
Submitted to:
c© M. Kezadri, M. Pantel, B. Combemale & X. Thirioux

This work is licensed under the
Creative Commons Attribution License.

Correct-by-construction model composition
Application to the Invasive Software Composition method

Mounira Kezadri Hamiaz
Université de Toulouse, IRIT, France

mounira.kezadri@enseeiht.fr

Benoı̂t Combemale
Université de Rennes 1, IRISA, France

benoit.combemale@irisa.fr

Marc Pantel
Université de Toulouse, IRIT, France

marc.pantel@enseeiht.fr

Xavier Thirioux
Université de Toulouse, IRIT, France

xavier.thirioux@enseeiht.fr

Composition technologies improve reuse in the development of large-scale complex systems. Safety
critical systems require intensive validation and verification activities. These activities should be
compositional in order to reduce the amount of residual verification activities that must be conducted
on the composite in addition to the ones conducted on each components. In order to ensure the
correctness of compositional verification and assess the minimality of the residual verification, the
contribution proposes to use formal specification and verification at the composition operator level.
A first experiment was conducted in [14] using proof assistants to formalize the generic composition
technology ISC and prove that type checking was compositional. This contribution extends our early
work to handle full model conformance and study the mandatory residual verification. It shows that
ISC operators are not fully compositional with respect to conformance and provides the minimal
preconditions on the operators mandatory to ensure compositional conformance. The appropriate
operators from ISC (especially bind) have been implemented in the COQ4MDE framework that
provides a full implementation of MOF in the COQ proof assistant. Expected properties, respectively
residual verification, are expressed as post, respectfully pre, conditions for the composition operators.
The correctness of the compositional verification is proven in COQ.

1 Introduction

Composition technologies improve reuse in the development of large-scale complex systems. Safety
critical systems require intensive validation and verification activities. These activities should be compo-
sitional in order to reduce the amount of residual activities that must be conducted on the composite in
addition to the ones conducted on each components. In order to ensure the correctness of compositional
verification and assess the minimality of the residual verification, the contribution proposes to use formal
specification and verification at the composition operator level.

A first experiment was conducted in [14] using proof assistants to formalize the generic composition
technology ISC [1] and especially the bind and extend operators. This generic composition method
enables to enrich the models to express composition interfaces and to assemble the generated components
using some composition operators. Type checking for models based on metamodels was proved to be
compositional for these operators. However, the implementation of operators in ISC does not take into
account other semantics properties for the conformance relation for metamodels and inconsistent models
can be generated.

This contribution extends our early work to handle full model conformance and study the manda-
tory residual verification. It shows that ISC operators are not fully compositional with respect to con-
formance and provides the minimal preconditions on the operators mandatory to ensure compositional

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Correct-by-construction model composition

conformance. The appropriate operators from ISC (especially bind) have been implemented in the
COQ4MDE framework that provides a full implementation of MOF in the COQ proof assistant. Expected
properties, respectively residual verification, are expressed as post, respectively pre, conditions for the
composition operators. The correctness of the compositional verification is proven in COQ.

This paper focuses on an evolution of the ISC operators (especially the bind operator) to correct the
inconsistencies in the first implementation that allowed to build model compositions that do not conform
to the composite metamodel. It also gives the verification for some generic semantics properties of the
MOF metamodel conformance relation [18].

This first section has given a short introduction. The second section presents the required notions
about COQ4MDE. To motivate the evolution of the ISC operators and the associated proofs, the third
section gives an example of an inconsistent metamodel assembled by the REUSEWARE1 [12] [11] plugin
from consistent metamodels. The fourth section first discusses the formalization of the bind operator,
then presents some preconditions for the conformance verification and the associated proofs. The fifth
section presents some related work. Finally, the last section concludes and gives some perspectives.

2 Coq4MDE

This section gives the main insight of our MDE framework COQ4MDE, derived from [25]. It defines
principally the notions of Model and MetaModel.

In our framework, the concept of metamodel is not a specialization of the concept of model. A model
is the instance level and a metamodel is a modeling language used to define models. Both are formally
defined in the following way. Let us consider two sets of labels: Classes, respectively References,
represents the set of all possible class, respectively reference labels. Then, let us consider instances of
such classes, the set Objects of object labels. References includes a specific inh label used to specify
the inheritance relation. In the next sections, we will elide the word label and directly talk about classes,
references and objects.

Definition 1 (Model) Let C ⊆ Classes be a set of classes.
Let R ⊆ {〈c1,r,c2〉 | c1,c2 ∈ C ,r ∈References}2 be a set of references between classes.

A Model over C and R, written 〈MV,ME〉 ∈Model(C ,R) is a multigraph built over a finite set MV
of typed object vertices and a finite set ME3 of reference edges such that:

MV ⊆ {〈o,c〉 | o ∈ Objects,c ∈ C }
ME ⊆

{
〈〈o1,c1〉,r,〈o2,c2〉〉 〈o1,c1〉,〈o2,c2〉 ∈MV,〈c1,r,c2〉 ∈R

}
Note that, in case of inheritance, the same object label will be used several times in the same model
graph. It will be associated to the different classes in the inheritance hierarchy going from a root to the
class used to create the object. This label reuse encodes the inheritance polymorphism, a key aspect of
most OO languages. Inheritance is represented in the metamodel with a special reference called inh. The
subClass property is presented in the Section 4.

Definition 2 (Metamodel) A MetaModel is a multigraph representing classes as vertices and references
as edges as well as semantic properties over instantiation of classes and references. It is represented as

1http://www.reuseware.org
2〈c1,c2,r〉 in the COQ code is denoted here for simplification as: 〈c1,r,c2〉.
3〈〈o1,c1〉,r,〈o2,c2〉〉 is denoted in the COQ code as: 〈〈o1,c1〉,〈o2,c2〉,r〉〉.

http://www.reuseware.org

M. Kezadri, M. Pantel, B. Combemale & X. Thirioux 3

a pair composed of a multigraph (MMV,MME) built over a finite set MMV of vertices and a finite set
MME of edges, and of a predicate over models representing the semantic properties.

A MetaModel is a pair 〈(MMV,MME),con f ormsTo〉 such that:

MMV ⊆ Classes

MME ⊆ {〈c1,r,c2〉 | c1,c2 ∈MMV,r ∈ References}
con f ormsTo : Model(MMV,MME)→ Bool

Given one Model M and one MetaModel MM, we can check conformance using the con f ormsTo predi-
cate embedded in MM. It identifies the set of valid models with respect to a metamodel.

In a prospect to construct a formal framework for model composition, we extend the previous MDE
framework to formalize and prove the properties preservation for the ISC basic composition operators
implemented inside the REUSEWARE framework.

3 An example of inconsistent metamodel generated by REUSEWARE

ISC is a generic technology for extending a DSML with model composition facilities. Its first version
was defined to compose Java programs and was implemented in the COMPOST system4. A universal
extension called U-ISC was proposed in [11], this technique deals with textual components that can be
described using context-free grammars and then the fragments are represented as trees. The method as
presented considers tree merging for the composition. Recently, in order to deal with graphical languages
the method was extended to support typed graphs in [12], this method was implemented in the REUSE-
WARE framework. This last implementation is consistent with the description of models as graphs in our
COQ4MDE framework.

Using the REUSEWARE plugin, the composition of the two models presented in Figures 1 and 2 by
the composition program presented in Figure 3 generates the model presented in Figure 4.

Figure 1: The advice model Figure 2: The observer model

This example is presented in [13] and is accessible with the REUSEWARE Eclipse plugin applica-
tions5. We slightly modified the observer model by adding an attribute name having as minimal multiplic-
ity 1 and as maximal multiplicity ∗ (see Figure 2) to illustrate the issue with the result of the composition
(see Figure 4).

4http://www.the-compost-system.org
5http://www.reuseware.org/index.php/Reuseware_Aspect_Weaving

http://www.reuseware.org/index.php/Reuseware_Aspect_Weaving

4 Correct-by-construction model composition

Figure 3: The composition program

The composition program shown in Figure 3 describes the links between the variation and reference
points and aims to implement the class weaving for the two metamodels.

Figure 4: The composition result

In the model obtained by composition, the class FSFolder has two attributes name with different
multiplicities (1 and 1 .. *). This generates ambiguities and the metamodel is clearly inconsistent.

Our approach for the verification allows to detect and avoid this kind of inconsistencies by consid-
ering the metamodel semantics properties. The fact that one attribute must have a single value for the
minimum and maximum multiplicities is a semantics property represented with the attributes lower and
upper for the class Property (see Figure 5)

Property
lower: Natural⊤ = 1
upper : Natural⊤ = 1
isOrdered : Boolean = false
isComposite: Boolean = false
default: String = ""

Class
isAbstract: Boolean = false

{ordered} 0..*
ownedAttribute

0..1
opposite

NamedElement
name: String

0..*
superClass

Type TypedElementtype
1

DataType

Boolean String Natural

owner

⊤

Figure 5: The MOF metamodel

We consider our metamodels as models conforming to MOF (represented in Figure 5 as a metamodel),
then we verify the conformance properties in relation with this metamodel. We show in the following
the verifications of this kind of properties for the ISC method bind operator.

M. Kezadri, M. Pantel, B. Combemale & X. Thirioux 5

4 The verifications

The bind operator formalized in [14] enables for two models M and M′ to replace a model’s element
b from the model M referenced by a variation point by another model’s element b′ from the model M′

referenced by a reference point. The two model’s elements b and b′ must have the same type. This
operator as presented in [14] is proved compositional for typing but can generate inconsistencies on the
resulted models with respect to conformance. The predicate InstanceOf is used to check that all objects
and links of a model are instance of classes and references in a metamodel.

InstanceO f (〈〈MV,ME〉,〈〈MMV,MME,con f ormsTo〉〉〉),
∀ 〈o,c〉 ∈ MV,c ∈ MMV∧ ∀〈〈o,c〉,r,〈o′,c′〉〉 ∈ ME, 〈c,r,c′〉 ∈ MME

Then, this predicate is used to verify that using two components instance of MM, the component resulting
from the application of the bind operator is also instance of MM.

Let consider now the inheritance property represented using the relation superClass in Figure 5.
This property is formally represented in COQ4MDE with a special reference called inh. The property
subClass states that c2 is a direct subclass of c1 in the model 〈MV,ME〉.

subClass(c1,c2 ∈ Classes,〈MV,ME〉), ∀o ∈ Objects,〈o : c2〉 ∈MV ⇒ 〈〈o : c2〉, inh,〈o : c1〉〉 ∈ME

In Figure 6, we show that the bind operator generates inconsistencies concerning the inheritance.
In this example, we apply on the model the bind operator with as parameters (c : C) and (c′ : C′), so
that replaces the model’s element (c : C) by (c′ : C′). The condition for this operator is that C is equal
to C′, this preserves the type safety but generates problems with the inheritance. The cause is that this
replacement does not preserve the label reuse used to implement the inheritance and discussed in the
Section 2.

inh

inh

inh

inh

c: C c’: C’

c: Csup

c: Cssup

c’: C’

c: Csup

c: Cssup

M1 M2

bind (c,C) (c′,C′) M1 M2

Figure 6: Inconsistency (concerning the inheritance) generated by the bind operator

To correct this inconsistency, we slightly modified this operator. The new operator changes the name
of all elements named c by c′, the type of each element remains unchanged. We prove then the preser-
vation of the type safety, the inheritance and other MOF properties by this operator. The bind operator
is also extended to a recursive form to support several variation and reference points as mentioned in
Figure 7.

We reuse InstanceO f predicate to prove the type safety for the new bind operator using the theo-
rem 76 (ValidBind) for any two models M1 and M2 and any models’ elements o1 and o2.

Theorem 1 (ValidBind)
InstanceO f (M1,MM) ∧ InstanceO f (M2,MM)→ InstanceO f ((bind o1 o2 M1 M2),MM)

6http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html#ValidBind

http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html#ValidBind

6 Correct-by-construction model composition

init : Transition

Initial : Transition close : Transition

Opened : Transition

Closed : State

open : Transition unlock : Transition

lock : Transition

Unlocked : State

Locked : State

Fragment
A

Fragment
B

Hook

Hook

Hook

Prototype

Prototype

Prototype

init : Transition

Initial : Transition close : Transition

Opened : Transition

Closed : State

open : Transition

Locked : State

Unlocked : State

unlock : Transition

Resulted Fragment

bind

bind

bind

Hook

Hook

Hook

Figure 7: The bind of several variation points operator

PROOF SKETCH: We suppose that the two models M1 and M2 are instance of the metamodel MM and we
prove that the model obtained by applying the bind operator on the two models using any two model’s
elements o1 and o2 is also instance of the metamodel MM. We verify first that o1 is a Hook for the model
M1 and o2 is a Prototype for the model M2 and that o1 and o2 have the same type otherwise the bind
returns the model M1 and the proof is trivial. In case of o1 is a Hook and o2 is a Prototype and the two
model’s elements have the same types, we show that the bind does not change the types of the vertices
and edges and so preserves the type safety (some details of the proof are given as an appendix).

We developed an elegant way to prove that the basic composition operators preserve the conformance
regarding the semantics properties of metamodel (other than typing). We used this method to take into
account some semantics properties of the MOF metametamodel. This approach prevents us trying to
extract the properties from the initial metamodel which is not obvious to do. The complexity is linked to
the fact that the conformsTo predicate is defined in a generic way to support any kind of properties on
the metamodel. The idea is to ensure that each elementary property verified on the initial models is also
verified on the result of the application of the composition operator. So, if the initial models are conform
to some metamodel, the resulting model is consistent with the same metamodel. The basic semantics
properties considered are: inheritance (subClass), abstract classes (isAbstract), multiplicities (lower
and upper), the opposite references (isOpposite) and composite references (areComposite).

In follows, we present for each property, the theorem that proves the preservation for the bind

operator and the link to the complete COQ proof.

4.1 The verification of some MOF properties

We show that inheritance, abstract classes, multiplicities, opposite and composite references are pre-
served by the bind operator. We note also that the proofs of these properties require in some cases

M. Kezadri, M. Pantel, B. Combemale & X. Thirioux 7

additional preconditions that represent the residual verification activities when composing verified mod-
els.

The subClass property: The theorem 2 (BindSubClassPreserved) shows7 that the inheritance is
preserved by the bind operator. So, for all classes c1 and c2 and for all model’s elements o1 and o2, if c1
is a subClass of c2 in two models M1 and M2, then c1 is a subClass of c2 in the resulting model from
(bind o1 o2 M1 M2).

Theorem 2 (BindSubClassPreserved)
∀ M1 M2 ∈ Model, c1 c2 ∈ Classes, o1 o2 ∈ Objects,

(subClass c1 c2 M1)∧ (subClass c1 c2 M2)→ subClass c1 c2 (bind o1 o2 M1 M2)

PROOF SKETCH: We prove that any two classes c1 and c2 linked by the inh relation in any two models
M1 and M2, are also linked by the inh relation in the model obtained from the bind of any two model’s
elements o1 and o2 using the two models M1 and M2. We suppose that we have a relation inh between
any two model’s elements typed by c1 and c2 in the two models M1 and M2. We verify first that o1 is a
Hook for the model M1 and o2 is a Prototype for the model M2 and that o1 and o2 have the same type
otherwise the bind returns the model M1 and the proof is trivial. In case of o1 is a Hook and o2 is a
Prototype and the two model’s elements have the same type, we show that the bind does not change the
types of model’s elements and the types of relations and so in the resulted model we have always an inh
relation between any model’s elements typed by c1 and c2. The COQ proof is long but straightforward
and considers all the cases of equality between the name of any model’s element typed by c1 and the
names of the model’s elements o1 and o2 and shows in all cases that the inh relation is preserved.

So, there is no necessary precondition on the parameters of the bind operator to verify that the
subClass property is compositional.

The isAbstract property: Abstract classes that are specified in a metamodel using the isAbstract at-
tribute are not suitable for instantiation. They are often used to represent abstract concepts or entities.

isAsbstract(c1 ∈ Classes,〈MV,ME〉),
∀ o ∈ Objects,〈o : c1〉 ∈MV ⇒∃ c2 ∈ Classes,〈〈o : c2〉, inh,〈o : c1〉〉 ∈ME

The preservation of this property by the bind operator is proved8 using the theorem 3. This theorem
shows that all the abstract classes in any two models M1 and M2 are also abstract in the model obtained by
the application of the bind operator on the two models.

Theorem 3 (BindIsAbstractPreserved)
∀ M1 M2 ∈ Model, c ∈ Classes, o1 o2 ∈ Objects,

(isAbstract c M1)∧ (isAbstract c M2)→ isAbstract c (bind o1 o2 M1 M2)

PROOF SKETCH: We prove that any abstract class c in any two models M1 and M2, is also abstract in the
model obtained from the bind of any two model’s elements o1 and o2 using the two models M1 and M2.
We suppose that the class c is abstract in the models M1 and M2. We verify first that o1 is a Hook for the
model M1 and o2 is a Prototype for the model M2 and that o1 and o2 have the same types otherwise the
bind returns the model M1 and the proof is trivial. In case of o1 is a Hook and o2 is a Prototype and the
two model’s elements have the same type, we show that the bind does not change the types of model’s

7http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html#Bind2MSCP
8http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html#Bind2MIAP

http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html#Bind2MSCP
http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html#Bind2MIAP

8 Correct-by-construction model composition

elements and so in the resulted model if an element typed by the class c is in the resulting model, then
another element having the same name typed by c1 and linked to the first model’s element with an inh
relation will be also in the resulting model. The COQ proof is long and considers all the cases of equality
between the name of any model’s element typed by c and the names of the model’s elements o1 and o2
and shows in all cases that the relation is preserved.

So, there is no precondition on the parameters of the bind operator to verify that the isAbstract

property is compositional.

The lower & upper properties: A minimum and maximum number of instances of target attribute or
reference can be defined using the lower and upper attributes. Both attributes are used to represent a
range of possible numbers of instances. Unbounded ranges can be modelled using the > value for the
upper attribute.

lower(c1 ∈ MMV,r1 ∈ MME,n ∈ Natural>), 〈MV,ME〉 7→
∀ o ∈ Objects,〈o : c1〉 ∈ MV⇒ |{m2 ∈ MV | 〈〈o : c1〉,r1,m2〉 ∈ ME}| ≥ n

The theorem 4 (BindLowerPreserved) shows9 that the lower property is preserved by the bind op-
erator. The verification requires the bind operator to be injective and preserves the difference between
the elements in the resulting model. This is ensured if the model’s element o2 is not in the first model,
this verifies that the bind operator does not add an element that already exists in the model. Finally,
the preservation of the lower property is proven. An analogous formalization for the lower property is
defined for the upper property replacing ≥ by ≤.

Theorem 4 (BindLowerPreserved)
∀ 〈MV1,ME1〉 〈MV2,ME2〉 ∈ Model, c ∈ Classes, r ∈ References,
n ∈ Natural>, (o1 : c1) (o2 : c2) ∈ Objects,
c1 = c2∧ (∀ c,(o2 : c) /∈ MV1)∧ Injectif bind
∧ (lower c r n 〈MV1,ME1〉)∧ (lower c r n 〈MV2,ME2〉)
→ (lower c r n (bind (o1 : c1) (o2 : c2) 〈MV1,ME1〉 〈MV2,ME2〉)).

PROOF SKETCH: We suppose for any two models 〈MV1,ME1〉 and 〈MV2,ME2〉 that a lower bound n is
satisfied for the class c in relation with the reference r (maximum n model’s elements are related by the
relation r to the same instance of the class c). Then, we prove that this lower bound n is also satisfied in
the model obtained from the bind of any two model’s elements o1 and o2 using the two models 〈MV1,ME1〉
and 〈MV2,ME2〉. We verify first like in the previous proofs that o1 is a Hook for the model 〈MV1,ME1〉 and
o2 is a Prototype for the model 〈MV2,ME2〉 and that o1 and o2 have the same types otherwise the bind
returns the model M1 and the proof is trivial. In case of o1 is a Hook and o2 is a Prototype and the two
model’s elements have the same types, we show that the bind does not change the types of the model’s
elements and does not reduce the lower bound in the resulting model because the bind is supposed
injective and so does not introduce new model’s elements duplications. The COQ proof is long and uses
intermediate lemmas to simplify iterations and calculations of the links and the model’s elements (the
difficulty is linked to the elegant coding of the graphs and the models using dependent types). This
proof considers also all the cases of equality between the name of any instance of c and the names of the
model’s elements o1 and o2 and shows in all cases that the lower bound is preserved.

9http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html#Bind2MLP

http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html#Bind2MLP

M. Kezadri, M. Pantel, B. Combemale & X. Thirioux 9

The preservation of the upper property is described10 by the BindUpperPreserved theorem which
is similar to the previous theorem for the lower property. So, we find it necessary to introduce as-
sumptions about the model’s elements to ensure that the composition using the bind operator preserves
the lower and upper properties. There are therefore preconditions on the bind operator to ensure the
preservation of these properties.

The isOpposite property: A reference can be associated to an opposite reference. It implies that, in a
valid model, for each link instance of this reference between two objects, a link in the opposite direction
between the same objects exists.

isOpposite(r1,r2 ∈ MME), 〈MV,ME〉 7→ ∀ m1,m2 ∈ MV,〈m1,r1,m2〉 ∈ ME⇔ 〈m2,r2,m1〉 ∈ ME

The theorem 5 (BindIsOppositePreserved) shows11 that each pair of opposite references in the two
models M1 and M2 are also opposite in the resulting model from applying the bind operator on the two
models. Finally, the property isOpposite is preserved.

Theorem 5 (BindIsOppositePreserved)
∀ M1 M2 ∈ Model, r1 r2 ∈ References, o1 o2 ∈ Objects,
(isOpposite r1 r2 M1)∧ (isOpposite r1 r2 M2)→ (isOpposite r1 r2 (bind o1 o2 M1 M2)).

PROOF SKETCH: We prove that any two references r1 and r2 that are opposite in any two models M1
and M2, are also opposite in the model obtained from the bind of any two model’s elements o1 and o2
using the two models M1 and M2. We verify first like in all the other proofs that o1 is a Hook for the
model M1 and o2 is a Prototype for the model M2 and that o1 and o2 have the same type otherwise the
bind returns the model M1 and the proof is trivial. In case of o1 is a Hook and o2 is a Prototype and the
two model’s elements have the same type, we show that the bind does not change the references and so
we can find all the opposite references from the initial models. The COQ proof considers all the cases of
equality between the names of the model’s elements and the names of o1 and o2 and shows in all cases
the preservation of the opposite references.

So, there is no precondition on the parameters of the bind operator to verify that the isOpposite

property is compositional.

The areComposite property: A reference can be composite and, as a matter of fact, defining a set of
references considered as a whole to be composite, instead of a single one, appears closer to the intended
meaning. In such a case, instances of the target concept belong to a single instance of source concepts.

areComposite(c1 ∈ MMV,R⊆ MME), 〈MV,ME〉 7→
∀ o ∈ Objects⇒ |{m1 ∈ MV | 〈m1,r,〈o : c1〉〉 ∈ ME,r ∈ R}| ≤ 1

The theorem 6 (BindAreCompositeSubsPreserved) shows12 that the set of composite references in
the two models M1 and M2 are also composite in the resulted model from the application of the bind

operator on the two models. This theorem requires also that the bind operator is injective and requires
that the substituted model does not contain an element whose name is o2.

10http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html#Bind2MUP
11http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html#Bind2MIOP
12http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html#Bind2MACP

http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html#Bind2MUP
http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html#Bind2MIOP
http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html#Bind2MACP

10 Correct-by-construction model composition

Theorem 6 (BindAreCompositeSubsPreserved)
∀ 〈MV1,ME1〉 〈MV2,ME2〉 ∈ Model, c ∈ Classes,
R⊂ References, o1 o2 ∈ Objects, c2 c2 ∈ Classes,
c1 = c2 ∧ (∀ c,(o2 : c) /∈ MV1)∧ Injectif bind
∧ (areComposite c R 〈MV1,ME1〉)∧ (areComposite c R 〈MV2,ME2〉)
→ (areComposite c R (bind (o1 : c1) (o2 : c2) 〈MV1,ME1〉 〈MV2,ME2〉))

PROOF SKETCH: We suppose for any two models 〈MV1,ME1〉 and 〈MV2,ME2〉, for any instance of a class
c in these models, at most one ancestor is linked with a composite reference. We verify that this property
is also satisfied in the model obtained from the bind of any two model’s elements o1 and o2 using these
two models. We verify first like in the previous proofs that o1 is a Hook for the model 〈MV1,ME1〉 and o2
is a Prototype for the model 〈MV2,ME2〉 and that o1 and o2 have the same type otherwise the bind returns
the model M1 and the proof is trivial. In case of o1 is a Hook and o2 is a Prototype and the two model’s
elements have the same type, we show that the bind does not change the types of the model’s elements
and does not increase the number of composite references for any model’s element and this by supposing
like for the lower property proof that the bind is injective and so does not introduce new model’s elements
duplications. The COQ proof is long and uses intermediate lemmas to simplify iterations and calculations
of the references and models’ elements (the difficulty is linked to elegant coding of graphs and models
using dependent types). The proof considers also all the cases of equality between the name any instance
of c in the two models and the names of the model’s elements o1 and o2 and shows in all cases that the
limit for the number of composite relation for any model’s element is preserved.

4.2 The bind operator with several variation points

This version is a generalization of the bind operator. It is characterized by a list l of variation and
reference points (bind of two Models with Several Hooks).

Bind2MSH : Model × Model × list (Ob jects × Ob jects) is defined as:

Bind2MSH M1 M2 l = ∀ (o,o′) ∈ l,bind M1 M2 o o′ l

The proofs of properties require the following assumptions: type compatibility between two model’s
elements for each pair of elements in the list, the bind operator to be injective and an additional con-
dition: the same Prototype is not given more than once to ensure the preservation of multiplicities.
The same assumptions/preconditions are necessary to prove the compositional verification of the various
considered properties.

The proofs for this version of the bind operator use the proofs of the bind basic operator in addition
to a standard schema to find the target model and the application conditions. The language of tactics for
the COQ system [9] is used to define the tactics that significantly improved the proofs13.

4.3 The extend operator

Two variations of the extend operator are implemented. The first version makes the hypothesis in addi-
tion to the extend operator definition that the two models are disjoint to define the predicate extensibleC.

The second version does not make any assumptions about the intersection of models. In this latest
version, models can contain common elements as they may result from the extraction of components

13http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html

http://coq4mde.enseeiht.fr/FormalMDE/Bind2M_Verif.html

M. Kezadri, M. Pantel, B. Combemale & X. Thirioux 11

from the same model. We do not present the proofs of the MOF properties for these operators in this
paper, but the proofs are finalized and the interested reader can refer to the special page14.

This work presents the preconditions allowing for each operator (ISC basic operators) to generate
consistent metamodels. Detecting and resolving the conflicts require the compositional application of
several composition operators (each operator is proved preserving the properties) and contributes for the
satisfaction of the next applied operator preconditions. For example, this can be used to find a sensible
unification of the constraints contributed by the two model’s fragments being composed.

5 Related work

In the first version of the ISC composition method [1], the notion of conformance is restricted to the
instanceO f property defined in [14]. A composition operator is safe if it preserves the consistence
(Theorem 5.1 (Sound Composition retains Consistency) in [1]). The first version of ISC was defined on
fragments of Java code, the extension operator guarantees by definition that it will not change the code
of a fragment box, although it can change its semantics. The semantics is preserved if the added code
to the variation point is independent of the code of the fragment box (Theorem 5.2 (Sound Composition
with Extension Composers) in [1]). We proved that the semantics is preserved if the models are disjoint
(Section 4.3). Moreover, we extended this work by offering the preconditions that enable to preserve the
semantics and all the formal proofs in the COQ proof assistant.

In the last version of ISC [13] implemented in the REUSEWARE framework as an Eclipse plugin
and developed in parallel with our work, the typing property is ensured in relation with some properties
of the MOF metamodel using the notion of compatibility between the variation and reference points.
But and as presented in the motivating example of this paper, this version does not take into account
all the semantics properties of the MOF metamodel and inconsistent metamodels can be generated by
composition. We presented then the theorems proving the preservations of some of the MOF semantics
properties and the preconditions for the verification.

Our approach is original compared to the work of Aßman [1], we provide in advance the precondi-
tions which ensure that the result of applying an operator is valid (typing and semantics properties). We
do not need to check for each application that the result is valid, but we know the preconditions that must
be met and if our conditions are satisfied, we can ensure that the result of the composition is consistent.
The expected direct consequences for our work are: the use of COQ4MDE to prove the correction of the
ISC method itself and the composition methods in general by introducing and proving the preconditions
ensuring the properties preservation.

This work is also closely related to all work about the formalization of model driven engineering,
we present first in what follows some approaches based on shallow encoding and then compare them
to our formalization. We present finally briefly a deep encoding for the MDE concepts associated with a
highlight for the differences with our encoding.

MoMENT (MOdel manageMENT) [4] is an algebraic model management framework that provides
a set of generic operators to manipulate models. In the MoMENT framework, the metamodels are rep-
resented as algebraic specifications and the operators are defined independently of the metamodel using
the MAUDE language [8]. To be used, the operators must be specified in a module called signature that
specifies the constructs of the metamodel. The approach was implemented in a tool15 that gives also an
automatic translation from an EMF metamodel to a signature model.

14http://coq4mde.enseeiht.fr/FormalMDE/Extend_Verif.html
15 http://moment.dsic.upv.es/

http://coq4mde.enseeiht.fr/FormalMDE/Extend_Verif.html
http://moment.dsic.upv.es/

12 Correct-by-construction model composition

A. Vallecillo et al. have designed and implemented a different embedding of metamodels, models
([24]) and model transformations ([26]) using MAUDE. This embedding relies on the object rewriting
semantics in order to implement model transformations.

I. Poernomo has proposed an encoding of metamodels and models using type theory ([21]) in order
to allow correct by construction development of model transformation using proof-assistants like COQ

([22]). Some simple experiments have been conducted using COQ mainly on tree-shaped models ([23])
using inductive types. General graph model structure can be encoded using co-inductive types. How-
ever, as shown in [20] by C. Picard and R. Matthes, the encoding is quite complex as COQ enforces
structural constraints when combining inductive and co-inductive types that forbid the use of the most
natural encodings proposed by Poernomo et al. M. Giorgino et al. rely in [10] on a spanning tree of the
graph combined with additional links to overcome that constraint using the ISABELLE proof-assistant.
This allows to develop a model transformation relying on slightly adapted inductive proofs and then
extract classical imperative implementations.

The HOL-OCL system [5] [6] is an environment for interactive modelling with UML and OCL that can
be used for example to prove class invariants.

These embeddings are all shallow: they rely on sophisticated similar data structure to represent
model elements and metamodels (e.g. COQ (co-)inductive data types for model elements and object and
(co-)inductive types for metamodel elements).

The work described in this paper is a deep embedding, each concept from models and metamod-
els was encoded in [25] using elementary constructs instead of relying on similar elements in MAUDE,
COQ or ISABELLE. The purpose of this contribution is not to implement model transformation using
correct-by-construction tools but to give a kind of denotational semantics for model-driven engineering
concepts that should provide a deeper understanding and allow the formal validation of the various im-
plemented technologies. Other work aiming to define a semantics for a modelling language by explicitly
and denotationally define the kind of systems the language describes and to focus on the variations and
variability in the semantics [7] [17]. Compared to the last work, we are interested in a complete and
unique formalisation of the conformity to metamodels, of course this property must be considered in
the more general consistency relation and we are focused mainly in the proof of the preservation of this
conformity relation by the ISC composition operators.

Another formalisation in COQ of the MDE concepts by F.Barbier et al is accessible16 [2], this repre-
sentation is attached to the proof of the properties shown in [15] (on instantiation relations and model
transformations). The last formalization differs from ours by a detailed representation of the different
components of models and metamodels based on the MOF concepts. The COQ4MDE formalisation has
the advantage to be more generic and minimum through the use of modules for the representation of
these concepts and its support for a large variety of properties describing the conformity by a predicate
integrated to the metamodel type.

6 Conclusion

We have addressed the problem of compositional verification for models relying on the generic compo-
sition method ISC and the REUSEWARE framework. We first proposed in [14] a formalization for the
ISC composition method and the verification of type safety for these operators. Then, we presented in
this paper the verification of generic semantics properties in relation with the MOF metametamodel.

16http://web.univ-pau.fr/~barbier/Coq/

http://web.univ-pau.fr/~barbier/Coq/

M. Kezadri, M. Pantel, B. Combemale & X. Thirioux 13

This integration enables to extract executable correct by construction composition operators. The
termination of the extracted operators is ensured by the COQ definition. The typing property and a set
of semantics properties in relation with the MOF metametamodel are proved preserved directly or by
the composition operators by introducing some preconditions on the parameters of the composition op-
erators. The application is not limited to a specific language, but can be extended to all models and
modeling languages defined by metamodels. From the ISC composition method basic operators (bind
and extend), more complex operators were built. The complex operators allow more complex transfor-
mations such as linking several variation points at the same time.

This proposal is a required step in the formalization of compositional verification techniques. The
next step of our work is to formalize other composition operators and to take into account others static
constraints such as OCL constraints [19] and more dynamic properties such as the deadlock freedom
proposed in the BIP framework [3]. The expected result of our work is to define a correct by construction
framework for combining several composition techniques.

References

[1] U. Aßmann. Invasive software composition. Springer, 2003.

[2] F. Barbier, P. Castéran, E. Cariou, and O. Le Goaer. Adaptive Software based on Correct-by-Construction
Metamodels. In B. C. P. G.-B. O. S. M. V. Garcia Diaz, J.M. Cueva Lovelle, editor, Progressions and
Innovations in Model-Driven Software Engineering, Advances in Systems Analysis, Software Engineering,
and High Performance Computing (ASASEHPC), pages 308–325. IGI Global, July 2013.

[3] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components in BIP. In Software
Engineering and Formal Methods, 2006. SEFM 2006. Fourth IEEE International Conference on, pages 3–
12. IEEE, 2006.

[4] A. Boronat and J. Meseguer. An algebraic semantics for MOF. Formal Aspects of Computing, 22(3-4):269–
296, 2010.

[5] A. D. Brucker and B. Wolff. A proposal for a formal ocl semantics in isabelle/hol. In Theorem Proving in
Higher Order Logics, pages 99–114. Springer, 2002.

[6] A. D. Brucker and B. Wolff. Hol-ocl: a formal proof environment for uml/ocl. In Fundamental Approaches
to Software Engineering, pages 97–100. Springer, 2008.

[7] M. V. Cengarle, H. Grönniger, B. Rumpe, and M. Schindler. System model semantics of class diagrams.
Technische Universitat Braunschweig, 2008.

[8] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. Quesada. Maude: specification
and programming in rewriting logic. Theoretical Computer Science, 285(2):187–243, 2002.

[9] D. Delahaye. A tactic language for the system Coq. In Logic for Programming and Automated Reasoning,
pages 377–440. Springer, 2000.

[10] M. Giorgino, M. Strecker, R. Matthes, and M. Pantel. Verification of the Schorr-Waite algorithm–from trees
to graphs. In Logic-Based Program Synthesis and Transformation, pages 67–83. Springer, 2011.

[11] F. Heidenreich, J. Henriksson, J. Johannes, and S. Zschaler. On Language-Independent Model Modular-
isation. In S. Katz, H. Ossher, R. France, and J.-M. Jézéquel, editors, Transactions on Aspect-Oriented
Software Development VI, volume 5560 of Lecture Notes in Computer Science, pages 39–82. Springer Berlin
Heidelberg, 2009.

[12] J. Henriksson, F. Heidenreich, J. Johannes, S. Zschaler, and U. Aßmann. Extending grammars and metamod-
els for reuse: the Reuseware approach. IET software, 2(3):165–184, 2008.

[13] J. Johannes. Component-based model-driven software development. PhD thesis, Dresden University of
Technology, 2010.

14 Correct-by-construction model composition

[14] M. Kezadri, B. Combemale, M. Pantel, X. Thirioux, et al. A proof assistant based formalization of MDE
components. In 8th International Symposium on Formal Aspects of Component Software (FACS 2011), 2011.

[15] T. Kühne. Matters of (meta-) modeling. Software & Systems Modeling, 5(4):369–385, 2006.
[16] L. Lamport. How to write a proof. The American mathematical monthly, 102(7):600–608, 1995.
[17] S. Maoz, J. O. Ringert, and B. Rumpe. Semantically configurable consistency analysis for class and object

diagrams. In Model Driven Engineering Languages and Systems, pages 153–167. Springer, 2011.
[18] OMG. OMG Meta Object Facility (MOF) Core Specification (Version 2.4.1). Available on:

http://www.omg.org/spec/MOF/2.4.1, 2.4.1, 2011.
[19] OMG. OMG Object Constraint Language (OCL), Version 2.3.1, January 2012.
[20] C. Picard and R. Matthes. Coinductive graph representation : the problem of embedded lists. Electronic

Communications of the EASST, Special issue Graph Computation Models, GCM’10, 2011.
[21] I. Poernomo. The meta-object facility typed. In SAC, pages 1845–1849, 2006.
[22] I. Poernomo. Proofs-as-model-transformations. In ICMT, pages 214–228, 2008.
[23] I. Poernomo and J. Terrell. Correct-by-construction model transformations from partially ordered specifica-

tions in Coq. In ICFEM, pages 56–73, 2010.
[24] J. R. Romero, J. E. Rivera, F. Durán, and A. Vallecillo. Formal and tool support for Model Driven Engineering

with Maude. Journal of Object Technology, 6(9):187–207, 2007.
[25] X. Thirioux, B. Combemale, X. Crégut, and P. Garoche. A Framework to Formalise the MDE Foundations.

In R. Paige and J. Bézivin, editors, International Workshop on Towers of Models (TOWERS), pages 14–30,
Zurich, June 2007.

[26] J. Troya and A. Vallecillo. Towards a rewriting logic semantics for ATL. In ICMT, pages 230–244, 2010.

A A part from the ValidBind theorem proof
This appendix presents the mathematical proof for the first theorem presented in the Section 4. The theo-
rem ValidBind proves the preservation of the instanceO f property by the bind operator. The Lamport’s
method [16] is used to write this proof.

Theorem 7 (ValidBind)
InstanceO f (M1,MM) ∧ InstanceO f (M2,MM)→ InstanceO f ((bind o1 o2 M1 M2),MM)

ASSUME: M1 the Model〈MV,ME〉
M2 the Model〈MV1,ME1〉
MM the MetaModel〈MMV,MME,con f ormsTo〉
H: InstanceO f (〈MV,ME〉,〈MMV,MME,con f ormsTo〉).
HM2: InstanceO f (〈MV1,ME1〉,〈MMV,MME,con f ormsTo〉).

PROVE: InstanceO f ((bind o1 o2 〈MV,ME〉 〈MV1,ME1〉),〈MMV,MME,con f ormsTo〉)
PROOF SKETCH: We suppose that the two models M1 and M2 are instance of the metamodel MM and
we prove that the model obtained by applying the bind operator on the two models using two model’s
elements o1 and o2 is also instance of the metamodel MM. We verify first that o1 is a Hook for the model
M1 and o2 is a Prototype for the model M2 and that o1 and o2 have the same types otherwise the bind
returns the model M1 and the proof is trivial. In case of o1 is a Hook and o2 is a Prototype and the two
model’s elements have the same type (the case detailed below), we show that the bind does not change
the types of the vertices and edges and so preserves the type safety.
PROOF:
〈1〉1. After introducing the definitions of instanceO f and the bind operator, the hypothesis H becomes:

H: (∀〈o,c〉,〈o,c〉 ∈ MV→ c ∈ MMV)
∧ (∀〈〈o,c〉,r,〈o′,c′〉〉,〈〈o,c〉,r,〈o′,c′〉〉 ∈ ME→ 〈c,r,c′〉 ∈ MME).

M. Kezadri, M. Pantel, B. Combemale & X. Thirioux 15

The current goal is transformed:
(∀〈o,c〉,〈o,c〉 ∈ (V.image mapv (〈MV,ME〉) g)→ c ∈ MMV)
∧ (∀〈〈o,c〉,r,〈o′,c′〉〉,〈〈o,c〉,r,〈o′,c′〉〉 ∈ (E.image mapv mapa (〈MV,ME〉) g)
→ 〈c,r,c′〉 ∈ MME).

〈1〉2. The hypothesis H is divided into two hypotheses:
H0: ∀〈o,c〉,〈o,c〉 ∈ MV→ c ∈ MMV .
H1: ∀〈〈o,c〉,r,〈o′,c′〉〉,〈〈o,c〉,r,〈o′,c′〉〉 ∈ ME→ 〈c,r,c′〉 ∈ MME .
The current goal is divided into two sub-goals:
1. 〈o,c〉 ∈ (V.image mapv (〈MV,ME〉) g)→ c ∈ MMV
2. ∀〈〈o,c〉,r,〈o′,c′〉〉,〈〈o,c〉,r,〈o′,c′〉〉 ∈ (E.image mapv mapa (〈MV,ME〉) g)
→ 〈c,r,c′〉 ∈ MME

〈2〉1. We begin by proving the first subgoal that corresponds to the left side of the conjunction:
ASSUME: H2: 〈o,c〉 ∈ (V.image mapv (〈MV,ME〉) g) .
PROVE: (c ∈ MMV)
PROOF:
〈3〉1. By generalizing the lemma 1 using H2, we get a new hypothesis: H4: ∃(o′,c′) ∈MV |

mapv (o′,c′) = (o,c).
〈3〉2. We introduce the definition of mapv, we can conclude that c′ = c

then we have as hypothesis: H5 : (o′,c) ∈MV .
〈3〉3. By applying H0 with as parameter (o′,c) and H5.
〈3〉4. Q.E.D.

〈2〉2. We now prove the second part of the goal:
∀〈〈o,c〉,r,〈o′,c′〉〉,〈〈o,c〉,r,〈o′,c′〉〉 ∈ (E.image mapv mapa (〈MV,ME〉) g)
→ 〈c,r,c′〉 ∈ MME

ASSUME: Having as an additional hypothesis to H0 and H1, the hypothesis H2: ∀〈〈o,c〉,r,〈o′,c′〉〉,
〈〈o,c〉,r,〈o′,c′〉〉 ∈ (E.image mapv mapa (〈MV,ME〉) g)

PROVE: This sub-goal can be resolved by proving: 〈c,r,c′〉 ∈ MME
PROOF:
〈3〉1. Here, we generalize the lemma 2 using the hypothesis H2, we get a new hypothesis:

H4: ∃〈〈o1,c1〉,r1,〈o′1,c′1〉〉,
〈〈o1,c1〉,r1,〈o′1,c′1〉〉 ∈ ME | mape 〈〈o1,c1〉,r1,〈o′1,c′1〉〉= 〈〈o,c〉,r,〈o′,c′〉〉.

〈3〉2. We introduce the definition of mape, we can conclude that:
c1 = c, c′1 = c′ et r1 = r,
then we have as hypothesis: H5 : 〈〈o1,c〉,r,〈o′1,c′〉〉 ∈ ME.

〈3〉3. By applying H0 with as parameter 〈〈o1,c〉,r,〈o′1,c′〉〉 and H5.
〈3〉4. Q.E.D.

Lemmas used in this proof are:

Lemma 1 (V.imageElim)
∀ mapv, mapa, 〈MV,ME〉 ∈Model,v ∈ (image 〈MV,ME〉)→∃w ∈MV ∧mapv w = v.

Lemma 2 (E.imageElim)
∀ mapv, mapa, 〈MV,ME〉 ∈Model,e ∈ (image 〈MV,ME〉)→∃w ∈ ME∧mape w = e.

The proofs of these two lemmas are constructed by induction on the structure of the graph and involve
other theorems that are not presented here but are available with our COQ code.

	Introduction
	Coq4MDE
	An example of inconsistent metamodel generated by ReuseWare
	The verifications
	The verification of some MOF properties
	The bind operator with several variation points
	The extend operator

	Related work
	Conclusion
	A part from the ValidBind theorem proof

