
Algorithms for Extracting Timeliness Graphs?

Carole Delporte-Gallet1, Stéphane Devismes2, Hugues Fauconnier1, and Mikel
Larrea3

1 Université Paris Diderot
LIAFA

{Carole.Delporte,Hugues.Fauconnier}@liafa.jussieu.fr
2 Université Joseph Fourier, Grenoble I

VERIMAG UMR 5104
Stephane.Devismes@imag.fr

3 University of the Basque Country, UPV/EHU
Mikel.Larrea@ehu.es

Abstract. We consider asynchronous message-passing systems in which
some links are timely and processes may crash. Each run defines a time-
liness graph among correct processes: (p, q) is an edge of the timeliness
graph if the link from p to q is timely (that is, there is a bound on
communication delays from p to q). The main goal of this paper is to ap-
proximate this timeliness graph by graphs having some properties (such
as being trees, rings, . . .). Given a family S of graphs, for runs such
that the timeliness graph contains at least one graph in S then using an
extraction algorithm, each correct process has to converge to the same
graph in S that is, in a precise sense, an approximation of the timeliness
graph of the run. For example, if the timeliness graph contains a ring,
then using an extraction algorithm, all correct processes eventually con-
verge to the same ring and in this ring all nodes will be correct processes
and all links will be timely.

We first present a general extraction algorithm and then a more specific
extraction algorithm that is communication efficient (i.e., eventually all
the messages of the extraction algorithm use only links of the extracted
graph).

1 Introduction

We consider partially synchronous models like in [6] or [7] in which some pro-
cesses may crash. In such systems some links are timely, meaning that the com-
munication delays are bounded [2], and some other are not. Generally, these
timeliness properties of links have been used to solve the consensus problem as
in [7] or to implement failure detectors like Ω that realizes an eventual election
of a correct process (e.g., [1, 4, 10–12]). In this paper we are more specifically
interested in detecting the timeliness of the links in order to approximate the

? This work has been supported in part by the ANR project SHAMAN, the INRIA
project GANG, and the Basque Government (grant MV-2009-1-10).

2

timeliness relation on links in each run. If processes are able to eventually deter-
mine which links are timely, then avoiding to use non timely links could help to
improve the efficiency of the communication that can be particularly interesting
for routing algorithms.

More precisely, each run of the system eventually converges to a timeliness
graph whose nodes are the correct processes and directed edges are the timely
edges among correct processes, and an extraction algorithm is an algorithm such
that all correct processes eventually agree on an identical graph that approxi-
mates the timeliness graph.

For example, assume the system ensures that there is at least one correct
process that communicates in a timely way with all other processes, such a
process is an eventual source [2] and it could be interesting for the processes to
choose and agree on such an eventual source. This way, we not only realize an
eventual leader election but also the chosen leader is able to communicate in a
timely way with the rest of correct processes.

If we assume now that instead of an eventual source there is an eventual
root in the system, that is a correct process that may communicate with every
process by a communication path using only timely links, then choosing and
agreeing on such an eventual root realizes an eventual leader election (the root
is the eventual leader) but this also enables to ensure a routing of all messages
from the root to any other processes using only timely links.

In the same way, if the system ensures that there is always a cycle contain-
ing all correct processes in the timeliness graph of the run, then choosing and
agreeing on one such cycle enables to eventually build a ring between all correct
processes that uses only timely links. Note that in this case the processes even-
tually agree on the list of all correct processes too, as a consequence we obtain
a failure detector ♦P [5].

More precisely, consider some structural property P of graphs (like being a
star, a ring, a tree, a complete graph...). An algorithm extracting a graph G
verifying P has to ensure that (1) all the correct processes eventually agree on
G, (2) all the correct processes are nodes of G and (3) G is an “approximation”
of the timeliness relation of the run. Actually, “approximation” means that the
subgraph of G induced by the correct processes is obtained from a directed cut
(dicut) 4 of G and is a subgraph of the timeliness graph.

Contributions. In this paper, we first introduce and specify the problem of ex-
traction of graphs in some set X . We consider only systems in which a solution
may exist: in all runs there is at least one graph in X that is compatible with
the run.

We prove that this problem cannot be solved for some set of graphs and we
give a sufficient condition on the set of graphs to be extracted. This condition is
rather simple: the set of graphs has to be closed by directed cut reduction. Then,
we give an extraction algorithm for every set of graphs verifying this property.

4 A directed cut (X,Y) of directed graph G = 〈N,E〉 is a partition of N such that
there is no directed edge from Y to X.

3

Moreover, if the graphs in X are all strongly connected, the algorithm gives
an exact extraction, that is, the set of nodes of the extracted graph is exactly
the set of correct processes of the run. Reciprocally, we show that there exist
sets of graphs that admit extraction but no exact extraction.

Besides, we show that finding an approximation is even so interesting: in the
extracted graph any path between a pair of correct processes is only constituted
of timely links. Hence, the approximation can be used to timely route messages,
e.g., in the previous example with a root, the approximation will give us a tree
whose root is a correct process and with a path containing only correct processes
from the root to every correct process.

One drawback of this algorithm is the fact that forever all correct processes
have to send messages on all links. Hence if k is the number of correct processes
k(k−1) links will be used forever by the extraction algorithm. We are then inter-
ested in communication efficient [11] implementations of the extraction problem.
That is, eventually all correct processes only send messages along the edges of
the extracted graph. For example, consider the example of a system with a time-
liness ring, eventually only k − 1 links of the system are used. We propose an
efficient extraction algorithm for sets of graphs containing at least one correct
process with directed paths from this process to all correct processes.

Roadmap. In the next section, we define the model used in this paper and present
some examples of systems. In Section 3, we define the extraction problem and
give some of its properties. Our two algorithms are presented in Sections 4 and
5, respectively. Finally, we make some concluding remarks in Section 6.

Due to the lack of space, some technical proofs have been omitted. For further
details, see the online technical report [8].

2 Informal Model

Graphs. We begin with some definitions and notations concerning graphs. For
a directed graph G = 〈N,E〉, Node(G) and Edge(G) denote N and E, re-
spectively. Given a graph G and a set M ⊆ Node(G), G[M] is the subgraph
of G induced by M , i.e., G[M] is the graph 〈M,Edge(G)[M]〉 where (p, q) ∈
Edge(G)[M] if and only if p, q ∈M and (p, q) ∈ Edge(G).

The tuple (X,Y) is a directed cut (dicut for short) of G if and only if X and
Y define a partition of Node(G) and there is no directed edge (y, x) ∈ Edge(G)
such that x ∈ X and y ∈ Y . We say that G′ is a dicut reduction from G if there
exists a dicut (X,Y) of G such that G′ = G[X]. A set S of graphs is dicut-closed
if and only if it is closed under dicut reduction, namely if G ∈ S then all the
graphs obtained by a dicut-reduction of G are in S.

Processes and Links. We consider distributed systems composed of n processes
which communicate by message-passing through directed links. We denote the
set of processes by Π = {p1, ..., pn}. We assume that the communication graph
is complete, i.e., for each pair of distinct processes (p, q), there is a directed link
from p to q.

4

A process may fail by crashing, in which case it definitely stops its local
algorithm. A process that never crashes is said to be correct, faulty otherwise.

The (directed) links are reliable, i.e., every message sent through a link (p, q)
is eventually received by q if q is correct and if a message m from p is received
by q, m is received by q at most once, and only if p previously sent m to q.

The links being reliable, an implementation of the reliable broadcast [9] is
possible. A reliable broadcast is defined with two primitives: rbroadcast〈m〉
and rdeliver〈m〉. Informally, after a correct process p invokes rbroadcast〈m〉,
all correct processes eventually rdeliver〈m〉; after a faulty process p invokes
rbroadcast〈m〉, either all correct processes eventually rdeliver〈m〉 or correct
processes never rdeliver〈m〉.

Timeliness. To simplify the presentation, we assume the existence of a discrete
global clock. This is merely a fictional device: the processes do not have access
to it. We take the range T of the clock’s ticks to be the set of natural numbers.

We assume that every correct process p is timely, i.e., there is a lower and
an upper bound on the execution rate of p. Correct processes also have clocks
that are not necessarily synchronized but we assume that they can accurately
measure intervals of time.

A link (p, q) is timely if there is an unknown bound δ such that no message
sent by p to q at time t may be received by q after time t+ δ.

A timeliness graph is simply a directed graph whose set of nodes are a subset
of Π. The timeliness graph represents the timeliness properties of the links.
Intuitively, for timeliness graph G, Node(G) is the set of correct processes and
(p, q) is in Edge(G) if and only if the link (p, q) is timely.

Runs. An algorithm A consists of n deterministic (infinite) automata, one for
each process; the automaton for process p is denoted A(p). The execution of
an algorithm A proceeds as a sequence of process steps. Each process performs
its steps atomically. During a step, a process may send and/or receive some
messages and changes its state.

A run r of algorithm A is a tuple r = 〈T, I, E, S〉 where T is a timeliness
graph, I is the initial state of the processes in Π, E is an infinite sequence of
steps of A, and S is a list of increasing time values indicating when each step in E
occurred. A run must satisfy usual properties concerning sending and receiving
messages. Moreover, we assume that (1) all correct processes make an infinite
number of steps: p ∈ Node(T) if and only if p makes an infinite number of steps
in E and (2) the timeliness of links is deduced from the timeliness graph T :
(p, q) ∈ Edge(T) if and only if the link (p, q) is timely with respect to E and S.

In the following for run r = 〈T, I, E, S〉, T (r) denotes T the timeliness
graph of r, and Correct(r) is the set of correct processes for the run r, namely,
Correct(r) = Node(T (r)). Note that by definition, (p, q) is a timely link if and
only if (p, q) ∈ Edge(T).

Remark that in the definition given here a link may be timely even if no
message is sent on the link. If link (p, q) is FIFO (i.e., messages from p to q are
received in the order they are sent) and p regularly sends messages to q, then

5

the timeliness of these messages implies the timeliness of the link itself. So in
the following we always assume that links are FIFO.

2.1 Some Systems

We say that timeliness graph G is compatible with timeliness graph G′ if and
only if (1) Node(G) = Node(G′) and (2) Edge(G) ⊆ Edge(G′). By extension,
timeliness graph G is compatible with run r if G is compatible with T (r), the
timeliness graph of r. Hence, timeliness graph G is compatible with run r if
Node(G) is the set of correct processes in r and if (p, q) is an edge of G then
(p, q) is timely in r.

A system X is defined as a set of timeliness graphs. The set of runs of system
X denoted R(X) is the set of all runs r such that there exists a timeliness graph
G in X compatible with r.

Below, we define the systems considered in this paper:

– ASYNC is the set of all timeliness graphs G such that Edge(G) = ∅. In
ASYNC there is no timeliness assumption about links and R(ASYNC) is
the set of all runs in an asynchronous system.

– COMPLET E is the set of all complete graphs whose nodes are the subsets
of Π.

– ST AR is the set of all timeliness graphs with a source, i.e., G ∈ ST AR
if and only if Node(G) ⊆ Π and there exists p0 ∈ Node(G) (the center of
the star or the source) such that Edge(G) = {(p0, q)|q ∈ Node(G) \ {p0}}.
Clearly a run r is in R(ST AR) if and only if there is at least one source in
r.

– T REE is the set of all timeliness graphs G that are rooted directed trees,
i.e., |Edge(G)| = |Node(G)| − 1 and there exists p0 in Node(G) such that
∀q ∈ Node(G), there is a directed path of G from p0 to q. Clearly a run r is
in R(T REE) if and only if there is at least one timely path from a correct
process to all correct processes.

– RING is the set of all timeliness graphs G such that G is a directed cycle
(a ring). Clearly a run r is in R(RING) if and only if there is a timely
(directed) cycle over all correct processes.

– SC is the set of all timeliness graphs that are strongly connected. Clearly, a
run r is in R(SC) if and only if there exists a (directed) timely path between
each pair of distinct correct processes.

– BIC is the set of all timeliness graphs G such that for all p, q ∈ Node(G),
there exist at least two distinct paths from p to q. BIC corresponds to the
set of 2-strongly-connected graphs. Clearly, a run r is in R(BIC) if and only
if there exists at least two distinct timely paths between each pair of distinct
correct processes.

– PAIR is the set of all timeliness graphs G such that Edge(G) = {(p, q),
(q, p)} with p, q ∈ Node(G) and p 6= q. Clearly, a run r is in R(PAIR) if
and only if there exists two distinct correct processes p and q such that (p, q)
and (q, p) are timely links.

6

3 Extraction Algorithms

Given a system X , the goal of an extraction algorithm is to ensure that in each
run r in R(X), all correct processes eventually agree on the same element of X
and that this element is, in some precise sense, an approximation of the timeliness
graph of run r.

For example, in RING, all processes have to eventually agree on some ring
and this ring has to be compatible with the timeliness graph of the run. In
particular this ring contains all the correct processes. However, the compatibility
relation may be too strong: In many systems, it is not possible to distinguish
between a crashed process and a correct one, so the graph G on which the
processes eventually agree may contain crashed processes and then the graph
is not exactly compatible with the run. Then we weaken the compatibility and
impose only that the subgraph of G induced by the set of correct processes of
the run is a dicut reduction of the timeliness graph of the run.

We now formally define what an extraction algorithm is. First, in such an
algorithm, every process p maintains a local variable Gp which contains a time-
liness graph. Then, we say that an algorithm extracts a timeliness graph in X
if and only if for every run r in R(X) there is a timeliness graph G (called the
extracted graph) such that:

– Convergence: for all correct processes p there is a time t after which Gp = G

– Compatibility: G[Correct(r)] is compatible with T (r)

– Closure: G[Correct(r)] is a dicut reduction of G or is equal to G

– Validity: G is in X

Remark that for all systems that contain ASYNC there is a trivial extraction
algorithm: for each run processes extract the graph G such that Node(G) = Π
and Edge(G) = ∅.

A more constrained version of the extraction problem is the following: an
algorithm A extracts exactly timeliness graphs in X if for every run r in R(X),
the extracted graph G is compatible with T (r). In this case, all correct processes
eventually know the exact set of correct processes: it is the set of nodes of the
extracted graph.

Some Results about Extraction Algorithms. First we show that an extraction
algorithm may help to route messages using only timely links:

Lemma 1. Let G be a graph extracted from run r, if (p, q) is in Edge(G) and
q is a correct process then p is correct.

Proof. By contradiction, assume that p is not correct, then (Correct(r), Node(G)−
Correct(r)) is not a dicut because (p, q) ∈ Edge(G), p ∈ Node(G)−Correct(r)
and q ∈ Correct(r), which contradicts the Closure property.

From this lemma and the Compatibility property, we deduce directly:

7

Proposition 1. If (p = q0, . . . , qi, . . . , q = qm) is a path in the extracted graph
and p and q are correct processes, then for every i such that 0 ≤ i < m the link
(qi, qi+1) is timely and process qi is correct.

From a practical point of view, this proposition shows that the extracted
graph may be used to route messages between processes using only timely links:
the route from p to q is a path in the extracted graph (if any). All intermediate
nodes are correct processes and agree on the extracted graph and then on the
path.

For example with T REE , the tree extracted by the algorithm enables to route
messages from the root of the tree to any other processes and the routing uses
only timely links.

Generally, the main goal of the extraction algorithm is not only to extract a
graph G in X but also to ensure that G[Correct(r)] is in X (even if the processes
do not know the set of correct processes). In particular, this property is ensured
if X is dicut-closed: the Closure property implies that G[Correct(r)] is in X .

Among the systems we consider, only system PAIR is not dicut-closed:
H = 〈{x}, ∅〉 is a dicut reduction of G = 〈{x, y, z}, {(y, z), (z, y)}〉 but is not
in PAIR. It is easy to verify that every other previously introduced system is
dicut-closed. For these systems we obtain:

Proposition 2. Consider any extraction algorithm for the system X .

– If X = ST AR, then the center of the extracted star is a correct process.
– If X = T REE, then the root of the extracted tree is a correct process.
– If X ∈ {SC, COMPLET E ,RING,BIC}, then the extraction is exact.

Proof. For ST AR and T REE , all the dicut reductions of the extracted graph
contain at least respectively the center and the root, then the restriction of the
extracted graph contains at least these nodes, proving that they are correct
processes.

There is no dicut for a strongly connected graph. Hence in SC, there is
no dicut reduction then by the Closure property the subgraph induced by the
set of correct processes of the extracted graph is the extracted graph itself.
COMPLET E , RING, and BIC are particular cases of systems only composed
of strongly connected timeliness graphs.

An immediate consequence of Proposition 2 is that any extraction algorithm
gives an implementation of eventual leader election (failure detector Ω) for sys-
tems ST AR and T REE as well as an implementation of failure detector ♦P for
systems COMPLET E , RING, SC and BIC.

Due to the lack of space, the proofs of the two following propositions have
been omitted. In the first proposition we show that extraction is not always
possible. Actually, in the proof we exhibit some non dicut-closed systems, namely
PAIR, where no extraction algorithm can be implemented.

Proposition 3. There exist some systems X for which there is no extraction
algorithm.

8

In the next section we show that for all dicut-closed systems there is an
extraction algorithm. For systems like ST AR, T REE and PAIR, there exists
no exact extraction algorithm.

Proposition 4. There exist some systems X for which there is an extraction
algorithm and there is no exact extraction algorithm.

4 An Extraction Algorithm

The aim of this section is to show that the dicut-closed property of a system is
sufficient to solve the extraction problem. To that end, we propose in Figure 1
an extraction algorithm, called A(X), for dicut-closed systems X .

The basic idea of Algorithm A(X) is to make processes select a graph that is
compatible with the timeliness graph of the run. For this, each process maintains
for each graph x in X an accusation counter Acc[x]. This counter infinitely grows
if some correct process is not in x or if some directed edge of x is not timely.
Then, Acc[x] is bounded if and only if x contains all correct processes and all
timely links between pairs of correct processes.

We implement accusation counters as follows. A process regularly blames all
the graphs in X in which it is not a node: it increments the accusation counters
of all these graphs. Note that if the process is correct this accusation is justified
and if the process is not correct, after some time, the process being dead stops
to increment the accusation counters. Moreover, each process regularly sends on
its outgoing links alive messages. Each process p maintains an estimate of the
communication delays for each incoming link (∆[q] for the incoming link (q, p)).
If it does not receive alive messages within these estimates on some incoming
link it blames all timeliness graphs in X containing this link (i.e., increments
the accusation counters for these graphs). As the estimate of the communication
delay may be too short, each time it is exceeded the process increases it for the
link. In this way, if the link is timely, at some time the estimate will be greater
than the bound on communication delay.

The accusation counters are broadcast by reliable broadcasts. Each time a
process receives a new value of accusation counter it updates its own accusation
counter to the maximum of the received values and its current values. Hence,
if some timely graph stops to be blamed then all correct processes eventually
agree on the value of its accusation counter.

By selecting the graph G with the lowest accusation value (to break ties, we
assume a total order among the graphs of X) if any, correct processes eventually
agree on the same timeliness graph of X , moreover we can prove that this graph
contains (1) all the correct processes, and (2) all edges between correct processes
are timely links. As a consequence, the Convergence, the Compatibility and the
Validity properties of the extraction algorithm are ensured. Nevertheless, this
graph can also contain faulty processes and edges between correct and faulty
processes.

Consider now the Closure property. If G contains only correct processes then
the Closure property is trivially satisfied. Otherwise, G contains Correct(r) and

9

a set F of faulty processes. In this case, (Correct(r), F) is a dicut reduction of
G: Indeed if there is an edge in G from a faulty process q to a correct process
p, eventually the process p stops to receive messages from q and the accusation
counter of G grows infinitively often. Hence, in all cases, the Closure property is
satisfied.

Hence, if X is dicut-closed, Algorithm A(X) extracts a graph in X . More-
over from Proposition 2, if all the graphs of X are strongly connected then the
algorithm exactly extracts a graph in X .

In the algorithm, each process p uses local timers, one per process. The timer
of p dedicated to q is set (by setting settimer(q) to a positive value) to a time
interval rather than absolute time. The timer is decremented until it expires.
When the timer expires timerexpire(q) becomes true. Note that a timer can
be restarted before it expires.

In the algorithm, we denote by ≺ the total order relation on X and by ≺lex
(see Line 2) the total order relation defined as follows: ∀x, y ∈ X , ∀cx, cy ∈ N,
(cx, x) ≺lex (cy, y) ≡ [cx < cy ∨ (cx = cy ∧ x ≺ y)].

Code for each process p

1: Procedure updateExtractedGraph()
2: G← x such that (Acc[x], x) = min≺lex

{(Acc[x′], x′) such that x′ ∈ X}

3: On initialization:
4: for all x ∈ X do Acc[x]← 0
5: for all q ∈ Π \ {p} do
6: ∆[q]← 1
7: settimer(q) ← ∆[q]
8: updateExtractedGraph()
9: start tasks 1 and 2

10: task 1:
11: loop forever
12: send〈alive〉 to every q ∈ Π \ {p} every K time
13: rbroadcast〈ACC,⊥,p〉 every K time /∗ to accuse graphs that do not contain p ∗/

14: task 2:
15: upon receive〈alive〉 from q do
16: settimer(q) ← ∆[q]

17: upon timerexpire(q) do
18: rbroadcast〈ACC, q, p〉 /∗ to accuse graphs that contain the link (q, p) ∗/
19: ∆[q]← ∆[q] + 1
20: settimer(q) ← ∆[q]

21: upon rdeliver〈ACC,q,h〉 do /∗ information from h ∗/
22: for all x ∈ X do
23: if q =⊥ then
24: if h /∈ Node(x) then Acc[x]← Acc[x] + 1
25: else
26: if (q, h) ∈ Edge(x) then Acc[x]← Acc[x] + 1
27: updateExtractedGraph()

Fig. 1. Algorithm A(X) extracts a graph in X

A sketch of the correctness proof of A(X) is given below. In this sketch, we
consider a run r of A(X) in dicut-closed system X . We will denote by vartp the
value of var of process p at time t.

10

We first notice that all variables Accp[x] are monotonically increasing:

Lemma 2. For all times t and t′ such that t ≥ t′, for all processes p, for all
graphs x in X , Acctp[x] ≥ Acct′p [x].

Let sup(Accp[x]) be the supremum of Acctp[x] for all t, we say that Accp[x] is
unbounded if sup(Accp[x]) is equal to ∞ and bounded otherwise. As Accp[x] is
also updated by reliable broadcast each time some process q modifies Accq[x] we
have:

Lemma 3. For all correct processes p and q, for all graphs x in X , sup(Accp[x])
= sup(Accq[x])

Let sup(Acc[x]) be the supremum sup(Accp[x]) over all correct processes p of
Accp[x] (by Lemma 3, sup(Acc[x]) is well-defined). If there is a least one x ∈
X such that sup(Acc[x]) is bounded, then min{sup(Acc[x′])|x′ ∈ X} is finite,
hence G the graph such that (Acc[G], G) = min≺lex

{(Acc[x′], x′)|x′ ∈ X} is well
defined. Then all correct processes converge to the same graph:

Lemma 4. If there exists x in X such that sup(Acc[x]) is bounded then there is
a time after which for every correct process p, Gp is G.

Now we prove the Compatibility property. Consider any timeliness graph x ∈ X
compatible with T (r). Then there is a time t after which all faulty processes are
dead and the estimates of communication delays are greater than the bounds of
communication delays of timely links of the run. After time t, (1) as x contains
all correct processes, no process will blame x because it is not a node of x, and
(2) as all edges of x are timely, no process will blame x for one of its edges then:

Lemma 5. If x in X is compatible with T (r), then sup(Acc[x]) is bounded.

Reciprocally, let x be a timeliness graph of X that is not compatible with
the run. If process p is correct and p is not in x, it regularly blames x then
sup(Acc[x]) = ∞. If process p is not correct there is a time t after which it
does not send any alive message, and there is a time after the timers on p
expire forever for all correct processes, then if p is in x, Accp[x] is incremented
infinitely often and sup(Acc[x]) =∞. In the same way if q is correct and (p, q) is
not timely, by the fifo property of the link, the timer for p expires infinitely often
for process q and if (p, q) is an edge of x then Accq[x] is incremented infinitely
often and sup(Acc[x]) =∞.

Then:

Lemma 6. For every x in X , if sup(Acc[x]) is bounded then x[Correct(r)] is
compatible with T (r).

Lemma 4 and Lemma 5 prove the Convergence property. Let G be the time-
liness graph such that for every correct process p eventually Gp = G. Hence by
Lemma 6:

Lemma 7. G[Correct(r)] is compatible with T (r).

11

It remains to prove that G satisfies the Closure property: G[Correct(r)] is a
dicut reduction of G or is equal to G. As G[Correct(r)] is compatible with T (r),
we have:

Lemma 8. Correct(r) ⊆ Node(G).

Let F = Node(G) − Correct(r). If F is empty the Closure property is triv-
ially ensured. Consider now the case where F is not empty. F contains only
faulty processes and (Correct(r), F) is a partition of G(Node). If there is an
edge in Edge(G) from a faulty process q to a correct process p, eventually the
process p never receives a message from q and the accusation counter of G will
be unbounded, contradicting the choice of G. So, we have:

Lemma 9. If F 6= ∅ then Edge(G) ∩ (F × Correct(r)) = ∅.

Hence, (Correct(r), F) is a dicut of G.
Lemma 4 and Lemma 5 prove the Convergence property, Lemma 7 proves the

Compatibility property and Lemma 9 proves the Closure property. Moreover, G
is clearly in X proving the Validity. Proposition 2 shows that the extraction is
exact when all graphs of X are strongly connected. Hence, we can conclude with
the following theorem:

Theorem 1. Let X be a dicut-closed system. Algorithm A(X) extracts a graph
in X . Moreover if all graphs of X are strongly connected, Algorithm A(X) exactly
extracts a graph in X .

5 An Efficient Extraction Algorithm

In this section, we propose another extraction algorithm calledAF(X) (Figures 2
and 3). This algorithm is efficient meaning that the (correct) processes eventually
only send messages along the edges of the extracted graph.
AF(X) (exactly) extracts a timeliness graph from system X , where (1) X is

dicut-closed and (2) for all graphs g ∈ X there is some process p, called root,
such that there is a directed path from p to every node of g. For example, T REE
and RING systems have this property.

In the following, we refer to these systems as dicut-closed systems with a root.
For every graph g in X , the function root(g) returns a root of g.

In the algorithm, every process p stores several values concerning the graphs
x ∈ X such that root(x) = p: (1) Acc[x] is the accusation counter of x whose
goal is the same as in Algorithm 1, (2) Prop[x] is a proposition counter whose
goal will be explained later, and (3) ∆[x] gives the expected time for a message
to go from p (the root of the x) to all the nodes of x.

Every process also maintains a set variable Candidates. Each element of this
set is a 4-tuple composed of a graph x of X and the newest values of Acc[x],
Prop[x], and ∆[x] known by the process (the exact values are maintained at
root(x)). Each element in this set is called candidate and each process selects its
extracted graph among the graphs in the candidate elements.

As in Algorithm 1:

12

(1) Each process p sends alive messages on its outgoing links and monitors its
incoming links. However, we restrain here the alivemessage sendings: process
p sends alive messages on its outgoing link (p, q) only if (p, q) is in a graph
candidate.

(2) A graph candidate is blamed if (a) a correct process is not in the graph or (b)
a process receives an out of date message through one of its incoming links.
In both cases the candidate is definitely removed from the Candidates sets
of all processes. To achieve this goal the process sends an accusation message
(ACC) using a reliable broadcast and uses an array Heard that ensures that
an identical candidate (that is, the same graph with the same accusation and
proposition values) can never be added again. Moreover, upon delivery of an
accusation message for graph x, root[x] increments Acc[x].

We now present different mechanisms used to obtain the efficiency.

For all graphs x ∈ X , only the process root(x) is allowed to propose x as a
candidate to the rest. Each process p stores its better candidate in its variable
me, that is, the least blamed graph x such that root(x) = p.

– If a process finds in Candidates a better candidate than me, it removes me
from Candidates.

– If a process finds that me is better, it adds me to Candidates and sends a
new message containing me (1) to all processes that are not in Node(me),
and (2) to immediate successors of p in me. The immediate successors in me
add me to their Candidates set and relay the new message, and so on. By
the reliability of the links, every correct process that is not in me eventually
receives this message and blames me.

These mechanisms are achieved by the procedure updateExtractedGraph(). This
procedure is called each time a graph candidate is blamed or a new candidate is
proposed. Note that the Candidates set is maintained with the set OtherCand
(the candidates of other processes), a boolean Local that is true when the process
has a candidate, and me, the graph candidate.

A process p may give up a candidate without this candidate being blamed: in
this case, p is the root of the candidate, it finds a better candidate in OtherCand,
and removes me from Candidates. Then, p must not increment Acc[me] when it
receives accusations caused by this removing, indeed these accusations are not
due to delayed messages. That is the goal of the proposition counter (Prop):
in Prop[x], root(x) counts the number of times it proposes x as candidate and
includes this value in each of its new messages (to inform other processes of
the current value of the counter). Hence, when q wants to blame x, it now
includes its own view of Prop[x] in the accusation message. This accusation
will be considered as legitimate by root[x] (that is, will cause an increment of
Acc[x]) only when the proposition counter inside the message matches Prop[x].
Also, whenever root[x] removes x from Candidates, root[x] increments Prop[x]
and does not send the new value to the other processes. In this way accusations
due to this removing will be ignored.

13

For any timely candidate, the accusation counter will be bounded and its
proposition counter increased each time it is proposed. In this way the graph
with the smallest accusation and proposition values eventually remains forever
in the Candidates set of all correct processes and it is chosen as extracted graph.
(This is done in the procedure updateExtractedGraph().) Moreover, eventually
all other candidates are given up and it remains only this graph in Candidates.
In this way, only alive messages are sent and they are sent along the directed
edges of the extracted graph ensuring the efficiency.

Code for each process p

1: Procedure updateExtractedGraph()
2: Let (amin,min) = min≺lex

{(acc, c) such that (c, acc,−,−) ∈ OtherCand} ∪ {(∞,∞)}
3: if (amin,min) < (Acc[me],me) ∧ Local then /∗ Give up me ∗/
4: rbroadcast〈ACC,me,Acc[me],Prop[me],∆[me]〉
5: Prop[me]← Prop[me] + 1
6: Local← false
7: Candidates← OtherCand
8: me← x such that (a, x) = min≺lex

{(acc, c) such that c ∈ X ∧ root(c) = p}
9: if (Acc[me],me) < (amin,min) ∧ Local = false then /∗ Propose me ∗/
10: Local← true
11: Candidates← Candidates ∪ {(me,Acc[me], Prop[me], ∆[me])}
12: send〈new,me,Acc[me],Prop[me],∆[me]〉 to every process not in Node(me)
13: for all h ∈ Π \ {p} do
14: if (h,p)∈ Edge(me) then
15: ∆[h]← max(∆[h], ∆[me])
16: settimer(h) ← ∆[h]
17: if (p,h)∈ Edge(me) and h 6= root(me) then
18: send〈new,me,Acc[me], Prop[me], ∆[me]〉 to h
19: G← x such that (a, x) min≺lex

{(a′, x′) such that (x′, a′, p′, d′) ∈ Candidates}

Fig. 2. Procedure updateExtractedGraph of Algorithm AF(X)

The following theorem states the correctness of AF(X). For space consider-
ation, its proof has been omitted.

Theorem 2. Let X be a dicut-closed system with a root. Algorithm AF(X) effi-
ciently extracts a graph in X . Moreover if all graphs of X are strongly connected,
Algorithm AF(X) efficiently and exactly extracts a graph in X .

6 Conclusion

Failure detector implementations in partially synchronous models generally use
the timeliness properties of the system to approximate the set of correct (or
faulty) processes. In some way, the extraction problem is a kind of generalization:
instead of only searching the set of correct processes, here we try to extract also
information about the timeliness of links. Besides, our solutions are based on
already existing mechanisms used in failure detectors implementations as in [2,
3].

Information about the timeliness of links is useful for efficiency of fault-
tolerant algorithms. In particular, in any extracted graph, any path between

14

Code for each process p

20: On initialization:
21: for all x ∈ X such that root(x) = p do
22: Acc[x]← 0; Prop[x]← 0; ∆[x]← n
23: for all x ∈ X such that root(x) 6= p do Heard[x]← (−1,−1)
24: for all q ∈ Π \ {p} do ∆[q]← 1
25: OtherCand← ∅
26: Local← false
27: me← min{x such that x ∈ X ∧ root(x) = p}
28: updateExtractedGraph()
29: start tasks 1 and 2

30: task 1:
31: loop forever
32: send〈alive〉 to every process q such that ∃(x,-,-,-)∈ Candidates and (p, q) ∈ Edge(x)

every K time

33: task 2:
34: upon receive〈alive〉 from q do
35: settimer(q)← ∆[q]

36: upon timerexpire(q) do /∗ Link (q, p) is not timely, blame all candidates that contain
(q, p) ∗/

37: for all (x, a, pr, d) ∈ OtherCand such that (q, p) ∈ Edge(x) do
38: rbroadcast〈ACC,x,a,pr,d〉
39: if (q, p) ∈ Edge(me) then
40: rbroadcast〈ACC,me,Acc[me],Prop[me],∆[me]〉

41: upon receive〈new, x, a, pr, d〉 from q do /∗ Proposition of a new candidate ∗/
42: if p /∈ Node(x) then /∗ Blame x that does not contain p ∗/
43: rbroadcast〈ACC,x,a,pr〉
44: else
45: newCand← false
46: if (x,−,−,−) /∈ OtherCand and Heard(x) < (a, pr) then /∗ New candidate ∗/
47: newCand← true
48: if ∃(x, ac, prc, dc) ∈ OtherCand with (ac, prc) < (a, pr) then /∗ New candidate
∗/

49: OtherCand← OtherCand \ (c, ac, prc, dc)
50: newCand← true
51: if newCand then
52: OtherCand← OtherCand ∪ (x, a, pr, d)
53: updateExtractedGraph()
54: Heard[x]← (a, pr)
55: for all h ∈ Π \ {p} do
56: if (h,p)∈ Edge(x) then
57: ∆[h]← max(∆[h], d)
58: settimer(h)← ∆[h]
59: if (p,h)∈ Edge(x) and h 6= root(x) then send〈new, x, a, pr, d〉 to h

60: upon rdeliver〈ACC,x,a,pr,d〉 do
61: if root(x) = p then
62: if x = me∧ a = Acc[me]∧ pr = Prop[me] then /∗ Check if the accusation is up

to date ∗/
63: Acc[me]← Acc[me] + 1; ∆[me]← ∆[me] + 1
64: Local← false
65: else
66: OtherCand← OtherCand \ (x, a, pr, d)
67: if Heard[x] < (a, pr) then Heard[x]← (a, pr)
68: updateExtractedGraph()

Fig. 3. Algorithm AF(X) that efficiently extracts a graph in X

a pair of correct processes is only constituted of timely links. This property is
particulary interesting to get efficient routing algorithms.

15

We gave an extraction algorithm for dicut-closed sets of timeliness graphs.
Moreover, we proved that the extraction is exact when all the timeliness graphs
are also strongly connected.

Given dicut-closed timeliness graphs that contain a root, we shown how to
efficiently extract a graph from it. By efficiency we mean giving a solution where
eventually messages are only sent over the links of the extracted graph.

It is important to note that the main purpose of the algorithms we pro-
posed is to show the feasability of the extraction under some conditions. So, the
complexity of our algorithms was not the main focus of this paper.

As a consequence, our algorithms are somehow unrealistic because of their
high complexity. Giving more practical solutions will be the purpose of our future
works.

Acknowledgments. We are grateful to members of the Graph team of the
LIAFA Lab for the helpful discussions and their interesting suggestions.

References

1. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable leader elec-
tion. In: Welch, J.L. (ed.) DISC. Lecture Notes in Computer Science, vol. 2180,
pp. 108–122. Springer (2001)

2. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing
omega with weak reliability and synchrony assumptions. In: PODC. pp. 306–314
(2003)

3. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-
efficient leader election and consensus with limited link synchrony. In: Chaudhuri,
S., Kutten, S. (eds.) PODC. pp. 328–337. ACM (2004)

4. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing
omega in systems with weak reliability and synchrony assumptions. Distributed
Computing 21(4), 285–314 (2008)

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM 43(2), 225–267 (1996)

6. Dolev, D., Dwork, C., Stockmeyer, L.J.: On the minimal synchronism needed for
distributed consensus. Journal of the ACM 34(1), 77–97 (1987)

7. Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the presence of partial
synchrony. Journal of the ACM 35(2), 288–323 (1988)

8. Delporte Gallet, C., Devismes, S., Fauconnier, H., Larrea, M.: Algorithms For
Extracting Timeliness Graphs, http://hal.archives-ouvertes.fr/hal-00454388/en/

9. Hadzilacos, V., Toueg, S.: A modular approach to fault-tolerant broadcasts and re-
lated problems. Tech. Rep. TR 94-1425, Department of Computer Science, Cornell
University (1994)

10. Hutle, M., Malkhi, D., Schmid, U., Zhou, L.: Chasing the weakest system model
for implementing omega and consensus. IEEE Trans. Dependable Sec. Comput.
6(4), 269–281 (2009)

11. Larrea, M., Arévalo, S., Fernández, A.: Efficient algorithms to implement unreli-
able failure detectors in partially synchronous systems. In: Jayanti, P. (ed.) DISC.
Lecture Notes in Computer Science, vol. 1693, pp. 34–48. Springer (1999)

12. Mostéfaoui, A., Mourgaya, E., Raynal, M.: Asynchronous implementation of failure
detectors. In: DSN. pp. 351–360. IEEE Computer Society (2003)

