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Estimating the execution time of software components is often mandatory when evaluating the non-
functional properties of software-intensive systems. This particularly holds for real-time embedded
systems, e.g., in the context of industrial automation. In practice it is however very hard to obtain
reliable execution time estimates which are accurate, but not overly pessimistic with respect to the
typical behavior of the software.

This article proposes two new concepts to ease the use of execution time analysis for industrial
control applications: (1) a method based on recurring occurrences of code sequences for automati-
cally creating a timing model of a given processor and (2) an interactive way to integrate execution
time analysis into the development environment, thus making timing analysis results easily accessi-
ble for software developers. The proposed methods are validated by an industrial case study, which
shows that a significant amount of code reuse is present in a set of representative industrial control
applications.

1 Introduction

Calculating the execution time for a given piece of code on a modern processor is a very difficult problem.
In most cases, an accurate solution is impossible to find because it relates to the halting problem which
is undecidable. In real-time systems, however, calculating the longest time a piece of code might take
to execute (Worst-Case Execution time, WCET) is necessary to verify that all real-time requirements are
met. To obtain an estimate for the WCET despite its general undecidability, approximation techniques
must be used. There are two main approaches to approximate the WCET of a software component:
Testing or in-situation profiling of a piece of code can be used to measure the execution time of diverse
executions. The WCET of the respective code can then be estimated from these measurements through
heuristics. Alternatively, static code analysis techniques can be used to calculate the WCET using a
model of the hardware.

The first approach requires that sufficient code coverage can be achieved during the measurements
and that the worst-case execution time for every program statement has been observed. In practice,
these requirements cannot always be fulfilled and therefore the WCET might be under-approximated.
The second approach, static WCET analysis, requires the manual development of a hardware model
for the target processor, which estimates the execution time based on formal methods. This is a long
and costly process, as it requires the efforts of highly specialized software developers for multiple person
months. The abstraction underlying the model approximates the execution time in a conservative fashion,
thereby leading to an over-approximation of the actual WCET. On the positive side, the resulting WCET
estimate can be safely applied in systems with hard real-time requirements, as it is guaranteed to be an
upper bound for every possible execution time of the program.

Besides the manual development of the timing model for the hardware, the integration of the ex-
ecution time estimates into the development process of software with real-time constraints is another
challenge. The time a piece of software requires to execute on a specific processor can be expressed
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with one or more of the following three values: best-case execution time (BCET), worst-case execution
time (WCET) and average-case execution time (ACET). Existing static analysis tools only approximate
the best-case and worst-case execution time, usually by determining an upper or lower bound for the
possible execution times of a program. As the interaction and interdependence between program parts
is only approximated, the resulting estimates often contain execution paths through the program which
are infeasible in practice. The abstraction underlying these estimates can both hide the semantics of
the programs and the execution time estimates can deviate significantly from the average execution time
observable during measurements.

The problem with determining only an upper and lower bound for the execution time is that this
information is of little use for software developers of soft real-time or non-real-time systems. For this
usage scenario, the average-case execution time is more relevant. Today, a large number of program
runs has to be observed and measured in order to determine an accurate average-case estimate or a good
approximation of the execution time distribution from measurements. Such average-case execution time
estimates can only be determined if hardware with measurement or profiling capabilities is available dur-
ing software development. There is however no established method and no established tool for reasoning
about average-case execution time without observing actual program executions.

This paper proposes two new concepts to facilitate the use of execution time analysis during software
development for real-time applications. The techniques were originally developed for industrial control
applications, but are equally applicable in other domains with (soft) real-time requirements. Section 2
introduces related work on worst-case execution time analysis. Section 3 of this paper proposes a method
to automatically create a timing model for a given processor based on the repeated occurrence of code
patterns resulting from model-based code generation. In Section 4, an interactive way to integrate ex-
ecution time analysis into the development environment is described, thereby improving the interaction
between timing analysis tools and software developers. In Section 5, preliminary results validating the
applicability of the proposed approach are presented. Finally, Section 6 summarizes the paper and gives
an outlook.

2 State of the Art in Execution Time Analysis

As mentioned in the previous section, execution time estimation techniques can be classified according to
the way the estimates are determined. Static techniques use a structural analysis of a piece of software and
an analytical model of the underlying hardware to determine execution time estimates without executing
the software. On the other hand, dynamic techniques require executing the program of interest in order
to estimate the execution time of a program. Furthermore, some dynamic estimation techniques also use
a (static) structural analysis of a program when estimating its execution time. Both types of techniques
are explained in detail in the following paragraphs.

2.1 Static Timing Analysis

Static timing analysis techniques estimate the execution time of a program without actually executing
any code. They are mainly used to determine the WCET of a program, meaning a conservative estimate
or upper bound for the execution time of a program. Most existing solutions are based on static program
analysis techniques to model the execution of a piece of software on a given target processor [14]. They
can be roughly decomposed into the following three steps (see Figure 1 to Figure 4):
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Figure 1: Example of code

J :=101;
I :=1;

I <= 100

ARR[I] = 70

J := I;
ARR[I] := 1;

EXIT;

ARR[I] := 1;
I := I + 2;

true

true

...

false

false

Figure 2: Extracted control flow

1. Control flow analysis decomposes the structure of the program into atomic units for the subsequent
analysis steps. The resulting program representation is usually the control flow graph (CFG) of
the program, which consist of basic blocks. A basic block is a maximal sequence of program
statements with only one point of entry and exit. For the example in Figure 1, the resulting CFG
is shown in Figure 2.

2. Micro-architectural analysis determines the execution time for the atomic units of a program using
the result of the control flow analysis. In most cases this analysis is performed using an abstract
model of the target processor. This model can be based on abstract interpretation [13] or symbolic
execution [9]. In both cases the model focuses on the execution time for sequences of machine
instructions and can neglect details of the computations these instructions would perform on the
real hardware. This abstraction is necessary to make the estimations computationally feasible, but
it can also be the source of imprecision. The reason for this is the way the micro-architectural
analysis deals with information about the system state which is not available due to abstraction:
whenever the analysis cannot prove that certain effects which impact the execution time, e.g., cache
misses, will never occur at a certain program point, it will assume the system state leading to the
longest execution time. Depending on how much abstraction is necessary to cope with complexity
of the internal state of the processor, this can entail a large number of pessimistic assumptions
and thus a large overestimation of the WCET. An example for the outcome of this analysis step is
shown in Figure 3 by annotating execution times to the CFG from Figure 2. Time units are omitted
for this example, but most existing tools use CPU clock cycles.

3. Global bound calculation uses the results of the two previous steps to obtain an estimate for the
total execution time of a program. The prevalent technique for doing this is implicit path enumera-
tion [7]. This approach translates the structural constraints and local execution time estimates into
an integer linear programming (ILP) problem, which is then solved using standard ILP solvers. If
a program contains loops, the maximal number of times a loop may execute must be determined
by a previous analysis or provided by the user. This is necessary for the ILP solver to find a worst-
case path. The loop in the example from Figure 1 can be executed at most 50 times. Thus, the
edge leaving the basic block checking the loop condition can be taken at most 50 times on any
execution path of the program. With this structural information and the cost associated with each
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Figure 3: Result of Micro-architectural Analysis
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Figure 4: Result of Global Bound Calculation

basic block, the global bound analysis will identify the worst-case path, as shown using dotted
lines in Figure 4. This path assumes that the maximal number of loop iterations is executed and
that the conditional statement in line 3 of Figure 1, which aborts the loop, will be executed in the
50th iteration of the loop.

Existing static timing analysis tools are able to estimate the best-case or worst-case execution time of
software components. Estimating an average-case execution time is usually not supported. Moreover, the
challenge with static timing analysis is the creation of the required abstract processor models. Currently,
these models are developed manually by the tool vendors, which is a tedious, costly and error-prone
process. For simple processor architectures, static WCET analysis can estimate execution times with an
error rate of less than 10%. However, this high level of accuracy can only be achieved if the program
path predicted by the WCET analysis roughly matches the execution path observed during the measure-
ment runs [16]. For simple processor architectures with simple pipelines and without caches, the third
step, global bound calculation, is therefore the most likely phase to introduce an overestimation. On the
other hand, for processors with multi-level caches and multiple cores, the micro-architectural analysis
can also introduce a lot of pessimism to the execution time estimates as internal state of the processor
must be approximated conservatively. Consequently, the obtainable accuracy of the execution time esti-
mates reported by static WCET analysis tools is likely to show even higher error rates for more complex
processor architectures.

2.2 Dynamic Timing Analysis

With dynamic timing analysis, the execution time of software is measured directly on the hardware. This
means that target hardware must be available. The level of granularity at which these measurements can
be performed varies for different processor architectures. While most current processor architectures sup-
port hardware performance counters, these counters can only provide a limited level of accuracy and care
must be taken in order to obtain accurate measurements [15]. Moreover, it might be necessary to mod-
ify the observed program by adding instrumentation code for manipulating the hardware performance
counters of the processor. Modifying the program code can obviously impact the measurements. To
perform measurements with an increased level of accuracy, e.g., up to the level of individual instruction,
additional tools like logic analyzers or processors with dedicated tracing hardware support are required.
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Probabilistic and statistical timing analyses [2] are variants of dynamic approaches for execution time
estimation. Probabilistic timing analysis tries to capture the variance of execution times by providing a
probability distribution for the possible execution times of a program. This distribution is calculated by
analyzing the execution time of individual program parts from a large set of measurements. The complete
measurement process can take several days of observing the system in operation and produce gigabytes
of data. Using this data, the execution time distributions of smaller program parts are incrementally
combined to get the distribution for the complete program. The limitation of this combination step is
that the execution time of individual program parts is assumed to be independent, which is often not
the case in practice. More recent approaches for dynamic timing analysis apply statistical methods, like
extreme value theory, to reason about the worst-case execution of a program without ever observing
it [8]. However, this is still an area of active research without a generally accepted solution.

2.3 Integration into the Development Process

In some application domains, e.g, avionics or automotive, worst-case execution time analysis is standard
practice during software development to verify that real-time requirements are met. Special software
development tools and languages used in the automation domain often prevent the use of tools from
other domains. Additionally, the real-time requirements can be slightly different. On the one hand,
there are hard real-time boundaries for the execution time of control applications which are defined by
their cyclic activation. On the other hand, it is acceptable that these deadlines are missed sometimes as
long as this does not happen repeatedly. This can happen if an isolated event, which is not part of the
typical execution path, requires some special handling in the code. Examples for this are the execution of
initialization code during startup or the creation of status messages. Since the system design can handle
this application behavior, missing an execution deadline for other reasons, like an increased execution
time due to cache misses, is less critical than in other application domains which require guaranteed
upper bounds for the execution time of software components. However, WCET estimates reported by
existing analysis tools only consider the theoretical worst-case execution path through a program, which
is executed very rarely (or not at all) for typical control applications. If the WCET is used to characterize
the CPU load of a control device, this leads to a significant waste of computing resources.

A static analysis technique for average-case execution time would be a viable alternative. Finding
the typical execution path through a program requires execution of the program or additional manually
provided information about the expected behavior of the program. The latter is currently not done in
any solution. Furthermore, the potential variation between the best-, average-, and worst-case execution
times is an important piece of information which should be made available as a result of an execution
time analysis. Currently, there is no system or tool which can reason about this variation in a static way,
meaning a way which does not require the execution of the program of interest.

3 New Approach: Timing Model Generation for Control Applications

A major hurdle for estimating the execution time of cyclic real-time control applications is that, in the
current development process, these estimates can only be made as soon as an industrial control device
(controller) is available. Static timing analysis tools are currently not available for all the processor
variants. Consequently, the CPU load on the device can only be determined after the control applications
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have been developed and deployed to hardware. The load is defined as

load =
application execution time

periodic activation

The periodic activation depends on the production process being regulated by the control logic, meaning
how often the application has to check inputs and adjust adjust. Knowing the expected load early, i.e.,
already during application development is beneficial for two reasons: As there is a direct correlation
between the processing power of a controller and its cost, it is very desirable to choose a hardware
variant which matches the application requirements without being overbuilt. Moreover, with a foreseen
increase of distributed or parallel execution of applications, information about the execution time of
individual program parts helps in tailoring the control application to its execution environment, e.g.,
through efficient partitioning of an application on a controller with a multi-core processor. To achieve
this, execution time estimation must be an integral part of the software development process.

3.1 Timing Model Generation Flow

The intention of the proposed approach is to replace the currently used abstract, but complete models of
CPU timing behavior with a model which only covers those instruction sequences which are actually used
by programs in the targeted domain. This approach can significantly reduce the cost for developing such
models and also makes them applicable in domains with less strict requirements. In contrast to similar
work presented in [1], the proposed technique is not intended to generate a general purpose timing model
for arbitrary applications. A similar idea for reusing WCET estimates has already been presented in [3],
but the approach presented in this work aims at a reuse at a more fine-grained level.

To accurately estimate the best-, average- and worst-case execution time of a software component
without requiring its execution to be observed, a timing model for the processor executing the software
must be available. The execution time of a sequence of machine instructions greatly depends on how
these instructions move through the pipeline and the functional units of the processor and how their
execution can be interleaved. The execution time of individual instructions, e.g., from the processor
manual or from repeatedly measuring the execution of the same instruction type, can only serve as a
starting point for estimating the execution time of a complete program. On the other hand, the way
machine code for control application is generated, e.g, when using ABB’s family of Control Builder
tools or similar model-based tools allows the reasonable assumption that certain sequences or patterns of
instructions occur repeatedly. Thus, in contrast to known static analysis methods, a general model of the
processor pipeline might not be needed to obtain reasonably accurate performance estimates for control
applications.

This insight motivates using their domain-specific properties to characterize the execution time of
control applications based on recurring code sequences. The basic idea is to

1. automatically extract recurring code sequences from a set of training applications and

2. to use automatic test data generation techniques to determine their on-target execution time.

Thereby, a timing model for the CPUs used in industrial control devices can be generated with acceptable
effort. Still, this model provides sufficient timing accuracy. The timing model, i.e., the contained timing
information about recurring code sequences, then is used to determine the execution time of control
applications with a similar structure. Moreover, the model is also applicable to applications that are
created using the same set of tools. This approach is thus an alternative to the current practice of manually
developing timing models, e.g., as used in commercial tools for static timing analysis.
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Figure 5: Timing Model Construction

The proposed timing model generation work flow is shown in Figure 5. An initial timing model of
a CPU is constructed by considering single instructions only in step 1. This initial model should at least
contain best-case and an worst-case execution time estimates for every instruction type of the CPU for
the target controller. This information can be extracted from the CPU data sheet or by using synthetic
benchmarks to measure the execution time of a single instruction type. This step has to be repeated
for every new CPU variant used in an industrial controller. The resulting instruction-level estimates
could already be used to automatically determine coarse-grained performance estimates for every control
application as long as the occurrence of individual machine instructions can be counted.

Subsequent to the creation of the baseline model, which only considers individual instructions, data
to create the timing model of the CPU is created using a set of control applications to train the model, as
shown by step 2 of Figure 5. This refinement is done by extending the timing model to longer sequences
of machine instructions. The training applications are decomposed into smaller code pieces which are
searched for recurring code sequences. For these recurring sequences, more precise estimates are ob-
tained by performing detailed measurements of the respective program parts. To allow for estimating
variations in the execution time of a program, the implementation must be able to track the execution
time triple of each code sequence, meaning the best-case, the average-case and the worst-case execution
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times. Ideally, the model should not only consider the execution time of code sequences in isolation, but
also their interleaving and interdependence. That is, if the execution time of a code sequence A is influ-
enced by the fact that code sequence B is executed in advance, this information is also considered by the
model. After the timing model has been created automatically, standard static analysis techniques can be
used to determine the possible execution of an arbitrary control application. The structure of the control
application has to be decomposed into code sequences for which the timing model can provide execution
time estimates. If no information for longer code sequences is available in the timing model, it might be
necessary to decompose the program up to the level of individual machine instructions. The latter case is
always possible and can make use of the information from the baseline model. Using the timing model
created by the proposed approach, the execution time of newly developed applications can be performed
through a bottom-up accumulation of execution times of recurring code sequences, e.g., based on the
control flow graph of the program. The process of finding recurring code sequences and characterizing
their execution time will be described in the following paragraphs. The model refinement continues until
the predictions of the generated model fulfill the desired timing accuracy (step 3 in Figure 5), which can
be checked by comparing the predictions of the model to end-to-end execution time measurements of the
training applications.

3.2 Finding Recurring Code Sequences

The fundamental requirement for the proposed timing model generation is that recurring code patterns
exist in the application code and that these patterns can be detected automatically. Code clone detection
techniques are a natural choice to detect these patterns in the machine code. However, most code clone
detection techniques work at the source code level, although there are publications dealing specifically
with binary code [12]. The simplest form of searching for recurring code sequences is by looking for
verbatim copies. For source code, this would mean searching for identical character sequences in the
source code, but discarding white space. The binary-level equivalent for this approach would be to
search for sequences in the machine code which are identical down to the last bit.

As two pieces of code with the same origin and identical functionality do not have to be completely
isomorphic, e.g., due to some renaming of variables in the source code or using different registers for
the same machine code operations, code clone detection techniques usually apply different forms of nor-
malization to the analyzed program. For code clone detection at the machine code level, normalization
techniques include discarding the order of instructions, abstracting the opcodes into certain classes, or
translating the arguments of machine code operations into a symbolic form. These normalization tech-
niques are applied to certain code areas, e.g., instruction sequences of a fixed length. The result can
be a vector of attributes, for instance a vector containing number of instructions with a given opcode,
or a hash value of the normalized instruction sequence. This normalized representation can be used to
efficiently compare code areas to detect similar code areas and thus, (potential) code clones.

For the purpose of characterizing the execution time of recurring code sequences there are several
constraints for applying known normalization techniques: The order of machine instructions should not
be discarded as the execution order has a significant impact on execution time. The same holds for
operands of an instruction, but to a lesser extent. To simplify the detection of recurring code sequences,
the detection algorithm focuses on sequences of instruction opcodes only. Thus, an MD5 hash for the
opcodes within basic blocks is computed and used as normalized characterization of the application code.
For a given sequence of machine instructions, including their address, input registers and intermediate
constants, only the opcode of the instruction is used for computing the MD5 digest of the sequence.
Basic blocks can be further decomposed when searching for recurring sequences, but the sequences used
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Figure 6: Basic Block and Window-Based Digest Computation

for clone detection cannot span multiple basic blocks. Therefore each considered sequence can contain
at most one branch instruction.

Different granularities for the computation of digests are illustrated in Figure 6. The machine code
shown was generated by ABB’s engineering tool Compact Control Builder, which is used to develop
control applications. For the most coarse-grained variant on the left side, all instructions of a basic block
are used directly. This means that the value of Digest 1 is computed by applying the MD5 hash function
to the opcode sequence (mflr, stwu, stw, lwz, lwz, lwz, cmpwi, bc). For all other basic blocks, which
are marked with a label in the code, the digest is computed in the same way.

For a more fine-grained characterization, digests can be calculated using a sliding window approach
which splits up the basic blocks in the machine code. To generate instruction sequences from a basic
block, sequences are determined by moving a window of fixed size across the basic block using a fixed
stride. This is illustrated in the right-hand part of Figure 6 using a window size of 4 instructions and a
stride of 2 instructions. For Digest 1, the hash value of the opcode sequence (mflr, stwu, stw, lwz) is
computed. The stride value can only be less than or equal to the window size, because otherwise not all
instructions from the basic block would be included. Choosing the stride value smaller than the window
size makes it more likely to capture recurring sequences. At the end of a basic block, the window size is
pruned if it would otherwise move across the end of the basic block. For the last window of this example,
the window size is pruned and thus Digest 9 is computed only from the single opcode blr.

After the training applications for timing model generation have been partitioned into digests, the di-
gest values can be used to detect recurring code sequences. The underlying assumption is that sequences
with identical digests will have identical execution times. To reduce the measurement effort needed to
characterize the execution time of the recurring sequences, the number of sequences contained in the
timing model should be as small as possible. On the other hand, the model should contain enough in-
struction sequences so it is rarely necessary to fall back to the single instruction baseline model when
characterizing the execution time of a newly developed control application. This trade-off is still under
investigation. Preliminary results on how to detect the recurring code sequences for an accurate and
minimal timing model are presented in section 5.
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3.3 Timing Characterization

Determining the execution time of recurring code sequences poses several challenges. First of all, it
must be possible to measure the execution time of relatively short instruction sequences. On most mod-
ern processor architectures, this is only possible by adding instrumentation code. When characterizing
the execution time of recurring code sequences, there is obviously a trade-off between the effort needed
to perform the measurements and the accuracy of the characterization. In particular the overhead added
to measurements by adding instrumentation code has to be considered. Based on our initial evaluation,
the most suitable framework for implementing this part of our proposed work flow is the Dyninst bi-
nary instrumentation infrastructure [10], as it provides static instrumentation capabilities which do not
add virtualization overhead to the measurements. A prototype tool based on Dyninst is currently being
implemented.

Another challenge for the timing characterization is observing all relevant execution times. This
will be tackled by extensive testing during model generation. One option is to use the existing test
cases for the training applications from which the timing model is generated. As the main purpose of
such test cases is not the generation of a CPU timing model, additional tests will be necessary. It is
planned to apply automatic test case generation techniques. Thus, approaches like random or concolic
testing [5, 11] will be used to generate input data for the measurements in the final implementation of
the proposed approach. The recently introduced concept of micro execution [4] to test small portions of
binary code with arbitrary inputs might also be applicable.

The important difference between the proposed work flow and existing measurement-based timing
analysis tools is that timing measurements have to be performed only once per target processor and not
once per application. The effort for setting up a test environment and measurement facilities will there-
fore only be needed once. The execution time measurements are formalized by applying sophisticated
test case generation techniques. Furthermore, it is not necessary that the user of the resulting timing
model has access to the target hardware to generate timing estimates for a newly developed application.
The second important property is the integration of average-case execution times for the recurring code
sequences into the model. This allows reasoning about the average load of the targeted device without
running the software on the actual hardware. To achieve this, the model must store the best-case, the
average-case and the worst-case execution time for each recurring code sequence.

4 Execution Time Estimation with User Feedback

In order to present the information about the execution time to the developer and to allow a fine-grained
consideration of the program structure in the execution time analysis, a tight integration into the software
development environment is crucial. An approach for integrating WCET estimates into a code editor to
give the software developer feedback about the execution time of a program has been presented in [6].
By contrast, the approach presented in this paper makes the possible variation in the execution time of
a software component explicit and thus enables the developer to make more accurate decisions whether
all real-time requirements of the application can be met under the expected conditions.

After a timing model has been created for a target processor using a set of training applications,
the resulting model can be used to estimate the execution time of newly developed applications. Thus, it
could serve as a replacement for the micro-architectural analysis of existing analysis tool chains described
in section 2.1. However, our approach might still lead to overly pessimistic execution time estimates due
to incorrectly approximated program control flow. Nonetheless, the previously described approach for
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Figure 7: Typical Execution Marked
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Figure 8: Typical Case Execution Time Estimation

an automatic timing model generation overcomes the need for additional measurements and access to
hardware during software development, while the effort for developing a timing model is reduced.

To facilitate the use of the timing model, we propose a 3-valued representation of the potential exe-
cution times. This directly presents the application’s ACET, BCET and WCET to the user. Thereby, the
user is much better informed about the application’s potential behavior already in the development phase
and additionally gets direct feedback on application changes. A mock-up of how this could look like is
shown at the bottom of Figure 7. In addition to giving feedback to the user, the average-case execution
time estimate can be significantly improved by only considering parts of the application which are in-
cluded in a typical execution. Therefore, the user has to provide the required insights about the expected
or typical program path—which often can be done due to the user’s experience and knowledge of the
application. In combination with the previously described ACET estimates for recurring code sequences
and structural program information, a more accurate approximation of the typical case can be achieved.
The reason for this is that execution time outliers are less likely to impact the result of the average-case
estimate. The standard way of simply averaging the executing time of observed program runs to get
an ACET estimate would still include such outliers, but the proposed approach allows excluding such
atypical executions. Finally, the 3-valued representation of the execution times still makes the worst case
explicit to the user and thus, no information is lost compared to a standard WCET analysis.

The example program from section 2.1 will be used to illustrate the application of user feedback in
estimating execution times. If we assume that the programmer of the code shown in Figure 7 knows that
conditional expression in the loop typically evaluates to true immediately, she can mark the respective
code area as being part of the typical execution. This is illustrated in Figure 7 by shading the respective
code area. A similar tagging functionality could be easily added to any code editor. While this is an
artificial example, similar patterns can often be found in control applications, e.g., for initialization code.
By automatically translating this information into constraints for the global bound calculation analysis
step, it can be used to restrict the program paths through the CFG. Thus, the program path determined
by the global analysis for the ACET step no longer considers the worst-case path, but the typical path.
The resulting program path for the example is shown in Figure 8. The edges drawn as dotted lines
and the frequency annotations next to them describe the typical path. Consequently, each of the basic
blocks along this path is executed exactly once. Using this information and the execution time of each
basic block, which is also annotated to the CFG in Figure 8, an ACET of 25 cycles can be derived. The
respective ACET formula is shown in the lower portion of Figure 8. Even if there is only small difference
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between the average-case and the worst-case execution time of the basic blocks, considering information
about the typical program path can still reduce the overestimation of static timing analysis. While existing
WCET analysis tools already support similar path constraints, the underlying timing model is always a
pure worst-case analysis.

The combination of the ACET estimates and the user-provided information about the typical program
path allows for characterizing the typical execution time of programs more accurately than with existing
solutions. Thus, it goes beyond classical BCET and WCET analysis. Since the results of the WCET and
BCET analysis are still represented, the information is still available to the user of the timing analysis.
Adding average-case information allows to additionally reason about the load of a computer system by
considering typical execution paths only. The proposed approach depends, however, on the user’s correct
knowledge on the typical execution path. Thus, we are planning to case-study the quality of user input
and the impact of wrong assumptions, e.g., mistakenly unmarked typical code areas or wrongly marked
code areas, on calculated ACET estimates with real industrial applications and users.

The 3-valued execution time estimation can be applied at different levels of granularity, e.g., complete
applications, components, or individual source code lines. We envision an integration of this represen-
tation into the integrated development environment for the developers of control applications. This is
illustrated in the lower portion of Figure 7. By integrating this representation into the application devel-
opment environment, the contribution of individual program parts is directly presented to the application
developer. Thereby the 3-valued representation makes the possible variation of execution times explicit
to the developer. In addition, program parts with a high contribution to the execution time are highlighted
directly if the 3-valued execution time estimate is represented at the level of basic blocks or individual
code lines. To adapt the 3-valued execution time estimate, the developer can mark program areas as
being not part of a typical execution. This will exclude the respective program parts from the average-
case execution time estimate. Alternatively, the offending program parts can be optimized manually by
the developer and the 3-valued estimate can instantly provide information about the impact of the code
changes on the execution time.

In the context of industrial control applications, code portions which belong to an atypical execution
path can often be identified automatically. The result of a certain firmware function directly relates to
whether the controller is in a typical state or not. For instance in most executions of a control application,
the firmware function which checks whether the device just experienced a warm restart will return false.
Thus, when the respective function is used in a conditional expression, this can be directly translated
into a constraint for the average-case analysis. When performing a worst-case analysis, these constraints
should of course not be used as they might lead to an underestimation of the WCET.

Essentially, marking certain code areas as the typical execution path excludes alternative paths from
the WCET analysis and thus approximates the expected behavior more accurately. Depending on the
application for which the execution time is estimated, the user-provided information could also be used
to tag code areas for other scenario-based analyses. This allows for a more accurate estimation of the
execution time under certain preconditions. The proposed approach could therefore also be extended for
analyzing the execution time of a program under specific operating conditions.

5 Experimental Results

This section presents preliminary results for the proposed timing model generation work flow. The
prototyping was carried out using the machine code output facilities of ABB’s Compact Control Builder
development tool targeting the ABB AC 800M controller family. The basic block and window-based
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Basic Blocks Window=16, Stride=8 Window=8, Stride=4
Project ID Size Recurring

Patterns
Instruction
Coverage

Recurring
Patterns

Instruction
Coverage

Recurring
Patterns

Instruction
Coverage

Project 1 53028 3024 54.13% 5902 82.50% 12634 94.34%
Project 2 545328 14593 65.16% 64058 88.22% 134097 97.55%
Project 3 119546 4309 62.51% 14213 87.35% 29634 97.37%

Table 1: Clone Detection Granularity

hash computation described in Section 3.2 were applied to three real-world Compact Control Builder
projects to evaluate the amount of code sharing across different applications.

Each project contained multiple control applications which shared some code through common li-
braries. However, these libraries are always reused as source code, not as compiled machine code.
Binary-level code sharing was analyzed by first calculating all possible digests for a fixed calculation
technique for two of the three projects. All of the possible digests were stored in a database. Then all
possible digests of the remaining project were computed and compared to the information stored in the
database. The outcome of this experiment is shown in Table 1 for the basic block digest computation and
window-based digest computation using a window size of 8 and 16 instructions. The size of each project
is given in terms of instructions in the machine code after compilation. If certain modules were reused
across different applications in the same project, the respective machine instructions were only counted
once. The detection of recurring code patterns across the different projects could be executed in a few
minutes on a standard laptop computer. Since the analysis tools is a very early prototype, no detailed
performance measurements were conducted.

The number of recurring code sequences was calculated by counting the number of hash digests
a project has in common with the two remaining projects. So the numbers given in each line of the
table show how much recurring code patterns where found in the respective project when the other
projects where used as training data. Besides counting the number of recurring code sequences for the
respective clone detection granularity, the second result column for each variant contains the percentage
of machine instructions covered by these sequences. This value is calculated by dividing the number
of machine instructions within a project which are included in recurring code sequences by the total
number of instructions in the project. The rationale behind this estimation is that it determines the
maximal achievable coverage if all recurring code sequences of the respective granularity would be part
of the timing model.

The instruction coverage is relevant since it is not only an indicator of how much code sharing
between different projects could be detected, but also what amount of code was not covered by any
of the recurring code sequences. For the proposed automatic timing model generation, the number of
recurring code patterns covered by the model should be minimal, while the instruction coverage on the
training applications should be maximized. What can be seen from the results is that although there is a
significant amount of code sharing, even when only considering basic blocks, the amount of sharing is
insufficient to derive an execution time model from basic block reuse.

To further investigate the amount of code sharing inside these projects, further analyses were con-
ducted using a window-based digest computation with a stride parameter of 1. Essentially this means that
all possible combinations for the respective window size which actually occur in the training data where
tested. The intention of this experiment was to investigate whether the number of recurring code patterns
are inversely proportional to the window size or whether the number stabilizes at some point. The results



14 Timing Analysis for Industrial Control

Window=16, Stride=1 Window=8, Stride=1 Window=4, Stride=1
Project ID Recurring

Patterns
Instruction
Coverage

Recurring
Patterns

Instruction
Coverage

Recurring
Patterns

Instruction
Coverage

Project 1 46278 93.27% 50344 98.68% 52678 99.89%
Project 2 503423 97.20% 533533 99.67% 544413 99.99%
Project 3 108878 96.52% 116403 99.55% 119228 99.99%

Table 2: Clone Detection Window Size

for the second experiment are shown in Table 2. Choosing the minimal value for the stride parameter
achieves higher instruction coverage while creating a larger number of recurring code sequences. While
the number of recurring code sequences continues to grow, a window size of eight instructions creates
an almost complete instruction coverage. The optimal window size thus should be in the order of ten
instructions.

What has not been investigated so far is which of the recurring code patterns are actually needed to
create a timing model which can accurately describe the execution time of control applications. With
appropriate heuristics it should be possible to select a small percentage of these recurring code patterns
and still reach a good instruction coverage. Covering a large percentage of the instructions in a control
application is necessary to derive a model with good timing accuracy, but the more instruction sequences
the model contains the more measurements have to be taken to create the model.

6 Conclusion and Future Work

This paper presented techniques for automatically creating a timing model for a given processor and
for the static estimation of average-case software execution times based on user feedback. These con-
cepts were originally developed in the context of industrial control applications, but they likely are also
applicable in other fields of software development. The assumption that control applications contain a
significant amount of recurring code sequences has been verified by initial experiments based on real
industrial applications. The results also show that a certain level of decomposition must be used to de-
rive generic models for software execution times on a given processor, e.g., using basic blocks as the
level of granularity for timing model generation is insufficient for reaching the desired coverage. Thus,
only focusing on direct code reuse, e.g, through software library types which are reused across many
applications, will not be sufficient to generate an accurate timing model. Characterizing instruction se-
quences using a sliding window approach is more appropriate, although it potentially creates a lot of
overlapping code patterns. It should be possible to overcome this issue if the timing model generation
considers instruction coverage when generating sliding windows. Code sequences generated from the
sliding window approach should only be integrated to the model if instruction coverage is improved.

The recurring code sequences, which are the basis of an automatically generated timing model, are
ideally in the order of ten instructions. This fact implies that performance measurements should ideally
be possible at the same level of granularity. Alternatively, the execution time of shorter code sequences
must be extracted from measurements for longer sequences. Since the former is unlikely for a complex
processor design, the latter will be investigated in more detail in future work. We plan to validate the
accuracy of the resulting model in an industrial case study based on our promising initial results.

Another interesting aspect is the relation between the recurring code sequences considered by the
timing model and the provided timing accuracy. Minimizing the number of code sequences necessary to
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achieve a certain level of code coverage on the training applications might not be the optimal solution.
Instead, the impact on timing accuracy should already be considered when selecting recurring instruction
sequences to be part of the timing model. Implementing this in the proposed model generation flow will
also be addressed in future work.
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