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Use case specifications have successfully been used for requirements description. They allow join-
ing, in the same modeling space, the expectations of the stakeholders as well as the needs of the
software engineer and analyst involved in the process. While use cases are not meant to describe a
system’s implementation, by formalizing their description we are able to extract implementation rele-
vant information from them. More specifically, we are interested in identifying requirements patterns
(common requirements with typical implementation solutions) in support for a requirements based
software development approach. In the paper we propose the transformation of Use Case descrip-
tions expressed in a Controlled Natural Language into an ontology expressed in the Web Ontology
Language (OWL). OWL’s query engines can then be used to identify requirements patterns expressed
as queries over the ontology. We describe a tool that we have developed to support the approach and
provide an example of usage.

1 Introduction

Developing software systems according to the stakeholders’ expectations is a well known problem in
the software engineering area. One of software engineering’s major goals is to reflect the stakeholders
concerns in the final solution, in order to provide useful software systems. With traditional approaches
[19], requirements are specified at the beginning of the development process, and those specifications
are used as guides for development. However, there is a gap between user requirements and the software
development process, which might result in the misunderstanding of the stakeholders’ concerns.

Use cases are a popular method for requirements specification which contributes to solve this prob-
lem. They were proposed by Jacobson [12] and later adopted by the Object Management Group (OMG).
A use case model is composed of two parts: a graphical representation that summarizes the user interac-
tions with the software system being described; and the specifications of each individual use case.

Use cases mainly represent user functionalities and, as such, provide knowledge to derive high level
information about the software systems they describe. We aim to extract such information from the
use cases, by means of an automated process. Hence, we present an approach to both formalize the
use case specifications, and extract requirements patterns (which represent common concerns among
several stakeholders) from them. To enable this, use cases must be specified in a Domain Specific
Language (DSL), which takes the form of a Controlled Natural Language (CNL). In order to gain
the reasoning leverage needed for identifying the patterns, we propose to use the inference capabilities
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of an ontology (in this case the Web Ontology Language (OWL)). To achieve this, we developed a
transformation from use cases expressed in the adopted DSL into an OWL ontology.

Our approach aims at several benefits on requirements based software development. First, by pro-
viding a DSL, it aims at allowing stakeholders to take part in the specification process. The DSL is at the
same time formal and computable, yet, it is adequate for users to specify statements with due to being
close to natural language. Second, we aim also at improving the process of going from the requirements’
specification to the final system. The use of a formal DSL will allow us to predict errors and misunder-
standings in requirements earlier in the software development process. The assembling of architectural
patterns [4], inferred from the requirements patterns, will support rapid prototyping of the system. At this
stage, we have implemented a tool for requirements specification in order to explore these possibilities.
The tool supports the specification of user requirements in a textual format, using the defined DSL. It
then transforms the requirements into an OWL ontology, in which we are able to perform queries, and
extract requirement patterns.

In order to illustrate our approach, we present an example of an online Content Management System
(CMS) for software models. We intent to equip it with functionalities requested by the stakeholders as
use case descriptions. We will consider, for instance, the possibility to upload a model.

The remaining of this work is organized as follows. Section 2 introduces related work. In Section 3
we present the proposed approach with an example. We present our tool in Section 4, again using the
example. In Section 5 we discuss the results achieved to date, and leave suggestions for future work.

2 Related work

2.1 Languages for expressing use cases

Although there is no standard way to specify individual use cases, they are typically described in rela-
tively free form textual formats (see, for example, Fowler [8] or Cockburn [5]). One of the advantages
of these textual descriptions of the scenarios composing a use case is that they allow for flexibility in the
specifications. Unfortunately, they make it more difficult to formalize and operationalize the information
in the scenarios. Furthermore, when stakeholders take part in use case specification, they typically use
natural language to describe the scenarios. Such specifications can be ambiguous and lead the develop-
ment team in error.

Hence, approaches that propose analyzing use cases to extract implementation relevant information
(e.g. architectural information) need to formalize languages in which use cases must be specified. Somé
[21] presents an approach for software reengineering in which use cases play a central role as primary
input, using a restricted form of natural language for use cases description. Similarly, Biddle et al.
describe Essential Use Cases (EUC) [3] as an approach to operationalize use case descriptions. By
reducing and restricting the language used in the use case descriptions, the authors were able to perform
object oriented software development without intermediary transformations. The work by Biddle et al.
is further supported with design patterns and composition techniques for EUC [2]. They present the
specification for describing patterns for EUC, as well as a pattern catalog. Executable use cases [13]
are another kind of restricted use cases, with computable capabilities, and with a defined mapping to
Coloured Petri Net (CPN).

Our work takes from the above approaches the need to formally define a language for expressing
use cases. We propose an approach to specify the stakeholders’ requirements in a CNL [20]. The
objective of using a CNL is twofold. First, we want to allow stakeholders to take part in the requirements
specification, providing a language understood by both stakeholders and developers. Second, we want
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to be able to transform use case specifications into other languages supporting the patterns identification
mechanisms we want to achieve. We consider CNL to provide a good compromise between formalism
and computability.

2.2 Web Ontology Language (OWL)

In order to reason about the information present in the use case descriptions, we need some form of
knowledge representation and inference mechanism. Ontologies are a possibility to achieve this. They
provide the means to formally represent knowledge as a set of concepts, in a specific context. We are
particularly interested in OWL [18].

OWL allows us to create domains for information specification, and provides tools to reason about
their knowledge. The World Wide Web Consortium (W3C) specified three levels of formalism for the
OWL language. The first level, OWL Lite, is intended to simplify the specification of OWL ontolo-
gies. The second level, OWL DL, is intended to provide maximum expressiveness, while retaining the
inference capabilities. Finally, the third level, OWL Full, is a more complete language which preservers
compatibility with Resource Description Framework (RDF), but has no reasoner available. Several syn-
taxes are available to write OWL ontologies, as is the case of Manchester1 and Sydney [10].

All OWL ontology elements, and the ontology itself, contain an Uniform Resource Identifier (URI)
which specifies the resource’s location. Such web capability allows us to use and share domain concepts,
among several locations. This not only promotes sharing and reuse of acquired knowledge among sev-
eral projects, but also supports modelling web environments by providing all elements with a specific
location.

The expressiveness of OWL allow us to define requirements ontologies as well as their instances,
and to perform queries over such knowledge. While an ontology corresponds to a set of concepts for a
specific domain, its instance is a set of concrete values, for those concepts. In OWL those concepts are
the classes (which are related between them), such as an Actor. The concrete values for those classes
are the individuals (c.f. instances of the classes), as for instance a user, which might be an instance of
Actor. For OWL, the W3C specifies a set of components2, from which we highlight the following ones,
due to their relevance for our purposes:

• Class - A type (Class) of elements.

• Individual - A class instance.

• ObjectProperty - A relationship between two elements (for instance between two Individuals).

• DataProperty - Data associated with an Individual.

• AnnotationProperty - An annotation associated with an element.

• DataType - A specific kind of data (for instance xsd:string).

Several authors have proposed the use of OWL in support for software engineering. Dietrich and
Elgar present an approach to formally describe design patterns in OWL [7]. They perform a mapping
between design patterns and OWL to enable design patterns’ inference. The Semantic Web Rule Lan-
guage (SWRL) rules provide the pattern inference capabilities. The work reported by Kirasić and Basch
is another example of pattern inference on OWL, resorting to SWRL rules [15]. OWL was also success-
fully used to extract other kind of knowledge, such as rationale informations from textual documents, as

1Specification available at http://www.w3.org/2007/OWL/wiki/ManchesterSyntax, last accessed in 2013-12-11
2Full list of allowed elements in http://www.w3.org/TR/owl2-manchester-syntax/, last accessed in 2013-12-11
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presented by López et al. [17]. Following these works, we intent to use OWL to represent the knowl-
edge present in use case descriptions, and then use its inference capabilities to identify patterns in their
knowledge.

2.3 From CNL to OWL

A number of approaches that map Controlled Natural Languages (CNLs) onto ontologies, and onto OWL
in particular, can be found in the literature. One example is the Rabbit language [11], defined to enhance
communication between domain experts and ontology engineers, and the general purpose Sydney OWL
syntax [10]. Other examples, are the Lite Natural Language, which is tailored for formal mapping
and optimized for computational tasks [1], and Attempto Controller English (ACE), a more expressive
language than OWL into which a mapping for a subset of OWL has been defined [14].

The work reported by Kuhn shows how controlled natural languages are easier to understand than the
OWL standard notations [16]. His work is of special interest, since the author was able to successfully
map an CNL to OWL, in order to improve OWL’s readability [16]. A list of CNL statements is presented
in ACE. Such statements have a respective OWL mapping, which allows mapping controlled english
into declarative OWL statements. This results in statements which need less learning time and are more
accepted by the users.

3 The proposed approach

We propose a framework to extract common requirements’ specifications from use case descriptions, as
depicted in Figure 1. In the figure, the full arrows represent the process flow, while the dashed arrow
represents information flow. The use case allows the use of a restricted natural language, specifically, we
propose the use of a CNL. Without reducing flexibility, the CNL improves the data extraction possibili-
ties.

Figure 1: Overview of the proposed approach.

Our process starts with the input of the use case descriptions (see Figure 1, Requirements). In order
to specify the use cases in a more controlled context, we introduce the Workflow and Entities framework.
Such framework indexes our tool to a specific domain. When specifying the use cases, the authors resort



R. Couto, A.N. Ribeiro & J.C. Campos 5

to the entities in the domain, whose meaning is the same across all of the process. We consider OWL
to be adequate for our purposes for its declarative specifications and reasoning capabilities, compatible
with our DSL and our objectives. From the three OWL’s levels of formalism, we are interested in the
Web Ontology Language description logic subset (OWL-DL), which has powerful inference capabilities
and is supported by several reasoners. Figure 1 (phase OWL) illustrates that we transform the use case
specifications into OWL.

The expressiveness of OWL allow us to define requirements ontologies and to perform queries over
such knowledge. Resorting to the reasoners, we are able to query them, and extract patterns from them.
We propose to extract requirement patterns from the use case specifications, after mapped onto OWL.
The transition b) and phase Architectural Patterns (Figure 1) represent how we expect to extract the
requirements patterns and integrate architectural patterns in the process. We have developed a tool (de-
scribed in Section 4) which supports the ontology creation from use case descriptions, in order to validate
our approach.

The two last steps of the proposed approach, the UML Diagrams and the Executable source code
steps, are future work. They represent the Unified Modeling Language (UML) diagrams (both structural
and behavioral) to extract from the requirements patterns that, when assembled, will lead us to the source
code. The dashed arrow e) represents how the entities and workflow framework provide the additional
informations to achieve executable prototypes (as they contain the platform specific details). We detail
these phases in Section 5.

3.1 The use case description

Typical use case descriptions are known to contain platform details, reflect user interface elements and,
possibly, be ambiguous [3]. In Figure 2 we have an example of a use case specification (which should
be provided by the stakeholders). This is a traditional use case, where the actor inputs and the system
responses to such actions are specified. Figure 2 exemplifies how a user adds a new model to a web
CMS. We will refer to Figure 2 during the remaining of this paper in order to present our approach.

User (Actor) input System (Actor) response
Clicks in the New Model link

Presents form with name, description, scope, language, file and image
Provides the requested fields
Clicks the save button

Validates the name, description, scope, language, file and image
Creates a new model
Lists all the models

Figure 2: The model upload use case.

3.1.1 Possible approaches

The verbosity of traditional use cases makes them hard to use in computational tasks. Due to the natural
language complexity, it is possible to find all kind of details in the use cases, such as platform specific
elements or elaborated text, which make the sentences harder to analyze. It is also possible to express
the same thing in several distinct ways, and that makes it even harder to process the use case textual
descriptions. The use case descriptions tend to provide other details than the required ones, which are
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unnecessary informations for our purposes. An alternative to traditional textual use case specifications
are EUC [6]. They are simplified versions which aim to create more abstract and concise specifications.
In our approach, and as we are interested in creating computable representations, we aim to generate use
case specifications similar to EUC. A way to achieve those specifications, is by guiding the user to create
simple and objective statements in the use case description, mainly composed by the specific scenario
elements.

To specify our simplified use cases descriptions, first we need a definition of a language. An inter-
esting language (ACE) is presented by Fuchs and Schwitter [9]. As discussed in Section 2, Kuhn [16]
presents a study where the author describes how the ACE language can be translated into OWL, and
more interestingly, how ACE improves the readability and understandability of the statements. The ACE
language targets at improving the specification of OWL statements and knowledge scenarios descrip-
tion, and not at use case definition. For that, we consider it unsuitable for our purposes, as we need
a flexible language for use case descriptions. Inspired by ACE, we have defined a DSL specification,
which we have called the Restricted Use-Case Statements (RUS) language. A RUS file contains the
valid statements for the use case description specifications. It defines both the allowed input format, and
the corresponding transformation of that specification to an ontology language.

We consider that in our approach, the RUS inherits from ACE its two major strengths. First it supports
the writing of more natural and easier to understand statements. Second it can be translated into OWL
statements.

The ACE language defines three kinds of tags. Individuals (the <I> tag – cf. OWL entities), types
(the <T> tag – cf. OWL classes) and relationships (the <R> tag – cf. object properties). We added the
<D> tag for data properties, a type of element not covered in ACE.

In Kuhns’ work, a set of translations from ACE directly into “Manchester-Like Language” (MLL)
is specified [16]. While the Manchester syntax is a compact syntax to specify OWL ontologies, the
MLL is a (non standard) restriction of that language. Based in those specifications, we specified the
Manchester language equivalent to Kuhn’s MLL. Since Kuhn has defined a transformation from ACE,
it is then possible to have transformations from ACE to OWL (Manchester language). RUS entries are
descriptions of transformation rules from ACE to Manchester language. Table 1 presents in the first
column the ACE format, in the second column the Manchester-Like Language representation and in the
third column we defined the original Manchester Language statement.

Table 1: Examples of statements in ACE, MLL and OWL.
ACE MLL OWL Manchester
<I1> <R> <I2> <I1> <R> <I2> Individual: <I1> Facts: <R> <I2>

<I1> does not <R> <I2> <I1> not <R> <I1> Individual: <I1> Facts: not <R> <I2>

<I> is a <T> <I> hasType <T> Individual: <I> Types: <T>

3.1.2 The RUS language

The RUS is a flexible template language, which allows developers to specify formats for use case de-
scriptions. Each RUS is composed by two parts, the input format and the target format.

The first part (input format) has two components: the placeholders and the keywords. The place-
holders are words (between “<” and “>”) which mark the locations where the user will input text. That
text will result in data for the ontology. If we want a placeholder to accept multiple values, it should
have the + sign on front of it. The keywords are free text words which help to improve the statements
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readability. This input format can have two or three placeholders depending on the users’ needs, and as
many keywords as required. This first part defines the format in which the user must write the statements.

The second part (the target format) is a set of four comma separated components (4-tuple), corre-
sponding to the final format of the user’s input. The first component is the ontology entity which the use
case will affect. The second component is the placeholder corresponding to to the actual entity (from the
first part of the RUS statement). The third component is the property that will be attributed to the second
component, and the fourth component is its value.

Briefly, the first component identifies how the user should write the requirements in CNL. It enables
the validation of the use case description input, and at the same time the generation of parsing rules. The
second component allows the specification of how the extracted informations (specified according to the
first component) should be mapped into the final ontology.

Listing 1 presents an example of a RUS file that allows the specification of the model upload use
case. From the RUS file, we are able to extract two kinds of information. First, it is possible to extract a
grammar, which produces a parser able to extract individuals, relationships, types and properties from the
user specifications. Second, we are able to extract a set of regular expressions, which allow the runtime
validation of the user requirements’ statements.

1 <I> <R> <I> -> Individual: ,<I>,Facts: ,<R> <I> // action on individual

2 <I> <R> : <I>+ -> Individual: ,<I>,Facts: ,<R> <I>+ // action on several individuals

3 <I> _has <D>->Individual: ,<I>,Facts: ,<D>""^^ xsd:string // individual has a property

Listing 1: Example of RUS file.

3.1.3 RUS example

Consider the entries in Listing 1. The elements between “<” and “>” are the placeholders (where the
user should input text). Words proceeded by an underscore (for instance has in line 3) are mandatory
keywords. The arrow (->) separates the two components.

Regarding the entry in line 1, the first component states that an individual (<I>) is related (<R>) to
another individual (second <I>). The second component, which specifies the target format, is specified
with a 4-tuple of elements, separated by commas: Target Entity Description, Target Entity,
Entity Property and Property Value. In this 4-tuple, the element Target Entity Description

specifies which OWL element is this information related to (in the example, an Individual).
The Target Entity element is the instance element, of the type Target Entity Description.

The element must be a placeholder (<I>, <R>, <D> or <T>, from the first component of the RUS instruc-
tion). In this example, it is an instance of an OWL individual (<I>).

The Entity Property element corresponds to a property of the Target Entity. For an Individual,
it is possible to have properties such as Types and Facts. In the example a Fact is being described. It
specifies where the Property Value element should be added at the target element.

The last element, is the Property Value, which is an Entity property value. It should contain
the placeholders, and may also contain other OWL allowed keywords (for instance not and or).

The presented entry allows us to declare statements identifying that an individual performs an action
on another individual. For example: user clicks newModel. According to the rule, this entry is
translated into: Individual:,user,Facts:,clicks newModel.

This example states that an user (first individual) clicks (relationship) the newModel (second
individual). As specified by the entry, this statement is translated into the following Manchester OWL
statement:
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1 Individual: <http: //url/Req#user>

2 Facts: <http://url/Req#clicks > <http://url/Req#newModel >

It is also possible to specify Restricted Use Case (RUS) statements with a variable number of entries
by appending ’+’ to the statement, as illustrated in the second line of Listing 1. An example of a (simpli-
fied) statement which relates an Individual (<I>) with a set of Individuals (<I>+) is illustrated by:

1 user inserts : name , description

This input states that the user (<I>) provides (<R>) the name and the description (<I>+). This
input is divided into several equivalent statements, as presented next.

1 user inserts name

2 user inserts description

These statements can now be easily mapped into OWL as presented in Listing 2 (see Section 3.4), as
they can be translated to the 4-tuple format (with the entry on the first line, in Listing 1).

1 Individual: <http: //url/Req#user>

2 Facts:

3 <http://url/Req#inserts > <http://url/Req#name>,

4 <http://url/Req#inserts > <http://url/Req#description >

Listing 2: OWL example of an individual’s facts.

User input System response
user clicks newModel

system requests : name, description, scope, language, file, image
user inserts : name, description, scope, language, file, image
user clicks save

system validates : name, description, scope, language, file, image
system creates model
system list models

Figure 3: Formatted use case.

Rewriting the use case presented in Figure 2 according to the RUS in Listing 1, we obtain the description
in Figure 3. This formatted use case description corresponds to the input of our framework, represented
as the phase Requirements, in Figure 1.

3.2 Extraction of entities
Given a use case as the one in Figure 3, in the first steps of our approach we are interested in extracting
the entities and 4-tuples from the use case description. There are two distinct inputs in this step. The
first one, is the specification of the allowed language, the RUS. The second one is the use case itself.
The RUS allow us to create the grammar, which will extract informations from the use case. From the
grammar file, a set of parsers able to extract the entities and 4-tuples from the requirements are achieved.
Currently, it is possible to create two kinds of parsers. The first one allows the extraction of the list of
entities, relationships, individuals and data properties, contained in the requirements specification. The
second one, allows the extraction of the set of 4-tuple statements.

With the RUS in Listing 1, we were able to extract from the use case in Figure 2, the set of entities
presented in Listing 3, where r represents relationships (Object Properties) and i stands for Individuals.
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1 r:clicks ,requests ,inserts ,validates ,creates ,list ,

2 i:user ,newModel ,system ,name ,description ,scope ,language ,file ,image ,save ,model ,models ,

Listing 3: Extracted entities.

We were also able to extract the 4-tuples presented below:

1 Individual: ,user ,Facts: ,clicks newModel

2 Individual: ,system ,Facts: ,requests name

3 Individual: ,system ,Facts: ,requests description

4 Individual: ,system ,Facts: ,requests scope

5 Individual: ,system ,Facts: ,requests language

6 Individual: ,system ,Facts: ,requests file

7 Individual: ,system ,Facts: ,requests image

8 Individual: ,user ,Facts: ,inserts name

9 Individual: ,user ,Facts: ,inserts description

10 Individual: ,user ,Facts: ,inserts scope

11 Individual: ,user ,Facts: ,inserts language

12 Individual: ,user ,Facts: ,inserts file

13 Individual: ,user ,Facts: ,inserts image

14 Individual: ,user ,Facts: ,clicks save

15 Individual: ,system ,Facts: ,validates name

16 Individual: ,system ,Facts: ,validates description

17 Individual: ,system ,Facts: ,validates scope

18 Individual: ,system ,Facts: ,validates language

19 Individual: ,system ,Facts: ,validates file

20 Individual: ,system ,Facts: ,validates image

21 Individual: ,system ,Facts: ,creates model

22 Individual: ,system ,Facts: ,list models

With this information, it is now possible to create an OWL ontology with the previously presented
methodology. However, in order to create a complete instance, some more informations are required,
related with the entities’ types.

3.3 Individuals and classes

Unless explicitly specified in the user requirements, both the classes and the individuals’ type information
are missing. The individual to class association is crucial to create an ontology instance. In order to create
it, the user must then specify all the relevant classes, and associate them with the individuals.

In our example, we propose a set of classes derived from the problem domain, as presented next.

1 Actor , Link , Field , Text , Object ,

The rationale for defining theses classes becomes clear when we specify the individuals to classes
associations, as presented in Listing 4. With these informations, it is now possible to create an ontology
and an instance.

1 user (is an) Actor | language (is a) Field (and a) Text

2 newModel (is a) Link | file (is a) Field

3 system (is an) Actor | image (is a) Field

4 name (is a) Field (and a) Text | save (is a) Link

5 description (is a) Field (and a) Text | model (is an) Object

6 scope (is a) Field (and a) Text | models (is an) Object

Listing 4: Individual to classes association.
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3.4 Ontology and instance

In order to create the ontology, we have created a module which resorts to the Apache Jena framework3.
This framework allows us to take the previously extracted information, map it into an OWL metamodel
and create the source code.

Usually, the first element of an OWL ontology is a set of prefixes, which represent additional re-
sources to enhance the ontology. Example of prefixes are the XML Schema Definition (XSD), OWL,
Extensible Markup Language (XML), RDF, Dublin Core (DC) and RDF Schema (RDFS). For our pur-
poses, some of these prefixes, such as OWL are mandatory, since we are defining OWL ontologies. Also,
we need the RDF prefix, which is used as a flexible data representation for domain resources. Finally,
after the prefixes, we can specify the ontology components.

With these informations, we were able to implement the tool which allows the creation of the on-
tology and respective instance (phase OWL in Figure 1). Resorting to the OWL standards, we are able
to create ontologies which can be integrated and processed in other tools, such as the Protégé4 ontology
editor.

In order to exemplify our approach, we will resort to the first line of the use case description in
Figure 3:

1 user clicks newModel

The described entry matches the rule in line 2 in the RUS file presented in Listing 1. From this rule
it is possible to know which elements we should extract, namely individuals (user and newModel) and
relationships (clicks). Next, the user should provide the types for the individuals. In this case, we
have two individuals, the user and the newModel. Their types are Actor and Link, respectively (see
Listing 4). With that information, it is finally possible to extract the following 4-tuple, which can be
directly mapped into OWL.

1 Individual: ,user ,Facts: ,clicks newModel

The two first elements of the 4-tuple (Individual:,user), inform that we have an individual,
named user. This information is reflected in the following OWL code.

1 Individual: <http: //url/Req#user>

The three last elements in the 4-tuple (user,Facts:,clicks newModel) state that the user, on the
property Facts, will have the pair value ’clicks newModel’.

1 Individual: <http: //url/Req#user>

2 Facts: <http://url/Req#clicks > <http://url/Req#newModel >

Finally, we have stated before that the user has the type Actor, hence we are able to reflect such
information in OWL as follows.

1 Individual: <http: //url/Req#user>

2 Types: <http://url/Req#Actor>

3 Facts: <http://url/Req#clicks > <http://url/Req#newModel >

3Available at http://jena.apache.org/, last accessed in 2013-12-04
4http://protege.stanford.edu, last accessed in 2013-12-09
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In Figure 4 we have an extract of the resulting ontology. The circles represent the classes, the dia-
monds individuals. The arrows between two classes are the SubClass (inheritance) relationship and the
arrows between classes and individuals are the OWL class association (for instance, an user has type
Actor). The dashed arrow between the individuals represents the clicks relationships.

Figure 4: Extract of the resulting ontology.

3.5 Pattern inference

OWL provides several query languages, such as the SWRL and the SPARQL Protocol and RDF Query
Language (SPARQL). In our approach we use SPARQL to query the use case specification data, mapped
onto OWL. In order to infer the patterns, we describe the requirements patterns as SPARQL queries.
Then, we apply those queries in the use case descriptions.

We present in Listing 5 a query which identifies the requirement to have a model upload functionality.
The SPARQL language allow us to perform two kind of queries. On the one hand, the Select query,
allow us to ask questions about an ontology and get results. On the other hand, there is the Ask query,
which verifies if a statement is valid for a given ontology.

We query the knowledge base with the Ask statement, in order to identify if there is a user (?actor)
which clicks in a link (?link) at a given web application (line 4), and that process results in a new
model (?result, on line 5). The ?user will identify which Individual clicks on a given link. The
?system will relate the system’s requested data with the Field type. Also, the ?system will create the
?result, which should be a new model. This pattern requests also that the user does not exit the current
page (i.e., perform the exit action), represented with the FILTER NOT EXISTS statement (on line 6).

1 PREFIX ont: <http://www.url.com/Requirements/>

2 PREFIX rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns#>

3 ASK {

4 ?actor ont:clicks ?link . ?system ont:requests ?field . ?field rdf:type ont:Field .

5 ?field rdf:type ont:Field . ?system ont:creates ?result .

6 FILTER NOT EXISTS {?user ont:exit ?link}

7 }

Listing 5: Model upload requirement pattern.

The requirements pattern described in Listing 5, applied to the use case in Figure 3, returns the true
value. The true value means that the rule is satisfied in the given ontology, therefore we have the model
upload pattern in the user requirements.

The requirements patterns themselves provide informations about the user required functionalities.
Such functionalities provide hints about implementation details. With more elaborated patterns and
specifications, we expect to be able to associate architectural patterns with those requirements patterns.
We are still exploring the OWL inference capabilities in order to mature our approach and to identify
other data extraction possibilities.
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4 The Use Case Analysis Tool

As already stated, the proposed framework is supported by a tool which guides the users when using our
approach. We resort to the use case specified in Figure 3 in order to demonstrate our tool. We use the
RUS in Listing 1 to specify the input language.

Figure 5: Use case description and inferred entities interfaces.

4.1 Use case specification
The tool supports the input of use case descriptions, in the textual format defined by the RUS in use. In
Figure 5 a), we present the tool’s interface to specify the use case description. The user interface provides
means to specify the user input and the system response. It is possible to see the model upload example
(from Figure 3) in our tool. In the left column, we specify the user input, and on the right, the system
response. The user might select the validate button, in order to check the input against the RUS. When the
generate button is pressed, the tool generates ANTLR (ANother Tool for Language Recognition) parsers,
and extracts the Individuals, Data properties and Object properties from the requirements
input. It then proceeds to the next stage in the process (and the next screen: Entities).

4.2 Entities preview
Once extracted, the inferred entities are shown to the user, in the interface which our tool provides to
query them. In Figure 5 b), it is possible to see the extracted Object properties (relations) and
the Individuals. Among others elements, we have the entities user and newModel, and the clicks

relation, which were used to illustrate our approach. When the user finishes the tasks in this screen, it
may select the Types tab or click the Next button, in order to proceed to the next screen.

4.3 Individuals’ types
The individuals’ types information should be specified by the user, since we are not able to infer such
information. Resorting to the interface depicted in Figure 6, the user should create the types (with the
add button), and then assign one (or more) types to each individual. We have input a set of classes
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Figure 6: Classes to types association interface.

Figure 7: Create ontology and query interfaces.

(Actor, Link, Field, Object and Alert), and associated them with the corresponding individuals. In
this interface, we stated (for instance) that an user is an Actor. The classes are listed and created in the
right side, and associated with the individuals listed on the left side. It is possible to associate several
classes to the same individual, as is the case of the name, which is both an Object and a Field.

4.4 Ontology generator and Reasoner

The last step performed in our tool, is to provide the missing informations to generate the ontology.
The user must specify a valid url (in our case, http://www.url.com), and select the Create Ontology
option. Such action generates the corresponding OWL file, as presented in Figure 7 a). The file is a valid
OWL ontology, described in OWL Manchester Syntax. We provide also a simple way to preview the
generated file in its textual format. That functionality is also available to preview the RUS file.

Furthermore, it is possible to query the generated ontology from within our tool. Figure 7 b) depicts
the interface which allows to write and execute SPARQL queries.
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5 Conclusions and Future Work

In this paper we have presented an approach to formalize use cases in OWL, in order to support the iden-
tification of requirements patterns in the use case descriptions. Our approach started with the definition
of a restricted natural language for requirements specification. Such format, the RUS, enables us to spec-
ify how user input should be expressed and how the resulting use cases can be transformed into an OWL
ontology. The transformation rules provide us with most of the required information to create the ontol-
ogy. However, the process is not fully automated, as information such the types of specific individuals
cannot typically be inferred. We have implemented a prototype tool, which assists the user in inputing
that missing information, at the same time as it shows the inferred knowledge. Our tool is then able to
create the OWL ontology, with an associated instance. Resorting to OWLs’ query engines, we are able
to perform queries over the ontology to identify requirements patterns in the use cases. Our approach
was illustrated with an example use case for uploading a model to a CMS. Resorting to this example
we present the implemented tool, which supports our framework. We also illustrated how requirements
patterns could be identified in the example.

In order to further validate our approach we are interested in evaluating the expressiveness of the
RUS. To do such, we will use the full requirements specification of existing software systems, and map
them into our specification format. This, besides enabling to assess the expressiveness of the language,
will enables us to further develop the requirements patterns and their identification. Indeed, our goal is to
create a requirements patterns catalog by analyzing the requirements specifications of different software
systems.

The proposed approach is part of a wider project which aims to create software prototypes, starting
from use case specifications. To help in this process, we propose to focus on a specific domain, resorting
to the entities and workflow framework. This feature is depicted in Figure 1, in the arrows e) and d). By
associating requirements patterns with architectural patterns, as presented in our framework in Figure 1
- transition c), we propose to obtain hints about the final system implementation directly from the use
cases. The case studies above can also be of use in this. By inferring architectural patterns presents in
the use case specifications, we will be able to compare the actual implementations against the inferred
patterns.

Finally, while at the moment we are mainly interested in extracting the entities and their relationships
from the use case specifications, it is also possible to extract other kinds of information from the use
cases, specifically behavioral aspects. We propose to analyze the possibility of extracting behavioral
information from the use cases, for instance as CPN, activity or state machine diagrams. These models
will allow us, not only to formally verify the use cases from a behavioral perspective, but also to simulate
the use cases’ flow, via animated diagrams. This will help us to validate the use case specifications.

References
[1] Raffaella Bernardi, Diego Calvanese & Camilo Thorne (2007): Lite Natural Language. In: Proceedings of

the 7th International Workshop on Computational Semantics, ISWC’07, Tilburg University.
[2] Robert Biddle, James Noble & Ewan Tempero (2001): Patterns for essential use cases. In: Proceedings of

KoalaPLoP 2001, KoalaPLoP ’01, Darlinghurst, Australia.
[3] Robert Biddle, James Noble & Ewan Tempero (2002): Essential use cases and responsibility in object-

oriented development. In: Proceedings of the twenty-fifth Australasian conference on Computer science,
ACSC ’02, Darlinghurst, Australia, pp. 7–16.

[4] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad & Michael Stal (1996): Pattern-
oriented software architecture: a system of patterns. John Wiley & Sons, Inc., New York, NY, USA.



R. Couto, A.N. Ribeiro & J.C. Campos 15

[5] Alistair Cockburn (2000): Writing Effective Use Cases, 1st edition. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

[6] Larry L. Constantine & Lucy A. D. Lockwood (1999): Software for use: a practical guide to the models and
methods of usage-centered design. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA.

[7] J. Dietrich & C. Elgar (2005): A formal description of design patterns using OWL. In: Software Engineering
Conference, pp. 243–250.

[8] Martin Fowler (2003): UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3 edition.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[9] Norbert E. Fuchs, Uta Schwertel & Rolf Schwitter (1999): Attempto Controlled English - Not Just Another
Logic Specification Language. In Pierre Flener, editor: Logic-Based Program Synthesis and Transformation,
Lecture Notes in Computer Science 1559, Eighth International Workshop LOPSTR’98, Springer.

[10] Anna Goy & Diego Magro (2012): User-Friendly Interaction in an On-line System Based on Semantic Tech-
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