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Abstract

Self-stabilization is a strong property, which guarantees that a distributed system always resumes a
correct behavior starting from an arbitrary initial state. Since it is a strong property, some problems
cannot have self-stabilizing solutions. Weaker guarantees hence have been later introduced to cope with
impossibility results, e.g., probabilistic self-stabilization only guarantees probabilistic convergence to a
correct behavior, and weak stabilization only guarantees the possibility of convergence. In this paper,
we investigate the relative power of self, probabilistic, and weak stabilization, with respect to the set
of problems that can be solved. Weak stabilization is by definition stronger than self-stabilization and
probabilistic self-stabilization in that precise sense. We first show that weak stabilization allows to solve
problems having no self-stabilizing solution. We then show that any finite state deterministic weak
stabilizing algorithm to solve a problem under the strongly fair scheduler is always a probabilistic self-
stabilizing algorithm to solve the same problem under the randomized scheduler. Unfortunately, this
good property does not hold in general for infinite state algorithms. We however show that for some
classes of infinite state algorithms, this property holds. These results hint at more practical use of weak
stabilizing algorithms, as they are easier to design and prove their correctness than their self-stabilizing
and probabilistic self-stabilizing counterparts.

keywords: Distributed systems; distributed algorithm; fault-tolerance; self-stabilization; weak stabiliza-
tion; probabilistic self-stabilization.

1 Introduction

Self-stabilization [2–4] is a versatile technique to withstand any finite number of transient faults in a dis-
tributed system. Informally, an algorithm is self-stabilizing if, starting from any initial configuration, every
execution eventually reaches a point from which its behavior is correct. The arbitrary initial configuration
models any configuration which can be reached by the system immediately after the occurrence of transient
faults. Thus, self-stabilization makes no hypothesis on the nature or extent of faults that could hit the
system, and recovers from the effects of those faults in a unified manner.

Such versatility comes with a cost: Self-stabilizing algorithms may require a large amount of resources,
may be difficult to design and prove, and are unable to solve some fundamental problems in distributed
computing. To cope with those issues, several weakened forms of self-stabilization have been proposed in
the literature.

Probabilistic self-stabilization [5] weakens the guarantee on the convergence property; starting from any
initial configuration, an execution reaches a point from which its behavior is correct with probability 1. Some
problems such as graph coloring and token passing on anonymous networks are known to be impossible to
solve under the deterministic self-stabilizing setting, but there are probabilistic self-stabilizing algorithms for
them [5–7]. Probabilistic self-stabilization is also used to reduce resource consumption [8].

Pseudo-stabilization [9] relaxes the notion of “point” in the execution from which the behavior is correct;
every execution simply has a suffix that exhibits correct behavior, yet the time before reaching this suffix may

∗A preliminary version of this work was published in [1].
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be unbounded. Burns et al [9] shows that the alternating bit protocol is an example of pseudo-stabilizing
algorithm that is not self-stabilizing.

The notion of k-stabilization [4, 10–12] prohibits some of the configurations from being possible initial
states, as an initial configuration may only be the result of at most k faults, where the number of faults
is defined as the number of process memories to change to reach a correct configuration. For the token
circulation problem, two k-stabilizing algorithms are given that guarantee a small convergence time depending
only on k (not the size of system) [10]. In [12], authors propose a k-stabilizing solution for the leader recovery
problem in anonymous networks. This problem has no (deterministic) self-stabilizing solution.

Finally, weak stabilization [13] stipulates that starting from any initial configuration, there exists an
execution that eventually reaches a point from which its behavior is correct. It is only known that a
sufficient condition on the scheduling hypothesis makes a weak stabilizing solution self-stabilizing [13].

From a problem-centric point of view, probabilistic, pseudo, and k variants of self-stabilization have been
demonstrated to be strictly more powerful than classical self-stabilization, which comforts the intuition that
they provide weaker guarantees. In contrast, no such knowledge is available regarding weak stabilization.

In this paper, our goal is not to propose particular instance of weak stabilizing algorithms. Merely, we
want to show some general properties about weak-stabilization. In particular, we address the open question
of the power of weak stabilization with respect to the set of problems that can be solved. Our contribution
is three-folds:

1. We first prove that from the problem-centric point of view, weak stabilization is strictly stronger than
self-stabilization, both for static problems, such as leader election, and for dynamic problems, such as
token passing.

2. We then show that there is a relationship between deterministically weak stabilizing algorithms and
probabilistically self-stabilizing ones: Any finite state deterministically weak stabilizing algorithm to
solve a problem under the strongly fair scheduler is always a probabilistically self-stabilizing algorithm
to solve the same problem under the randomized scheduler.1 Unfortunately, infinite state algorithms do
not have this good property. We however show this property for several natural classes of algorithms.

3. We also propose a transformer that transforms any finite state deterministically weak stabilizing al-
gorithm to solve a problem under the strongly fair scheduler into a randomized algorithm that is
probabilistically self-stabilizing to solve the same problem under the synchronous scheduler.2

These results have practical impact, since it is much easier to design a weak stabilizing algorithm and
to prove its correctness than a probabilistic self-stabilizing algorithm (as we shall see in Section 3), and our
scheme automatically makes them self-stabilizing in the probabilistic sense when new simple weak stabilizing
solutions appear.

Paper Outline. The remainder of the paper is organized as follows. After providing the notions and
notations in the next section, we present in Section 3 very simple weak stabilizing algorithms for the token
circulation and the leader election problems on anonymous systems, for which there are no deterministic
self-stabilizing algorithms. In Section 4, we then show that some (finite and infinite state) weak stabilizing
algorithms can be transformed into probabilistic self-stabilizing algorithms. In Section 5, we discuss about
time complexity issues. We make some concluding remarks in Section 6.

2 Preliminaries

2.1 Graphs

A digraph G is a pair (V ,E), where V is a set of nodes and E is a set of directed edges. Each edge is an
ordered pair of two nodes. Self-loops are allowed to exist. A node p is a predecessor of a node q if (p,q) ∈ E.

1For the definitions of the strongly fair and the randomized scheduler, see Section 2 and Subsection 4.1.
2For the definition of the synchronous scheduler, see Section 2.
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Let Γ−q = {p : (p, q) ∈ E} be the set of predecessors of q. The number δ−q = |Γ−q | of the predecessors of q
is called the indegree of q. Let Γ+

q = {p : (q, p) ∈ E} be the set of successors of q. δ+q = |Γ+
q | is called the

outdegree of q.
A (directed) path of length k is a sequence P = p0, p1 , . . . , pk of k+1 nodes in V such that (pi, pi+1) ∈ E

for all 0 ≤ i ≤ k−1. The distance d(p, q) between two nodes p and q is the length of a shortest path between
p and q in G. G is said to be strongly connected if there is a path between every pair of nodes. A path
P = p0, p1, . . . , pk is said to be simple if pi 6= pj holds for all 0 ≤ i < j ≤ k. A path P = p0, p1, . . . ,
pk is called a directed (simple) cycle if path P = p0, p1, . . . , pk−1 is simple and p0 = pk. A finite digraph
consisting only of a single directed cycle is called a (unidirectional) ring.

A digraph G = (V,E) is said to be undirected if (p, q) ∈ E implies (q, p) ∈ E for all p, q ∈ V . Note
that every pair of directed edges (p, q) and (q, p) are identified as a single undirected edge in an undirected
graph. In an undirected graph, a path P = p0, p1, . . . , pk is said to be a (simple) cycle if p0 = pk and for all
0 ≤ i < j < k, pi 6= pj and (pi, pi+1) 6= (pj , pj+1). A node p is called a neighbor of a node q, if (p, q) ∈ E.
Let Γq and δq be respectively the set {p : (p, q) ∈ E} of the neighbors of q ∈ V and the degree |Γq| of q. We
mean an undirected graph by a graph.

A graph G is connected if there is a path in G between every pair of nodes. A connected acyclic finite
graph is called a (finite) tree. In a tree, we distinguish two types of nodes; the leaves (i.e., any node p such
that δp = 1) and the internal nodes (i.e., any node p such that δp > 1). The eccentricity ec(p) of a node p is
maxq∈V d(p,q). A node p is a center of G if ec(p) ≤ ec(q) for all q ∈ V . The next property is well-known [14].

Property 1 A tree has a unique center or two neighboring centers.

2.2 Anonymous Distributed Systems

Consider a distributed system consisting of N communicating processes. As usual, we model its communi-
cation network by a digraph G = (V ,E), where V and E respectively represent the sets of the processes and
the unidirectional communication links, i.e., an edge (p, q) is in E if and only if process q can directly obtain
information from process p. Note that p can of course directly obtain information from p itself, but we do
not include self-loop (p, p) in E for simplicity: G does not contain self-loops.

In this paper, we propose algorithms for anonymous distributed systems. The processes do not have
unique names (identifiers) and may only be differentiated by their indegrees and/or outdegrees. Process
names p ∈ V are used only for the purpose of explanation. A process q ∈ V (and algorithm) thus identifies
each of its predecessors in Γ−q using local indices Lq = {0, 1, . . . , δ−q − 1}.

Communication is carried out by means of shared variables. Each process p holds a set of shared variables
and can access them to read and to write. The successors of p can access them only to read. Suppose that a
variable v is provided in each process in V . We denote the variable v at a process p by vp. If vp is a shared
variable and (p, q) ∈ E, then q can read the value of vp. However q cannot use p to specify process p. It
hence specifies vp as vip , i.e., as the variable v of the predecessor whose index is ip ∈ Lq.

A variable in a process takes a value from a pre-determined domain. The state of a process is a function
(assignment) that assigns, to each of the variables in the process, a value in its domain. Let Sp be the set
of all states of a process p ∈ V . Then the Cartesian product Πp∈V Sp of Sp for all p ∈ V forms the set
of all (global) configurations; a configuration describes the values of all variables in the system. The above
definition of configuration implicitly assumes that read and write operations are atomic and finish at a time
even when a read operation is initiated by a neighbor, unlike the message passing model, in which we also
need the state of each communication link to describe the configuration of system.

A process p can change its state by executing its (local) algorithm specified by a sequence of guarded
actions of the form:

〈label〉 :: 〈guard〉 → 〈statement〉.

The guard of an action at p is a boolean expression that involves some variables of p and its predecessors.
An action can be executed only if its guard is true, and the statement of the action updates some variables
of p. We assume that the execution of any action is atomic.
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An action of some process p is said to be enabled in a configuration γ if its guard is true. Without loss
of generality, we assume that at most one action is enabled at p in γ. We say that p is enabled in γ if one
of its actions is enabled in γ. Simultaneous executions of actions by a set of processes induce a transition
between two configurations. If a configuration γ′ yields from a configuration γ, we denote this transition by
γ 7→ γ′. For the consistency, we allow γ 7→ γ for any configuration γ.

Given a communication network G and an algorithm A, the set C of configurations and the transition
relation 7→ are determined. We model the (behavior of) distributed system executing A on G by a state
transition system (i.e., a digraph) S = (C,7→). An execution of S is an infinite (directed) path γ0, γ1, . . .
starting from a configuration γ0 in C. We call each of γi−1 7→ γi a step. A configuration γ is said to be
terminal if no processes are enabled in γ. Remark that the only possible execution starting from a terminal
configuration γ is γω, i.e., an infinite sequence γ, γ, . . . We say that a configuration γ′ is reachable from a
configuration γ, if there is a directed path from γ to γ′ in S.

In general, there is more than one execution ξ = γ0, γ1, . . . in S for some initial configuration γ0 ∈ C. A
scheduler determines which executions among them are executable by non-deterministically choosing some
processes to have them execute the corresponding actions from the processes enabled in γt, at each time
instant t. We define a scheduler as a predicate σ over the executions. We denote by E(S, σ) the set of all
executions that can occur as an execution of S under σ.

The scheduler that always activates all enabled processes is called the synchronous scheduler. A scheduler
that always activates exactly one process is called a central scheduler. Every scheduler that is not central
is said to be distributed. In this paper, unless otherwise specified, the scheduler is always assumed to be
distributed.

Then, a scheduler may have some fairness properties [15]. A scheduler is proper, if it always chooses at
least one process as long as there are enabled processes. A scheduler is weakly fair if every continuously
enabled process is eventually chosen to execute an action. A scheduler is strongly fair if every process that
is enabled infinitely often is eventually chosen to execute an action. Notice that we will also use a stronger
version of strongly fairness introduced by Gouda in [13], hence called Gouda’s strong fairness: A scheduler
is Gouda’s strongly fair if for every transition γ 7→ γ′, if γ occurs infinitely often in an execution ξ, then
γ 7→ γ′ also appears infinitely often in ξ. Finally, the randomized scheduler always chooses each of the
enabled processes independently at random with probability 1/2. Hence the randomized scheduler is not
proper, since it may not activate any process even if there are enabled ones.

Note that predicate f defined over a set D is said to be larger than another predicate g, if g(d) implies
f(d) for any d ∈ D. By the strongly fair (resp. weakly fair, proper) scheduler, we mean a strongly fair (resp.
weakly fair, proper) scheduler/predicate that is the largest among all strongly fair (resp. weakly fair, proper)
schedulers. For example, by definition every execution that satisfies the strongly fair scheduler/predicate
also satisfies the weakly fair constraint, but the controversy is not true. So, we consider the weakly fair
scheduler/predicate that matches all executions satisfying the weakly fair constraint.

Given a problem, let SP be its specification, which is a predicate defined over the executions of S and
specifies which executions solve the problem. We say that a system S under a scheduler σ solves the
problem if E(S, σ) 6= ∅ and SP(ξ) = true for any ξ ∈ E(S, σ). Let σW , σF and σS be the weakly fair,
the strongly fair and the synchronous schedulers, respectively. By definition, for any distributed system S,
E(S, σS) ⊆ E(S, σF ) ⊆ E(S, σW ). Hence any problem that cannot be solved under σS cannot be solved
under σF and σW . In contrast, any system that can solve a problem under σW can solve the problem under
σF and σS .3 Note that σF and σW may not be proper and can activate no process despite that there are
enabled processes.4

2.3 Stabilizing Systems

We now formally define the three notions of stabilizing system used in this paper.

3By the same reason, any problem that can be solved under σW (resp. σF ) can be solved under any weakly fair (resp.
strongly fair) scheduler, which is the reason we selected σW (resp. σF ) as the representative of the weakly fair (resp. strongly
fair) family of schedulers.

4In some literature, strongly fair and weakly fair schedulers are assumed to be proper.
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Let S, σ and SP be a distributed system, a scheduler and a specification, respectively.

Definition 1 (Deterministic Self-Stabilization [2]) S is deterministically self-stabilizing for SP under
σ, if there is a non-empty subset L of C satisfying:

Strong Closure Property: Any execution in E(S, σ) with an initial configuration in L always satisfies
SP.

Certain Convergence Property: Any execution in E(S, σ) eventually reaches a configuration in L.

Definition 2 (Deterministic Weak Stabilization [13]) S is deterministically weak stabilizing for SP
under σ, if there exists a non-empty subset L of C satisfying:

Strong Closure Property: Any execution in E(S, σ) with an initial configuration in L always satisfies
SP.

Possible Convergence Property: Starting from any configuration, there is an execution in E(S, σ) that
eventually reaches a configuration in L.

Definition 3 (Probabilistic Self-Stabilization [5]) S is probabilistically self-stabilizing for a SP under
σ, if there is a non-empty subset L of C satisfying:

Strong Closure Property: Any execution in E(S, σ) with an initial configuration in L always satisfies
SP.

Probabilistic Convergence Property: Any execution in E(S, σ) eventually reaches a configuration in L
with probability 1.

A configuration is said to be legitimate if it is in L, illegitimate otherwise.

2.4 Toy Examples

We now give toy examples of deterministic self-stabilizing, deterministic weak-stabilizing, and probabilistic
self-stabilizing systems, respectively.

In all examples, we assume a network of two neighboring processes p0 and p1. Each process px (x ∈ {0, 1})
maintains a single boolean variable Vpx ∈ {0, 1}. Hence, we denote the configuration of the system by
〈Vp0 , Vp1〉. The set of all possible configurations is then {〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}.

The specification SP is satisfied if and only if Vp0 = Vp1 and both variables do not change thereafter. In
all examples, the set of legitimate configurations L is {〈0, 0〉, 〈1, 1〉}.

The algorithms we give are uniform. Moreover, ∀x ∈ {0, 1}, px = p(x+1) mod 2, i.e., px is the neighbor of
px. Finally, we assume a strongly fair scheduler.

The algorithm A consisting in one single action Ra (given below) is deterministically self-stabilizing for
SP.

Ra :: Vpx 6= Vpx ∧ Vpx = 0→ Vpx := 1

The state transition system implied by Algorithm A is given in Figure 1.(1). It is easy to see that the
algorithm is self-stabilizing for SP. Indeed, from any illegitimate configuration, the system immediately
reaches a legitimate one after the scheduler activates the unique enabled process. Moreover, the set of
legitimate configurations is trivially closed, as all legitimate configurations are terminal.

Let B be the algorithm consisting in one single action Rb:

Rb :: Vpx 6= Vpx → Vpx := V(px+1) mod 2

The state transition system of Algorithm B is given in Figure 1.(2). This state transition system contains
a cycle of illegitimate configurations, and the daemon can enforce the system to loop in this cycle. So, B is
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not deterministically self-stabilizing for SP. However it is deterministically weak stabilizing for SP. Indeed,
from any illegitimate configuration (〈0, 1〉 or 〈1, 0〉) there is a directed path (of length 1) that leads to a
legitimate configuration. Similarly to the previous example, the set of legitimate configurations is trivially
closed.

Let C be the algorithm consisting in one single action Rc:

Rc :: Vpx 6= Vpx → Vpx := Rand()

where Rand is a random bit generator, which returns one of the two boolean values with the same probability
(i.e., 1

2 ).
The state transition system of Algorithm C is the same as the one of B. So, Algorithm C is also weak-

stabilizing for SP. Now, it is also probabilistically self-stabilizing for SP. Indeed, each time the scheduler
activates one or more enabled processes in an illegitimate configuration, there is a positive probability
(actually, probability 1

2 ) that the next configuration is legitimate. Hence, we can then conclude that C
converges with probability 1.

The probability laws for each non-empty choice of the scheduler, assuming that the configuration is 〈0, 1〉,
are given below (the probability laws w.r.t. 〈1, 0〉 are similar):

Activated proc. / Next conf. 〈0, 0〉 〈0, 1〉 〈1, 0〉 〈1, 1〉
p0 0 1

2 0 1
2

p1
1
2

1
2 0 0

p0, p1
1
4

1
4

1
4

1
4

<0,0> <1,1>

<0,1> <1,0>

<0,0> <1,1>

<0,1> <1,0>

(1) (2)

Figure 1: State transition systems of Algorithms A and B: Labeled nodes represent configurations, and
arrows denote the possible transitions.

3 Weak Stabilizing Algorithms that are not Self-stabilizing

In this section, we show that weak stabilization is strictly stronger than self-stabilization, from the problem-
centric point of view. Intuitively, this result can be understood from the difference of the role of a scheduler in
the self-stabilization and the weak stabilization settings. In the former, the scheduler is seen as an adversary ;
the algorithm must stabilize the system, tolerating any “malicious behavior” of the scheduler. Conversely, in
the latter, the scheduler can be viewed as a friend ; the algorithm can expect the scheduler its “most favorite
behavior” to stabilize the system. As a matter of fact, the effect of the scheduler is reversed in weak and
self-stabilization: the larger the scheduler is (i.e., the more executions are allowed under the scheduler), the
easier the weak stabilization can be established, but the harder the self-stabilization is.
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In the light of the above intuition, let σ and σ′ be any two schedulers such that σ is larger than σ′. We
then have (i) if S is self-stabilizing for SP under σ, so is S for SP under σ′, (ii) if S is self-stabilizing for
SP under σ′, S is weak-stabilizing for SP under σ′.

An interesting question is the following: Let S be a weak stabilizing system for SP under σ′. Is S
also weak stabilizing for SP under σ? In general, the answer is no. See, for example, the strict clock
synchronization problem [16]. There is self-stabilizing, and consequently weak stabilizing, solutions for that
problem under the synchronous scheduler. Now, the closure property cannot be always maintained assuming
the strongly fair scheduler. However, note that the answer can be yes for a large class of problems, e.g., the
silent tasks [17] that are self-stabilizing (resp. weak stabilizing) under σ′ are also weak stabilizing under σ.

Finally, note that the converse of (ii) can be true for some schedulers, e.g., we have the following propo-
sition for the synchronous scheduler, since the execution starting from any configuration is uniquely deter-
mined.

Proposition 1 Let S and SP be any distributed system and specification, respectively. Under the syn-
chronous scheduler, S is deterministically weak stabilizing for SP, if and only if it is deterministically
self-stabilizing for SP.

Hence, even if it seems natural that weak stabilization is strictly stronger than self-stabilization from
the problem-centric point of view, the result is not trivial. The following two subsections give very simple
weak stabilizing (deterministic) algorithms to solve the token passing and the leader election problems on
anonymous networks. This establishes that weak stabilization is strictly stronger than self-stabilization, as
no deterministically self-stabilizing algorithms can exist for these problems.

3.1 Token Circulation

This subsection considers the token circulation problem in an anonymous unidirectional ring under the
strongly fair scheduler. Let G = (V,E) be a unidirectional ring of size N , where V = {0, 1, . . . , N − 1} and
E = {(i, i+ 1) : i = 0, 1, . . . , N − 1}. Note that the name i of process is calculated modulo N . Variables in
process i are hence readable only from process (i and) i+ 1.

Definition 4 (Token Circulation) The token circulation problem is the problem of circulating a single
token in such a way that every process holds the token infinitely often.

There is no deterministic self-stabilizing token circulation algorithm on an anonymous unidirectional ring
under the strongly fair scheduler [7].

A Weak Stabilizing Algorithm. Algorithm 1, called T C in the following, is the (N − 1)-fair algorithm
proposed by Beauquier et al. [18]. It is (N − 1)-fair, in the sense that (i) every process p performs actions
infinitely often, and (ii) between any two actions of p, any other process executes at most N − 1 actions,
regardless of the scheduler under which it is executed. We show that it is a weak stabilizing token circulation
algorithm under the strongly fair scheduler. Let mN be the smallest integer not dividing N .5

In Algorithm T C, each process i maintains a single variable vi whose domain is {0, . . . ,mN − 1}. This
variable allows i to know if it holds the token or not. We actually define that a process i holds a token, if
and only if vi 6= ((vi−1 +1) mod mN ), i.e., if and only if Tokeni is true at i. In this case, Action A is enabled
at i. This action allows i to pass the token to i+ 1.

Figure 2 depicts an execution of Algorithm T C starting from a legitimate configuration, i.e., a configura-
tion such that there is exactly one process holding the token. In this example, N = 6 and mN = 4. In each
configuration, the process with an asterisk is the token holder. By executing Action A, it passes the token
to its successor. It is indeed obvious to observe the following proposition by the definition of Algorithm T C.

5Process i does not know its name i, and notation vi in Algorithm T C does not tell process i its name i; it should read as
v, and its index i is only for the convenience of readers. Since δ−i = 1, vi−1 should read as v0 (see the model of anonymous
distributed system in Section 2), i.e., the v of the predecessor (of process i) whose local index is 0; index i − 1 again is not
visible from process i. In this algorithm, process i has exactly one predecessor i − 1, and v0 for process i is hence uniquely
determined. The notation vi−1 is again only for the convenience of readers.
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Algorithm 1 Algorithm T C, code for every process i

Variable: vi ∈ {0, . . . ,mN − 1}
Macro:
PassTokeni ≡ vi := (vi−1 + 1) mod mN

Predicate:
Tokeni ≡ [vi 6= ((vi−1 + 1) mod mN )]

Action:
A :: Tokeni → PassTokeni

1

0

1

3

0 2

*

1

2

1

3

0 2

*
3

2

1

3

0 2
*

(i) (ii) (iii)

Figure 2: An execution of Algorithm T C starting from a legitimate configuration.

Proposition 2

1. A process is enabled if and only if it has a token; only a token holder is activated.

2. Suppose that at some time instant t process i is a token holder but process i+ 1 is not. If i is activated
at t, then i loses a token and i+ 1 instead has a token at t+ 1.

Let C be the set of configurations. For any configuration γ ∈ C, the set of processes i holding a token is
denoted by TH(γ). We call a configuration γ legitimate if |TH(γ)| = 1, and let L = {γ ∈ C : |TH(γ)| = 1} be
the set of legitimate configurations.

The specification SP of this problem can be defined as follows: For any execution ξ = γ0, γ1, . . ., SP(ξ) =
true if γi ∈ L for all i ≥ 0. To verify that SP indeed specifies the token circulation, observe that every
process has a token infinitely often in any execution ξ ∈ SP(ξ) by Proposition 2.

We show that Algorithm T C is a deterministically weak stabilizing token circulation algorithm under
the strongly fair scheduler. More formally, let S be the distributed system executing Algorithm T C on an
unidirectional anonymous ring G of size N . We show that S is deterministically weak stabilizing for SP
under the strongly fair scheduler.

Let i and j be two distinct processes. We denote by P (i, j) the unique (simple) path from i to j. Note
that P (i, j) 6= P (j, i). Recall that d(i, j) denotes the distance from i to j, i.e., d(i, j) = |P (i, j)| − 1.

Lemma 1 |TH(γ)| > 0 for any configuration γ ∈ C.

Proof. To derive a contradiction, assume that there is a configuration γ such that |TH(γ)| = 0.
By definition, vi = (vi−1 + 1) mod mN for all i = 0, 1, . . . , N − 1, and hence v0 = (v0 + N) mod mN , a
contradiction, since mN does not divide N . 2

Lemma 2 For any configuration γ ∈ C, there is a legitimate configuration γ′ ∈ L reachable from γ under
the strongly fair scheduler.
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Proof. Since |TH(γ)| ≥ 1 for any configuration γ ∈ C by Lemma 1, it suffices to show that for any
configuration γ ∈ C such that |TH(γ)| > 1, there is a configuration γ′ ∈ C such that it is reachable from γ
under the strongly fair scheduler and that |TH(γ′)| < |TH(γ)| holds.

Let i and j be two consecutive (clockwise) token holders and assume that a configuration γ′ is obtained
as the result of an activation of process i. Then TH(γ′) ⊆ TH(γ) \ {i} and |TH(γ′)| ≤ |TH(γ)| − 1 if j = i+ 1,
and TH(γ′) = (TH(γ) \ {i})∪ {i+ 1} if j > i+ 1, by Proposition 2. An execution (segment) that sequentially
activates j − i processes i, i + 1, . . . , j − 1 in this order one by one thus decreases the number of tokens by
at least 1. Note that this prefix of execution obviously does not violate the strong fairness. 2

The possible convergence is obtained by Lemma 2. The strong closure simply follows from Proposition
2. Moreover, once stabilized, every process has the token infinitively often, implying that the strong fairness
is never violated. Hence, we can conclude with the next theorem:

Theorem 1 Algorithm T C is a deterministically weak stabilizing token passing algorithm under the strongly
fair scheduler.

3.2 Leader Election

We next consider the leader election problem on an anonymous undirected tree under the strongly fair
scheduler.

Definition 5 (Leader Election) The leader election problem is the problem of distinguishing a unique
process as a leader in the network in such a way that the distinguished process knows that it is the leader
and all other processes know that they are not the leader.

Following the results of Yamashita and Kameda [19], there is an anonymous tree whose symmetricity is 2
and deterministic leader election is impossible on such a tree under the synchronous scheduler. Hence there
is no (deterministic) self-stabilizing leader election algorithm on an anonymous tree under the strongly fair
scheduler. The following simple example verifies this fact.

Let A be any leader election algorithm on an anonymous tree. Consider any execution of A on an
anonymous chain consisting of two processes p0 and p1 under the synchronous scheduler. Let L be the set
of configurations such that the local states of both processes are the same. Any γ ∈ L is not legitimate by
definition. Since the scheduler is synchronous, γ ∈ L and γ 7→ γ′ implies γ′ ∈ L because of the symmetry
between p0 and p1. Hence A does not elect a leader if its initial configuration is selected from L, i.e., A is not
a self-stabilizing leader election algorithm under the synchronous (and therefore the strongly fair) scheduler.

A weak stabilizing algorithm for the same problem under the strongly fair scheduler is, to the contrary,
easy to construct from the self-stabilizing algorithm for finding the centers of a tree presented in [20].
Recall that in a tree there is a unique center or there are two neighboring centers by Property 1. The
algorithm defines a predicate Center over its local state, and guarantees that its execution starting from any
configuration eventually reaches a configuration such that Center is true at a process if and only if it is a
center of the tree. Furthermore, a processes can locally decide if Center is true at one of its neighbors.

We add the following algorithm segment to the algorithm: If a process is a center, but none of its
neighbors are, then it considers itself as the leader. In order to break a tie when the tree has neighboring
centers, a boolean variable B is prepared at each process, and we allow a center to change the value of B
anytime until it is different of the other center. If the B values of the centers are different, the center with
B = true then considers itself as the leader. Since there is a transition that changes the B value of exactly
one of the centers, the modified algorithm is obviously a weak stabilizing leader election algorithm under the
strongly fair scheduler.

This algorithm however uses logN bits of memory per process. We show that this space complexity is
reducible to 2 bits in average per process, by presenting a new algorithm called Algorithm LE (its code is
given in Algorithm 2).

Algorithm LE maintains in each process p ∈ V a single variable vp whose domain is Lp ∪ {⊥}. Recall
that p identifies its δp neighbors by the local indices Lp = {0, 1, . . . , δp − 1}. We assume that each neighbor
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q of p knows its local index iq in Lp. Hence, q can test if vp = iq (in the following we denote such a test by
vp = q for simplicity). Process p considers itself as the leader, if and only if vp =⊥. If vp 6=⊥, vp points the
parent of p, and p is said to be a child of its parent. Algorithm LE at process p hence uses dlog(δp + 1)e bits
of memory. Since δp ≥ 1, the total number of bits that Algorithm LE uses is∑

p∈V
dlog(δp + 1)e ≤

∑
p∈V

(1 + log δp).

Since
∑
p∈V δp ≤ 2(n− 1),∑

p∈V log δp

n
= log n

√∏
p∈V

δp ≤ log

∑
p∈V δp

n
≤ log 2 = 1.

Thus the average number of bits that Algorithm LE uses per process is at most 2.

Algorithm 2 Algorithm LE , code for any process p

Variable: vp ∈ Lp ∪ {⊥}
Macro:
Childp ≡ {q ∈ Lp : vq = p}

Predicates:
Leaderp ≡ (vp =⊥)

Actions:
A1 :: (vp 6=⊥) ∧ (|Childp| = δp) → vp :=⊥
A2 :: (vp 6=⊥) ∧ [Lp \ (Childp ∪ {vp}) 6= ∅] → vp := (vp + 1) mod δp
A3 :: (vp =⊥) ∧ (|Childp| < δp) → vp := min(Lp \ Childp)

Let γ be a configuration. The directed graph Tγ = (V,Aγ) associated with γ is defined as follows: For
each p ∈ V , if q is the parent of p then (p, q) ∈ Aγ . Let δ+p (Tγ) be the outdegree of a process p ∈ V in Tγ .
By definition δ+p (Tγ) ≤ 1 for each process p ∈ V . Algorithm LE then tries to reach a terminal configuration
γ such that Tγ is a rooted intree. An intuitive explanation of each action is as follows:

(A1) If a process p such that vp 6=⊥ is pointed as the parent by all of its neighbors, then p sets vp to ⊥ and
starts to consider itself as the leader.

(A2) If a process p such that vp 6=⊥ has a neighbor that is neither its parent nor one of its children, which
means that not all processes among p and its neighbors consider the same process as the leader, p
changes its parent by incrementing its parent pointer modulo δp.

(A3) If a process p satisfies vp =⊥ but at least one of its neighbors q is not its child, which means that q
considers another process as the leader, p stops to consider itself as the leader by pointing, by vp, one
of its non-child neighbors.

Figure 3 depicts an execution of Algorithm LE that converges. The circles and the dashed lines respec-
tively represent the processes and the bidirectional communication links. The labels of processes are only
for the purpose of explanation. An arrow from a process p to another process q shows that q is the parent
of p, i.e., vp ∈ Lp is the local index of q for p. A label Aj attached to a process p means that Aj is enabled
at p. When the processes with labels Aj with asterisks in a figure are executed, the configuration shown in
the next figure is reached. Observe that the directed graph Tγ in (v) is a rooted intree.

For example, in the configuration in (i), no process p satisfies vp =⊥ and considers itself as the leader,
but p1, p2, p7, and p8 are pointed by all of their respective neighbors. They are candidates to become the
leader (Action A1). Also p3, p5, and p6 are enabled to execute Action A2: They have a neighbor that is
neither their parent nor one of their children. Finally, p4 is not enabled. For configuration γ in (v), Tγ is a
rooted intree and hence γ is a terminal configuration.
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Figure 3: An execution of Algorithm LE that converges.

Let C be the set of all configurations. A configuration γ ∈ C is legitimated if Tγ is a rooted intree.
Note that there is exactly one leader, who is the root, in a legitimate configuration. Let L be the set
of all legitimate configurations. We then define the specification SP of this problem as follows: for any
execution ξ = γ0, γ1, . . ., SP(ξ) = true if γj = γi ∈ L for all j ≥ 0. We now show that Algorithm LE is a
deterministically weak stabilizing algorithm for SP under the strongly fair scheduler.

Lemma 3 Let γ ∈ C be any configuration. If there is no leader in γ, i.e., all processes have outdegree 1 in
Tγ , there is a process p such that Action A1 is enabled at p.

Proof. Let G = (V,E) be an (undirected) tree that represents the communication network of the
distributed system. We first show that there is a process p ∈ V such that δp = δ−p (Tγ) by induction on |V |,
where δp and δ−p (Tγ) are respectively the degree of p in G and the indegree of p in Tγ .

Since the case |V | = 1 is trivial, we take the case |V | = 2 as the base case. Let V = {p, q}. Since
δ+q (Tγ) = 1, (q, p) ∈ Aγ , which implies that p satisfying the condition, since δp = 1.

For induction step, without loss of generality, we may assume that Tγ is weakly connected. Let p ∈ V
be a leaf of G and let q ∈ V be its neighbor. If (q, p) ∈ Aγ then p is a process satisfying the condition.

If (q, p) 6∈ Aγ , since (p, q) ∈ Aγ (because δ+p (Tγ) = 1), consider a tree G′ = (V \ {p}, E \ {(p, q)}) and
a directed acyclic graph T ′γ = (V \ {p}, Aγ \ {(p, q)}). By applying the induction hypothesis to G′ and T ′γ ,
there is a process r ∈ V \ {p} such that δr(G

′) = δ−r (T ′γ), where δr(G
′) is the degree of r in G′.

If r 6= q, then δr(G
′) = δr, and r is a process (in G) satisfying the condition. If r = q, then again r is a

process (in G) satisfying the condition, since (p, q) ∈ Aγ .
Let p be a process in G satisfying the condition. Since vp 6=⊥, Action A1 is enabled at p. 2

By Lemma 3, the following corollary holds.
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Corollary 1 Let γ ∈ C be any configuration. If there is no leader in γ, then from γ after one step, a
configuration is reached such that there is a leader.

Lemma 4 A legitimate configuration is reachable, under the strongly fair scheduler, from any configuration
such that there is a leader.

Proof. Consider any configuration γ ∈ C and suppose that Leader holds at a process p. Let H = (U,A)
be the (maximum) sub-intree of Tγ rooted at p. If U = V , then Tγ(= H) is a rooted intree and hence γ ∈ L.

Suppose that U ⊂ V and let (q, r) ∈ E be an edge of G that connects two nodes, one in U and the other
in V \ U , i.e., (q, r) ∈ U × (V \ U). By definition neither (q, r) nor (r, q) are in Aγ . It suffices to show that
there is an execution from γ to change the value of vr to point to q (without changing the other v values).

If vr =⊥, Action A3 is enabled at r, since (q, r) 6∈ Aγ . Without loss of generality, we hence assume that
vr 6=⊥ in γ. Action A2 is then enabled at r. By activating r several times, we can set vr to point to q.

It is easy to observe that this execution (segment) does not violate the strong fairness. 2

Theorem 2 Algorithm LE is a deterministically weak stabilizing algorithm for SP under the strongly fair
scheduler.

Proof. By Corollary 1 and Lemma 4, the possible convergence property holds. The strong closure
property also holds, since a legitimate configuration is a terminal configuration. Moreover, since a terminal
configuration is reached, the execution satisfies the strongly fair scheduler. 2

4 From Weak to Probabilistic Stabilization

Gouda showed that deterministic weak stabilization is a “good approximation” of deterministic self-stabilization
by proving the following theorem [13]:6

Theorem 3 ( [13]) Any deterministic weak stabilizing system under the strongly fair scheduler is also a
deterministic self-stabilizing system if

1. the system has a finite number of configurations, and

2. the scheduler satisfies the Gouda’s strong fairness assumption.

An algorithm is said to be finite state if it makes use of finite memory, i.e., the domain of each of
the variables is finite. Since a distributed system consists of a finite number of processes, the number of
configurations is finite if and only if the algorithm is finite state, which is an important assumption in the
first two subsections (as well as Theorem 3). The last subsection then considers infinite state algorithms.

From Theorem 3, one may conclude that deterministic weak stabilization and deterministic self-stabilization
are equivalent, under the strongly fair scheduler. This would contradict the results presented in Section 3.
Actually, this is not the case: we show that the Gouda’s strong fairness assumption is in essence strictly
stronger than the strong fairness.

Let us consider an algorithm such that every process is enabled in any configuration and each of the actions
does not change the local state. By definition ξ = γ0, γ0, . . . is the only execution under any scheduler, for
any initial configuration γ0. Any scheduler (which may not be fair in some sense) thus satisfies the Gouda’s
strong fairness assumption. In this sense, the Gouda’s strong fairness is in general incomparable with the
strong or the weak fairness. We introduce a natural assumption to avoid this pathological situation and
assume it in Section 4; an action always changes the local state by writing a new value to a local variable.

Theorem 4 Suppose that the system has a finite number of configurations. The Gouda’s strong fairness is
strictly stronger than the strong fairness.

6This result has been proven assuming a scheduler that is central. However, it is easy to see that the proof given in [13] still
holds if we remove this constraint.
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Proof. Suppose that a process p is enabled infinitely many times in some execution ξ. We show that
p is activated infinitely many times in ξ, provided that the scheduler satisfies the Gouda’s strong fairness.

Since the number of configurations is finite, in ξ, p is enabled infinitely many times in a configuration γ.
Then there is another configuration γ′(6= γ) that is reached from γ by the activation of p. That is, γ 7→ γ′.
Thus γ 7→ γ′ occurs infinitely many times in ξ, if the scheduler satisfies the Gouda’s strong fairness, which
implies that p is activated infinitely many times.

We next observe that the Gouda’s strong fairness is strictly stronger than the strong fairness. Let S
be the distributed system executing Algorithm T C on an anonymous unidirectional ring. Since there is
no deterministically self-stabilizing token circulation algorithm on an anonymous unidirectional ring under
the strongly fair scheduler [7], S is not deterministically self-stabilizing under the strongly fair scheduler.
However, S is deterministically self-stabilizing under any scheduler satisfying the Gouda’s strong fairness,
since it is deterministically weak stabilizing under the strongly fair scheduler. Thus the Gouda’s strong
fairness is strictly stronger than the strong fairness. 2

4.1 Finite State Deterministic Algorithm under Randomized Scheduler

Let S be a (possibly randomized) distributed system. Suppose that S is in a configuration γ and let U ⊆ V
be the set of enabled processes in γ. Then a subset W ⊆ U is selected uniformly at random from 2U by
the randomized scheduler, and the next configuration is determined from W . We model the distributed
system S under the randomized scheduler as a finite state Markov chainM defined over the set C of “states”
associated with the transition probability matrix P = (pγγ′)γ,γ′∈C , where the transition probability pγγ′ from
γ to γ′ is 2−|U | by the definition of the randomized scheduler. The execution ξ with initial configuration
γ0 ∈ C (as a stochastic process) is the evolution of M, which is a sequence x0, x1, . . . of random variables xt
representing the configuration at time instant t, such that

Pr(x0 = γ0) = 1,

and for t = 0, 1, . . .,

Pr(xt+1 = γt+1|xt = γt, xt−1 = γt−1, . . . , x0 = γ0) = Pr(xt+1 = γt+1|xt = γt) = pγtγt+1 .

We call M the Markov chain corresponding to S (under the randomized scheduler).
Since we analyze finite Markov chains in this and the next subsections, and infinite Markov chains in

Subsection 4.3, here we introduce concepts both for finite and infinite Markov chains. A (finite or infinite)
Markov chain is called irreducible if its state transition graph is strongly connected. A state γ is called
recurrent if the the evolution x0, x1, . . . that starts in γ returns γ with probability 1, and otherwise it is
called transient.

Let C1, C2, . . . be the strongly connected components of S. The component graph H of S is constructed
from S by contracting each strongly connected components; i.e., H = ({v1, v2, . . .}, A), where (vi, vj) ∈ A if
and only if i 6= j and there are configurations γ ∈ Ci and γ′ ∈ Cj such that γ 7→ γ′. H is a (finite or infinite)
directed acyclic graph (DAG). A node v of H is called a source (resp. sink) if δ−v (H) = 0 (resp. δ+v (H) = 0),
where δ−v (H) (resp. δ+v (H)) is the indegree (resp. outdegree) of node v in H. Let D be the set of sinks in
H.

Theorem 5 Let S be the distributed system executing a finite state deterministic algorithm A on a com-
munication network G, and let SP be any specification for S. Then, S is deterministically weak stabilizing
for SP under the strongly fair scheduler, if and only if it is probabilistically self-stabilizing for SP under the
randomized scheduler.

Proof. Since the If part is obvious by definition, we concentrate on the Only-If part. Suppose that
S is weakly self-stabilizing for SP under the strongly fair scheduler. Obviously, S holds the strong closure
property under the randomized scheduler.
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As for the probabilistic convergence property, let M be the Markov chain corresponding to S. For any
configuration γ0 ∈ C, consider the evolution x0, x1, . . . of M starting in γ0. Without loss of generality, we
may assume that all configurations are reachable from γ0.

Let C1, C2, . . . , Ck be the strongly connected components of S and consider the component graph H =
({v1, v2, . . . , vk}, A) of S. H is a finite DAG. Since all configurations are assumed to be reachable from γ0,
H has the single source, say v1, and γ0 ∈ C1. If vi ∈ D, Ci must contain a legitimate configuration, since S
is deterministically weak stabilizing.

For any j such that vj 6∈ D, |Cj | <∞ since S is finite state, and all configurations in Cj are transient.
Hence the evolution x0, x1, . . . eventually reaches, with probability 1, a component Ci such that vi ∈ D

(see e.g., [21]). Since all configurations in Ci are recurrent, it eventually visits, with probability 1, all
configurations in Ci, including the legitimate configuration (see e.g., [21]). 2

Recall that the randomized scheduler selects and activates each enabled process with probability 1/2.
We can easily extend the above theorem to a randomized scheduler that selects and activates each enabled
process with probability c for any 0 < c < 1. Nevertheless, the theorem cannot be extended to c = 1, since
one can easily observe that Algorithm LE is not a self-stabilizing algorithm under the synchronous scheduler.
It is however desirable to have a solution that works under the synchronous scheduler, since it is easy to
implement. This is the focus of the next subsection.

4.2 Finite State Randomized Algorithm under Synchronous Scheduler

We propose a simple transformer that transforms a finite state deterministically weak self-stabilizing al-
gorithm A into a randomized algorithm A∗, borrowing an idea from [6]: Whenever an enabled process
is activated by the synchronous scheduler, it first tosses a coin and then executes the action, if and only
if it gets the “head”. If the system S executing A on a communication network G is weakly stabilizing
for a specification SP under the strongly fair scheduler, we show that the system S∗ executing A∗ on G
is probabilistically self-stabilizing for a specification SP∗, which is essentially the same as SP, under the
synchronous scheduler.

In A∗, in addition to the variables used in A, we provide a new boolean variable B. We then replace
each action A :: GuardA → SA of A into the following action Trans(A):

Trans(A) :: GuardA → B := Rand(); if B then SA,

where Rand is a random bit generator, which returns one of the boolean values with the same probability.
We continue to use the notations in the last subsection and let us model S under the randomized scheduler

by the Markov chainM. We also model S∗ under the synchronous scheduler as another finite state Markov
chain M∗ defined over the set C∗ of configurations of S∗ associated with the transition probability matrix
P∗.

Let γ∗ be any configuration in C∗. If we ignore the values of Bps for all p ∈ V in γ∗, we obtain a
configuration in C, which we denote by γ. The correspondence between γ and γ∗ is one-to-many.

Consider any configuration γ1 and let U be the set of enabled processes in γ1. If γ2 is reached from γ1
by activating a set W ⊆ U of processes, then the transition probability from γ1 to γ2 is 2−|U |, as discussed
in the previous subsection.

By definition, U is also the set of enabled processes in any configuration γ∗1 ∈ C∗. Then the synchronous
scheduler activates all processes in U . However only processes p ∈ U that have Bp = true proceed to execute
their actions. If W ⊆ U is the set of processes that have proceeded to their actions, a configuration γ∗2 ∈ C∗
is reached. It is worth emphasizing that γ∗2 is uniquely determined from the values of Bps in γ∗1 , although
the correspondence between γ2 and γ∗2 is in general one to many, and that the probability that W is selected
is by definition 2−|U |. There is thus a one to one correspondence between sampling paths ξ = γ0, γ1, . . . of
M and ξ∗ = γ∗0 , γ

∗
1 , . . . of M∗, and their evolutions follow the same probability distribution.

Define SP∗ by SP∗(ξ∗) = SP(ξ), and let L∗ = {γ∗ : γ ∈ L}. Then the above observation implies that S
under the randomized scheduler holds the probabilistic convergence property for SP, if and only if S∗ under

14



the synchronous scheduler holds it for SP∗. It is also obvious that S holds the strong closure property for
SP under the randomized scheduler, if and only if S∗ holds it for SP∗ under the synchronous scheduler.

Theorem 6 S is probabilistically self-stabilizing for SP under the randomized scheduler, if and only if S∗
is probabilistically self-stabilizing for SP∗ under the synchronous scheduler.

4.3 Infinite State Deterministic Algorithm under Randomized Scheduler

We have shown that a finite state algorithm is deterministically weak stabilizing under the strongly fair
scheduler, if and only if it is probabilistically self-stabilizing under the randomized scheduler. This subsection
considers infinite state algorithms.

Let A be an infinite state algorithm that is deterministically weak stabilizing for a specification SP under
the strongly fair scheduler. Consider the distributed system S = (C, 7→) executing A on a communication
graph G under the randomized scheduler, and letM be the Markov chain corresponding to S;M is defined
over C associated with the transition probability matrix P = (pγγ′)γ,γ′∈C , where for any configurations
γ, γ′ ∈ C such that γ 7→ γ′, pγγ′ = 2−|U |. Here U is the set of processes enabled in γ. Since A is an infinite
state algorithm, M is an infinite Markov chain.

Like finite algorithms, S holds the strong closure property for a specification SP under the strongly fair
scheduler, if and only if it holds the same property for SP under the randomized scheduler. Also, S holds
the possible convergence property holds for SP under the strongly fair scheduler, if it holds the probabilistic
convergence property for SP under the randomized scheduler. However, its converse may not hold in general,
unlike finite state algorithms.

Let us consider the following simple algorithm A on a distributed system consisting only of 3 processes
p, q and r. A process provides a variable v, whose domain is the set of non-negative integers. A consists of
a single rule A to increment v.

A :: true→ v := v + 1.

Since the guard is true, all processes are always enabled. We call a configuration legitimate if vp + vq = vr.
Let L be the set of all legitimate configurations. Finally define a specification SP by SP(ξ) = true for any
ξ that contains a legitimate configuration.

Then this distributed system obviously holds the possible convergence property for SP under the strongly
fair scheduler, but does not hold the probabilistic convergence property for SP under the randomized sched-
uler, since the corresponding Markov chain M is (a variation of) an asymmetric unrestricted random walk
on the line, which is known to be irreducible and transient [22, Example 8.9]. Infinite state deterministi-
cally weak stabilizing systems thus cannot be automatically transformed into probabilistically self-stabilizing
systems by replacing the scheduler, unlike finite state deterministically weak stabilizing systems.

Proposition 3 There is an infinite state algorithm A that is deterministically weak stabilizing for a specifi-
cation SP under the strongly fair scheduler, such that A is not probabilistically self-stabilizing for SP under
the randomized scheduler.

Let SP be a specification defined by SP(ξ) = true for all execution ξ. Then any distributed system,
including the above S, is both deterministically weak stabilizing under the strongly fair scheduler and
probabilistically self-stabilizing under the randomized scheduler, for this SP. That is, the transformability
of an infinite state distributed system depends not only on the system but also on the specification, which
is a notable difference between finite state and infinite state systems.

However, some of infinite state deterministically weak stabilizing systems are transformed into proba-
bilistically self-stabilizing systems by replacing the scheduler, for any specification. If an infinite Markov
chain is (irreducible and) recurrent, then the probability that the evolution starting in γ eventually reaches
γ′ is 1 for any two states γ and γ′. Thus we have the following proposition.

Proposition 4 Let S and M be an infinite state distributed system and the infinite Markov chain corre-
sponding to S, respectively. Assume that M is (irreducible and) recurrent. Let SP be any specification for
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S. Then S is deterministically weak stabilizing for SP under the strongly fair scheduler, if and only if it is
probabilistically self-stabilizing for SP under the randomized scheduler.

Let S be distributed system. In the rest of this subsection, we explore weaker sufficient conditions (than
the one in Proposition 4) to guarantee that, for any specification SP, S holds the possible convergence
property for SP under the strongly fair scheduler, if and only if it holds the probabilistic convergence
property for SP under the randomized scheduler.

By Theorem 5, one of such sufficient conditions is that S is finite state; i.e., the number of strongly
connected components and the cardinality of each strongly connected component Ci are both finite. We
extend Theorem 5 in two directions; when the number of strongly connected components C1, C2, . . . is infinite,
and when the cardinality of some of Ci is infinite. The next theorem extends Theorem 5 in the first direction.

Recall that we denote by H = ({v1, v2, . . . , vk}, A) the component graph of S, where every node vi
represents the component Ci. Recall that D is the set of sinks in H.

Theorem 7 Let S andM be an infinite state distributed system and the infinite Markov chain corresponding
to S, respectively. Let C1, C2, . . . be the strongly connected components of S, and assume that there is a
constant c such that |Cj | ≤ c for all j = 1, 2, . . .. Let SP be any specification for S. Then S is deterministically
weak stabilizing for SP under the strongly fair scheduler, if and only if it is probabilistically self-stabilizing
for SP under the randomized scheduler.

Proof. We only need to show that if S holds the possible convergence property for SP under the
strong fair scheduler, then it holds the probabilistic convergence property for SP under the randomized
scheduler.

Since each strongly connected component is of finite size, the component graph H of S is an infinite
DAG. Let vi ∈ D be any sink of H. Since S holds the possible convergence property, there is a legitimate
configuration in Ci. Since Ci is a finite set, all the configurations in Ci are recurrent. Thus the evolution
eventually reaches the legitimate configuration with probability 1, once it reaches Ci.

We show that the evolution eventually reaches a legitimate configuration with probability 1, provided
that it never reach a component Ci such that vi ∈ D. Suppose that the evolution reaches a component Ci
for some vi 6∈ D. Since Ci is a finite set, it eventually leaves Ci and reaches another component Cj such that
(vi, vj) ∈ A with probability 1. For any fixed directed infinite path X = vj1 , vj2 , . . . in H, we show that the
evolution visits a legitimate configuration with probability 1, provided that X is the path that the evolution
traverses.

Let J be the set of indices jt such that Cjt contains a legitimate configuration. Since S holds the possible
convergence property, J is an infinite set.

Consider any j ∈ J . Let γ, γ′ ∈ Cj be any two configurations such that γ 7→ γ′. Recall that the transition
probability pγγ′ from γ to γ′ is 2−|U |, where U is the set of enabled processes in γ, and thus pγγ′ ≥ 2−N .
Let λ, λ′ ∈ Cj be any two configurations, which may not be adjacent. Since Cj is strongly connected, there
is a directed path from λ to λ′ and its length is less than c. Thus the probability that the evolution reaches
λ′ from λ is bounded from below by a constant ε = (2−N )c−1 > 0.

Consider the following stochastic process: There are states 0, 1, . . . States 1, 2, . . . correspond to vj1 , vj2 , . . .
State 0 represents the fact that the evolution visits a legitimate configuration. There is an edge from t to
t+ 1 for any t = 1, 2, . . . If jt 6∈ J , we assign the transition probability 1 to edge (t, t+ 1). If jt ∈ J , then we
newly create an edge (t, 0) and assign the transition probability ε to this edge. We also assign the transition
probability 1− ε to edge (t, t+ 1).

By the analysis of Success Runs in [21, Example 1.1], since
∑
jt∈J ε =∞, the probability that the evolu-

tion starting in state 1, i.e., a configuration in Cj1 , eventually reaches state 0, i.e., a legitimate configuration,
is 1. 2

For any strongly connected component Ci, let Si be the induced subgraph of S induced by Ci. The Markov
chain Mi corresponding to Si is a one defined over Ci associated with the following transition probability
matrix Pi: For any edge (γ, γ′) in Si, the transition probability from γ to γ′ is 1/δ+γ (Si). The next theorem
is an extension of both Theorem 5 and Proposition 4.
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Theorem 8 Let S andM be an infinite state distributed system and the infinite Markov chain corresponding
to S, respectively. Let C1, C2, . . . , Ck and H = ({v1, v2, . . . , vk}, A) be the strongly connected components of
S and its component digraph, respectively, i.e., the number of strongly connected components of S is finite.
Assume that the Markov chain Mi corresponding to Si is recurrent for all i = 1, 2, . . . , k. Let SP be any
specification for S. Then S is deterministically weak stabilizing for SP under the strongly fair scheduler, if
and only if it is probabilistically self-stabilizing for SP under the randomized scheduler.

Proof. We only need to show that if S holds the possible convergence property for SP under the
strong fair scheduler, then it holds the probabilistic convergence property for SP under the randomized
scheduler.

Since S holds the possible convergence property for SP, if vi ∈ D, Ci must contain a legitimate configu-
ration and the evolution eventually reaches a legitimate configuration with probability 1, once it reaches Ci,
since Mi is recurrent.

Suppose that the evolution does not reach a component Mi such that vi ∈ D. Then it resides in a
component Cj forever. Since vj 6∈ D, there are configurations γ ∈ Cj and γ′ ∈ C` (j 6= `) such that
(γ, γ′) ∈ A. Since Mj is recurrent, the evolution visits γ infinitely many times but transition γ 7→ γ′ never
occur, a contradiction. 2

5 Discussion: Evaluating Time Complexity

The generally accepted metric for evaluating the theoretical time performance of (deterministic) self-stabilizing
protocols is the stabilization time, that is, the maximum time before reaching a legitimate configuration.
When the scheduling assumptions are arbitrary (that is, the proper scheduler can be tolerated), the stabi-
lization time is simply the longest chain of consecutive illegitimate configurations. When fairness assumptions
are necessary to guarantee convergence, stabilization time is described in terms of rounds. A round is re-
cursively defined as the smallest portion of an execution where any process that is enabled in the beginning
configuration either is scheduled for execution or becomes disabled (due to actions performed by other pro-
cesses). A round may nevertheless comprise an arbitrarily high number of configurations. A downside of
worst case analysis is that the timing performance that is obtained may not be representative of the actual
performance of a given self-stabilizing algorithm.

Expected stabilization time was first investigated in the context of probabilistic stabilization, and a popular
tool for obtaining expected stabilization time is the scheduler-luck game technique [23]. An execution is seen
as a two-players game (algorithm and scheduler): the scheduler selects processes such that stabilization is
delayed, while the algorithm executes random choices to force its luck and defeat the scheduler. Yet, worst
case scheduler analysis often yields exponential expected stabilization time. Weakened forms of schedulers
(where the scheduler choices are characterized by a probabilistic distribution) have been investigated [24],
with contrasted results (the scheduler probabilistic distribution may yield infinite stabilization time).

A recent approach that permits to actually compute the expected stabilization time for all executions is
due to Fallahi et al. [25]. The main underlying idea is to consider a probability distribution over individual
transitions between configurations (hence defining an adaptive probability distribution for the scheduler),
which permits to use Markov chains to evaluate the expected mean value of the time to reach a legitimate
configuration starting from any illegitimate configuration. This approach has been implemented using a
probabilistic model checker to obtain expected stabilization time for numerous examples, and is general
enough to be used for self, probabilistic, and weak stabilizing protocols. For example, if a weak-stabilizing
system satisfies the conditions given in Section 4, its expected stabilization time is finite and can be computed
with their approach.

The follow-up paper [26] is dedicated to weak stabilization. In this paper, Fallahi and Bonakdarpour
refine the general approach given in [25] and apply it to weak-stabilizing algorithm. Then, they introduce
a second metric, that is built from a coarse-grained analysis of the structure of the state transition system.
This graph-theoretic metric is based on the identification of the strongly connected components and their
betweenness centrality. (The betweenness centrality quantifies the number of times a vertex acts as a bridge
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along the shortest path between two other vertices.) The metric also incorporates the size and the density of
the state transition system. It is noteworthy that their benchmarking example for illustrating their approach
is the leader election algorithm we present in Subsection 3.2.

6 Conclusion

Weak stabilization is a variant of self-stabilization that only requires the possibility of convergence, thus
enabling to solve problems that are otherwise impossible to solve with self-stabilizing guarantees. As seen
throughout the paper, weak stabilizing algorithms are much easier to design and prove than their self-
stabilizing counterparts. Yet, the main result of the paper is the practical impact of weak stabilization: all
finite state deterministic weak stabilizing algorithms can be automatically turned into the corresponding
probabilistic self-stabilizing ones, provided that the scheduler is randomized. Although not all infinite state
algorithms have this useful property, we show that some sufficient conditions for an infinite state algorithm
to have this property. Our approach removes the burden of designing and proving probabilistic stabilization
by algorithms designers, leaving them with the easier task of designing weak stabilizing algorithms.

An obvious open problem is to find a weaker sufficient condition. Let C1, C2, . . . be the strongly connected
components of a distributed system S. If there is an i such that Mi is an infinite Markov chain and a
configuration in Ci in Mi is transient, there is a specification SP such that S is deterministically weakly
stabilizing for SP under the strongly fair scheduler, but it is not probabilistically self-stabilizing for SP under
the randomized scheduler. The sufficient condition of Theorem 8 is thus best possible in this sense, when
the number of strongly connected components is finite. On the other hand, when the number of strongly
connected components is infinite, the sufficient condition of Theorem 7 may be slightly weakened.

A decision procedure to determine whether or not a given deterministically weak stabilizing algorithm
for a given specification SP under the strongly fair scheduler is probabilistically self-stabilizing for SP under
the randomized scheduler is also an interesting open problem.
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