
A Silent Self-Stabilizing Algorithm for finding Cut-nodes and
Bridges

Stéphane Devismes
LaRIA, CNRS FRE 2733

Université de Picardie Jules Verne
Amiens, France

July 16, 2005

Abstract

In this paper, we present a silent algorithm for finding cut-nodes and bridges in arbitrary rooted net-
works. This algorithm must be composed with an algorithm from Collin and Dolev. This latter algorithm
is also silent and computes a Depth First Search (

�����
) Spanning Tree of the network. The composition

of these two algorithms is self-stabilizing: starting from any arbitrary configuration, it requires a finite
number of steps to converge to a legitimate configuration and the system state remains legimate there-
after. The memory requirement of this composite algorithm is � (���
	��� (�) ��	��� (�)) bits per processor
where � is the number of processors and � is an upper bound on the degree of processors. Until now,
this is the protocol with the lowest memory requirement solving this problem. Furthermore, our algorithm
needs � (���) moves to reach a terminal configuration once the

�����
spanning tree is computed. This time

complexity is equivalent to the best proposed solutions.

keywords : Distributed systems, self-stabilizing algorithms, undirected graphs, cut-node, bridge.

1 Introduction

Consider a connected undirected graph ��� (� , �) where � is the set of � nodes and � is the set of �
edges. A node ����� is a cut-node (or an articulation point) of � if the removal of � disconnects � . In the
same way, an edge (� , �) ��� is a bridge if the removal of (� , �) disconnects � . When the graph represents
a communication network then the existence of cut-nodes or bridges can become the potential cause for
congestion in the network. Thus, from the fault tolerance point of view, the identification of cut-nodes and
bridges of a network is crucial.

In this paper, we are interested into finding cut-nodes and bridges in distributed systems. Another desirable
property for a distributed system is to withstand transient failures. The concept of self-stabilization [5] is the
most general technique to design a system to tolerate arbitrary transient faults. A self-stabilizing system,
regardless of the initial states of the processors and messages initialy in the links, is guaranteed to converge
to the intended behavior in finite time. In such systems, a silent algorithm is an algorithm which, from any
arbitrary initial configuration, reaches, in a finite number of steps, a terminal configuration where no processor
can execute any action; this configuration must satisfy some properties for all possible executions.

1

1.1 Related Work

Some algorithms for finding cut-nodes and bridges have been proposed in the graph theory, e.g., by Paton [11]
and Tarjan [13], the latter has a linear time complexity. This problem has also been investigated in the context
of parallel and distributed computing [1, 10, 12]. In self-stabilizing systems, Collin and Dolev presented in
[4] a silent algorithm whose output is a ����� spanning tree. Chaudhuri and Karaata present silent algorithms
in [8, 9, 3, 2] for finding cut-nodes and bridges. Algorithms from [3, 2], which also use a silent algorithm for
computing a ����� spanning tree, offer the best time complexity: they need � (�	�) moves to stabilize once
the ����� spanning tree is computed (instead of � (� ��
 �) for [8, 9]). However, for all these solutions, the
memory requirement is � (�
����� (�)) bits per processor (without taking account of variables used for the
spanning tree computing). Indeed, in these algorithms, every processor must maintain, locally, a list of edges.

1.2 Contributions

In this paper, we present a new silent self-stabilizing distributed algorithm for finding cut-nodes and bridges.
This algorithm must be composed with the algorithm from [4]. Once the ����� spanning tree is computed
by the algorihm from [4], our algorithm reaches a terminal configuration in � (� �) moves and � (�) rounds
where � is the height of the spanning tree. This time complexity corresponds to the best proposed solutions.
Furthermore, the memory requirement of our algorithm is � (���� (�)) bits per processor. Thus, the memory
requirement of the composition is � (�
����� (�) � ���� (�)) bits per processor where � is an upper bound
on the degree of processors. Until now, this is the protocol with the lowest memory requirement solving this
problem.

1.3 Outline of the paper

In the next section (Section 2), we describe the distributed system and the model in which our algorithm is
written. In the same section, we also state what it means for a composite algorithm to be self-stabilizing. In
Section 3, we explain how the algorithm from [4] works. We present and prove our solution in Sections 4 and
5. In Section 6, we discuss about some complexity results. Finally, we conclude (Section 7).

2 Preliminaries

2.1 Distributed System

We consider a distributed system as an undirected connected graph � � (� , �) where � is a set of pro-
cessors (� ��� � �) and � is the set of bidirectional communication links. We consider networks which are
asynchronous and rooted, i.e., all processors, except the root, are anonymous. We denote the root processor
by r. A communication link between two processors � and � will be denoted by (� , �). Every processor � can
distinguish all its links. To simplify the presentation, we refer to a link (� , �) of a processor � by the label � .
We assume that the labels of � , stored in the set ����� �"! 1 , are locally ordered by #$! .We assume that ����� ��! is
a constant, �%�&� ��! is shown as an input from the system. The local order #'! induced an enumeration of the
links. Thus, for any link � � (� , �), let #(! (�) (#*) (�), respectively) be the link index of � according to #+! (#*) ,
respectively). We assume that for every processor � and any edge (� , �), � knows the value of #) (�) (For more
informations see [6]). We recall that, in most cases, #'! (�) ,�-#*) (�). Finally, for each link (� , �), #$! (�) and
) (�) are also constants and shown as inputs from the system.

1Every variable or constant . of a processor / will be noted .10 .

2

2.2 Computational Model

In the computation model that we use each processor executes the same program except r. We consider the
local shared memory model of communication. The program of every processor consists of a set of shared
variables (henceforth, referred to as variables) and a finite set of actions. A processor can only write to its
own variables, and read its own variables and variables owned by the neighboring processors. Each action is
of the following form: �������

�
���
	�	��

�� �����������
�������
� � � �

��� �
The guard of an action in the program of � is a boolean expression involving the variables of � and its
neighbors. The statement of an action of � updates one or more variables of � . An action can be executed
only if its guard is satisfied. We assume that the actions are atomically executed, meaning, the evaluation of a
guard and the execution of the corresponding statement of an action, if executed, are done in one atomic step.

The state of a processor is defined by the value of its variables. The state of a system is the product of
the states of all processors (� �). We will refer to the state of a processor and system as a (local) state and
(global) configuration, respectively. Let � , the set of all possible configurations of the system. An action � is
said to be enabled in � � � at � if the guard of � is true at � in � . A processor � is said to be enabled in � (�
� �) if there exists an enabled action � in the program of � in � . Let a distributed protocol ! be a collection
of binary transition relations denoted by "� , on � . A computation of a protocol ! is a maximal sequence of
configurations � �$#%�'&)(*�,+-(����� (*��./(*��.102+-(�����43 , such that for �6587�(*��.9"� ��.102+ (called a single computation step
or move) if � .102+ exists, else � . is a terminal configuration. Maximality means that the sequence is either finite
(and no action of ! is enabled in the terminal configuration) or infinite. All computations considered in this
paper are assumed to be maximal. The set of all possible computations of ! in system � is denoted as : . We
consider that any processor � executed a disable action in the computation step � . "� � .102+ if � was enabled
in ��. and not enabled in ��.102+ , but did not execute any action between these two configurations (the disable
action represents the following situation: at least one neighbor of � changes its state between � . and � .102+ , and
this change effectively made the guard of all actions of � false).

In a step of computation, first, all processors check the guards of their actions. Then, some enabled pro-
cessors are chosen by a daemon. Finally, the “elected” processors execute one or more of theirs enabled
actions. There exists several kinds of daemon. Here, we use a distributed daemon, i.e., during a computation
step, if one or more processors are enabled, the daemon chooses at least one (possibly more) of these enabled
processors to execute an action. Furthermore, a daemon can be weakly fair , i.e., if a processor � is continu-
ously enabled, � will be eventually chosen by the daemon to execute an action. If the daemon is unfair, it can
forever prevent a processor to execute an action except if it is the only enabled processor.

In order to compute the time complexity, we use the definition of round [7]. This definition captures the
execution rate of the slowest processor in any computation. Given a computation � (� �;:), the first round of
� (let us call it ��<) is the minimal prefix of � containing the execution of one action (an action of the protocol
or the disable action) of every enabled processor in the first configuration. Let � < < be the suffix of � such that
� � �=<��=< < . Then second round of � is the first round of �)< < , and so on.

2.3 Self-Stabilizing System

Let >@? � be a predicate defined over � . The protocol ! running on the distributed system A is said to be
self-stabilizing with respect to >@? � if it satisfies:

B Closure: If a configuration � satisfies >@? � , then any configuration that is reachable from � using !
also satisfies >@? � .

3

B Convergence: Starting from an arbitrary configuration, the distributed system A is guaranteed to reach
a configuration satisfying >@? � in a finite number of steps of ! .

Configurations satisfying >@? � are said to be legitimate. Similary, a configuration that does not satisfy >@? �
is referred to as an illegitimate state. To show that an algorithm is self-stabilizing with respect to >@? � , we
need to show the satisfiability of both closure and convergence conditions. In the case of silent algorithms,
we have just to show the convergence to a terminal configuration that satisfies >@? � . After, because this
configuration is terminal, the closure is trivially satisfied.

2.4 Definitions and Notations

Definition 1 (Path) The sequence of nodes � + , ..., ��� is a path of G if and only if
� � � [1, ..., k � 1], (� . ,� .102+)

� E (the set of edges of G).

Definition 2 (Length of a Path) The length of a path > , noted
�
� �$�
��� #�> 3 , is the number of edges which

compose > .

Definition 3 (Partial Graph) The graph G ��� (V, A) is a partial graph of G � (V, E) if and only if A � E.

Definition 4 (Subgraph) The subgraph of G � (V, E) induced by S (S � V) is the graph G � � (S, E �) such
that E ��� E 	 S � .

Definition 5 (Connected Graph) An undirected graph G
 is connected if and only if, for each pair of distinct
nodes (� , �), there exists a path in G
 between � and � .

Definition 6 (Spanning Tree) A graph T � (V, ���) is a spanning tree of G if and only if T is a partial
connected graph of G where � �� � � ����� .
In a rooted spanning tree � (r) � (� , � <), we distinguish a node r called “root”. We define the height of a node
� in � (r) (noted

�
(�)) as the length of the simple path (loopless) from r to � in � (r). � � max !������������

�
(�) �

represents the height of � (r). For a node � ,� r, a node � � � is said to be the parent of � in � (r) (noted
�
���

� �
� # � 3) if and only if � is the neighbor of � such that

�
(�) �

�
(�) � 1, conversely, � is said to be the child

of � in � (r). � (�) denotes the set of children of a node � in � (r). A node � + is said to be an ancestor of another
node ��� in � (r) (with �

�
�) if there exists a sequence of nodes ��+ , ..., ��� such that

� �! , with 1 "$#
�
� , �!

is the parent of � 02+ in � (r), conversely �%� is said to be a descendant of � + . We will note � (�) the subtree of
� (r) rooted at � (� �), i.e., the subgraph of � (r) induced by � and its descendants in � (r). Finally, we will
call tree edges, the edges of � < and non-tree edges, the edges of �'& � < . We will call non-tree neighbors of � ,
nodes linked to � by a non-tree edge.

Definition 7 (DFS Spanning Tree2) T(r) is a DFS spanning tree of G if and only if T(r) is a spanning tree of
G and

�
(� , �) � ��� if � is a neighbor of � in G then � is either an ancestor or a descendant of � in T(r).

From Definition 7, we can deduce this useful property about the ����� Spanning Tree.

Property 1 Let � � � . Let T(r) be a DFS Spanning Tree of G (rooted at r).
� � �(� # � 3 , every non-tree

neighbor of � is either an ancestor or a descendant of � in T(r).

Now, we give the formal definitions of cut-nodes and bridges.

2This definition holds for undirected graphs only.

4

Definition 8 (Cut-node) A node � � � is a cut-node (or an articulation point) of � if and only if the subgraph
of � induced by � & � � � is disconnected.

Definition 9 (Bridge) An edge (� , �) � � is a bridge of � if and only if the partial graph � < � (� , � & � (� , �) �)
is disconnected.

2.5 Protocol Composition

These following definitions and theorem (from [14]) explain a way to prove that a composition of algorithms
is self-stabilizing.

Definition 10 (Collateral Composition) Let S + and S � be programs such that no variables written by S �
appears in S + . The collateral composition of S + and S � , denoted S �

� S + , is the program that has all the
variables and all the actions of S + and S � .

Let
� + and

�
� be predicate over the variables of � + and � � , respectively. In the composite algorithm,

� + will
be established by � + , and subsequently,

�
� will be established by � � . We now define a fair composition with

respect to both programs, and define what it means for a composite algorithm to be self-stabilizing.

Definition 11 (Fair Execution) An execution e of S + � S � is fair with respect to S . (i � � 1,2 �) if one of these
conditions holds:

1. e is finite;

2. e contains infinitely steps of S . , or contains an infinite suffix in which no action of S . is enabled.

Definition 12 (Fair Composition) The composition S �
� S + is fair with respect to S . (i � � 1,2 �) if every

execution of S �
� S + is fair with respect to S . .

Theorem 1 S �
� S + stabilizes to

�
� if the following four conditions hold:

1. Program S + stabilizes to
� + ;

2. Program S � stabilizes to
�

� if
� + holds;

3. Program S + does not change variables read by S � once
� + holds;

4. The composition is fair with respect to both S + and S � .

3 The DFS algorithm of Collin and Dolev

In this section, we present the algorithm of Collin and Dolev, referred to as Algorithm ��� A , from [4]. This
is a silent algorithm which computed a ����� spanning tree in a distributed fashion. Furthermore, it stabilizes
in a finite number of moves.

First, to compute the ����� spanning tree, this algorithm uses the notion of first path.

5

Definition 13 (First Path) For each simple (loopless) path from the root P = (� + =r), ..., � . , ...,� � of G, we
associate a word � & , ..., � . , ����� + (noted ��� �)� #�> 3) where � & =

�
and,

�
i � [1, ... � �'�], � . is linked to � .102+

by the edge of index � . on � . (i.e., � . � # !�� (� .�02+)). Then, we define a lexicographical order �
	��� over these
words where

�
is the minimal character. For each processor � , we define the set of all simple paths from the

root r to � . The path of this set with the minimal word by ��	��� is called the first path of � (noted � � # � 3).
Using this notion, we can specify the first ����� spanning tree.

Specification 1 (First DFS Spanning Tree) T(r) is the first DFS spanning tree of G if and only if T(r) is a
spanning tree of G (rooted at r) and

� � � � the path from r to � in T(r) is the first path of � in G.

From Specification 1, Collin and Dolev have implemented Algorithm ��� A . Initially, in [4], Algorithm ��� A
has been written in the register model. However, this model is close to the state model. Thus, we design
Algorithm ��� A in the state model (see Algorithms 1 and 2). Informally, Algorithm � � A works as follows:
the memory of any processor � consists of a path field denoted by > ����� ! . The root r has its constant > ����� �
equal to

�
. Any other processor � repeatedly reads the variables of its neighbors. The path > �����) , read by

� from the neighbor � , derives a path for � simply by concatening > ��� �) with #*) (�) (noted > ��� �)�� #*) (�)).
We recall that the value of #) (�) is known to � . Then, � chooses its path to be the minimal path among the
paths derived from its neighbors’ paths.

For any processor � , Path! contains a sequence of at most � items (��5 �) where an item is
�

or an
edge index. Indeed, > ����� ! may describe the longuest path that is possible in � . Thus, the notation right � (�)
refers to the sequence of the � least significant items of � .

In a terminal configuration, Algorithm ��� A satisfies this following predicate:

>@? ����� � .
� � � � , > ��� � ! contains ��� ��� #�� � # � 3/3 .

Thus, from [4], we can claim the following theorem:

Theorem 2 Algorithm � � A stabilizes to > ? ����� � .

Algorithm 1 Algorithm ��� A for � =r
Input: �
����� 0 : set of neighbors (locally ordered);

Constant: ���! #" 0 = $;

Algorithm 2 Algorithm ��� A for �1,� r
Input: �
����� 0 : set of neighbors (locally ordered);

Constant: �&%(' ;

Variable: ���! #" 0 : list of, at most, � ordered items)�*+$�,.-�/ ;

Macro:0 ����1 /2�! �" 04365�798;:=< �?>#@ * right : (���! #" 7BADCE7 (/)) , ;
Predicates:F /21!�! �� /2�! #" (/) G (���! �" 0IH3 min JLKNMPO (

0 ����1 /2�! �" 0))

Action:QDR+S
/2TU #� /U�� #" (/) V?V F /U1!�� #� /U�� #" (/) WX���� #" 0 V 3 min JYKNMZO (

0 �B��1 /2�! �" 0);

Remark 1 (Parent) In a terminal configuration, the parent of � is the only processor � which satisfies: � �
�%�&� �&!
[> ��� � ! � > ��� �)�� #+) (�).

6

Remark 2 (Child) In a terminal configuration, �
� � (�) (i.e., � is a child of �) if and only if ��� �%�&� � !([> �����) �
> ��� � !�� # ! (�).

Remark 3 (Height) In a terminal configuration,
� � � � , > ��� � ! contains

�
followed by the sequence of

edge indices from r to � in the ����� spanning tree. Thus,
�

(�) (height of �) in the ����� spanning tree is
equal to � > ����� ! � � 1.

From now, we will note � (r) � (� , � <) the � �
� �-�

����� spanning tree rooted at r computed by Algorithm
��� A and � the height of � (r).

4 Algorithm

In this section, we present a silent algorithm called Algorithm �����
A 3(see Algorithms 3 and 4). This
algorithm must be composed with Algorithm ��� A (shown in the above section).

4.1 Approach

To implement our algorithm, we use two theorems established by Tarjan in [13]:

Theorem 3 r (root of G) is a cut-node if and only if � C(r) ��5 2.

Theorem 4
� � � � & � r � , � is a cut-node if and only if there exists a node ���$� # � 3 for which no node in

T(�) is linked by a non-tree edge to an ancestor of � in T(r).

These theorems can be deduced from Definition 7. Figure 1 depicts a ����� spanning tree � (r) of a connected
undirected graph � . The root r has exactly two children in � (r). We can remark that the removal of r would
disconnect the graph into two connected components: the subgraph induced by 2 and its descendants and the
subgraph induced by 1 and its descendants, therefore r is a cut-node. In the same way, the removal of the node
3 would disconnect the subgraph induced by 7 and its descendants from the rest of the graph because no node
of � (7) is linked by a non-tree edge to an ancestor of 3.

3means Uppermost Non-tree Neighbor of each Subtree

7

edge of the graph
become parent link
in the spanning tree

r, 1, 2, 3, 7, 8, 9, 10, 11 are cut−nodes

non−tree edge

20

9 10

7

14

11

17
18

16

8

43

1

r

2

5 6

13

21

19

12

15
(7,9), (7,10), (8,11) are bridges
(r,1), (r,2), (1,3), (1,4), (2,5), (2,6), (3,7),

Figure 1: ����� spanning tree in a connected undirected graph.

The following remark shows that cut-nodes and bridges have close relations.

Remark 4 If an edge (� , �) � � is a bridge of � then each of its both incident nodes is either a cut-node or a
pendent-node (i.e., a node of degree one).

Algorithm 3 Algorithm ����� A for � � r
Input:���! �" 0 : constant from ����� ;�
����� 0 : set of neighbors (locally ordered);
Macros:� ������" 0 3�� ���� #" 0��
	 1;Q "U��� 1� ��' 0D3 *��)
�
����� 0 V?V (���! #" 0 A C 0 (�)) 3 ���! �" 7 , ;

Algorithm 4 Algorithm ����� A for ��,� r
Input:� : constant from ����� ;���! �" 0 : list of, at most, � ordered items)�* $,.-�/ from ����� ;�
����� 0 : set of neighbors (locally ordered);
Variable: � ����� 0) [0, ..., � 	��];

Macro:� ������" 0 3�� ���� #" 0 �
	 1;���� 043 � if (������) �
����� 0 V?V (���! �" 7 A CE7 (/)) 3 ���� #" 0), $ otherwise;Q "U��� 1� ��' 0D3 *��)
�
����� 0 V?V (���! #" 0 A C 0 (�)) 3 ���! �" 7 , ;Q "U��� 1� ��' � ����� 0 3 *��) [0, ..., � 	��] V?V (����) Q "U��� 1� ��'�0 V?V�� ����� 7 3 �) , ;� R 'L �+� "2������" 0 3 *��
) [0, ..., � 	!�] V?V (�"��) �
����� 0 V�V��$#) Q "U��� 1� ��' 0&% ���" 0 H3 �
% � ��� ��"� 7 3 �) , ;
Predicate:F /21!�! �� ���"��� (/) G (� ����� 0 H3 min(

Q "U��� 1� ��' ���"��� 0D-
� R 'Y ' �B� "2��� ��"� 04- * � �B����" 0;,))
Actions:
QDR+S

/2TU #� ������� (/) V?V F /21!�! �� � ����� (/) W(� ����� 0 V 3 min(

Q "U��� 1� ��' � ����� 0 -�� R 'L �B� "2������" 0- * � ������" 0 ,);

8

From Theorem 4 and Remark 4, we know that the notion of non-tree neighbor is fondamental to determine
cut-nodes and then bridges. Thus, for each processor � � � & � r � , Algorithm ����� A computes (�)
� min � � � !�� (�

�
(�)
	�	

(� , �) � � � � < ��� �
�

(�) �), where � < is the edge set of � # r 3 . Informally, # � 3
corresponds to the minimal value among the height of each node of � (�) and the height of the non-tree
neighbors of � (�), if they exist (for instance, in figure 1, Node 1 is a non-tree neighbor of � (8)). In our
algorithm, we use > ��� � ! as an input from Algorithm ��� A to know the parent of each node in � (r) (see
Macro > ��� ! and Remark 1) as well as their children (see Macro �

�
�
��� �

� �(! and Remark 2) and
�

(�) (see
macro �%�&� �

�'�
! and Remark 3).

In Section 5, we will prove that, for all possible executions, Algorithm �����
A reaches a terminal configura-
tion and satifies the following predicate in this configuration:

>@? ������� � . For every node � ��� & � r � , 	
��

� ! is equal to (�).

4.2 Detection of Cut-nodes and Bridges

Now, we show that if
� � � � , we know

� # � 3 , # � 3 , � ��� � � � # � 3 and � (�) then we can easily detect all the
cut-nodes and the bridges of � .

Proposition 1 A node ����� is a cut-node if and only if � satisfies one of the following two conditions:

1. (� � r) [(� � (�) ��5 2);

2. (� ,� r) [(� � � � (�)
	�	 # � 3 5 � # � 3).

Proof. First, from Theorem 3, we can trivially deduce that � � is equivalent to the proposition “r is a cut-
node”. Then, for � , by definition, # � 3 is equal to the lowest height among the height of each node of � (�)
and the height of the non-tree neighbors of � (�). Now, assume that a node ����� & � r � is a cut-node. From
Theorem 4, we know that there exists a child � of � in � (r) such that no node in � (�) are linked to an ancestor
of � by a non-tree edge, i.e., each non-tree neighbor of � (�) has a height in � (r) greater or equal to the height
of � (From Property 1, each non-tree neighbor of � # � 3 is a descendant of �). Thus, # � 3 5 � # � 3 . Hence, if �
(��,� r) is a cut-node then 2. is true. With the same arguments we can trivially deduce the reciprocal. �

Proposition 2
� � � V & � r � , Edge (� , �

���
� �
� # � 3) is a bridge if and only if # � 3 � � # � 3 .

Proof. First, we can assert that a bridge (� , �) � � < (the set of edge of � (r)) because, by definition, the bridge
(� , �) is the only way to go from � to � in � (respectively from � to �).

Now, assume that the edge (� , �
���

� �
� # � 3) is a bridge and # � 3 ,�

� # � 3 . Then, # � 3 is strictly lower than� # � 3 because (�) � min ��� � !�� (�
�

(�)
	�	

(� , �) � � � � < ��� �
�

(�) �). Now, if # � 3 is strictly lower than
� # � 3

that means that there exists a non-tree edge between an ancestor of � and a node of � (�) (by definition of # � 3
and Property 1). Thus, the removal of (� , �

���
� �
� # � 3) does not disconnect � . Contradiction.

Finally, assume that the edge (� , �
���

� �
� # � 3) is not a bridge and # � 3 � � # � 3 . In this case, there exists, at

least, one cycle in � including the edge (� , �
���

� �
� # � 3). As � (r) is the � �

� ���
����� spanning tree, this cycle

is composed with tree edges and one non-tree edge. This non-tree edge links a node of � (�) to an ancestor of
� . Thus, # � 3 ��� # � 3 (by definition of # � 3). Contradiction. �

9

0

3, 0

2, 0

3, 3

2

31, 0 1

r

4

5 6 5, 34, 3

1, 0

tree edge (parent link)

non−tree edge

h(p), u(p)
(for r, we have only h(r))

Figure 2: Example on an arbitrary network.

4.3 Example

4.3.1 Cut-nodes

In Figure 2, r has only one child so r is not a cut-node. Node 4 satisfies #�� 3 5 � # 3 so its parent (Node 2) is
a cut-node, in the same way, Node 4 is a cut-node. On the other hand, no child � of Node 1 satisfies # � 3 5� #�� 3 so Node 1 is not a cut-node.

4.3.2 Bridges

In Figure 2, Node 4 satisfies #�� 3 � � #�� 3 so Edge (4,2) is a bridge. On the other hand, node 5 satisfies #�� 3
� 3 and

� #�� 3 � 4 so Edge (5,4) is not a bridge.

5 Proof of Correctness

In this section, we prove that the composite algorithm � � � A � ��� A is self-stabilizing for the predicate>@? � ����� � . Thus, we assume, first, that the daemon is weakly fair. Then, we prove that Algorithm � � � A �
��� A stabilizes even if the daemon is unfair.

Lemma 1 Every execution of Algorithm ��� � A � � � A has a finite number of moves.

Proof. From [4], we know that Algorithm ��� A has a finite number of moves. Thus, we have just to prove
that, for any configuration of Algorithm ��� A , Algorithm ��� � A can execute a finite number of steps only.

By hypothesis, we consider that Algorithm ��� A does not make any action. Then, we can assume that
�

� � � the values returned by the macros > ��� ! and �
�
�
��� �

� � ! are set. Let ��� � (� , ���) be the partial graph
of � where ��� � � (� , �) � �

	�	 > ��� !
� � � for an arbitrary configuration of Algorithm ��� A . Thus, ��� is
the partial graph of � computed by Algorithm � � A . We focus on ��� because the updating of 	

�

� ! for a

processor � can only cause the execution of � � � � � � � �
 � of the processor pointed by the macro > ��� ! , if it
exists (see Predicate � �

�����
�
� ��

�).
In any “system” �	� , we are interested in the causes of the moves. Thus, a move can be caused by:

B an initial configuration;

10

B a change in the state of a neighbor.

We call an initial move a move caused by an initial configuration. By definition, the number of initial moves
is bounded (by � � � , since r has no action in Algorithm ����� A). So, we have to show that the number of
the other moves is also bounded.
For each connected component � � . � (� . , � .) of ��� two cases are possible:

1. � � . is a tree: then, in the worst case, each processor � � � . & � r � can execute � � � �, � � � �
 � (�) as
an initial move (the program of r contains no action in Algorithm � � � A). Moreover, the updating of
	
�

� ! can only cause the execution of � � � �, � � � ��
 � of the processor pointed by the macro > ��� ! , if it

exists (see Predicate � �
�����

�
� ��

�). Now, we can remark that, for the nodes of � . , the cause relationship
of the action � � � � � � � �
 � is acyclic (indeed, the 	

�

� s’ updatings go up in � (r) following the > ���

variables) and the source of all chains of 	
��

� ! updating are always initial moves. Thus, the length

each chain of 	
�

� ! updating in � � . is bounded by the height of � � . . Thus, if � � . is a tree, the

number of � � � �, � � � �
 � moves in � ��. is finite.

2. � � . is not a tree: because for each processor ����� . , > ��� ! pointed, at most, one processor and � � . is
connected, � � . contains one cycle only and � � . is not rooted (i.e., there does not exist a processor �
��� . such that > ���) � �

). We call this cycle � and

the number of its processors.

In the worst case, each processor � � � . can execute � � � �, � � � ��
 � (�) as an initial move.

Consider a enabled processor � � � . which does not belong to � . The execution of � � � �, � � � ��
 � (�)
can only cause the execution of the action � � � �, � � � ��
 � of the processor pointed by the macro > ���)
(see Predicate � �

�����
�
� ��

�) and so on. In the worst case, these executions follow a path from � to a
processor of � .

Now, consider the case where the action � � � � � � � �
 � of a processor � in � is or becomes enabled.
The execution of � � � �, � � � �
 � (�) can only activate the processor pointed by > ���) (see Predicate
� �
�����

�
� �

�) and follows � . However, these executions propagate the same value in the 	
�

� vari-

ables. Thus, in the worst case, the processor � can, at most, induce

� � executions of � � � �, � � � �
 �

actions (one for each other node of �). Indeed, a processor becomes enabled in order to assign a new
value to its 	

�

� variable only. Thus, even if � � . is not a tree, the number of � � � � � � � �
 � moves

in � � . is also finite.

�
Let � ��� . Let � be the leaf with the upper height in � (�).We define

�
(�) as follows:�

(�) �
�

(�) �
�

(�).

Thus,
�
(�) represents the distance between � and the upper height leaf of its induced subtree.

Lemma 2 Algorithm �����
A stabilizes to >@? � ��� � � if >@? ����� � holds.

Proof. We begin the proof with some claims. First, from [4] and Lemma 1, we know that �����
A � � � A
reaches a terminal configuration in a finite number of moves and, in this configuration, >@? �(��� � holds.
Assuming >@? ����� � holds, all the edges (� , > ��� !) such that � � � & � r � shape the � �

� �-�
����� spanning

tree � (r), the macro �
�
�
�����

� � ! equals � (�), and the macro ����� �
� �

! returns
�

(�) (see Remarks 1, 2 and 3).
Since the system reaches a configuration where no action is enabled, the predicate � �

�����
�
� �

� (�) is false
for each � ��� & � r � .

11

Thus, we have to prove that, in this configuration,
� � � � & � r � Back ! � (�). We prove that by induction

on
�
(�) in � (r).
Let

�
(r) the set of leaves of � (r). In the terminal configuration,

� � � � (r) (
�
(�) � 0), because �

�
�
�
-� �

� �
� ��

��� ��� , 	
��

��� � min (� � � � � � � � �&� � �'� ��� � ����� �

�'�
�!�). Now, � � � ��� � � � ��� � �'� ������� � � � .��
	��
���� � 	��

�
�

(�) � , � (�) ��� , and, � (�) � � � � . Then, 	
�

��� � min ��� � � � (�

�
(�)
	�	

(� , �) ��� � � < � � �
�

(�) �) � (�).
Now, assume that for each node � � � & � r � , such that

�
(�) " � (� 5 0), we have 	

�

��! �� (�).

Consider the nodes ��� � & � r � , such that
�
(�) � ��� � . In the terminal configuration, 	

�

�)�� min

(�
�
�
��� �

� �
� ��

�) � � � � � � � � � �&� �
�'�

) � � ����� �
�'�

) �). By induction assumption, �
�
�
��� �

� �
� �

�) � ��� ��
 �) �
� (�) � ����� �
 �) � � min ����� � � (�

�
(�)
	�	

(� , �) � � ��� < � � �
�

(�) �) � . � � � ��� � � � ��� � � �) � (��� � � � .�� 7
�
 �)�� �
���� � 7��
�
�

(�) �) � �
�

(�)
	�	

(� , �) � � � � < � . Thus, 	
��

�) � min(��� �
 �) � � min ����� � � (�

�
(�)
	�	

(� , �) � � � � < � �
�
�

(�) �) � � �
�

(�)
	�	

(� , �) ��� ��� < � � �
�

(�) �) � min(��� ��
 �) � (� ����� � � (�
�

(�)
	�	

(� , �) � � ��� < � � �
�

(�) �)) �
�
�

(�)
	�	

(� , �) �
� � � < ��� �
�

(�) �). Now, � (�) � (��� ��
 �)�� � � (�) �) � � � � . Hence, 	
�

�) � min � � �) � (�

�
(�)	�	

(� , �) � � � �@< � � �
�

(�) �) �� (�). Thus,
� ��� �$& � r � , such that

�
(�) � � � � , 	

�

�) � (�). Hence, this

property is true for each processor � such
�
(�) " � + 1. With � � � - 1 (because � � � �, � � � ��
 � does not

exist in the program of r) the lemma holds. �

Theorem 5 Algorithm ��� � A � � � A stabilizes to > ? � ��� � � .

Proof. From the following four observations and Theorem 1, the result holds.

1. From [4], we know that Algorithm � � A stabilizes to >@? � ��� � .

2. By Lemma 2, Algorithm ��� � A stabilizes to >@? � ����� � if >@? ����� � holds.

3. Because Algorithm ��� A is silent, trivially, we can claim that Algorithm ��� A does not change vari-
ables read by >@? � ����� � once >@? ����� � holds.

4. From Lemma 1, we know that every execution of ����� A � � � A is finite. Thus, the composition
� � � A � ��� A is fair with respect to both >@? ����� � and >@? ����� � � (see Definition 11).

�
We presented Algorithm ��� � A � � � A under the weak fairness assumption. The following theorem claims
that Algorithm �����
A � � � A is also correct without any fairness assumption. In fact, we prove that any
execution of Algorithm ����� A � ��� A has a bounded number of moves (see Lemma 1). Therefore, an
unfair daemon cannot forever prevent any enabled processor to execute an action.

Theorem 6 Algorithm ��� � A � � � A stabilizes even if the daemon is unfair.

Finally, from Theorems 2 and 5, Propositions 1 and 2, and Remark 1, we can claim the following theorem.

Theorem 7 Algorithm ��� � A � � � A is self-stabilizing and detects all cut-nodes and bridges of � .

Corollary 1 After Algorithm �����
A � ��� A terminates, a node ����� is a cut-node if and only if � satisfies
one of the two following conditions:

1. (� � r) [(� � �
� �
�
�
�����

� � ! � � 5 2)

2. (� ,� r) [(� � � �
�
�
��� �

� � !
	�	

(
�

�) 5 ����� �

� �
!)).

12

Corollary 2 After Algorithm �����
A � ��� A terminates,
� � � V & � r � , (� , > ��� !) is a bridge if and only if

	
��

� ! � ����� �

� �
! .

6 Complexity

In order to compare our algorithm with solutions proposed in the literature, we compute the time complexity
of Algorithm �����
A after Algorithm � � A terminates. Thus, in this section, we assume the presence of the� �
� ���

����� spanning tree � (r). Moreover, we presented the space complexity of our solution.

6.1 Time Complexity

Theorem 8 Algorithm �����
A needs � (�) rounds to reach a terminal configuration after Algorithm ��� A
terminates.

Proof. Since we assume that Algorithm � � A is terminated, the � �
� �-�

����� tree � (r) has been computed:> ����� ! , �
�
�
�����

� � ! , and �%�&� �
�'�

! are constant (
� � � �) and > ��� ! too (

� � � � & � r �). Hence,
� � � � & � r � ,

if � � � � � � � �
 � (�) is disabled then it can become enabled if and only if at least one of its children � in � (r)
has modified its variable 	

�

�) (see Predicate � �

�����
�
� ��

� (�)).
We prove this lemma by induction on

�
(�) (distance from � to its farther leaf) in � (r).

Let � � � (r), the set of leaves of � (r) (
�
(�) � 0), Action � � � � � � � �
 � (�) depends on ����� �

� �
variables

only, so after one round, � � � �, � � � �
 � (�) is disabled forever.
Now, assume that

� � � � & � r � , such that
�
(�) " � (� 5
7), we have � � � �, � � � �
 � (�) disabled forever

and 	
�

��! is now constant after, at most,

�
(�) � 1 rounds.

For each � � � & � r � , � �
�����

�
� ��

� (�) uses only 	
�

� values of its children and �%�&� �

�'�
variables (which

are constant). So, during the round � � , each ��� � & � r � such that
�
(�) � � � � reads 	

�

� and ����� �

�'�
values which are constant from now. If � � � �, � � � �
 � (�) is disabled, it will remain forever. Otherwise
� � � �, � � � �
 � (�) is continuously enabled until � executes it. So, after the round � � , � � � �, � � � ��
 � (�) is
disabled forever. At the end of the round � (

� ��� � & � r � ,
�
(�)
�

�) no � � � �, � � � ��
 � action is enabled in
the system. �

Theorem 9 Algorithm �����
A needs � (�*�) moves to reach a terminal configuration after Algorithm ��� A
terminates.

Proof. In order to prove this time complexity, we use the notions of causes of the moves again. We recall
that a move can be caused by:

B an initial configuration;

B a change in the state of a neighbor.

We call an initial move: a move caused by an initial configuration. As we assume Algorithm ��� A is termi-
nated, we can consider that,

� � , > ����� ! is set and, thus, the values returned by the macros > ��� ! (if � ,� r),
�
�
�
��� �

� � ! , and �%�&� �
�'�

! are also set. Hence, there exists a ����� spanning tree rooted at r, � (r) � (� ,
� <) such that � < � � (� , > ��� !)

	�	
� � � & � r � � . In the worst case, each processor � � � & � r � can exe-

cute � � � � � � � �
 � (�) as an initial move. So, the total number of execution of initial � � � �, � � � ��
 � is
in � (�) moves. Then, the updating of the variable 	

��

��! of a processor � can only cause the execution of

� � � �, � � � �
 � of its parent in � (r), i.e., > ��� ! (see Predicate � �
�����

�
� ��

�). Moreover, we can remark that
the cause relationship of the action � � � �, � � � �
 � is acyclic (indeed, the 	

�

� s’ updatings go up in � (r)

13

following the > ��� variables) and the source of all chains of 	
�

� s’ updating is always an initial move. Thus,

the length of each chain of 	
�

� s’ updating is bounded by � , the height of � (r) (� " �). Hence, the number

of executions of � � � �, � � � ��
 � is in � (� �) after Algorithm ��� A terminates. �

6.2 Space Complexity

From Algorithms 1, 2, 3, and 4, we can trivially deduce the following theorem.

Theorem 10 The memory requirement of Algorithm ����� A � � � A is � (�
 ���� (�) � ���� (�)) bits per
processor where � is the number of processors and � is an upper bound on the degree of processors.

7 Conclusion

We have presented a silent, distributed, and self-stabilizing algorithm which detects cut-nodes and bridges in
arbitrary rooted networks. This algorithm must be composed with Algorithm ��� A from [4]. After Algorithm
��� A terminates, our algorithm needs only � (�) rounds and � (� �) moves to reach a terminal configuration.
This time complexity is equivalent to the best already proposed solutions. We have shown that the composite
Algorithm ��� � A � � � A also works with an unfair daemon. Moreover, the memory requirement of Algo-
rithm ��� � A � � � A is � (�
%���� (�) � ���� (�)) bits per processor. Until now, this is the protocol with the
lowest memory requirement solving this problem.

References

[1] M Ahuja and Y Zhu. An efficient distributed algorithm for finding articulation points, bridges and biconnected
components in asynchronous networks. In 9th Conference on Foundations of Software Technology and Theorical
Computer Science, Banglore, India, pages 99–108. LNCS 405, 1989.

[2] P Chaudhuri. A note on self-stabilizing articulation point detection. Journal of Systems Architecture, 45(14):1249–
1252, 1999.

[3] P Chaudhuri. An � (���) self-stabilizing algorithm for computing bridge-connected components. Computing, 62:55–
67, 1999.

[4] Z Collin and S Dolev. Self-stabilizing depth-first search. Information Processing Letters, 49(6):297–301, 1994.

[5] EW Dijkstra. Self stabilizing systems in spite of distributed control. Communications of the Association of the
Computing Machinery, 17:643–644, 1974.

[6] S Dolev, A Israeli, and S Moran. Self-stabilization of dynamic systems assuming only read/write atomicity.
Distributed Computing, 7:3–16, 1993.

[7] S Dolev, A Israeli, and S Moran. Uniform dynamic self-stabilizing leader election. IEEE Transactions on Parallel
and Distributed Systems, 8(4):424–440, 1997.

[8] M Hakan Karaata. A self-stabilizing algorithm for finding articulation points. International Journal of Foundations
of Computer Science, 10(1):33–46, 1999.

[9] M Hakan Karaata and P Chaudhuri. A self-stabilizing algorithm for bridge finding. Distributed Computing,
12(1):47–53, 1999.

[10] J Parks, N Tokura, T Masuzawa, and K Hagihara. Efficient distributed algorithms solving problems about the
connectivity of network. Systems and Computers in Japan, 22:1–16, 1991.

[11] K Paton. An algorithm for blocks and cutnodes of a graph. Communications of the ACM, 37:468–475, 1971.

14

[12] A P Spraque and K H Kulkarni. Optimal parallel algorithms for finding cuter vertices and bridges of internal
graphs. Information Processing Letters, 42:229–234, 1992.

[13] Robert E Tarjan. Depth-first search and linear graph algorithms. SIAM J. Computing, 1:No 2, june 1972.

[14] G Tel. Introduction to distributed algorithms. Cambridge University Press, 1994.

15

