Best paper nominees

Today, two papers nominated for best paper awards will be presented:

• ESOP nominee:
 Ravi Mangal, Mayur Naik and Hongseok Yang. “A Correspondence between Two Approaches to Interprocedural Analysis in the Presence of Join”. In room MontBlanc at 16H30.

• FASE nominee:
 Marcello Maria Bersani, Domenico Bianculli, Carlo Ghezzi, Srdjan Krstic and Pierluigi San Pietro. “SMT-based Checking of SOLOIST over Sparse Traces”. In room Kilimandjaro at 16h30.

Since when did you try to solve a Sudoku? This one is really tough, and it is forbidden to use any formal method (constraint solving or the like)!

ISSUE 6
THURSDAY, APRIL 10TH

Time Table

9:00-10:00: ETAPS invited talk
10:00-10:30: coffee break
10:30-12:30: parallel sessions
12:30-14:00: lunch with tool demos
14:00-15:00: TACAS invited talk
15:00-16:00: parallel sessions
16:00-16:30: coffee break
16:30-18:00: parallel sessions
18:15-22:00: Steering Committee meeting and dinner

Scientific Events

ETAPS invited talk:
 John Launchbury (Galois, US)
TACAS invited talk:
 Orna Kupferman (Hebrew University Jerusalem, Israel)
ESOP (Mont Blanc),
FOSSACS (Makalu),
FASE (Kilimandjaro)
TACAS (Amphitheater)
TACAS tool demo (Atrium)

Weather Forecast

Thursday
Friday
Saturday

UNIVERSITE
JOSEPH FOURIER
SCIENCE TECHNOLOGY MEDICINE

AM PM Evening

http://www.la-sudoku.fr
N° 936933-1036886
ETAPS Invited talk (John Launchbury, Galois, US)

Practical Challenges to Secure Computation

Abstract: In secure computation, one or more parties collaborate to compute a result while keeping all the inputs private. That is, no-one can gain knowledge about the inputs from the other parties, except what can be determined from the output of the computation. Methods of secure computation include fully homomorphic encryption (where one party owns the input data and the other party performs the whole computation), and secure multiparty computation (where multiple parties collaborate in the computation itself). The underlying methods are still exceedingly costly in time, space, and communication requirements, but there are also many other practical problems to be solved before secure computation can be usable. For programmers, the algorithm construction is often nonintuitive; for compiler writers, the machine assumptions are very different from usual; and for application designers, the application information flow has to match the security architecture. In this talk we will highlight these challenges, and indicate promising research directions.

ESOP Invited talk (Orna Kupferman, Hebrew University Jerusalem, Israel)

Variations on Safety

Abstract: Of special interest in formal verification are safety properties, which assert that the system always stays within some allowed region, in which nothing “bad” happens. Equivalently, a property is a safety property if every violation of it occurs after a finite execution of the system. Thus, a computation violates the property if it has a “bad prefix”, all whose extensions violate the property. The theoretical properties of safety properties as well as their practical advantages with respect to general properties have been widely studied. The paper surveys several extensions and variations of safety. We start with bounded and checkable properties -- fragments of safety properties that enable an even simpler reasoning. We proceed to a reactive setting, where safety properties require the system to stay in a region of states that is both allowed and from which the environment cannot force it out. Finally, we describe a probability-based approach for defining different levels of safety.

Grenoble, the paragliding capital

Grenoble is a fantastic place to try paragliding. It is home of the famous “Coupe Icare”, held each year in September, with demonstrations of the craziest possible flying machines, competitions of aerobatic paragliding, and demonstrations of all the possible forms of sails. Want to try it, then head for Saint-Hilaire du Touvet, reachable by bus and then by funiculaire.