> (F B1

& F B2

& ...

& F Bn))

Join Node: The execution of two
or more parallel actions leads to
the execution of Join Node.

A1

An

B

(G (A1

& A2

& ...

& An) -> F B)

Decision Node: The execution
of a Decision Node eventually fol-
lowed by the execution of one and
only one action among the avail-
able set of actions based on the
decision guard.

B1

Bn

A
G (A -> (F B1 xor F B2

xor ... xor F Bn))

Merge Node: At least one action
among a set of alternative execu-
tion of actions will lead to the ex-
ecution of Merge Node.

A1

An

B

G (A1 | A2 | ... | An ->

F B)

we traverse through the input UML activity diagram (i.e. the high-level model) and translate its
elements into corresponding LTL formulas.

We use a simplified order processing system example to demonstrate the transformation of
UML activity diagrams to LTL formulas. The high-level model of the order processing system is
shown in Figure 2 and it includes sequential actions, a decision node, a fork node, and a join
node. Using the primitives shown in Table 1, we are able to generate the corresponding LTL
formulas in Listing 1 out of the aforementioned UML activity diagram.

1 LTLSPEC G (InitialNode1 -> F VerifyCreditCard)

2 LTLSPEC G (VerifyCreditCard -> F ReplyCreditCardNotOK xor F CreateOrderBusinessObject)

3 LTLSPEC G (ReplyCreditCardNotOK -> F ActivityFinalNode1)

4 LTLSPEC G (CreateOrderBusinessObject -> F ShipOrder & F ChargeOrder)

5 LTLSPEC (G (ShipOrder & ChargeOrder) -> F ReplyOrderStatus)

6 LTLSPEC G (ReplyOrderStatus -> F ActivityFinalNode2)

Listing 1: The formal property specifications automatically generated from the high-level UML
activity diagram

The automated transformation of high-level UML activity diagrams into LTL formulas has
been realized using Eclipse Xtend. An excerpt of the Xtend template expression for describing
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Verify Credit Card

Reply Credit Card Not OK Ship Order Charge Order

Reply Order Status

[false] 

[true] 

Create Order Business Object

DecisionNode1

JoinNode1

ForkNode1

Figure 2: High-level UML activity diagram

the transformation of basic constructs such as sequence and fork node into corresponding LTL
formulas is shown in Listing 2. Xtend templates expressions are multi-line strings, that are
surrounded by triple single quotes (”’). These strings are further enhanced with expressions
embraced in a pair of guillemets (i.e., “«” and “»”). Such expressions will be bound and evaluated
according to the elements of the input UML activity diagram.

Listing 2: Transformation of UML structures into LTL formulas

/* For the generation of sequential actions */

«IF (!convert(a).nullOrEmpty)»LTLSPEC G («a.name» -> F «convert(a)»);«ENDIF»
/* Template expression for the generation of a fork node */

«IF (!convert(a).nullOrEmpty)»LTLSPEC G («a.incomings.iterator().next().normalize» -> F «convert(a)»);
«ENDIF»
/* Create a Fork’s guard condition */

a.outgoings.forEach [ edge, i |

val target = edge.target

if (edge != null && target != null) {

if (i > 0)

guard.append( " & F ")

guard.append(target.name)

}

]

The first template presents the mapping of actions into LTL formulas that are executed in
the sequence. The second template defines generation of LTL formulas for the fork node. To
this, first we get the incoming flow that triggers the fork node and map them into LTL rule.
Afterward, the subsequent action(s) that are executed by the fork node are mapped into LTL
rules. If there are more than one outgoing actions then ‘& F’ is attached with every subsequent
actions. These LTL formulas are generated according to the primitives presented in Table 1.

3.3 Transformation of Low-level UML Activity Diagrams into SMV specifi-
cations

The second part of our approach automates the translation of low-level UML activity diagrams
into formal SMV specifications. These specifications then can be used by the NuSMV model
checker to verify against the LTL rules generated from the high-level counterparts to see whether
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the containment relationship between these diagrams is satisfied. The transformation templates
for the UML activity diagram constructs considered in this paper are shown in Table 2.

The transformation of a low-level UML activity diagram into SMV specification works
as follows. Essentially, every node of a UML activity diagram except a decision node will be
represented by a corresponding symbolic variable declared in the ‘VAR’ section. A decision node,
as specified in UML 2.4 specification [12], will trigger the execution of one of its branching nodes
according to their guarded conditions. Therefore, we map a decision node into a scalar variable.
The value of the scalar variable is defined based on the values of the branch guarded conditions
plus the constant ‘undetermined’ used as initial state.

After having nodes represented as symbolic variables, we need to map the control flow of the
UML activity diagram into the corresponding state transition rules for each variable. The general
description of a variable’s state transitions is a combination of the statement init()–defining
the initial state–and next()–defining the next state. As a result, given a certain node n of a
UML activity diagram represented by a NuSMV symbolic variable a, we need to define a set of
statements as follows: “init(a) := initial_value; next(a) := next_value;”.

The next_value can be defined by a concrete value straightforwardly or through an exclusive
choice of various possible values with respect to some constraints or previous states. In the
later case, we can use the NuSMV construct “case...esac” to specify such exclusive choices.
Thus, the most plausible form of the state transitions is to (1) initialize the variable’s state as
FALSE; (2) define a guard condition that trigger the execution of the node according to the UML
specification [12] such that the variable’s state can become TRUE; (3) define another choice to
switch the variable’s state back to FALSE if it was TRUE before that. These state transitions can
be described in the following NuSMV code.

init(a) := initial_value; -- (1)

next(a) := case

guard_condition : TRUE; -- (2)

a : FALSE; -- (3)

esac;

The mapping rules shown in Table 2 define the state transition for different types of nodes of
a UML activity diagram. The execution of the nodes of an activity diagram is based on token
semantics [12] similar to Petri Nets [17]. The Initial Nodes are the starting points for a UML
activity diagram, therefore, their initial state will be TRUE. The initial state of other nodes (except
Decision Node) are FALSE. Apart from the Initial Nodes that have no incoming edges, other
nodes will be triggered with respect to their incoming control flows. We note that the UML
specification denotes an “implicit join” in case a node has multiple incoming edges. Therefore,
the guard for transitioning to the next state for a Final Node, Action, Decision Node, or Fork
Node is similar to the default semantics of an explicit Join Node, i.e., an “and”-join of all tokens
going through the incoming control flows. We use the operator logical and (“&”) of NuSMV to
represent the and-join guard. Please note that the non-default “joinSpec” of an explicit Join

Node can also be easily supported by altering the logical condition of the Join Node in NuSMV.

A Merge Node is a special case, as it brings together multiple alternative flows. Therefore, we
use the operator or “|” of NuSMV to describe the guard condition of a Merge Node. The possible
states of a symbolic variable representing a node (except Decision Node) are TRUE and FALSE. In
case of a Decision Node, the initial state is predefined as undetermined and the possible next
states is an exclusive choice of its outgoing branches. We use the notion of non-deterministic
assignments in NuSMV to describe the outcome of a Decision Node such that the NuSMV
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UML constructs Transformation Rules

Initial Node a

init(a) := TRUE;

next(a) := case

a : FALSE;

TRUE : a;

esac;

Final Node, Action,
Fork Node, Join
Node a

init(a) := FALSE;

next(a) := case

incoming_1 & incoming_2 & ... & incoming_n : TRUE;

a : FALSE;

esac;

Decision Node a

init(a) := undetermined;

next(a) := case

incoming_1 & incoming_2 & ... & incoming_n$ : {outgoing_1, outgoing_2, ...,

outgoing_n};

a != undetermined : undetermined;

esac;

Merge Node

init(a) := FALSE;

next(a) := case

incoming_1 | incoming_2 | ... | incoming_n : TRUE;

a : FALSE;

esac;

Table 2: Transformation of UML structures into SMV descriptions

model checker can explore all possible outcomes for verification. We have implemented these
rules using the Eclispe Xtend language and exploit the code generation template of Xtend to
automatically produce NuSMV descriptions out of a low-level UML activity diagram.

To illustrate the transformation of low-level UML activity diagram into NuSMV, we use one
of the refined versions of the order processing system mentioned above. The low-level model of
the order processing system is shown in Figure 3. In this diagram, technical details are added
that are required for an implementation of the order processing system, but have been omitted
by the domain experts.

The transformation rules explained above can be used to automatically produce a correspond-
ing NuSMV description. First, the nodes of the activity diagram (except decision nodes) are
represented by a boolean symbolic variable as shown in Listing 3. Because a decision node can
assign the output token to one of the outgoing branches, we use a scalar variable to represent a
decision node. The range of values of the scalar variable correspond to the guards of the outgoing
branches of the decision node. Please note that we have given names for all structural nodes in
Figure 3 to make the example mapping to the NuSMV description below easily understandable.
This is not necessary in our approach, our code generator could also automatically assign names.

MODULE

VAR

InitialNode1 : boolean;

ReceiveNewOrder : boolean;

VerifyCreditCard : boolean;

DecisionNode1 : {undetermined, guard_DecisionNode1_ReplyCreditCardNotOK,

guard_DecisionNode1_DecisionNode2};

DecisionNode2 : {undetermined, guard_DecisionNode2_ConfirmOrderCancelation,

guard_DecisionNode2_CreateOrderBusinessObject};

-- partially omitted

Listing 3: NuSMV symbolic variables for representing UML activity diagram nodes
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Verify Credit Card

Reply Credit Card Not OK

Ship Order

Charge Order

Reply Order Status

[false] [true] 

Receive New Order

Create Order Business Object

Order Cancel Confirmation

[true] 

[false] 

Reship

Rollback Charge Order

Reply Order Not Fulfilled

[false] 

[true] 

[false] 

[true] 

[true] 

[false] 

DecisionNode1
DecisionNode2

DecisionNode3

DecisionNode4

DecisionNode5

DecisionNode6 MergeNode1

ForkNode1

JoinNode1

Figure 3: Low-level UML activity diagram for the order processing system

We show in Listing 4 an excerpt of the corresponding state transitions of the aforementioned
symbolic variables according to the rules in Table 2. Some repetitive excerpts, for instance,
produced from the similar types of nodes, have been omitted due to space limitation.

ASSIGN

init(InitialNode1) := TRUE;

next(InitialNode1) := case

InitialNode1 : FALSE;

esac;

init(ReceiveNewOrder) := FALSE;

next(ReceiveNewOrder) := case

InitialNode1 : TRUE;

ReceiveNewOrder : FALSE;

esac;

...

init(DecisionNode1) := undetermined;

next(DecisionNode1) := case

VerifyCreditCard : {guard_DecisionNode1_ReplyCreditCardNotOK, guard_DecisionNode1_DecisionNode2};

DecisionNode1 != undetermined : undetermined;

esac;

init(ReplyCreditCardNotOK) := FALSE;

next(ReplyCreditCardNotOK) := case

(DecisionNode1 = guard_DecisionNode1_ReplyCreditCardNotOK) : TRUE;

ReplyCreditCardNotOK : FALSE;

esac;

init(DecisionNode2) := undetermined;

next(DecisionNode2) := case

(DecisionNode1 = guard_DecisionNode1_DecisionNode2) : {
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guard_DecisionNode2_ConfirmOrderCancelation, guard_DecisionNode2_CreateOrderBusinessObject};

DecisionNode2 != undetermined : undetermined;

esac;

init(ActivityFinalNode1) := FALSE;

next(ActivityFinalNode1) := case

ReplyCreditCardNotOK : TRUE;

ActivityFinalNode1 : FALSE;

esac;

init(ConfirmOrderCancelation) := FALSE;

next(ConfirmOrderCancelation) := case

(DecisionNode2 = guard_DecisionNode2_ConfirmOrderCancelation) : TRUE;

ConfirmOrderCancelation : FALSE;

esac;

init(CreateOrderBusinessObject) := FALSE;

next(CreateOrderBusinessObject) := case

(DecisionNode2 = guard_DecisionNode2_CreateOrderBusinessObject) : TRUE;

CreateOrderBusinessObject : FALSE;

esac;

-- generated code is partially omitted

init(ForkNode1) := FALSE;

next(ForkNode1) := case

CreateOrderBusinessObject : TRUE;

ForkNode1 : FALSE;

esac;

init(ShipOrder) := FALSE;

next(ShipOrder) := case

ForkNode1 : TRUE;

ShipOrder : FALSE;

esac;

init(MergeNode2) := FALSE;

next(MergeNode2) := case

(DecisionNode4 = guard_DecisionNode4_MergeNode2) | ForkNode1 : TRUE;

MergeNode2 : FALSE;

esac;

init(DecisionNode5) := undetermined;

next(DecisionNode5) := case

ShipOrder : {guard_DecisionNode5_MergeNode1, guard_DecisionNode5_Reship};

DecisionNode5 != undetermined : undetermined;

esac;

-- generated code is partially omitted

Listing 4: NuSMV state transitions for the low-level UML activity diagram

3.4 Illustration of Containment Checking Using NuSMV

In this section, we illustrate how the LTL properties and NuSMV descriptions generated in the
previous steps can be used for containment checking. We use the NuSMV model checker to
perform containment checking based on the formal SMV specifications illustrated in Figure 3 and
the LTL rules generated from the high-level counterparts presented in Listing 1. The containment
checking result is shown in Listing 5. By looking at the result, we see that the generated
NuSMV description satisfies all LTL properties except “LTLSPEC G (VerifyCreditCard -> F

ReplyCreditCardNotOK xor F CreateOrderBusinessObject)”. This unsatisfied condition is
due to the occurrence of the Decision Node 2 that leads to two possibilities outcomes, which are
CreateOrderBusinessObject and OrderCancelConfirmation. In other words, the verification
result indicates that the descriptions of the low-level order processing model do not conform
the LTL formulas generated from the high-level counterparts. According to the specification,
ReplyCreditCardNotOK should becomes true in the future. But in the counter example, possible
loop is presented and marked with the “Loop starts here” line. The line indicates that the
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ReplyCreditCardNotOK never becomes true in the loop, so the behavior can occur repeatedly.
Hence, this LTL specification is false.

Listing 5: NuSMV containment checking result along with a counterexample

$ NuSMV LowlevelOrderProcessingNotSatisfied.smv

-- specification G (InitialNode1 -> F VerifyCreditCard) is true

-- specification G (VerifyCreditCard -> ( F ReplyCreditCardNotOK xor F

CreateOrderBusinessObject)) is false

-- as demonstrated by the following execution sequence

Trace Description: LTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

InitialNode1 = TRUE

ReceiveNewOrder = FALSE

VerifyCreditCard = FALSE

DecisionNode1 = undetermined

ReplyCreditCardNotOK = FALSE

DecisionNode2 = undetermined

ActivityFinalNode1 = FALSE

ConfirmOrderCancelation = FALSE

...

-> State: 1.2 <-

InitialNode1 = FALSE

ReceiveNewOrder = TRUE

-> State: 1.3 <-

ReceiveNewOrder = FALSE

VerifyCreditCard = TRUE

-> State: 1.4 <-

VerifyCreditCard = FALSE

DecisionNode1 = guard_DecisionNode1_DecisionNode2

-> State: 1.5 <-

DecisionNode1 = undetermined

DecisionNode2 = guard_DecisionNode2_ConfirmOrderCancelation

-> State: 1.6 <-

DecisionNode2 = undetermined

ConfirmOrderCancelation = TRUE

-> State: 1.7 <-

ConfirmOrderCancelation = FALSE

ActivityFinalNode2 = TRUE

-- Loop starts here

-> State: 1.8 <-

ActivityFinalNode2 = FALSE

-> State: 1.9 <-

-- specification G (ReplyCreditCardNotOK -> F ActivityFinalNode1) is true

...

We can see that a corresponding counterexample is also produced by the NuSMV model checker
with respect to the unsatisfied properties (see Listing 5). By analyzing the counterexample, we can
track down the inconsistency between the two models to know where the containment property
has not been satisfied. As our approach presented in this paper mainly focuses on defining
containment checking and automatic generating of the formal constraints and specifications
as inputs for containment checking, we did not go deeper into the verification process or the
automated analysis of the verification result yet (which we plan to do in our future work).

In Figure 4 we illustrate another version of the low-level UML activity diagram of the order
processing system that satisfies the containment checking constraints. The checking of the NuSMV
description generated out of this model against the LTL formulas from Listing 1 produces no
unsatisfied properties, i.e., the NuSMV model checker returns true for all LTL formulas. This
result indicates that the low-level behavior model is consistent with its high-level counterparts.
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Verify Credit Card

Reply Credit Card Not OK

Ship Order Charge Order

Reply Order Status

[false] 

Receive New Order Create Order Business Object

[true] 

Reship

Reply Order Not Fulfilled

[false] 

[true] 

[false] 

[true] 

[true] 

[false] 

Recharge Order

Figure 4: A different version of the low-level UML activity diagram of the order processing system

4 Discussion

This section discusses some issues regarding the automated mappings of behavior models into
formal specifications and properties used for containment checking. We have presented the
automated mapping of basic constructs of UML activity diagrams like actions, activities, parallel
nodes (fork and join), sequences, and branching nodes (decision and merge). At the current level
of development, our approach has some limitations, for example, the automated mapping of other
constructs of UML activity diagrams such as accept event actions, activity parameter nodes, and
exception handling have not been considered yet. But we expect that the automated mapping of
these constructs can be achieved in a similar manner with some extra effort. Furthermore, our
current work has not incorporated the mapping of loops, data objects and object flows into LTL
formulas. The UML 2 specification allows to complement the control flows of a UML activity
diagram with data and object flows but does not allow a mix of object flows and control flows.
Therefore, it is possible to specify data and object flows separately using the same techniques
presented in this paper. Loops might introduce bigger challenges because a loop can produce
deterministically or nondeterministically cyclic execution flows that is difficulty to transform to
simple LTL constraints. We will investigate other variants of temporal logic such as bounded
linear temporal logic [14] to overcome this challenge. These are, however, beyond the scope of
this paper and part of our future endeavor. As future work, we also plan to apply our approach
on realistic industrial systems. This will also be the basis to further investigate whether our
proposed approach is able to support containment checking of software systems in practice.

5 Conclusion

In this paper, we present a novel approach for supporting containment checking of UML activity
diagrams. On the one hand, the high-level UML diagrams, often used by business analysts and/or
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domain experts, are translated to LTL. On the other hand, the low-level counterparts, often
resulting from various steps of refinement and enriching of these high-level models, are mapped
onto formal NuSMV descriptions. By considering high- and low-level UML activity diagrams as
inputs for containment checking and automatically transforming them into formal properties
and descriptions, our approach can help lessening the gap and efforts for creating consistency
constraints as many other approaches. The satisfaction of the NuSMV descriptions with respect
to the LTL formulas, which can be verified using existing model checking tools, can denote the
containment relationship between the high-level and low-level UML activity diagrams.

However, it is difficult to covered whole UML specification in the scope of this paper. Therefore,
we have mainly investigated fundamental elements and control structures of UML activity diagrams
that are widely used for modeling software system behavior. Nevertheless, the same methods and
techniques can also be adapted and applied for other control structures. Therefore, one of our
future endeavors is to exploit our approach for various aspects of software behavior modeling such
as data objects, object flows, error and exception handling, etc. Another aspect is to consider
whether the performance our approach is reasonable in the context of typical software development
environments.
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