
Submitted to:
FESCA2014

c© L.B.R. Santos, V. A. Santiago Jr., N.L. Vijaykumar
This work is licensed under the
Creative Commons Attribution License.

Transformation of UML Behavioral Diagrams to Support
Software Model Checking

Luciana Brasil Rebelo dos Santos Valdivino Alexandre de Santiago Júnior
Nandamudi Lankalapalli Vijaykumar

Laboratório Associado de Computação e Matemática Aplicada - LAC
Instituto Nacional de Pesquisas Espaciais - INPE

São José dos Campos - SP, Brazil
luciana.santos@lac.inpe.br valdivino.santiago@inpe.br vijay.nl@inpe.br

Unified Modeling Language (UML) is currently accepted as the standard for modeling (object-
oriented) software, and its use is increasing in the aerospace industry. Verification and Validation
of complex software developed according to UML is not trivial due to complexity of the software it-
self, and the several different UML models/diagrams that can be used to model behavior and structure
of the software. This paper presents an approach to transform up to three different UML behavioral
diagrams (sequence, behavioral state machines, and activity) into a single Transition System to sup-
port Model Checking of software developed in accordance with UML. In our approach, properties
are formalized based on use case descriptions. The transformation is done for the NuSMV model
checker, but we see the possibility in using other model checkers, such as SPIN. The main con-
tribution of our work is the transformation of a non-formal language (UML) to a formal language
(language of the NuSMV model checker) towards a greater adoption in practice of formal methods
in software development.

1 Introduction

Verification and Validation (V&V) play a key role of getting quality and has been gaining much im-
portance in the academia and private sector. Formal methods offer a large potential to obtain an early
integration of verification in the design process, and to provide more effective verification techniques [2].
However, formal methods require mathematical background and their use is restricted, as users prefer
the simplicity of other notations, rather than more formal means. Thus, adoption of formal methods will
be easier when they can be applied within standard development process and when they are based on
standard notation [20].

Unified Modeling Language - (UML) [18] is currently accepted as the standard for modeling (object-
oriented) software. It presents diagrams that represent the static structure of a system, and also defines
diagrams to model the dynamic behavior of systems. In particular, dynamic aspects of system behavior
can be specified by interactions (i.e. sequence diagrams); UML behavioral state machines (variant of
Harel’s Statecharts) and activity diagrams give a view of the system that is associated with instances of
classes. These types of diagrams represent complementary views of the system, but, at the same time,
hide redundant descriptions of the same aspects of the system. This gives the opportunity for V&V
techniques to ensure the consistency of these descriptions and the system requirements.

This paper presents an approach related to Model-Driven Development and Formal Verification. Our
approach transforms up to three different UML behavioral diagrams (sequence, activity, behavioral state
machines) into a single Transition System (TS) to support Model Checking of software developed in
accordance with UML. We consider properties generated from use case descriptions, which represent the

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 UML Behavioral Diagrams to Transition System

requirements, and the TS translated from the behavioral diagrams. Our verification essentially consists of
sequence of scenarios to be checked. Besides, the single TS has a unified view of different perspectives
of behavioral modeling of the system, obtained by using various UML diagrams. The main contribution
of our work is the transformation of a non-formal language (UML) to a formal language (language
of the NuSMV model checker) towards a greater adoption in practice of formal methods in software
development.

The rest of the paper is organized as follows. In the next section we explain our approach to apply
Formal Verification. This section also shows the details for constructing the TS, and for generating the
model checker notation. In Section 3 we apply our approach to a case study and shows preliminary
results. Related work is discussed in Section 4. Finally, Section 5 concludes the paper.

2 Transforming UML behavioral diagrams into Transition Systems (TS)

A prerequisite for model checking is a property to be checked and a model of the system under considera-
tion. In Figure 1, we show our approach aiming at Model Checking of software developed in accordance
with UML. In the following, we explain the main activities that the workflow performs:

[more scenarios]

Identify Scenarios

Select Diagrams

Formalize Properties

Generate Model Checker Notation

 [end of scenarios]

Start Formal Verification

Select Requirements

Simulate Model

 [else]

[model's defects]

Apply Model Checking

Generate Report of
System Defects based on

Counter Examples

Generate TS

Figure 1: Workflow of the proposed approach

(i) identify scenarios by looking at use case models. A use case can be viewed as a scenario. Each
scenario is a set of related subscenarios tied together by a common goal. The mainline sequence (’main
success scenario’ [5]) and each of the variations (’extensions and sub-variations’) are the scenarios iden-
tified by our approach; (ii) formalize properties. For each selected scenario, we extract requirements
from the textual description of use cases. After that, we formalize properties by means of specification

L.B.R. Santos, V. A. Santiago Jr., N.L. Vijaykumar 3

patterns [9]; (iii) generate TS. Based on the available UML behavioral diagrams, we generate a single
TS (finite-state model). This is the main activity to achieve the objective of our work. As will be ex-
plained later, our approach does not demand that all three UML behavioral diagrams (sequence, activity,
behavioral state machines) exist: it is enough to have the sequence diagram and one of the other two to
generate the TS; (iv) generate model checker notation. Then, we translate the created TS to a model
checker. Our first idea is to use the NuSMV model checker [13]; (v) Finally, we apply Model Checking
to realize about defects in the behavioral description of the system represented by the UML diagrams.
We repeat activities from (ii) to (v) for each selected scenario. Also note that activities (ii) and (iii)/(iv)
may be accomplished in parallel.

In the next subsection we will detail the main activity of our approach, i.e. a solution to generate a
single TS based on UML behavioral diagrams. We will focus on activity (iii) described above. It works
in two phases: in the first phase, the single TS from each one of the diagrams is generated separately.
Due to space constraints, we refrain to show the construction of individual TSs from each one of the
diagrams. We focus on the second phase, which shows how to obtain the definitive/unified TS from the
combination of the individual TSs. Finally, in Section 2.2 we present directives for the generation of the
NuSMV notation (activity (iv)).

2.1 The Unified Transition System

In this subsection, we show how to generate the final/unified TS. Some definitions and notations used
in our approach are given in the sequence. For brevity, we denote Sequence diagram as SD, Behavioral
State Machine diagram as SMD, and Activity diagram as AD. As previously mentioned, a scenario is
identified by looking at use case models. We take for granted that every use case has at least one SD
describing it. We also assume that a scenario must have at least two diagrams describing it: one is
mandatory, the SD , and the other one can be any of the other two diagrams.

A state in the TS is identified by a tuple � (Message,State,Activity), g0,g1, ...,gn� where Mes-
sage is from SD; State is from SMD; and Activity from AD; g0,g1,...,gn represent all the existing
guards in the diagrams along with their respective values. At the beginning, all guard values are as-
signed to ’dc’, which means ’do not care’, because at the beginning we don’t know the guard val-
ues. If there are parallel messages, states, or activities, an ’and’ is inserted in the tuple, such as
� (Msg1andMsg2,State1andState2,Activity1andActivity2), ...�, which means that Msg1 and Msg2
are sent in parallel State1 and State2 are parallel states, as well as Activity1 and Activity2. When a
diagram is missing, its part in its corresponding state in the TS is substituted by ’-’. It also happens
when there is some behavior that is not modeled in one of the diagrams, that is, when the diagrams
are incoherent or when there is a more detailed description in one of them. In these situations, states
are described as � (Message,State,−),g0,g1, ...,gn� or � (Message,−,State), g0,g1, ...,gn�, or
�(Message-—-—),g0,g1,...,gn�.

The main challenge to combine the three diagrams is to define the correspondence among messages,
events, and activities. For instance, an event for a transition of the SMD can be a message of the SD,
while the message can be a call to an activity modeled by an AD. Nevertheless, finding where a specific
message of the SD is modeled in the SMD or in the AD is very hard. Instead, we build the final TS using
the individual TSs. We look over the TSs starting from their initial states. The correspondence among
states of each TS is assigned by using the flow of transitions. At each iteration, we parse the three TSs
and construct the new states by taking the next possible transitions in each TS.

The flow of transitions, alone, is not enough to construct the final TS, as each TS contains multiple
paths. In addition, we use guard values to help find the correspondence among states. As we have already

4 UML Behavioral Diagrams to Transition System

stated, the SD is mandatory and conducts the diagrams merging. The basic elements that delineate the
possibility of paths in the SDs are guards in the combined fragments. Thus, we adopt the guard values
along with the flow of transitions to construct the final TS states. If we think of an algorithm, at each
iteration, the algorithm seeks the next possible transitions in each TS and its guard values. To find out
states that have the same guard values, we have created the gvs (guard value structure) which represents
the values of each one of all available guards on each state. Every time, for each possible next transitions
of the TSs created from the SD, SMD, and AD, their gvs are verified and a match of its values is created.
Thereafter, new states are generated.

<(A),
g=dc>

<(B),
g=dc>

<(C),
g=dc>

<(D),
g=false>

<(E),
g=true>

<(1),
g=dc>

<(2),
g=false>

<(3),
g=true>

<(A-1),
g=dc>

<(B-1),
g=dc>

<(C-1),
g=dc>

<(D-2),
g=false>

<(E-3),
g=true>

Diagram 1 Diagram 2 1 and 2 together

<(1),
g=dc>

<(2),
g=false>

<(3),
g=true>

<(A),
g=dc>

<(B),
g=false>

<(C),
g=true>

<(A-1),
g=dc>

<(B-2),
g=false>

<(C-3),
g=true>

gvs in next(A)={(g=false),(g=true)}

<(A),
g1=dc,
g2=dc>

<(B),
g1=false,
g2=dc>

<(D),
g1=false,
g2=false>

<(C),
g1=true,
g2=dc>

<(1),
g1=dc,
g2=dc>

<(2),
g1=false,
g2=dc>

<(4),
g1=false,
g2=true>

<(3),
g1=true,
g2=dc>

<(A-1),
g1=dc,
g2=dc>

<(B-2),
g1=false,
g2=dc>

<(--4),
g1=false,
g2=true>

<(C-3),
g1=true,
g2=dc>

<(D--),
g1=false,
g2=false>

a)

b)

gvs in next(A)={(g=dc)}

gvs in next(A)={(g1=false,g2=dc),
(g1=true,g2=dc),(g1=false,g2=false)}

gvs in next(1)={(g=false),(g=true)}

gvs in next(1)={(g=false),(g=true)}

gvs in next(1)={(g1=false,g2=dc),
(g1=true,g2=dc),(g1=false,g2=true)}

c)

gvs in next(A-1)={(g=false),(g=true)}

gvs in next(C-1)={(g=false),(g=true)}

gvs in next(A-1)={(g1=false,g2=dc),
(g1=true,g2=dc),(g1=false,g2=true),
(g1=false,g2=false)}

Figure 2: Possible situations to generate the unified TS and its respective gvs

Figure 2 shows the main possible situations that may occur to generate a state in the final TS. The
diagram in column 3 is the combination of the diagrams in columns 1 and 2. Situation a) is straightfor-
ward to see. Situation b) shows how the algorithm handles cases when in at least one of the next possible
states, the value of its gvs is the same of the current gvs value. This occurs because the diagrams do not
model the same behavior during their evolution. An SMD may contain more details than an SD, and so
on. In this case, the TSs have different lengths. Situation c) shows an example of inconsistent states, due
to inconsistent diagrams. As previously discussed, this may happen when one of the diagrams models a
behavior that is not modeled in the other diagram and vice versa. New transitions are created, as many
as necessary to cover all possibilities of gvs values.

There is still a situation we did not mention in Figure 2: TSs with no guards. Here we have two
possibilities. The first one is the case of all diagrams have no guards. We assume that when a diagram
has no guards, this means that there is no multiple paths. For example, a sequence diagram with no
combined fragments, or with only parallel combined fragment. All other combined fragments require
guards. Or an activity diagram with no decision node. In the absence of multiple paths, it is quite easy
to construct the final TS: we only need follow the flow of transitions. The second one is the case of a
diagram has guards and the other one does not. At the beginning, the algorithm seeks all guards in all
diagrams. Suppose TS1 has guards g1 and g2 and TS2 has no guards. The gvs will be composed by

L.B.R. Santos, V. A. Santiago Jr., N.L. Vijaykumar 5

{g1,g2} and it is attributed to TS2. As originally TS2 did not contain g1,g2, their values are assigned as
”dc” and will never change. Thenceforth the situations are covered in Figure 2.

2.2 Generation of model checker notation

After its creation, the unified TS can be used to systematically generate its corresponding encoding into
the model checker input language by constructing declarative divisions [7]. It is important to emphasize
that once a formal unified TS was generated from UML behavioral diagrams, we see the possibility of
transforming it into several different languages of available model checkers such as SPIN [11], UPPAAL
[4], and NuSMV [13].

In our current approach, we chose the NuSMV model checker because it is open source, it has a
widespread use in academia, and it accepts properties formalized not only in Computation Tree Logic
(CTL) but also in Linear Temporal Logic (LTL) [2], two logics that are well known and have mapping
defined in the specification patterns [9].

Considering the NuSMV model checker, declaration of variables is relatively easy. One variable
we call State which is related to the element�(Message-State-Activity)� of the tuple that identifies a
certain state of the TS. In addition, there will be as many variables as the guards identified within the
UML behavioral diagrams, i.e. g0 is transformed into a variable vg0, g1 into a variable vg1, and so on. All
these variables derived from the guards will be enumerated with the following values: {dc, f alse, true}.
The dc value is important because in many occasions and especially at the beginning of the behavioral
system modeling, the values of certain guards or do not care or do not make sense be true or false.
Another remark is that we use only state variables of NuSMV.

The initial value of the State variable of the final TS in NuSMV is always Start-Start-Start. Note that
this is not the ”full” state characterization of the initial state of the NuSMV model because we depend
on the values of the variables representing the guards to know this. To generate the model in NuSMV
we simply follow the transitions of the unified TS, making appropriate assignments to the State variable
and for each variable derived from the guards.

3 Preliminary Results

This section presents a case study to illustrate the feasibility of our approach. We consider more thor-
oughly the ATM case study, where the ATM interacts with a customer via a specific interface and commu-
nicates with the bank over an appropriate communication link. The initial part of the sequence, activity
and behavioral state machine diagrams for ATM are illustrated in Figure 3.

In accordance with our approach, we must identify the scenarios, observing the use cases. Then, we
start Formal Verification. For this, we generate TS and select requirements. Applying the suggested
approach manually on the three diagrams, we achieve the TS shown in Figure 4. Actually, Figure 4
exhibits only part of the unified TS (only the part related with Figure 3). In total, we have 756 states, 86
of which are reachable states, when running NuSMV model checker. Each state is characterized by the
values of the variables. We have identified four main variables that characterize the TS: (i) State = {Start-
Start-Start,...,End-Idle-End}; (ii) CardOk = {dc,false,true}. CardOk represents the card validation; (iii)
PinOk = {dc,false,true}. PinOk represents the PIN validation; and (iv) BalOk = {dc,false,true}. BalOk
represents the available amount of the customer account. CardOk, PinOK and BalOk comes from the
guards identified within the UML diagrams.

Continuing the approach, considering the use case Perform Transaction, we can extract two relevant

6 UML Behavioral Diagrams to Transition System

Part of ATM Sequence Diagram
Part of ATM Behavioral State Machine Diagram

Part of ATM Activity Diagram

Figure 3: Initial part of UML diagrams for ATM case study

<(VerifCard-
VerifCard and VerifyPin-

ReadCard and EnterPin),
Cardok=dc,Pinok=dc,

Balok=dc>

<(Start-Start-Start),Cardok=dc,
Pinok=dc,Balok=dc>

<(InsertCard-Idle-
InsertCard),Cardok=dc,

Pinok=dc,Balok=dc>

<(EjectCard-Eject-
EjectCard),Cardok=false,

Pinok=dc,Balok=dc>

<(End-Idle-End),Cardok=dc,
Pinok=dc,Balok=dc>

<(WaitPin-VerifCard and VerifyPin-
AuthorizeCard),Cardok=dc,

Pinok=dc,Balok=dc>

<(CardStatus-
VerifCard and VerifyPin-

AuthorizeCard),Cardok=dc,
Pinok=dc,Balok=dc>

...

<(CardStatus-
VerifCard and VerifyPin-
ReadCard),Cardok=dc,

Pinok=dc,Balok=dc>
<(CardStatus-

VerifCard and VerifyPin-
EnterPin),Cardok=dc,
Pinok=dc,Balok=dc>

<(Pin-VerifCard and VerifyPin-
AuthorizeCard),Cardok=dc,

Pinok=dc,Balok=dc>

<(VerifPIN-CardValid and VerifyPin-
AuthorizePin),Cardok=true,

Pinok=dc,Balok=dc>

<(PinStatus-VerifyPin-
AuthorizePin),Cardok=true,

Pinok=dc,Balok=dc>

Figure 4: Part of the final TS obtained from the three diagrams

L.B.R. Santos, V. A. Santiago Jr., N.L. Vijaykumar 7

user-defined properties related to requirements. To proceed with the Formal Verification, it is necessary
to formalize the properties to be checked. We chose Computation Tree Logic (CTL) [2] to formalize
the properties. Note that the properties could be formalized using LTL as well, considering that NuSMV
support such logic.

Requirement 1: the customer can perform transactions only if he/she has a valid card and a valid
personal identification number (PIN). Otherwise, he/ she can not perform any kind of transaction. This
property can be formalized using the Absence Pattern and Scope After Q proposed by [9], in CTL, as
follows1:
AG((CardOK = f alse | PinOK = f alse)→AG(!(State =WaitAccount−CardValidandPinValid−InitiateTransaction)))

CardOk and PinOk refer to the validation of the customer credentials. The first state on the final TS
which can be reached only when CardOk and PinOk are true is WaitAccount-CardValidandPinValid-
InitiateTransaction, that is, when the custumer has card and PIN valids. If we observe the individual
TSs, we can see that state WaitAccount for the SD is the first reachable state when both CardOk and
PinOk are true, for SMD CardValidandPinValid, and also InitiateTransaction for AD.
aaaaRequirement 2: whenever the specified amount exceeds the level of available funds, it should be
possible for the user to request a new cash advance operation if the user wishes to correct the amount.
The property can be formalized using the Existence Pattern and Scope After Q proposed by [9], in
CTL, as follows:
A[!(State = Insu f f Funds−Modi f y−ShowBalance)W ((State = Insu f f Funds−Modi f y−ShowBalance)&AF(State =
CashAdvance−Chkbal−CheckBalance))])

The state that allows the customer to perform a cash operation is CashAdvance-Chkbal-CheckBalance
and the state that indicates that the available funds are insufficient is InsuffFunds-Modify-ShowBalance.
To formalize the properties, it is necessary to see the final TS and its variables.

The next task is to generate the model checker model based on the previous generated final TS.
The guidelines to do this were presented in Section 2.2. The model checker code will be automatically
generated when the approach is implemented. A small part of the NuSMV source code is shown below
for this case study.

aa
MODULE main

VAR

aa State: {Start-Start-Start,InsertCard-Idle-InsertCard,
aaaaaaaaaaaVerifCard-VerifCardandVerifyPin-ReadCardandEnterPin,...,End-Idle-End};
aa CardOk: {dc,false,true};
aa PinOk: {dc,false,true};
aa BalOk: {dc,false,true};
ASSIGN

aa init(State):= Start-Start-Start;
aa next(State):= case

aaaa State=Start-Start-Start & CardOk=dc & PinOk=dc & BalOk=dc :

aaaaaaaaaaaInsertCard-Idle-InsertCard;
aaaa State=InsertCard-Idle-InsertCard & CardOk=dc & PinOk=dc

aaaaaaaaaaa & BalOk=dc : VerifCard-VerifCardandVerifyPin-ReadCardandEnterPin;
aaaaaaaaaaa ...
aa esac;

After applying Model Checking, the results indicate that the first propriety is satisfied. However,
the second property is violated, generating a counterexample. When analyzing the counterexample, one
can note that it is not possible to reach state CashAdvance-ChkBal-CheckBalance (where is possible to

1We used the NUSMV’s syntax to write the property in CTL.

8 UML Behavioral Diagrams to Transition System

request a new cash advance operation) from state InsuffFunds-Modify-ShowBalance (where available
funds are insufficient).

In this section, we have shown the feasibility of our approach, by means of a traditional case study
performed manually, to generate the unified TS from the various UML behavioral diagrams, and we
introduced policies to transform the TS into the NuSMV input language. Besides, after running the
model checker, we have found that the behavioral modeling described in the UML diagrams does not
comply with all the specified requirements.

4 Related Work

This section presents some of the research literature related to this paper, showing (not exhaustive) ap-
proaches that use Formal Verification and UML.

Knapp [20] used two complementary UML notations for the specification of dynamic system behav-
ior - state machines and collaborations - to automatically verify whether the interactions expressed by a
collaboration can indeed be accomplished by a set of state machines. The approach applied consistency
checking between diagrams.

Mikk [17] and Latella [15] translated Statecharts into PROMELA, the input language of SPIN ver-
ification system. Lam [14] formally analyzed activity diagrams using NuSMV model checker. The
objective was determining the correctness of activity diagrams. Eshuis [10] presented two translations
from activity diagrams to NuSMV. The aim was to assess the activity diagrams from the point of view
of requirements and also from the point of view of implementation, which represents the current system
behavior. In [1], Anderson translates the specification of TCAS (Traffic Alert and Collision Avoidance
System), which is specified in RSML (Requirements State Machine Language) into the input language
of NuSMV. The objective was to investigate if Model Checking could be used in large software specifi-
cations. Dubrovin [8] implemented a tool that translates UML hierarchical state machine models to the
input language of NuSMV too. Uchitel [21] proposes translation of scenarios, specified as Message Se-
quence Charts (MSCs), into a specification in the form of Finite Sequential Processes. This can then be
fed to the Labelled Transition System Analyser model checker to support system requirements validation.
All these previous studies deal with a single UML or UML-like diagram to perform Formal Verification.
Rather, our approach allows to work with up to three UML behavioral diagrams. In addition, it is not
clear if in the previous studies the authors used specification patterns to formalize the properties. Spec-
ification patterns provide clear guidelines to such formalization. We are proposing not only a tool to
translate UML diagrams into a unified TS to support Model Checking but also a full approach to detect
defects in the design of software developed in accordance with UML.

Baresi [3] developed a tool to carry out Formal Verification of UML-based models, mainly interested
in the timing aspects of systems. It is composed by: static part (class diagrams); dynamic aspects and
behavior are rendered through: (a) state diagrams and activity; (b) sequence diagrams; and (c) interaction
overview diagrams, used to relate different sequence diagrams; Clocks (and time diagrams) are used to
add the time dimension to systems. All these diagrams seem to be required to construct the approach.

Cortellessa [6] proposes a methodology Performance Incremental Validation in UML (PRIMA-
UML) aimed at generating a queueing network based performance model from UML diagrams that
are usually available early in the software lifecycle (use case, sequence, and deployment). Bernardi
[16] translated sequence and statechart diagrams into Generalized Stochastic Petri Nets. Both works
aimed analyze performance aspects of systems. Our approach is more related to functional aspects of the
software product.

L.B.R. Santos, V. A. Santiago Jr., N.L. Vijaykumar 9

Calinescu [12] used a probabilistic model checker (PRISM) to verify critical systems, after changes.
Verifying these software systems only at design time is insufficient, they have to be reverified after each
change. They did not work with UML diagrams, but with components and deterministic finite automata.

The main motivation of our approach is the practical use of formal methods in software development,
through automation. The idea is that the user feeds the tool with UML behavioral diagrams and it shows
the defects. This can be done throughout the lifecycle, even before software coding. [6] suggested an
interesting approach to encompass performance validation task as an integrated activity within the de-
velopment process. We aim at detecting design defects within the solution, but considering functional
requirements of the software product. Besides, our approach suggests to get a single vision of the sys-
tem captured from three different diagrams (sequence, activity, and behavioral state machines). These
diagrams represent complementary views of system behavior and are often used in different phases of
software specification and design, allowing thus a wider system range to be verified. Most of the works
we mentioned deal with a specific type of UML diagram. [3] seems to require an assorted number of
diagrams (structural, behavioral and time diagrams), which are not always available on the documenta-
tion. Adversely, our proposal requires two diagrams as mandatory (one is sequence and another activity
or behavioral state machine), which provides a higher chance of being used in real applications.

5 Conclusions

In this paper we presented an approach that, ultimately, is another initiative in order to facilitate and
thus increase the use of formal methods in software real projects. We draw on two facts to the develop-
ment of this work. First, UML is a language widely used in various application domains, including the
aerospace one. Second, Formal Verification and formal methods in general, despite all the benefits al-
ready presented by academic community, have not seen widespread adoption as a routine part of systems
development practice [22].

We presented an approach that transforms up to three UML behavioral diagrams (sequence, activity,
behavioral state machines) into a single Transition System to support Model Checking. Our proposal
requires only 1 diagram as mandatory (sequence) and another (activity or behavioral state machine) in
order to create the TS. If there are the 3 diagrams, our approach can also generate the unified model (TS).
Thus, we believe that it has a great potential to be used in real systems development because not always
a significant variety of UML diagrams is within the artifacts (requirements specification, software design
document) created to develop certain type of software.

Future directions follow. We are currently developing a tool to support this transformation. We have
already developed the transformation from SD into a single corresponding TS, and we are working at
the AD transformation. When SMD transformation is finished we will begin the construction of the final
part, the unified TS generation. Another direction is to automatically identify in the UML diagrams a
problem (inconsistency between diagrams, incorrect behavior) when a counterexample is detected by
running NuSMV. We will dedicate efforts in transforming the unified TS to other model checkers such
as SPIN and UPPAAL. More complex case studies in several domains such as space software [19] and
general purpose software are in our targets.

References

[1] Richard J Anderson, Paul Beame, Steve Burns, William Chan, Francesmary Modugno, David Notkin & Jon D
Reese (1996): Model checking large software specifications. In: ACM SIGSOFT Software Engineering

10 UML Behavioral Diagrams to Transition System

Notes, 21, ACM, pp. 156–166.
[2] C. Baier & J.-P. Katoen (2008): Principles of model checking. MIT Press, Cambridge, MA, USA. 975 p.
[3] L. Baresi, A. Morzenti, A. Motta & M. Rossi (2012): Towards the UML-Based Formal Verification of Timed

Systems. In: Formal Methods for Components and Objects, Springer, pp. 267–286.
[4] G. Behrmann, A. David & K. Larsen (2004): A tutorial on uppaal. Formal methods for the design of real-time

systems, pp. 33–35.
[5] Alistair Cockburn (2000): Writing Effective Use Cases. Addison-Wesley Professional, US. 304 p.
[6] Vittorio Cortellessa & Raffaela Mirandola (2002): PRIMA-UML: a performance validation incremental

methodology on early UML diagrams. Science of Computer Programming 44(1), pp. 101–129.
[7] M. Debbabi, F. Hassaı̈ne, Y. Jarraya, A. Soeanu & L. Alawneh (2010): Verification and Validation in Systems

Engineering. Springer, Berlin, Heidelberg - Germany. 270 p.
[8] J. Dubrovin & T. Junttila (2008): Symbolic model checking of hierarchical UML state machines. In: Appli-

cation of Concurrency to System Design, 2008. 8th International Conference on, IEEE, pp. 108–117.
[9] M. B. Dwyer, G. S. Avrunin & J. C. Corbett (1999): Patterns in property specifications for finite-state verifi-

cation. In: Proceedings..., International Conference on Software Engineering (ICSE), ACM, New York, NY,
USA, pp. 411–420.

[10] R. Eshuis (2006): Symbolic model checking of UML activity diagrams. ACM Transactions on Software
Engineering and Methodology (TOSEM) 15(1), pp. 1–38.

[11] G.J. Holzmann (2004): The SPIN model checker: Primer and reference manual. 1003, Addison-Wesley.
[12] Kenneth Johnson, Radu Calinescu & Shinji Kikuchi (2013): An Incremental Verification Framework for

Component-Based Software Systems.
[13] FONDAZIONE BRUNO KESSLER (2011): NuSMV Home Page. Available at http://nusmv.fbk.eu/.
[14] V.S.W. Lam (2007): A formalism for reasoning about UML activity diagrams. Nordic Journal of Computing

14(1), pp. 43–64.
[15] D. Latella, I. Majzik & M. Massink (1999): Automatic verification of a behavioural subset of UML statechart

diagrams using the SPIN model-checker. Formal Aspects of Computing 11(6), pp. 637–664.
[16] José Merseguer, Javier Campos, Simona Bernardi & Susanna Donatelli (2002): A compositional semantics

for UML state machines aimed at performance evaluation. In: Discrete Event Systems, 2002. Proceedings.
Sixth International Workshop on, IEEE, pp. 295–302.

[17] E. Mikk, Y. Lakhnech, M. Siegel & G.J. Holzmann (1998): Implementing statecharts in PROMELA/SPIN.
In: Industrial Strength Formal Specification Techniques, 1998., IEEE, pp. 90–101.

[18] The Object Management Group OMG (1997): OMG - Unified Modeling Language (OMG UML). Available
at http://www.uml.org/.

[19] V. A. Santiago Júnior & N. L. Vijaykumar (2012): Generating Model-Based Test Cases from Natural Lan-
guage Requirements for Space Application Software. Software Quality Journal 20(1), pp. 77–143. DOI:
10.1007/s11219-011-9155-6.

[20] T. Schäfer, A. Knapp & S. Merz (2001): Model checking UML state machines and collaborations. Electronic
Notes in Theoretical Computer Science 55(3), pp. 357–369.

[21] Sebastian Uchitel & Jeff Kramer (2001): A workbench for synthesising behaviour models from scenarios. In:
Proceedings of the 23rd intern. conference on Software engineering, IEEE Computer Society, pp. 188–197.

[22] J. Woodcock, P. G. Larsen, J. Bicarregui & J. Fitzgerald (2009): Formal methods: Practice and experience.
ACM Computing Surveys 41(4), pp. 19:1–19:36.

http://nusmv.fbk.eu/
http://www.uml.org/

	Introduction
	Transforming UML behavioral diagrams into Transition Systems (TS)
	The Unified Transition System
	Generation of model checker notation

	Preliminary Results
	Related Work
	Conclusions

