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Abstract. Several generic constructions for transforming one-way functions to asymmetric en-
cryption schemes have been proposed. One-way functions only guarantee the weak secrecy of their
arguments. That is, given the image by a one-way function of a random value, an adversary has
only negligible probability to compute this random value. Encryption schemes must guarantee a
stronger secrecy notion. They must be at least resistant against indistinguishability-attacks under
chosen plaintext text (IND-CPA). Most practical constructions have been proved in the random
oracle model (ROM for short). Such computational proofs turn out to be complex and error
prone. Bana et al. have introduced Formal Indistinguishability Relations (FIR), as an abstraction
of computational indistinguishability. In this paper, we extend the notion of FIR to cope with the
ROM on one hand and adaptive adversaries on the other hand. Indeed, when dealing with hash
functions in the ROM and one-way functions, it is important to correctly abstract the notion of
weak secrecy. Moreover, one needs to extend frames to include adversaries in order to capture
security notions as IND-CPA. To fix these problems, we consider pairs of formal indistinguisha-
bility relations and formal non-derivability relations. We provide a general framework along with
general theorems, that ensure soundness of our approach and then we use our new framework to
verify several examples of encryption schemes among which the construction of Bellare Rogaway
and Hashed ElGamal.

1 Introduction

Our day-to-day lives increasingly depend upon information and our ability to manipulate it securely.
That is, in a way that prevents malicious elements to subvert the available information for their own
benefits. This requires solutions based on provably correct cryptographic systems (e.g., primitives and
protocols). There are two main frameworks for analyzing cryptographic systems; the symbolic frame-
work, originating from the work of Dolev and Yao [16], and the computational approach, growing out
of the work of [18]. A significant amount of effort has been made in order to link both approaches and
profit from the advantages of each of them. Indeed, while the symbolic approach is more amenable to
automated proof methods, the computation approach can be more realistic.

In their seminal paper [1] Abadi and Rogaway investigate the link between the symbolic model on
one hand and the computational model on the other hand. More precisely, they introduce an equiva-
lence relation on terms and prove that equivalent terms correspond to indistinguishable distributions
ensembles, when interpreted in the computational model. The work of Abadi and Rogaway has been
extended to active adversaries and various cryptographic primitives in e.g. [21, 20, 14, 19]. An other line
of work, also considering active adversaries is followed by Backes, Pfitzmann and Waidner using reactive
simulatability [5, 4] and Canetti [12, 13] using universal composability.

Related works. A recently emerging branch of relating symbolic and computational models for
passive adversaries is based on static equivalence from π-calculus [3], induced by an equational theory.
Equational theories provide a framework to specify algebraic properties of the underlying signature,
and hence, symbolic computations in a similar way as for abstract data types. That is, for a fixed
equational theory, a term describes a computation in the symbolic model. Thus, an adversary can
distinguish two terms, if he is able to come up with two computations that yield the same result when
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applied to one term but different results when applied to the other term. Such a pair of terms is called
a test. This idea can be extended to frames, which roughly speaking are tuples of terms. Thus, a static
equivalence relation is fully determined by the underlying equational theory, as two frames are statically
equivalent, if there is no test that separates them. In [8] Baudet, Cortier and Kremer study soundness
and faithfulness of static equivalence for general equational theories and use their framework to prove
soundness of exclusive or as well as certain symmetric encryptions. Abadi et al. [2] use static equivalence
to analyze guessing attacks.

Bana, Mohassel and Stegers [7] argue that even though static equivalence works well to obtain
soundness results for the equational theories mentioned above, it does not work well in other important
cases. Consider for instance the Decisional Diffie Hellman assumption (DDH for short) that states that
the tuples (g, ga, gb, gab) and (g, ga, gb, gc), are indistinguishable for randomly sampled a, b, c. It does not
seem to be obvious to come up with an equational theory for group exponentiation such that the induced
static equivalence includes this pair of tuples without including others whose computational indistin-
guishability is not proved to be a consequence of the DDH assumption. The static equivalence induced
by the equational theory for group exponentiation proposed in [8] includes the pair (g, ga, gb, ga2b) and
(g, ga, gb, gc). It is unknown whether the computational indistinguishability of these two distributions
can be proved under the DDH assumption. Therefore, Bana et al. propose an alternative approach to
build symbolic indistinguishability relations and introduce formal indistinguishability relations (FIR).
A FIR is defined as a closure of an initial set of equivalent frames with respect to simple operations
which correspond to steps in proofs by reduction. This leads to a flexible symbolic equivalence relation.
FIR has nice properties. In order to prove soundness of a FIR it is enough to prove soundness of the
initial set of equivalences. Moreover, static equivalence is one instance of a FIR. Bana et al. show that
it is possible to come up with a FIR whose soundness is equivalent to the DDH assumption.

The techniques introduced in this paper, borrow and generalize to arbitrary equational theories some
ideas from [15]. In [15] the authors provide a specialized Hoare-like logic to reason about encryption
schemes in the random oracle model, and apply their logic to prove IND-CPA of several schemes,
including the generic encryption scheme of Bellare and Rogaway [10].

Contributions. In this paper, we extend Bana et al.’s approach by introducing a notion of symbolic
equivalence that allows us to prove security of encryption schemes symbolically. More specifically, we
would like to be able to treat generic encryption schemes that transform one-way functions to IND-CPA
secure encryption schemes. Therefore, three problems need to be solved. First, we need to cope with
one-way functions. This is a case where the static equivalence does not seem to be appropriate. Indeed,
let f be a one-way function, that is, a function that is easy to compute but difficult to invert. It does not
seem easy to come with a set of equations that capture the one-wayness of such a function. Consider the
term f(a|b), where | is bit-string concatenation. We know that we cannot easily compute a|b given f(a|b)
for uniformly sampled a and b. However, nothing prevents us from being able to compute a for instance.
Introducing equations that allow us to compute a from f(a|b), e.g., g(f(a|b)) = a, may exclude some
one-way functions and does not solve the problem. For instance, nothing prevents us from computing a
prefix of b, a prefix of the prefix, etc . . . The second problem that needs to be solved is related to the fact
that almost all practical provably secure encryption schemes are analyzed in the random oracle model
(ROM for short). ROM is an idealized model in which hash functions are randomly sampled functions.
In this model, adversaries have oracle access to these functions. An important property is that if an
adversary is unable to compute the value of an expression a and if H(a) has not been leaked then
H(a) looks like a uniformly sampled value. Thus, we need to be able to symbolically prove that a value
of a given expression a cannot be computed by any adversary. This is sometimes called weak secrecy
in contrast to indistinguishability based secrecy. To cope with this problem, our notion of symbolic
indistinguishability comes along with a non-derivability symbolic relation. Thus in our approach, we
start from an initial pair of a non-derivability relation and a frame equivalence relation. Then, we
provide rules that define a closure of this pair of relations in the spirit of Bana et al.’s work. Also in our
case, soundness of the obtained relations can be checked by checking soundness of the initial relations.
The third problem is related to the fact that security notions for encryption schemes such IND-CPA
and real-or-random indistinguishability of cipher-text under chosen plaintext involve active adversaries.



Indeed, these security definitions correspond to two-phase games, where the adversary first computes a
value, then a challenge is produced, then the adversary tries to solve the challenge. Static equivalence
and FIR (as defined in [7]) consider only passive adversaries. To solve this problem we consider frames
that include variables that correspond to adversaries. As frames are finite terms, we only have finitely
many such variables. This is the reason why we only have a degenerate form of active adversaries which
is enough to treat security of encryption schemes and digital signature, for instance. The closure rules
we propose in our framework are designed with the objective of minimizing the initial relations which
depend on the underlying cryptographic primitives and assumptions. We illustrate the framework by
considering security proofs of the construction of Bellare and Rogaway [10] and Hash El Gamal [6].

Outline of the paper. In Section 2, we introduce the symbolic model used for describing generic
asymmetric encryption schemes. In Section 3, we describe the computational framework and give defini-
tions that relate the two models. In Section 4, we introduce our definition of formal indistinguishability
relation and formal non-derivability relation. We also present our method for proving IND-CPA secu-
rity. In Section 5, we illustrate our framework: we prove the constructions of Bellare and Rogaway [10],
Hash El Gamal [6], and the encryption scheme proposed by Pointcheval in [24]. Finally, in Section 7 we
conclude.

2 Symbolic semantics

A signature Σ = (S,F ,H) consists of a countable infinite set of sorts S = {s, s1, ...}, a finite set of
function symbols, F = {f, f1, ...}, and a finite set of oracle symbols, H = {g, h, h1, ...} together with
arities of the form ar(f) or ar(h) = s1× ...× sk → s, k ≥ 0. Symbols in F that take k = 0 as arguments
are called constants. We suppose that there are three pairwise disjoint countable sets N , X and P.
N is the set of names, X is the set of first-order variables, and P is the set of second order variables.
We assume that both names and variables are sorted, that is, to each name or variable u, a sort s is
assigned; we use s(u) for the sot of u. Variables p ∈ P have arities ar(p) = s1 × ...× sk → s.

A renaming is a bijection τ : N → N such that s(a) = s(τ(a)). As usual, we extend the notation
s(T ) to denote the sort of a term T . Terms of sort s are defined by the grammar:
T ::= x variable x of sort s

|n name n of sort s
|p(T1, . . . , Tk) variable p of arity s(T1)× ...× s(Tk)→ s
|f(T1, . . . , Tk) application of f ∈ F with arity s(T1)× ...× s(Tk)→ s
|h(T1, . . . , Tk) call of h ∈ H with arity s(T1)× ...× s(Tk)→ s

We use fn(T ), pvar(T ) and var(T ) for the set of free names, the set of p-variables and the set of
variables that occur in the term T , respectively. Meta-variables u, v, w range over names and variables.
We use st(T ) for the set of sub-terms of T , defined in the usual way: st(u)

def
= {u} if u is a name or a

variable, and st(l(T1, . . . , Tk))
def
= {l(T1, . . . , Tk)}

⋃
i∈{1,...k} st(Ti), if l ∈ F ∪H ∪P. A term T is closed

if it does not have any free variables (but it may contain p-variables), that means var(T ) = ∅. The set
of terms is denoted by T.

Symbols in F are intended to model cryptographic primitives, symbols in H are intended to model
cryptographic oracles (in particular, hash functions in the ROM model), and names in N are used
to model secrets, i.e. concretely random numbers. Variables p ∈ P are intended to model queries and
challenges made by adversaries (and can depend on previous queries).

Definition 1 (Substitution). A substitution σ = {x1 = T1, ..., xn = Tn} is a mapping from variables
to terms whose domain dom(σ) = {x1, ..., xn} is finite and such that σ(x) 6= x, for each x in the domain.

A substitution as above is well-sorted if xi and Ti have the same sort for each i, and there is no circular
dependence xi2 ∈ var(Ti1), xi3 ∈ var(Ti2), . . ., xi1 ∈ var(Tik

). The application of a substitution σ to
a term T is written as σ(T ) = Tσ. This definition is lifted in a standard way to the application of a
substitution to set of terms or substitutions. The normal form σ∗ of a well-sorted substitution σ is the
iterative composition of σ with itself until it remains unchanged : σ∗ = (. . . ((σ)σ) . . .)σ. For example,



if σ = {x1 = a, x2 = f(b, x1), x3 = g(x1, x2)}, then σ∗ = {x1 = a, x2 = f(b, a), x3 = g(a, f(b, a)}.
A substitution is closed if all terms (of its normal form) Ti are closed. We let var(σ) = ∪ivar(Ti),
pvar(σ) = ∪ipvar(Ti), n(σ) = ∪ifn(Ti), and extend the notations pvar(.), var(.), n(.) and st(.) to
tuples and set of terms in the obvious way.

The abstract semantics of symbols is described by an equational theory E, that is an equivalence
(denoted as =E) which is stable with respect to application of contexts and well-sorted substitutions of
variables.

Definition 2 (Equational Theory.). An equational theory for a given signature is an equivalence
relation E ⊆ T × T (written as =E in infix notation) on the set of terms such that
1) T1 =E T2 implies T1σ =E T2σ for every substitution σ;
2) T1 =E T2 implies T{x = T1} =E T{x = T2} for every term T and every variable x;
3) T1 =E T2 implies τ(T1) =E τ(T2) for every renaming τ .

Frames ([3]) represent sequences of messages observed by an adversary. Formally:

Definition 3 (Frame). A frame is an expression of the form φ = νñ.σ where σ is a well-sorted
substitution, and ñ is n(σ), the set of all names occurring in σ. By abuse of notation we also use n(φ)

for ñ, the set of names bounded in the frame φ. We note fv(φ)
def
= var(σ) \ dom(σ) the set of free

variables of φ.

The novelty of our definition of frames consists in permitting adversaries to interact with frames using
p-variables. This is necessary to be able to cope with adaptive adversaries. We note the set of frames
by F.

The normal form φ∗ of a frame φ = νñ.σ is the frame φ∗ = νñ.σ∗. From now on, we tacitly
identify substitutions and frames with their normal form. Next, we define composition of frames. Let
φ = νñ.{x1 = T1, ..., xn = Tn} and φ′ = νñ′.σ be frames with ñ ∩ ñ′ = ∅. Then, φφ′ denotes the frame
ν(ñ ∪ ñ′).{x1 = T1σ, ..., xn = Tnσ}.

Definition 4 (Equational equivalence). Let φ and φ′ be two frames such that φ∗ = νñ.σ and
φ′∗ = νñ.σ′ with σ = {x1 = T1, ..., xn = Tn} and σ′ = {x1 = T ′

1, ..., xn = T ′
n}. Given the equational

theory E, we say that φ and φ′ are equationally equivalent written φ =E φ′, if and only if Tiσ =E T ′
iσ

′

for all i.

3 Computational Semantics

3.1 Distributions and indistinguishability

Let us note η ∈ N the security parameter. We are interested in analyzing generic schemes for asymmetric
encryption in the random oracle model [17, 10]. We write h

r← Ω to denote that h is randomly chosen
from the set of functions with appropriate domain (depending on η). By abuse of notation, for a list
H = h1, · · · , hm of hash functions, we write H

r← Ω instead of the sequence h1
r← Ω, . . . , hm

r← Ω. We
fix a finite set H = {h1, . . . , hn} of hash functions. A distribution ensemble is a countable sequence of
distributions {Xη}η∈N. We only consider distribution ensembles that can be constructed in polynomial
time by probabilistic algorithms that have oracle access to O = H. Given two distribution ensembles
X = {Xη}η∈N and X ′ = {X ′

η}η∈N, an algorithm A and η ∈ N, the advantage of A in distinguishing Xη

and X ′
η is defined by:

Adv(A, η,X,X ′) = Pr[x r← Xη : AO(η, x) = 1]− Pr[x r← X ′
η : AO(η, x) = 1].

Then, two distribution ensembles X and X ′ are called indistinguishable (denoted by X ∼ X ′) if
for any probabilistic polynomial-time algorithm A, the advantage Adv(A, η,X,X ′) is negligible as a
function of η, that is, for any n > 0, it become eventually smaller than η−n as η tends to infinity.



3.2 Frames as distributions

We now give terms and frames a computational semantics parameterized by a computable implemen-
tation of the primitives in ROM. Provided a set of sorts S and a set of symbols F , a computational
algebra A = (S,F) consists of

- a sequence of non-empty finite set of bit strings [[s]]A = {[[s]]A,η}η∈N with [[s]]A,η ⊆ {0, 1}∗ for
each sort s ∈ S. For simplicity of the presentation, we assume that all sorts are large domains, whose
cardinalities are exponential in the security parameter η;

- a sequence of polynomial time computable functions [[f ]]A = {[[f ]]A,η}η∈N with [[f ]]A,η : [[s1]]A,η ×
...× [[sk]]A,η → [[s]]A,η for each f ∈ F with ar(f) = s1 × ...× sk → s;

- a polynomial time computable congruence =A,η,s for each sort s, in order to check the equality
of elements in [[s]]A,η (the same element may be represented by different bit strings). By congruence,
we mean a reflexive, symmetric, and transitive relation such that e1 =A,s1,η e′1, ..., ek =A,sk,η e′k ⇒
[[f ]]A,η(e1, ..., ek) =A,s,η [[f ]]A,η(e′1, ..., e

′
k) ( we usually omit s,η and A and write = for =A,s,η);

- a polynomial time procedure to draw random elements from [[s]]A,η; we denote such a drawing by
x←R [[s]]A,η; for simplicity, in this paper we suppose that all these drawing follow a uniform distribution.

From now on we assume a fixed computational algebra (S,F), and a fixed η, and for simplicity we
omit the indices A,s and η. For lack of space, we use ppt to stand for probabilistic polynomial-time.
Given H a fixed set of hash functions, and (Ai)i∈I a fixed set of ppt functions (can be seen as a ppt
adversary AO taking an additional input i), we associate to each frame φ = νñ.{x1 = T1, . . . , xk = Tk}
a sequence of distributions [[φ]]H,A computed as follows:

- for each name n of sort s appearing in ñ, draw a value n̂
r← [[s]];

- for each variable xi(1 ≤ i ≤ k) of sort si, compute T̂i ∈ [[si]] recursively on the structure of terms:
x̂i = T̂i ;

- for each call hi(T ′
1, . . . , T

′
m) compute recursively on the structure of terms: ̂hi(T ′

1, . . . , T
′
m) =

hi(T̂ ′
1, . . . , T̂

′
m);

- for each call f(T ′
1, . . . , T

′
m) compute recursively on the structure of terms: ̂f(T ′

1, . . . , T
′
m) = [[f ]](T̂ ′

1, . . . , T̂
′
m);

- for each call pi(T ′
1, . . . , T

′
m) compute recursively on the structure of terms and draw a value

̂pi(T ′
1, . . . , T

′
m) r← AO(i, T̂ ′

1, . . . , T̂
′
m);

- return the value φ̂ = {x1 = T̂1, . . . , xk = T̂k}.
Such φ = {x1 = bse1, . . . , xn = bsen} with bsei ∈ [[si]] are called concrete frames. We extend the

notation [[.]] to (sets of) closed terms in the obvious way.
Now the concrete semantics of a frame φ with respect to an adversary A, is given by the following

sequence of distributions (one for each implicit η):
[[φ]]A =

[
H r← Ω;O = H; φ̂ r← [[φ]]H,A : φ̂

]
When pvar(φ) = ∅, semantics of φ does not depend on the adversary A and we will use the notation

[[φ]] (or [[φ]]H) instead of [[φ]]A (respectively [[φ]]H,A).

3.3 Soundness and Completeness

The computational model of a cryptographic scheme is closer to reality than its formal representation by
being a more detailed description. Therefore, the accuracy of a formal model can be characterized based
on how close it is to the computational model. For this reason, we introduce the notions of soundness
and completeness (inspired from [8]) that relate relations in the symbolic model with respect to similar
relations in the computational model. Let E be an equivalence theory and let R1 ⊆ T×T, R2 ⊆ F×T,
and R3 ⊆ F × F be relations on closed frames, on closed terms, and relations on closed frames and
terms, respectively.

- R1 is =-sound iff for all terms T1, T2 of the same sort, (T1, T2) ∈ R1 implies that Pr[ê1, ê2
r←

[[T1, T2]]A : ê1 6= ê2))] is negligible for any ppt adversary A.
- R1 is =-complete iff for all terms T1, T2 of the same sort, (T1, T2) 6∈ R1 implies that Pr[ê1, ê2

r←
[[T1, T2]]A : ê1 6= ê2))] is non-negligible for some ppt adversary A.



- R1 is =-faithful iff for all terms T1, T2 of the same sort, (T1, T2) 6∈ R1 implies that Pr[ê1, ê2
r←

[[T1, T2]]A : ê1 = ê2))] is negligible for any ppt adversary A.
- R2 is 6`-sound iff all frame φ and term T , (φ, T ) ∈ R2 implies that Pr[φ̂, ê

r← [[φ, T ]]A : AO(φ̂) = ê]
is negligible for any ppt adversary A.

- R2 is 6`-complete iff for all frame φ and term T , (φ, T ) 6∈ R2 implies that Pr[φ̂, ê
r← [[φ, T ]]A :

AO(φ̂) = ê] is non-negligible for some ppt adversary A.
- R3 is ≈E-sound iff for all frames φ1, φ2 with the same domain, (φ1, φ2) ∈ R3 implies that ([[φ1]]A) ∼

([[φ2]]A) for any ppt adversary A.
- R3 is ≈E-complete iff for all frames φ1, φ2 with the same domain, (φ1, φ2) 6∈ R3 implies that

([[φ1]]A) 6∼ ([[φ2]]A) for some ppt adversary A.

4 Formal relations

One challenge of the paper is to propose appropriate symbolic relations that correctly abstract com-
putational properties as indistinguishability of two distributions or weak secrecy of some random value
(the adversary has only negligible probability to compute it). In this section we provide two symbolic
relations (called formal indistinguishability relation and formal non-derivability relation) that are sound
abstractions for the two above computational properties.

First we define well-formed relations and we recall a simplified definition of a formal indistinguisha-
bility relation as proposed in [7].

Definition 5 (Well-formed relations). A relation Sd ⊆ F × T is called well-formed if fn(M) ⊆
n(φ) for any (φ,M) ∈ Sd, and a relation Si ⊆ F × F is well-formed if dom(φ1) = dom(φ2) for any
(φ1, φ2) ∈ Si.

Definition 6. [FIR [7]] A well-formed relation ∼=⊆ F × F is called a formal indistinguishability
relation (FIR for short) with respect to the equational theory =E, if ∼= is closed with respect to the
following closure rules:
(GE1) If φ1

∼= φ2 then φφ1
∼= φφ2, for any frame φ such that var(φ) ⊆ dom(φi) and n(φ) ∩ n(φi) = ∅.

(GE2) φ ∼= φ′ for any frame φ′ such that φ′ =E φ.
(GE3) τ(φ) ∼= φ for any renaming τ .

This definition is a good starting point to capture indistinguishability in the following sense: if we have
a correct implementation of the abstract algebra (i.e. =E is =-sound) and we were provided with some
initial relation S (reflecting some computational assumption) which is ≈-sound , then the closure of S
using the above rules produces a larger relation which still remains ≈-sound. But in order to use this
definition for real cryptographic constructions , we need to enrich it in several aspects. First, most of
constructions which are proposed in the literature, ([9], [28], [22], [24], [26], [10]) use bijective functions
(XOR-function or permutations) as basic bricks. To deal with these constructions, we add the following
closure rule:
(GE4) If M,N are terms such that N [M/z] =E y, M [N/y] =E z, var(M) = {y} and var(N) = {z},
then for any substitution σ such that r 6∈ (fn(σ)∪fn(M)∪fn(N)) and x 6∈ dom(σ) it holds νñ.r.{σ, x =
M [r/y])} ∼= νñ.r.{σ, x = r}.

Second, cryptographic constructions use often hash functions. In ideal models, if one applies a hash
function (modeled by random functions [10] or pseudo-random permutations [23]) to a argument that
is weakly secret, it returns a random value. And they are quite frequent primitives in cryptography
that only ensure weak secrecy. One-way functions only guarantee that an adversary that possesses the
image by a one-way function of a random value, has only a negligible probability to compute this
value. The computational Diffie-Hellman (CDH) assumption states that if given the tuple g, ga, gb for
some randomly-chosen generator g and some random values a, b, it is computationally intractable to
compute ga∗b (equivalently ga∗b is a weakly secret value). This motivates us to introduce the formal
non-derivability relation as an abstraction of weak secrecy. Let us explain the basic closure rules



of this relation. Since we assume that all sorts are implemented by large finite sets of bit strings, it is
clearly that
(GD1) νr.∅ 6� r.

Renaming does not change the concrete semantics of terms or frames.
(GD2) If φ 6�M then τ(φ) 6� τ(M) for any renaming τ .

If the equational theory is preserved in the computational world, then equivalent terms or frames
are indistinguishable.
(GD3) If φ 6�M then φ 6� N for any term N =E M .
(GD4) If φ 6�M then φ′ 6�M for any frame φ′ =E φ.

If some bit string (concrete implementation of term M) is weakly secret, then any polynomially
computation (abstracted by the frame φ′) does not change this.
(GD5) If φ 6�M then φ′φ 6�M for any frame φ′ such that n(φ′) ∩ n(φ) = ∅.

Next rule gives a relationship between indistiguishability and secrecy: if two distributions are indis-
tinguishable, then they leak exactly the same information.
(GD6) For all substitutions σ1, σ2 such that x 6∈ dom(σi), if νñ.{σ1, x = M} ∼= νñ.{σ2, x = N} and
νñ.σ1 6�M then νñ.σ2 6� N .

If the concrete implementation of the symbolic contextual term T (z) is a feasible computation, that
is, the adversary has all the needed information to compute T (·) (fn(T )∩n(φ) = ∅), then the concrete
implementation of (Tφ)[M/z] is weakly secret only because the implementation of M itself is weakly
secret.
(GD7) If φ 6� (Tφ)[M/z] then φ 6�M , where T is such that fn(T ) ∩ n(φ) = ∅.

One can remark now that (GD6) may be generalized to the rule below
(GD6g) If T,U are terms such that (fn(T ) ∪ fn(U)) ∩ ñ = ∅, z ∈ var(T ) \ var(U) and U [T/y] =E z,
then for all substitutions σ1, σ2 such that x 6∈ dom(σi) and νñ.{σ1, x = T [M/z]} ∼= νñ.{σ2, x = T [N/z]}
and νñ.σ1 6�M then νñ.σ2 6� N .

Actually, (GD6g) is consequence of rules (GD3), (GD6) and (GD7).
Now the rules that capture hash functions in the ROM: the image by a random function of a weakly

secret value is a completely random value.
(HD1) If νñ.r.σ[r/h(T )] 6� T and r 6∈ n(σ), and if σ[r/h(T )] does not contain any subterm of the form
h(•), then νñ.σ 6� T .
(HE1) If νñ.r.σ[r/h(T )] 6� T and r 6∈ n(σ), and if σ[r/h(T )] does not contain any subterm of the form
h(•), then νñ.r.σ ∼= νñ.r.σ[r/h(T )].

The definition below formalizes the tight connection between FIR and FNDR.

Definition 7 (FNDR and FIR). A pair of well formed relations (6�,∼=) is a pair of (formal non-
derivability relation, formal indistinguishability relation) with respect to the equational theory
=E, if (6�,∼=) is closed with respect to the rules (GD1), ..., (GD7),(GE1),...,(GE4), (HD1),(HE1) and
∼= is an equivalence.

The theorem 1 shows that if a pair (FIR,FNDR) was generated by relations Sd and Si, then it is
sufficient to check only soundness of elements in Sd and Si to ensure that the closures 〈Sd〉6� and 〈Si〉∼=
are sound. We define (D1, I1) @ (D2, I2) if and only if D1 ⊆ D2 and I1 ⊆ I2. It is easy to see that @ is
an order.

Theorem 1. Let (Sd, Si) be a well-formed pair of relations. Then, it exists a unique smallest (with
respect to @) pair denoted (〈Sd〉6�, 〈Si〉∼=) of (FNDR, FIR) such that 〈Sd〉6� ⊇ Sd and 〈Si〉∼= ⊇ Si. In
addition, if =E is =-sound, Sd is 6`-sound and Si is ≈-sound, then also 〈Sd〉6� is 6`-sound and 〈Si〉∼= is
≈-sound.

The reader should notice that rules (HE1) and (HD1) can be strengthened if =E is =-faithful: “if
σ[r/h(T )] does not contain any subterm of the form h(•)” can be replaced with “T 6=E T ′ for any
subterm h(T ′) of σ[r/h(T )]”.



5 Applications

We apply the framework of Section 4 in order to prove IND-CPA security of several generic constructions
for asymmetric encryptions. So we will consider pairs of relations (6�,∼=) = (〈Sd〉6�, 〈Si〉∼=) generated
by some initial sets (Sd, Si), in different equational theories. We assume that all =E , Sd, Si that are
considered in this section satisfy the conditions of Theorem 1. We emphasize the following fact: adding
other equations than those considered does not break the computational soundness of results proved in
this section, as long as the computational hypothesis encoded by Sd and Si still hold.
First we introduce a general abstract algebra that we will extend in order to cover different constructions.
We consider three sorts Data, Data1, Data2, and the symbols || : Data1×Data2 → Data, ⊕S : S×S →
S, 0S : S, with S ∈ {Data,Data1, Data2} and πj : Data → Dataj , with j ∈ {1, 2}. For simplicity, we
omit S when using ⊕S or 0S . The equational theory Eg is generated by:
(XEq1) x⊕ 0 =Eg

x (XEq2) x⊕ y =Eg
y ⊕ x (PEq1) π1(x||y) =Eg

x
(XEq2) x⊕ x =Eg 0 (XEq4) x⊕ (y ⊕ z) =Eg (x⊕ y)⊕ z (PEq2) π2(x||y) =Eg y
|| is intended to model concatenation, ⊕ is the classical XOR and πj are the projections. Next rules

are consequences of the closure rules from Section 4.
(SyE) If φ1

∼= φ2 then φ2
∼= φ1.

(TrE) If φ1
∼= φ2 and φ2

∼= φ3 then φ1
∼= φ3.

(XE1) If r 6∈ (fn(σ) ∪ fn(T )) then νñ.r.{σ, x = r ⊕ T} ∼= νñ.r.{σ, x = r}.
(CD1) If (φ 6� T1 ∨ φ 6� T2) then φ 6� T1||T2.
(XD1) If νñ.σ 6� T and r 6∈ (ñ ∪ fn(T )) then νñ.r.{σ, x = r ⊕ T} 6� T .

5.1 Trapdoor one-way functions in the symbolic model

We extend the above algebra in order to model trapdoor one-way functions. We add a sort iData and
new symbols f : Data × Data → iData ,f−1 : iData × Data → Data, pub : Data → Data. f is a
trapdoor permutation, with f−1 being the inverse function. We extend the equational theory:
(OEq1) f−1(f(x, pub(y)), y) =Eg x.

To simplify the notations, we will use fk(•) instead of f(•, pub(k)). Now we want to capture the
one wayness of function f . Computationally, a one-way function only ensures the weakly secrecy of a
random argument r (as long as the key k is not disclosed to the adversary). Hence we define Si = ∅ and
Sd = {(νk.r.{xk = pub(k), x = fk(r)}, r)}.

The following frame encodes the Bellare-Rogaway encryption scheme ([10]):
φbr(m) = νk.r.{xk = pub(k), xa = fk(r), y = g(r)⊕m, z = h(m||r)}
where m is the plaintext to be encrypted, f is a trapdoor one-way function, and g and h are hash
functions (hence oracles in the ROM model).

Now we can see the necessity of p-variables in order to encode IND-CPA security of an encryption
scheme. It is not enough to prove that for any two messages m1 and m2 the following equivalence holds:

νk.r.{xk = pub(k), xa = fk(r), y = g(r)⊕m1, z = h(m1||r)} ∼=
νk.r.{xk = pub(k), xa = fk(r), y = g(r)⊕m2, z = h(m2||r)}

We did not capture that the adversary is adaptive and she can choose her challenges depending on
the public key. We must prove a stronger equivalence: for any terms p(xk) and p′(xk),

νk.r.{xk = pub(k), xa = fk(r), y = g(r)⊕ p(xk), z = h(p(xk)||r)} ∼=
νk.r.{xk = pub(k), xa = fk(r), y = g(r)⊕ p′(xk), z = h(p′(xk)||r)}

The reader noticed that for asymmetric encryption, this suffices to ensure IND-CPA: possessing the
public key and having access to hash-oracles allow to encrypt any message (having an oracle to encrypt
messages becomes superfluous).

Actually, it suffices to prove νk.r.s.t.{xk = pub(k), xa = fk(r), y = g(r)⊕ p(xk), z = h(p(xk)||r)} ∼=
νk.r.s.t.{xk = pub(k), xa = fk(r), y = s, z = t}. By transitivity, this implies: for any two challenges that
adversary chooses for p(xk), the distributions she gets are indistinguishable.

Next rules are consequences of the definition of Sd and of the closure rules.
(OD1) If f is a one-way function, then νk.r.{xk = pub(k), x = fk(r)} 6� r.
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{σ2, y = g(r)⊕ p(xk), z = h(p(xk)||r)} ∼= {σ2, y = g(r)⊕ p(xk), z = t} (T1)

{σ2, y = g(r)⊕ p(xk), z = h(p(xk)||r)} ∼= {xk = pub(k), xa = fk(r), y = s, z = t}

Fig. 1. Proof of IND-CPA security of Bellare-Rogaway scheme.
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TrE
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GD5
OD1

{σ2} 6� r

{σ2, y = s} 6� r

{σ2, y = g(r)} ∼= {σ2, y = s}
{σ3} ∼= {σ2, y = s⊕ p(xk)}

XE1
{σ2, y = s⊕ p(xk)} ∼= {σ2, y = s}

{σ2, y = g(r)⊕ p(xk)} ∼= {σ2, y = s}
{σ2, y = g(r)⊕ p(xk), z = t} ∼= {σ2, y = s, z = t}

Fig. 2. Tree (T1) from Figure 1.

(ODg1) If f is a one-way function and νñ.νk.{xk = pub(k), x = T} ∼= νr.νk.{xk = pub(k), x = r}, then
νñ.νk.{xk = pub(k), x = fk(T )} 6� T .

The proof of IND-CPA security of Bellare-Rogaway scheme is presented in Figure 1. To simplify the
notations, implicitly, all names in frames are restricted and we note σ2 ≡ xk = pub(k), xa = fk(r), and
σ3 ≡ σ2, y = g(r)⊕ p(xk).

5.2 Partially one-way functions in the symbolic model

In this subsection, we show how we can deal with trapdoor partially one-way functions ([24]). We
demand for function f a stronger property than one-wayness. Let Data1 be a new sort, and let f :
Data1 ×Data×Data→ iData and f−1 : iData×Data→ Data1 be functions such that
(OEq1) f(f−1(x, y), z, pub(y)) =Eg x.

The function f is said partially one way, if for any given f(r, s, pub(k)), it is impossible to compute in
polynomial time a corresponding r without the trapdoor k. In order to deal with fact that f is partially
one-way, we define Si = ∅ and Sd = {(νk.r.s.{xk = pub(k), x = fk(r, s)}, r)}.
The frame below encodes the encryption scheme proposed by Pointcheval ([24]).
φpo(m) = νk.r.s.{xk = pub(k), xa = fk(r, h(m||s)), y = g(r)⊕ (m||s)}
where m is the plaintext to be encrypted, f is a trapdoor partially one-way function, and g and h are
hash functions. To prove IND-CPA security of this scheme, we show that νk.r.s.s1.s2{xk = pub(k), xa =
fk(r, h(p(xk)||s)), y = g(r)⊕ (p(xk)||s)} ∼= νk.r.s.s1.s2.{xk = pub(k), xa = fk(r, s1), y = s2}.

Next rule is a consequence of the definition of Sd.
(ODp1) If f is a one-way function, then νk.r.s.{xk = pub(k), x = fk(r, s)} 6� r.

The proof of IND-CPA security of Pointcheval scheme is presented in Figure 4. To simplify notations
we suppose that all names in frames are restricted and we note σ2 ≡ xk = pub(k), xa = fk(r, s1),
σi ≡ σ2, y = s2 and σ3 ≡ σ2, y = g(r)⊕ (p(xk)||s).

5.3 Computational Diffie Hellman (CDH) Assumption

In this subsection we prove IND-CPA security of a variant of Hash-ElGamal encryption scheme ([27])
in the random oracle model under the CDH assumption. The proof of the original scheme([6]) can be
easily obtained from our proof and it can be done entirely in our framework. We will consider two sorts
G and A, symbol functions exp : G × A → G, ∗ : A × A → A, 0A : A, 1A : A, 1G : G. We write MN

instead of exp(M,N). We extend Eg by the following equations:
(XEqe1) (xy)z =Eg xy∗z. (XEqe2) x1A =Eg x. (XEqe3) x0A =Eg 1G.
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Fig. 3. Tree (T1) from Figure 4.
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Fig. 4. Proof of IND-CPA security of Pointcheval scheme.

where σ2 ≡ xk = pub(k), xa = fk(r, s1), σi ≡ σ2, y = s2, σ3 ≡ σ2, y = g(r)⊕ (p(xk)||s).
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Fig. 5. Proof of IND-CPA security of Hash-ElGamal’s scheme

To capture the CDH Assumption in the symbolic model we define Si = ∅ and Sd = {(νg.r.s.{xg =
g, x = gs, y = gr}, gs∗r)}. Then we get the next rule:
(CDH) νg.r.s.{xg = g, x = gs, y = gr} 6� gs∗r.

The following frame encodes the Hash-ElGamal encryption scheme.
φhel(m) = νg.r.s.{xg = g, x = gs, y = gr, z = h(gs∗r)⊕m}
where m is the plaintext to be encrypted, (g, gs) is the public key and h is a hash function. The proof
of IND-CPA security of Hash-ElGamal’s scheme is provided in Figure 5. We supposed that all names
are restricted and we noted σe ≡ xg = g, x = gs, y = gr, and σf ≡ σe, z = t⊕ p(x, xg).

6 Static equivalence and FIR

In this section we adapt the definition of deductibility and static equivalence ([8]) to our framework.
After, we justify why they are too coarse to be appropriate abstractions for indistinguishability and
weak secrecy. Actually, Proposition 1 states that they are coarser approximations of indistinguishability
and weak secrecy than FIR and FNDR.

If φ is a frame, and M,N are terms, then we use (M =E N)φ for Mφ =E Nφ.

Definition 8 (Deductibility). A (closed) term T is deductible from a frame φ where (pi)i∈I =
pvar(φ), written φ ` T , if and only if there exists a term M and a set of terms (Mi)i∈I , such that
var(M) ⊆ dom(φ), ar(Mi) = ar(pi), fn(M,Mi)∩n(φ) = ∅ and (M =E T )(φ[(Mi(Ti1 , . . . , Tik

)/pi(Ti1 , . . . , Tik
))i∈I ]).

We denote by 6` the logical negation of `.

For instance, we consider the frame φ = νk1.k2.s1.s2.{x1 = k1, x2 = k2, x3 = h((s1⊕k1)⊕p(x1, x2)), x4 =
h((s2 ⊕ k2) ⊕ p(x1, x2))} and the equational theory Eg. Then h(s1) ⊕ k2 is deductible from φ since
h(s1)⊕ k2 =Eg x3[x1/p(x1, x2)]⊕ x2 but h(s1)⊕ h(s2) is not deductible.

If we consider the frame φ′ = νk.r.s.{xk = pub(k), x = fk(r||s)} where f is a trapdoor one-way
function, then neither r||s, nor r is deductible from φ′. The one-wayness of f is modelled by the
impossibility of inverting f if k is not disclosed. While this is fair for r||s according to the computational



guarantees of f , it seems too strong of assuming that r alone cannot be computed if f is “just” one-way.
This raises some doubts about the fairness of 6` as a good abstraction of weak secrecy. We can try to
correct this and add an equation of the form
g(f(x||z, pub(y)), y) =Eg x. And now, what about r1, if one gives f((r1||r2)||s)? In the symbolic setting
r1 is not deductible; computationally, we have no guarantee; hence, when one stops to add equations?
Moreover, in this way we could exclude ”good” one-way functions: computationally, if f is a one-
way function, then f ′(x||y)

def
= x||f(y), is another one-way function. The advantage of defining non-

deductibility as we did it in the Section 4, is that first, we capture “just” what is supposed to be true
in the computational setting, and second, if we add more equations to our abstract algebra (because
we discovered that the implementation satisfies more equations) in a coherent manner with respect to
the initial computational assumptions, then our proofs still remain computationally sound. This is not
true for 6`.

Definition 9. A test for a frame φ is a tuple Υ = ((Mi)i∈I ,M,N) such that ar(Mi) = ar(pi),
var(M,N) ⊆ dom(φ), fn(M,N,Mi)∩n(φ) = ∅. Then φ passes Υ if and only if (M =E N)(φ[(Mi(Ti1 , . . . , Tik

)/pi(Ti1 , . . . , Tik
))i∈I ]).

Definition 10 (Statically Equivalent). Two frames φ1 and φ2 are statically equivalent, written
as φ1 ≈E φ2, if and only if
(i) dom(σ1) = dom(σ2);
(ii) for any test Υ , φ1 passes the test Υ if and only if φ2 passes the test Υ .

For instance, the two frames φ1 = νk.s.{x1 = k, x2 = h(s)⊕ (k ⊕ p(x1))} and φ2 = νk.s.{x1 = k, x2 =
s⊕ (k ⊕ p(x1))} are statically equivalent with respect to Eg. However the two frames φ′1 = νk.s.{x1 =
k, x2 = h(s)⊕ (k ⊕ p(x1)), x3 = h(s)} and φ′2 = νk.s.{x1 = k, x2 = s⊕ (k ⊕ p(x1)), x3 = h(s)} are not.
The frame φ′2 passes the test ((x1), x2, x3), but φ′1 does not.

Let us now consider the equational theory from subsection 5.2. Then the following frames νg.a.b.{x1 =
g, x2 = ga, x3 = gb, x4 = ga∗b) and νg.a.b.c.{x1 = g, x2 = ga, x3 = gb, x4 = gc) are statically equiv-
alent. This seems right, it is the DDH assumption: a computational implementation that satisfies in-
distinguishability for the interpretations of this two frames will simply satisfy the DDH assumption.
But soundness would imply much more. Even νg.a.b.{x1 = g, x2 = ga, x3 = gb, x4 = ga2∗b2} and
νg.a.b.c.{x1 = g, x2 = ga, x3 = gb, x4 = gc} will be statically equivalent. It is unreasonable to assume
that this is true for the computational setting. As for non-deductibility, the advantage of considering
FIR as the abstraction of indistinguishability, is that if we add equations in a coherent manner with
respect to the initial computational assumptions (that is with Si), then our proofs still remain compu-
tationally sound. The proposition below says that if we consider initial reasonable sets Sd and Si, then
we get finer approximations of indistinguishability and weak secrecy than 6` and ≈E .

Proposition 1. Let (Sd, Si) be such that Sd ⊆6` and Si ⊆≈E. Then 〈Sd〉6� ⊆6` and 〈Si〉∼= ⊆≈E.

7 Conclusion

In this paper we developed a general framework for relating formal and computational models for
generic encryption schemes in the random oracle model. We proposed general definitions of formal
indistinguishability relation and formal non-derivability relation, that is symbolic relations that are
computationally sound by construction. We extended previous work with respect to several aspects.
First, our framework can cope with adaptive adversaries. This is mandatory in order to prove IND-
CPA security. Second, many general constructions use one-way functions, and often they are analyzed
in the random oracle model: hence the necessity to capture the weak secrecy in the computational
world. Third, the closure rules we propose are designed with the objective of minimizing the initial
relations which depend of the cryptographic primitives and assumptions. We illustrated our framework
on several generic encryption schemes: we proved IND-CPA security of the scheme proposed by Bellare
and Rogaway in [10], of Hash El Gamal [6] and of the scheme proposed by Pointcheval in [24].



As future works, we project to study the (relative) completeness of various equational symbolic
theories. Other extensions will be to capture fully active adversaries or exact security (as in [11],
we could define indistinguishabiliy as up-to some explicit probability p instead of up-to a negligible
probability).
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8 Proofs

8.1 Proof of Theorem 1

Let define (D1, I1) ∧ (D2, I2)
def
= (D1 ∩D2, I1 ∩ I2).

Let (Sd, Si) be some well-formed pair of relations. The existence of the unique smallest (with respect
to @) pair (〈Sd〉6�, 〈Si〉∼=) is implied by the fact that

[1.] (F×T,F× F) is a (FNDR, FIR) such that (Sd, Si) @ (F×T,F× F);
[2.] if (D1, I1) and (D2, I2) are (FNDR, FIR), then (D1, I1) ∧ (D2, I2) is a (FNDR, FIR).
Hence, (〈Sd〉6�, 〈Si〉∼=) can be defined as follows

(〈Sd〉6�, 〈Si〉∼=)
def
=

∧ {
(D, I)|(D, I) is a (FNDR, FIR) such that (Sd, Si) @ (D, I)

}
.

Actually, it is easy to see easy that (〈Sd〉6�, 〈Si〉∼=) is the least fixed point of some continuous
function F( 6|=,∼=) : (F × T) × (F × F) 7→ (F × T) × (F × F) defined following the rules (GD1), ...,
(GD7),(GE1),...,(GE4), (HD1), (HE1), symmetry and transitivity. It can be constructed by applying
iteratively (〈Sd〉n, 〈Si〉n) = Fn

( 6|=,∼=)((Sd, Si)), with n ∈ N until reaching a fixpoint.
Now we prove that 〈Sd〉6� is 6`-sound and 〈Si〉∼= is ≈-sound, provided that =E is =-sound, Sd is

6`-sound and Si is ≈-sound.
Most of the closure rules have premises that assume some hypothesis on 6|= or ∼=. Let suppose that

for any such closure rule (R), we prove its computational soundness, that is:

Fact 81 For any adversary A against the conclusion of the rule (R), there exists some adversary B (or
tuple of adversaries Bi) breaking one of the premises of (R) , and moreover:

[1.] the advantage of A is upper bounded by a polynomial w.r.t. to η and the advantage of B (advan-
tages of Bi, respectively) and

[2.] the adversary A has an execution time which is lower bounded by a polynomial w.r.t. to η and
the execution time of B (execution times of Bi, respectively).

Now let suppose that there is some element (e1, e2) in 〈Sd〉6� or 〈Si〉∼= which is not 6`-sound or ≈-sound.
Let n be the number of steps needed to include (e1, e2) in 〈Sd〉6� or 〈Si〉∼=, i.e. the minimal number of
iterations (〈Sd〉n, 〈Si〉n) needed to get (e1, e2) ∈ 〈Sd〉n or (e1, e2) ∈ 〈Si〉n.

Then, for any adversary A0 against the soundness of (e1, e2), we can construct an adversary An

against the soundness of an element (e0
1, e

0
2) of Sd or Si, such that

[1.] the advantage of A0 is bounded by an expression which depends of n and which is a polynomial
w.r.t. η and the advantage of An, and

[2.] the execution time of An is bounded by an expression which depends of n and which is a
polynomial w.r.t. η and the execution time of A0.

Since our reasoning is asymptotically (and n is independent from η), this would imply that (e0
1, e

0
2)

is not sound, contradiction with the 6`-soundness of Sd or the ≈-soundness of Si.
In what follows we prove soundness for all rules of Section 4.

(GD1) νr.∅ 6� r.

Proof. To easy notations, we note S = [[s]]. Then we have

Pr[bs r← [[s]] : A() = bs] =
∑
bs∈S

Pr[bs′ r← [[s]] : bs′ = bs] ∗ Pr[A() = bs]

=
∑
bs∈S

1
|S|
∗ Pr[A() = bs] =

1
|S|
∗

∑
bs∈S

Pr[A() = bs] =
1
|S|

Now we use the assumption that all sorts are supposed to be of size exponential in η. ut

(GD2) If φ 6|= M then τ(φ) 6|= τ(M) for any renaming τ .

Proof. Using the fact that renamings do not change distributions, we get [[τ(φ), τ(M)]] = [[φ,M ]]. ut



(GD3) If φ 6|= M then φ 6|= N for any term N =E M .
(GD4) If φ 6|= M then φ′ 6|= M for any frame φ′ =E φ.

Proof. Obviously, using the =-soundness of =E . ut

(GD5) If φ 6|= M then φ′φ 6|= M for any frame φ′ such that n(φ′) ∩ n(φ) = ∅.

Proof. Let φ′ such that var(φ′) ⊆ dom(φ) and n(φ′) ∩ bn(φ) = ∅. Let us suppose that φ 6|= M is
6`-sound, and let us prove that φ′φ 6|= M is also 6`-sound. We have to show that for any probabilistic
polynomial-time adversary A against φ′φ 6|= M , there exists an adversary B against φ 6|= M that satisfies
the conditions of Fact 81.

The adversary B uses A as a black box to first compute φ̂
r← [[φ]]A; then it interprets all variables

in var(φ′) by bitstrings obtained in the previous stage (as var(φ′) ⊆ dom(φ)); it continues to use A as
a black box in order to interpret all queries from pvar(φ′); finally it gets a concrete frame from [[φ′φ]]A
and passes it to A; it answers as A. Hence, the advantage of B equals the advantage of A, Adv(B, η, φ 66�
M) = Pr[φ̂, ê

r← [[φ,M ]]B : BO(φ̂) = ê] = Pr[φ̂′′, ê r← [[φ′φ,M ]]A : AO(φ̂′′) = ê] = Adv(A, η, φ′φ 66�M).
In addition, the execution time of B is a polynomial w.r.t. to η and the execution time of A, using

that the size of encoding of φ′ is constant in η. ut

(GD6) For all substitutions σ1, σ2 such that x 6∈ dom(σi), if νñ.{σ1, x = M} ∼= νñ.{σ2, x = N} and
νñ.σ1 6�M then νñ.σ2 6� N .

We prove a more general rule, the rule (GD6g) presented below (then (GD6) can be obtained as
a particular case where U = y and T = z). Obviously, we could prove directly (GD6) and then get
(GD6g) as a consequence of (GD3), (GD6) and (GD7).
(GD6g) If T,U are terms such that U [T/y] =E z and z ∈ var(T )\var(U) and (fn(T )∪fn(U))∩ ñ = ∅,
then for all substitutions σ1, σ2 such that x 6∈ dom(σi) and νñ.{σ1, x = T [M/z]} ∼= νñ.{σ2, x = T [N/z]}
and νñ.σ1 6�M then νñ.σ2 6� N .

Proof. Let us suppose that νñ.σ1 6� M is 6`-sound and νñ.{σ1, x = T [M/z]} ∼= νñ.{σ2, x = T [N/z]} is
≈-sound, and let us prove that νñ.σ2 6� N is also 6`-sound.

We have to show that for any probabilistic polynomial-time adversary A against νñ.σ2 6� N , there
exist adversaries B1 against νñ.{σ1, x = T [M/z]} ∼= νñ.{σ2, x = T [N/z]}, and B2 against νñ.σ1 6� M
which satisfy the conditions of Fact 81.

In our case we will provide an adversary B to play the role of B1 and we will use the adversary A
as player for the role of B2, too.

Since fn(T ) ∩ ñ = ∅, it follows that T (z) is constructible using only dom(σi). Hence, the adversary
B uses A as a black box to first get either (φ̂, x = t̂(ê)) r← [[νñ.{σ1, x = T [M/z]}]]A or (φ̂, x = t̂(ê) r←
[[νñ.{σ2, x = T [N/z]}]]A. Then A stops and answers some string bs. If t̂(ê) = t̂(bs), B answers 1 and
stops. If t̂(ê) 6= t̂(bs), B picks randomly a bit c, answers c and stops. From the definition of B, and using
the =E injectivity of T and the =-soundness of =E , we have the following:

Pr[(φ̂, x = t̂(ê)) r← [[νñ.σ2, x = T [N/z]]]B : BO(φ̂, x = t̂(ê)) = 1|AO(φ̂) = ê] = 1,
Pr[(φ̂, x = t̂(ê)) r← [[νñ.σ1, x = T [M/z]]]B : BO(φ̂, x = t̂(ê)) = 1|AO(φ̂) = ê] = 1,
Pr[(φ̂, x = t̂(ê)) r← [[νñ.σ2, x = T [N/z]]]B : BO(φ̂, x = t̂(ê)) = 1|AO(φ̂) 6= ê] = 1

2 + n2(η)
Pr[(φ̂, x = t̂(ê)) r← [[νñ.σ1, x = T [M/z]]]B : BO(φ̂, x = t̂(ê)) = 1|AO(φ̂) 6= ê] = 1

2 + n1(η)
where n1(η) and n2(η) are some negligible functions.
Now we have

Adv(B, η, νñ.{σ1, x = T [M/z]}, νñ.{σ2, x = T [N/z]}) =
Pr[(φ̂, x = t̂(ê)) r← [[νñ.σ2, x = T [N/z]]]B : BO(φ̂, x = t̂(ê)) = 1]−
Pr[(φ̂, x = t̂(ê)) r← [[νñ.σ1, x = T [M/z]]]B : BO(φ̂, x = t̂(ê)) = 0] =
Pr[(φ̂, x = t̂(ê)) r← [[νñ.σ2, x = T [N/z]]]B : BO(φ̂, x = t̂(ê)) = 1|AO(φ̂) = ê] ∗ Pr[(φ̂, ê) r← [[νñ.σ2, N ]]A :
AO(φ̂) = ê]+
Pr[(φ̂, x = t̂(ê)) r← [[νñ.σ2, x = T [N/z]]]B : BO(φ̂, x = t̂(ê)) = 1|AO(φ̂) 6= ê] ∗ Pr[(φ̂, ê) r← [[νñ.σ2, N ]]A :
AO(φ̂) 6= ê]−



Pr[(φ̂, x = t̂(ê)) r← [[νñ.σ1, x = T [M/z]]]B : BO(φ̂, x = t̂(ê)) = 1|AO(φ̂) = ê] ∗ Pr[(φ̂, ê) r← [[νñ.σ1,M ]]A :
AO(φ̂) = ê]−
Pr[(φ̂, x = t̂(ê)) r← [[νñ.σ1, x = T [M/z]]]B : BO(φ̂, x = t̂(ê)) = 1|AO(φ̂) 6= ê] ∗ Pr[(φ̂, ê) r← [[νñ.σ1,M ]]A :
AO(φ̂) 6= ê] =
Pr[(φ̂, ê) r← [[νñ.σ2, N ]]A : AO(φ̂) = ê] + ( 1

2 + n2(η)) ∗ Pr[(φ̂, ê) r← [[νñ.σ2, N ]]A : AO(φ̂) 6= ê]−
Pr[(φ̂, ê) r← [[νñ.σ1,M ]]A : AO(φ̂) = ê]− ( 1

2 + n1(η)) ∗ Pr[(φ̂, ê) r← [[νñ.σ1,M ]]A : AO(φ̂) 6= ê] =
Pr[(φ̂, ê) r← [[νñ.σ2, N ]]A : AO(φ̂) = ê] + 1

2 ∗ (1− Pr[(φ̂, ê) r← [[νñ.σ2, N ]]A : AO(φ̂) = ê])−
Pr[(φ̂, ê) r← [[νñ.σ1,M ]]A : AO(φ̂) = ê]− 1

2 ∗ (1− Pr[(φ̂, ê) r← [[νñ.σ1,M ]]A : AO(φ̂) = ê] + n3(η) =
1
2 ∗ (Pr[(φ̂, ê) r← [[νñ.σ2, N ]]A : AO(φ̂) = ê]− Pr[(φ̂, ê) r← [[νñ.σ1,M ]]A : AO(φ̂) = ê])) + n3(η) =
1
2 ∗ (Adv(A, η, νñ.σ 6� N)− Adv(A, η, νñ.σ 6�M))) + n3(η)

for some well-chosen negligible function n3(η).
Moreover, it is easy to see that the execution time of B is a polynomial w.r.t. to η and the execution

time of A, using that the test t̂(ê) ?= t̂(bs), and picking uniformly a random bit can be done in a time
polynomial w.r.t. to η. ut

(GD7) If φ 6|= (Tφ)[M/z] then φ 6|= M , where T is such that fn(T ) ∩ n(φ) = ∅.

Proof. Let us suppose that φ 6|= (Tφ)[M/z] is 6`-sound and let us prove that φ 6|= M is also 6`-sound.
We show that for any probabilistic polynomial-time adversary A against φ 6|= M , there exists adversary
B against φ 6|= (Tφ)[M/z] which satisfies the conditions of Fact 81.

Since fn(T ) ∩ ñ = ∅, it follows that T (z) is constructible using only dom(φ). Hence, the adversary
B uses A as a black box to first get (φ̂, t̂(z) r← [[φ, T (z)]]A. Then A answers some string bs and stops. B
answers t̂(bs) and stops.

Hence, the advantage of B is greater than the advantage of A, Adv(B, η, φ 66� (Tφ)[M/z]) =
Pr[φ̂, t̂(e) r← [[φ, (Tφ)[M/z]]]B : BO(φ̂) = t̂(e)] = Pr[φ̂, t̂(z), e r← [[φ, T (z),M ]]A : t̂(AO(φ̂)) = t̂(e)] ≥
Pr[φ̂, e

r← [[φ,M ]]A : AO(φ̂) = e] = ê] = Adv(A, η, φ 66�M).
In addition, the execution time of B is a polynomial w.r.t. to η and the execution time of A, using

that the size of encoding of φ′ is constant in η. ut

(GE1) If φ1
∼= φ2 then φφ1

∼= φφ2, for any frame φ such that var(φ) ⊆ dom(φi) and n(φ)∩ bn(φi) = φ.

Proof. Let φ such that var(φ) ⊆ dom(φi) and n(φ) ∩ bn(φi) = φ. Let us suppose that φ1
∼= φ2 is

≈-sound, and let us prove that φφ1
∼= φφ2 is also ≈-sound. We have to show that for any probabilistic

polynomial-time adversary A, ([[φφ1]]A) ≈ ([[φφ2]]A).
Let us suppose that there exists a probabilistic polynomial-time adversary A such that ([[φφ1]]A) 6≈

([[φφ2]]A), that is Pr[φ̂′ r← [[φφ1]]A : AO(φ̂′) = 1]− Pr[φ̂′ r← [[φφ2]]A : AO(φ̂′) = 1]
is non-negligible. Then we construct an adversary B such that Pr[φ̂ r← [[φ1]]B : BO(φ̂) = 1]− Pr[φ̂ r←

[[φ2]]B : BO(φ̂) = 1] is non-negligible.
The adversary B uses A as a black box to first get φ̂

r← [[φi]]A; then it interprets all variables in
var(φ) by bitstrings obtained in the previous stage (as var(φ) ⊆ dom(φi)); then it continues to use A
as a black box in order to interpret all queries from pvar(φ); finally it get a concrete frame φ̂′ from
[[φφi]]A and passes it to A; it answers as A.

Hence, the advantage of B equals the advantage of A, which is non-negligible. In addition, the
execution time of B is a polynomial w.r.t. to η and the execution time of A, using that the size of
encoding of φ is constant in η. ut

(GE2) φ ∼= φ′ for any frame φ′ such that φ′ =E φ.

Proof. Obviously, using the =-soundness of =E . ut

(GE3) τ(φ) ∼= φ for any renaming τ .

Proof. Using the fact that renamings do not change distributions, we get [[τ(φ)]] = [[φ]]. ut



(GE4) If M,N are terms of the same sort such that N [M/z] =E y and y ∈ var(M) \ var(N), then
for any substitution σ such that r 6∈ (fn(σ) ∪ fn(M) ∪ fn(N)) and x 6∈ dom(σ) it holds νñ.r.{σ, x =
M [r/y])} ∼= νñ.r.{σ, x = r}.

Proof. We prove that the statistical distance d([bs r← [[s]] : ĝ(bs)], [bs r← [[s]] : bs]) is negligible for any
computational functions ĝ : [[s]] → [[s]] and ĝ−1 : [[s]] → [[s]] such that Pr[bs r← [[s]] : ĝ−1(ĝ(bs)) 6= bs] is
negligible. Then, the correctness of rule (GE4) follows using the =-soundness of =E and noticing that
the context N can be used to build the inverse function of λr.M(r).

Let us suppose that Pr[bs r← [[s]] : ĝ−1(ĝ(bs)) 6= bs] is negligible. To easy notations, we note S = [[s]],
S1 = {bs ∈ S|ĝ−1(ĝ(bs)) = bs}, S2 = {bs ∈ S|ĝ−1(ĝ(bs)) 6= bs}, s = |S|, si = |Si|. Our hypothesis is
equivalent to s2 = s ∗ η for some negligible function η. Also, it easy to see that ĝ : S1 → ĝ(S1) is an
injective function, and hence a bijective function too. So, if bs′ ∈ ĝ(S1) we know that there is exactly
one element in S1 noted i(bs′) such that ĝ(i(bs′)) = bs′. We note in this case S1,bs′ = S1 \ {i(bs′)}.
Moreover, |S \ ĝ(S1)| = |S \ S1| = s2.

d([bs r← [[s]] : ĝ(bs)], [bs r← [[s]] : bs])

=
∑

bs′∈S

∣∣Pr[bs r← [[s]] : ĝ(bs) = bs′]− 1
s

∣∣
=

∑
bs′∈S1

∣∣Pr[bs r← [[s]] : ĝ(bs) = bs′]− 1
s

∣∣ +
∑

bs′∈S2

∣∣Pr[bs r← [[s]] : ĝ(bs) = bs′]− 1
s

∣∣
≤

∑
bs′∈S1∩ĝ(S1)

∣∣Pr[bs r← [[s]] : ĝ(bs) = bs′]− 1
s

∣∣ +
∑

bs′∈S1∩(S\ĝ(S1))

∣∣Pr[bs r← [[s]] : ĝ(bs) = bs′]− 1
s

∣∣ + η

≤
∑

bs′∈S1∩ĝ(S1)

∣∣1
s
∗

∑
bs∈S

χ[ĝ(bs)=bs′] −
1
s

∣∣ + η + η

=
∑

bs′∈S1∩ĝ(S1)

1
s
∗

∣∣χ[ĝ(i(bs′)))=bs′] +
∑

bs∈S1,bs′

χ[ĝ(bs)=bs′] +
∑

bs∈S2

χ[ĝ(bs)=bs′] − 1
∣∣ + 2 ∗ η

≤
∑

bs′∈S1∩ĝ(S1)

1
s
∗

∣∣1 + 0 + s2 − 1
∣∣ + 2 ∗ η = 3 ∗ η ut

(HD1) If νñ.r.σ[r/h(T )] 6� T and r 6∈ n(σ), and if σ[r/h(T )] does not contain any subterm of the form
h(•), then νñ.σ 6� T .

Proof. Let us suppose that νñ.r.σ[r/h(T )] 6� T is 6�-sound, and let us prove that νñ.σ 6� T is 6�-sound.
Let us suppose that there exists a probabilistic polynomial-time adversaryA such that Adv(A, η, νñ.σ 6�

T ) = Pr[φ̂, bs
r← [[φ, νñ.σ]]A : AO(φ̂) = bs] is non-negligible. Then we construct an adversary B such

that Adv(B, η, νñ.r.σ[r/h(T )] 6� T ) = Pr[φ̂, bs
r← [[νñ.r.σ[r/h(T )], T ]]B : BO(φ̂) = bs] is non-negligible.

The adversary B uses A as a black box to get φ̂
r← [[νñ.r.σ[r/h(T )]]]A, and stores all queries made

by A to the oracle h. When A stops and answers bs, it picks randomly one value q among the answer
of A and the queries made by A to the oracle h, and answers q. Since the execution time of A is
polynomial, the cardinal of the set containing the answer bs of A and the queries made by A must be
some polynomial q(η). We compute now the advantages of B and A. In order to simplify notations we

use: D1
def
= [φ̂ r← [[νñ.r.σ[r/h(T )]]]A : φ̂], D0

def
= [φ̂ r← [[νñ.r.σ]]A : φ̂], for any event Ev, PrD[Ev]

def
=

Pr[φ̂ r← D : Ev] and Ask the event that A asks to the oracle h the bitstring corresponding to the
concrete implementation of term T .

Then the advantage of B is
Adv(B, η, νñ.r.σ[r/h(T )] 6� T ) = 1

q(η) × PrD1 [AO(φ̂) = 1 ∨Ask] =
1

q(η) × (PrD1 [Ask] + PrD1 [AO(φ̂) = 1 ∧ ¬Ask]) =
1

q(η) × (PrD0 [Ask] + PrD0 [AO(φ̂) = 1|¬Ask]× PrD0 [¬Ask]) =



1
q(η) × PrD0 [AO(φ̂) = 1 ∨Ask] ≥ 1

q(η) × PrD0 [AO(φ̂) = 1] = 1
q(η) × Adv(A, η, νñ.σ 6� T )

since PrD1 [Ask] = PrD0 [Ask], PrD1 [¬Ask] = PrD0 [¬Ask] and PrD1 [AO(φ̂) = 1|¬Ask] = PrD0 [AO(φ̂) =
1|¬Ask].
Obviously, the execution time of B is a polynomial w.r.t. to η and the execution time of A. ut

(HE1) If νñ.r.σ[r/h(T )] 6� T and r 6∈ n(σ), and if σ[r/h(T )] does not contain any subterm of the form
h(•), then νñ.r.σ ∼= νñ.r.σ[r/h(T )].

Proof. Let us suppose that νñ.r.σ[r/h(T )] 6� T is 6�-sound, and let us prove that νñ.r.σ ∼= νñ.r.σ[r/h(T )]
is ≈-sound. We have to show that for any probabilistic polynomial-time adversary A, ([[νñ.r.σ]]A) ≈
([[νñ.r.σ[r/h(T )]]]A).

Let us suppose that there exists a probabilistic polynomial-time adversary A such that ([[νñ.r.σ]]A) 6≈
([[νñ.r.σ[r/h(T )]]]A), that is

Pr[φ̂ r← [[νñ.r.σ]]A : AO(φ̂) = 1]− Pr[φ̂ r← [[νñ.r.σ[r/h(T )]]]A : AO(φ̂) = 1]
is non-negligible. Then we construct an adversary B such that Adv(B, η, νñ.r.σ[r/h(T )] 6� T ) =

Pr[φ̂, bs
r← [[νñ.r.σ[r/h(T )], T ]]B : BO(φ̂) = bs] is non-negligible.

The adversary B uses A as a black box to get φ̂
r← [[νñ.r.σ[r/h(T )]]]A, and stores all queries made

by A to the oracle h. When A stops, it picks randomly one value q among the queries made by A to
the oracle h, and answers q. Since the execution time of A is polynomial, the number of queries made
by A must be some polynomial q(η).

We compute now the advantages of B and A. In order to simplify notations, we use as previously:
D1

def
= [φ̂ r← [[νñ.r.σ[r/h(T )]]]A : φ̂], D0

def
= [φ̂ r← [[νñ.r.σ]]A : φ̂], for any event Ev, PrD[Ev]

def
= Pr[φ̂ r←

D : Ev] and Ask the event that A asks to the oracle h the bitstring corresponding to the concrete
implementation of term T .

Then the advantage of B is Adv(B, η, νñ.r.σ[r/h(T )] 6� T ) = 1
q(η) × PrD1 [Ask].

Adv(A, η, νñ.r.σ ∼= νñ.r.σ[r/h(T )]) = PrD1 [AO(φ̂) = 1]− PrD0 [AO(φ̂) = 1] =
PrD1 [AO(φ̂) = 1|Ask]× PrD1 [Ask] + PrD1 [AO(φ̂) = 1|¬Ask]× PrD1 [¬Ask]−
(PrD0 [AO(φ̂) = 1|Ask]× PrD0 [Ask] + PrD1 [AO(φ̂) = 1|¬Ask]× PrD1 [¬Ask]) =
(PrD1 [AO(φ̂) = 1|Ask]− PrD0 [AO(φ̂) = 1|Ask])× PrD1 [Ask]

since PrD1 [Ask] = PrD0 [Ask], PrD1 [¬Ask] = PrD0 [¬Ask] and PrD1 [AO(φ̂) = 1|¬Ask] = PrD0 [AO(φ̂) =
1|¬Ask].

We get Adv(A, η, νñ.r.σ ∼= νñ.r.σ[r/h(T )]) =
(PrD1 [AO(φ̂) = 1|Ask]− PrD0 [AO(φ̂) = 1|Ask])× q(η)× Adv(B, η, νñ.r.σ ∼= νñ.r.σ[r/h(T )]), that is
Adv(A, η, νñ.r.σ ∼= νñ.r.σ[r/h(T )]) ≤ q(η)× Adv(B, η, νñ.r.σ ∼= νñ.r.σ[r/h(T )]).

Obviously, the execution time of B is a polynomial w.r.t. to η and the execution time of A. ut

(SyE) If φ1
∼= φ2 then φ2

∼= φ1.
(TrE) If φ1

∼= φ2 and φ2
∼= φ3 then φ1

∼= φ3.

Proof. Obviously, using (GE2) and that =E is an equivalence relation. ut

8.2 Hints for proofs of results in Section 5 and Section 6

(XE1) If r 6∈ (fn(σ) ∪ fn(T )) then νñ.r.{σ, x = r ⊕ T} ∼= νñ.r.{σ, x = r}.

Proof. Consequence of rule (GE4) for M = y ⊕ T and N = z ⊕ T and equations (XEqi). ut

(CD1) If (φ 6|= T1 ∨ φ 6|= T2) then φ 6|= T1||T2.

Proof. Consequence of rules (GD5) and (GD3) and equations (PEq1) and (PEq2). ut

(XD1) If νñ.σ 6� T and r 6∈ (ñ ∪ fn(T )) then νñ.r.{σ, x = r ⊕ T} 6� T .

Proof. Consequence of rules (GD5), (GD6), (HE1) and (SyE). ut



(ODg1) If f is a one-way function and νñ.{xk = pub(k), x = T} ∼= νr.{xk = pub(k), x = r}, then
νñ.{xk = pub(k), x = fk(T )} 6� T .

Proof. Consequence of rules (OD1), (GE1) and (GD6). ut

Proposition 1 Let (Sd, Si) be such that Sd ⊆6` and Si ⊆≈E . Then 〈Sd〉6� ⊆6` and 〈Si〉∼= ⊆≈E .

Proof. It is easy to prove that 6` and≈E are closed with respect to the rules (GD1), ..., (GD7),(GE1),...,(GE4),
(HD1), (HE1), symmetry and transitivity. ut


