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In this article, we show that some fundamental self- and snap-stabilizing wave protocols (e.g.,

token circulation, PIF, etc.) implicitly assume a very light property that we call BreakingIn. We

prove that BreakingIn is strictly induced by self- and snap-stabilization. Combined with a trans-

former, BreakingIn allows to easily turn the non-fault-tolerant versions of those protocols into

snap-stabilizing versions. Unlike the previous solutions, the transformed protocols are very effi-

cient and work at least with the same daemon as the initial versions extended to satisfy BreakingIn.

Finally, we show how to use an additional property of the transformer to design snap-stabilizing

extensions of those fundamental protocols like Mutual Exclusion.
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1. INTRODUCTION

Stabilization is a nice approach to design distributed systems tolerating tran-
sient faults. This notion first appears with the self-stabilization defined in
Dijkstra [1974]: A self-stabilizing system, regardless of its initial state, is guar-
anteed to converge into the intended behavior in finite time. Snap-stabilization
is introduced in Bui et al. [1999]: Starting from any configuration, a snap-
stabilizing protocol always behaves according to the specifications of the prob-
lem to be solved. In other words, a snap-stabilizing protocol is a self-stabilizing
protocol which stabilizes in 0 time unit. It is important to note that the zero
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stabilization time does not guarantee that all components of the system never
work in a fuzzy manner. The snap-stabilization actually ensures two proper-
ties despite the arbitrary initial configuration: (1) The protocol can start in
finite time using special actions called starting actions and such actions are
triggered by external (with regard to the protocol) requests; (2) since a start-
ing action is executed, the protocol behaves as expected. With such properties,
the system always satisfies its specifications. Indeed, when the protocol re-
ceives a request, this means that an external application (or a user) requests
the computation of a specific task provided by the protocol. In this case, a snap-
stabilizing protocol guarantees that the requested task is executed as expected.
On the contrary, while the protocol receives no request, it has nothing to guaran-
tee. Consider, for instance, the problem of mutual exclusion. Starting from any
configuration, a snap-stabilizing protocol cannot prevent several (nonrequest-
ing) processes from executing the critical section simultaneously. However, it
guarantees that every requesting process executes the critical section alone.
Usually, a self-stabilizing protocol does not provide such a guarantee: While a
snap-stabilizing protocol ensures that any request is satisfied despite the arbi-
trary initial configuration, a self-stabilizing protocol often needs to be repeated
an unbounded number of times before guaranteeing the satisfaction of any
request.

Some protocols, called transformers, were proposed to automatically stabi-
lize protocols [Katz and Perry 1993; Cournier et al. 2003]. In Katz and Perry
[1993] use self-stabilizing snapshots to design a protocol that transforms al-
most all non-self-stabilizing protocols designed for message-passing model into
self-stabilizing protocols working in the same model. A transformer based on a
snap-stabilizing Propagation of Information with Feedback (PIF) is proposed
in Cournier et al. [2003]. This transformer provides a snap-stabilizing ver-
sion of any protocol that can be self-stabilized by the transformer of Katz and
Perry [1993]. However, this transformer is designed in a higher level model
than the previous one (n.b., there are some snap-stabilizing protocols working
in the message-passing model [Dolev and Tzachar 2006]). The goal of these
transformers [Katz and Perry 1993; Cournier et al. 2003] is not to efficiently
transform protocols. Actually, they are used to demonstrate the possibility of
stabilizing a wide class of protocols. These transformers use heavy mechanisms
to transform an initial protocol into a stabilizing protocol, and the overhead of
the stabilization is often difficult to evaluate. In particular, they use snapshots
to regularly evaluate a predicate defined on the variables of the protocol to
transform. This predicate characterizes the normal configurations of the sys-
tem and requires IDs on processes. This technique allows one to prevent the
system from deadlocks and livelocks. The main drawbacks of this technique are:
(1) Such a predicate is generally difficult to formalize and (2) the number of
snapshots used by the transformer cannot be bounded compared to the number
of actions executed by the initial protocol to transform. This latter drawback re-
sults in two important consequences. First, the overhead of the transformation
cannot be bounded. Second, the transformed protocol requires some fairness
assumptions.
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In this paper we propose a light semi-automatic method to efficiently trans-
form non fault-tolerant protocols into snap-stabilizing protocols.1 We focus on
single-initiator wave protocols where decisions only occur at the initiator. Al-
though this protocol class seems to be restrictive, it gathers some fundamental
protocols like token circulation, PIF, etc. Also, these protocols are key tools to
solve a wide class of problems: Reset, Snapshot, Mutual Exclusion, Routing,
Synchronisation, etc. Our approach is the following: We first show that any
(self- or snap-) stabilizing version of such protocols implicitly assume a light
property which we call BreakingIn. We prove that BreakingIn is strictly in-
duced by self- and snap-stabilization. In other words, BreakingIn is easier to
obtain than self- or snap-stabilization. We then propose a way to slightly up-
date a non-fault-tolerant protocol A into a nonstabilizing protocol B satisfying
BreakingIn. Combining B with a transformer, we obtain a snap-stabilizing ver-
sion of A. The main advantage of our method is that our transformer does not
use snapshots. In consequence and in contrast with Cournier et al. [2003]: (1)
We do not use a predicate that characterizes the normal configuration of the
system (in consequence, we do not require IDs on processes); (2) the overhead
of the snap-stabilization is now appraisable; and (3) the transformed protocols
work at least under the same daemon as the initial versions extended to sat-
isfy BreakingIn (this latter result allows us to design snap-stabilizing protocols
working under an unfair daemon). To illustrate the power of our method, we
then propose two snap-stabilizing applications designed with our transformer:
A depth-first token circulation and a breath-first spanning tree construction.
The complexity analysis of these two protocols will show their efficiency in both
time and space. Also, the simplicity of their codes will show that in practice as
in theory BreakingIn is easier to obtain than stabilization. Hence, in contrast
with the specific (self- or snap-) stabilizing solutions that usually implement
complex mechanism [Huang and Chen 1993; Johnen 1997; Cournier et al. 2005;
Cournier et al. 2006], our transformer can be seen as a powerful tool to simplify
the design of snap-stabilizing protocols. Finally, we will show that, thanks to a
counting property of our transformer, our depth-first token circulation can be
used to solve in few lines the mutual exclusion in a snap-stabilizing manner.

The rest of the article is organized as follows: We describe our model in Sec-
tion 2. In Section 3, we present a method to semi-automatically snap-stabilize
protocols. We propose two applications designed with our method in Section 4.
Using the depth-first token circulation proposed in Section 4, we design a snap-
stabilizing mutual exclusion in Section 5. Finally, we conclude in Section 6.

2. PRELIMINARIES

2.1 Network

We consider a network as any undirected connected graph G = (V ,E) where
V is the set of processes and E is the set of bidirectional links. The network is
assumed to be rooted, that is, we distinguish a special process called root and

1This approach is a generalization of the method we propose in Cournier et al. [2006a] to transform

some self-stabilizing protocols into snap-stabilizing ones.
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noted r. The root corresponds to the protocol initiator. Two processes p and q
are said neighbors iff the link (p,q) exists. Every process can distinguish all its
incident links. For sake of simplicity, we refer to the link (p,q) by the label q
in the code of p. We assume that the labels of p, stored in Neigp, are locally
ordered by any arbitrary order relation noted ≺p. We also use the following
notations: N is the size of the network, � its degree, and D its diameter.

2.2 Computational Model

We consider a locally shared memory model where the program of every pro-
cess consists of a finite set of shared variables and a finite set of actions.
Each process can write into its own variables only and read its own vari-
ables and that of its neighbors. Each action is constitued as follows: 〈label〉 ::
〈guard 〉 → 〈statement〉. The guard of an action of p is a boolean expres-
sion involving variables of p and its neighbors. The statement of an action
of p updates some variables of p. An action is executed only if its guard is
satisfied.

The state of a process is defined by the value of its variables. The configuration
of a system is the product of the states of all processes. We note C the set of all
configurations of the system. Let γ ∈ C and A an action of p ∈ V . A is said
enabled at p in γ iff the guard of A is satisfied by p in γ . p is said to be enabled
in γ iff at least one action is enabled at p in γ .

To simplify the design of the programs, we assume priorities on the actions.
The priorities follow the order of appearance of the actions into the text of
the programs. When several actions of a process are simultaneously enabled,
only its priority enabled action can be activated. Let a distributed protocol P
be a collection of binary transition relations on C, noted �→. An execution of
P is a maximal sequence of configurations e = γ0,γ1, . . . ,γi,γi+1, . . . such that,
∀i ≥ 0, γi �→ γi+1 (called a step) if γi+1 exists, else γi is a terminal configuration.
Each step γi �→ γi+1 is shared into three phases atomically executed: (1) Every
process evaluates its guards, (2) a daemon chooses some enabled process, and
(3) each chosen process executes its priority enabled action. When the three
phases are done, the next step begins. A daemon is defined in terms of fairness
and distribution. There exist several kinds of fairness assumptions. Here, we
consider the strongly fairness, weakly fairness, and unfairness assumptions.
Under a strongly fair daemon, every process that is enabled infinitely often is
eventually chosen by the daemon. When a daemon is weakly fair, every contin-
uously enabled process is eventually chosen by the daemon. Finally, the unfair
daemon is the weakest scheduling assumption: It can forever prevent a process
to execute an action except if it is the only enabled process. Concerning the
distribution, we assume that the daemon is distributed meaning that, at each
step, if one or more processes are enabled, then the daemon chooses at least
one of these processes to execute an action. To simplify the notation, we denote
(when necessary) the distributed strongly fair, weakly fair, and unfair daemons
by SF, WF, and UF, respectively.

We consider that a process p is neutralized in γi �→ γi+1 if p was enabled in
γi and not enabled in γi+1, but did not execute any action in γi �→ γi+1.
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To compute the time complexity, we use the notion of round [Dolev et al.
1997]. This notion captures the execution rate of the slowest process in any
execution. The first round of an execution e, noted e′, is the minimal prefix of
e containing the execution of one action or the neutralization of every enabled
process from the initial configuration. Let e′′ be the suffix of e such that e = e′e′′.
The second round of e is the first round of e′′, and so on.

2.3 Wave Protocols

The wave protocols are defined in Tel [2001] as follows:

Definition 2.1 (Wave Protocol). A wave protocol is a protocol P satisfying:
(1) Each execution of P is finite and contains at least one decision. (2) Each
decision is causally preceded by an action of each process.

An execution of a wave protocols is called wave. In each wave, there is a special
type of actions called decision. Roughly speaking, this action occurs when the
task provided by the protocol is done. For instance, in a token circulation, the
decision occurs only after the token visits all the processes. As an additional
notation, in any execution a distinction is made between the initiators and the
noninitiators. An initiator starts the execution of its local algorithm without
being causally preceded by any other internal (with regard to the protocol) ac-
tion of any process, that is, the start is triggered by an external action called
request. Such a request is assumed to be executed by an application or a user
which needs an execution of the protocol. The notion of request is usually im-
plicit in distributed systems: The starting actions are assumed to be executed
spontaneously. In particular, in self-stabilizing wave protocols, the waves need
to be repeated to guarantee the convergence to a specified behavior and, as a
consequence, the notion of request is simply kept in the background. On the
contrary, a snap-stabilizing protocol, despite its arbitrary initial configuration,
works according to its specifications after its first execution. Hence, in such
protocols, the request becomes primordial again. In this paper, although we
do not explicitly express the request into the code of our protocol, we assume
that any initiator can executed a starting action only if: (1) This action is effec-
tively enabled and (2) an application (or a user) requested it. In the appendix
(Subsection 6), we show how to explicitly express the request in a protocol.

2.4 Snap-Stabilization

Let T be a task, F a specification of T , and P a protocol.

Definition 2.2 (Snap-Stabilization). P is snap-stabilizing for F iff starting
from any configuration, every execution of P satisfies F .

If we consider now that P is a wave protocol, we can clarify the definition as
follows:

Remark 2.3. Any wave protocol P is snap-stabilizing for F iff: (1) P starts
any requested task T in finite time, and (2) from any configuration where P
starts, it computes T according to F .
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3. THE TRANSFORMER

3.1 Principle

Let A be a non-fault-tolerant single-initiator wave protocol where decisions
only occur at the initiator. Let T be the task solved by A. We want to effi-
ciently snap-stabilize A in both space and time complexity. As a consequence,
we have to snap-stabilize A without using snapshots. In Katz and Perry [1993]
and Cournier et al. [2003], the snapshots are used for detecting deadlocks and
livelocks in the execution of the initial protocol. As we do not want to use snap-
shots, we cannot detect the deadlocks or livelocks that may occur when using
A starting from an arbitrary configuration. So, we propose to slightly modify
A to obtain a protocol B satisfying an additional property. This property must
allow B to be automatically snap-stabilized by a transformer protocol that we
call Black Box. Also, this property must be as simple as possible. In particu-
lar, it must be easier to design than self- or snap-stabilization. Let SSBB(B) be
the snap-stabilizing version of B obtained with our Snap-Stabilizing Black Box
(SSBB). By Remark 2.3, SSBB(B) must satisfy two properties starting from any
configuration:

—Upon an external request, SSBB(B) starts in finite time (Correctness I).
—Since SSBB(B) starts, it computes T as expected (Correctness II).

We now present the BreakingIn and SSBB-Friendly properties that are the
properties required in B so that SSBB(B) satisfies Correctness I and II.

3.1.1 The BreakingIn Property. By Correctness I, starting from any config-
uration, the system must reach a configuration in which SSBB(B) can properly
start. This implies that when the root receives a request for an execution of
SSBB(B), SSBB(B) must start in finite time but without aborting a previously
started wave. One way to obtain this property is to design in B a predicate for r,
noted B.End (r), satisfying the BreakingIn property defined in Definition 3.2. It
is important to note that such a predicate is not necessarily already used in the
protocol to transform. However, it can be defined using the protocol variables
and it is essential because it is necessary to obtain snap-stabilization as will be
shown in Theorem 3.6.

Beforehand, let us define the Stable property, which is a particular charac-
teristic of any predicate satisfying BreakingIn.

Definition 3.1 (Stable). Let X be a predicate and D a daemon. We say that
X satisfies Stable(D) iff: X is true implies that if there exists some actions
guarded by X , then at least one will be executed despite D.

Example: Assume that a predicate X is satisfied in the configuration γ and
there is one action AX guarded by X . X satisfies Stable(D) means that AX is
executed in finite time in any suffix of execution starting from γ scheduled by
D. Hence, the stability induces consequences depending on the fairness of the
daemon, for example, if D = SF, then X is satisfied infinitely often from γ until
AX is executed.
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Definition 3.2 (BreakingIn). Let P be a single-initiator wave protocol
where decisions only occur at the initiator. Let X (r) be a predicate defined
on the P variables of r and its neighbors. Let D be a daemon. X (r) satisfies
BreakingIn(D) iff X (r) satisfies these four conditions in any execution of P
scheduled by D:

1. Starting from any configuration, X (r) is satisfied in finite time.

2. If X (r) is satisfied and a P wave was started, then this wave is terminated.

3. From any configuration where X (r) is satisfied, if there is no external (with
regard to P) intervention,2 all P actions are disabled at r.

4. X (r) satisfies Stable(D).

Example: As shown below, many (self- or snap-) stabilizing fundamental pro-
tocols explicitly use a predicate satisfying BreakingIn. For example, in any sta-
bilizing propagation of information with feedback protocol (PIF protocol), the
predicate that characterizes the local state of r (the initiator) when it is waiting
for the next message to broadcast satifies BreakingIn. Indeed, starting from
any configuration, (1) r reaches such a local state in finite time, (2) when r is in
this state, any previous PIF is done, (3) in this state, r is waiting for the next
message to broadcast, and (4) when the initiator is in this state and there is a
new message to broadcast, the daemon cannot prevent the new broadcast from
starting.

Conversely, in some stabilizing protocol there is no predicate satisfying
BreakingIn. For example, Johnen et al. [2002] propose a broadcast (without
feedback) protocol where messages are broadcasted in a pipeline manner: r
does not wait the termination of the current broadcast to start the next one.
In this protocol, there is no predicate satisfying BreakingIn because the local
state of r is not sufficient to decide if any previous broadcast is terminated.

The following result is a consequence of Claims 1, 3, and 4 of Definition 3.2.

CONSEQUENCE 3.3. Let P be a single-initiator wave protocol where decisions
only occur at the initiator. Let X (r) be a predicate satisfying BreakingIn(D). Let
D ∈ {SF,WF,UF}. Let e = γ0,γ1,. . . be an execution of P scheduled by D.

1. If D = SF, then, in any non-empty suffix e′ of e, ∃γi ∈ e′ such that X (r) in γi .
2. If D = WF, then, ∃γi ∈ e such that ∀ j ≥ i, X (r) in γ j .
3. If D = UF, then, e is finite and X (r) is satisfied in the terminal configuration.

We now show that the BreakingIn property is necessary to obtain stabilizing
single-initiator wave protocols where decisions only occur at the initiator. Hence
we will conclude that BreakingIn is weaker than stabilization.

Let P be a (self- or snap-) stabilizing single-initiator wave protocols where
decisions only occur at the initiator. Each P wave (conform or not to the spec-
ifications) terminates in finite time by a decision at r. After this decision, the
system reaches in finite time a configuration γ from which it is ready to restart:
P is waiting for the next external request. If there is no request, all P actions

2For example, we consider any request for P as an external intervention.
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are disabled at r in γ (remember that the starting actions of P are triggered by
external requests). Let X (r) be a predicate that characterizes the local state of
r in γ . By Definition 3.2, X (r) satisfies BreakingIn(D) where D is the daemon
supported by P. Hence:

LEMMA 3.4. In any stabilizing single-initiator wave protocol where decisions
only occur at the initiator, there exists a predicate satisfying BreakingIn at the
initiator.

The next lemma shows that the reciprocal of Lemma 3.4 is false.

LEMMA 3.5. There exist nonstabilizing single-initiator wave protocols where
decisions only occur at the initiator in which there exists a predicate at the
initiator satisfying BreakingIn.

PROOF. Two examples of such protocols are given in Section 4.

By Lemmas 3.4 and 3.5, follows the main motivation of the article:

THEOREM 3.6. The BreakingIn property for single-initiator wave protocol
where decisions only occur at the initiator is strictly weaker than stabilization.

Theorem 3.6 formally states that the BreakingIn property is easier to obtain
than stabilization. We propose nonstabilizing protocols satisfying BreakingIn
in Section 4. The code of these protocols are not only close to the basic non
fault-tolerant solution but drastically simpler than the existing (self- or snap-)
stabilizing versions.

3.1.2 The SSBB-Friendly Property. Assume now the existence in B of a
predicateB.End (r) satisfying BreakingIn(D). SSBB can take the execution con-
trol of B in finite time without aborting any previous started B wave. It remains
then to ensure Correctness II. To that goal, we use a simple method: Upon a
request, we wait until B.End(r) is satisfied and then reset the B variables before
B executes a wave. To apply this method, we assume that, for each process p,
all the variables assignments required to generate a normal starting configu-
ration of A are stored in a macro of B, noted B.Initp. We note B.Init the set of
macros B.Initp defined for all processes p. Using B.Init, the reset is trivially
initiated at the starting action of SSBB(B) and, as soon as the reset terminates,
B computes the task T as A in a non-faulty situation. In particular, this means
that the starting actions of SSBB(B) corresponds to the starting actions of the
reset and, of course, SSBB(B) will take the requests for B into account instead
of B itself. Hence, we can now define the SSBB-Friendly property: The property
that B must satisfy to be snap-stabilized by SSBB.

Definition 3.7 (SSBB-Friendly). Let P be a single-initiator wave protocol
where decisions only occur at the initiator. P satisfies SSBB-Friendly(T ,D)
where T is a task and D a daemon iff:

1. P contains a predicate P.End(r) satisfying BreakingIn(D).

2. P contains a set of macros P.Init such that, starting from any configuration
generated by P.Init, P computes T .
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3.2 Tool: Snap-Stabilizing PIF

Upon a request, SSBB(B) resets the B variables using B.Init so that the system
reaches the normal starting configuration of A and, then, gives the execution
control to B so that it computes T as A in a safe environment. A well-known
technique to perform a reset is based on the PIF. A PIF scheme can be specified
as follows:

1. If r has a message m to broadcast, r starts the broadcast of m in finite time.

2. Then, every other process acknowledges the receipt of m, such an acknoledg-
ment reaches r in finite time.

Any snap-stabilizing PIF protocol satisfies this specification whatever the ini-
tial configuration. We distinguish two phases in a PIF wave: The broadcast
phase where the processes receive the message followed by the feedback phase
where the non-root processes send an acknowledgment for the receipt of m.
Using the PIF scheme, the reset protocol can be performed as follows:

1. The root process broadcasts an “abort” message m.

2. Upon the reception of m, the processes abort their local execution of B.

3. Finally, the processes reset their B variables during the feedback phase.

To design SSBB, we need to use a snap-stabilizing PIF working even if the
daemon is unfair to be able to snap-stabilize protocols working under any kind
of daemons. Such a protocol, noted PIF , is provided in Cournier et al. [2006b].
Due to the lack of space we do not present Algorithm PIF here.

We now explain how to build SSBB using Algorithm PIF .

3.3 SSBB Protocol

SSBB is a composite protocol obtained using the composition defined as follows:

Definition 3.8 (Composition). The composition P2 ◦|G P1 of the two protocols
P1 and P2 is the program satisfying the following four conditions:

1. P2 ◦|G P1 contains all the variables and actions of P1 and P2.

2. G is a predicate defined on the variables of P1.

3. Each action of P2, Li :: Hi → Si, is replaced in P2 ◦|G P1 by Li :: G∧Hi → Si.

4. A process may be enabled in both P1 and P2. In this case, if the daemon
chooses it, it executes the priority enabled actions of each Pi in the same
step.

Using the composition, SSBB(B) = B ◦|Ok(p) Reset(B) where Reset(B) is a
slightly modified version of PIF (the code of Reset(B) is given in the appendix,
Section A.2) and Ok(p) is a predicate defined on the PIF for any process p.
Ok(p) indicates when p does not participate to any reset (i.e. PIF wave): In
this case Ok(p) = true, otherwise Ok(p) = false. Reset(B) is used for resetting
the B variables before any execution of B. To obtain Reset(B) from PIF, we just
modify the feedback action of Reset(B) so that theB variables will be reset using
B.Init during the feedback phase. We also add the condition B.End ( r) = true
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into the guard of any starting action of Reset(B) on r so that we are sure not to
reset the B variables wrongly. We use the predicate Ok(p) into the composition
so that each process p stops its local execution of B from the moment where it
receives the abort message until the local termination of the reset at p. Indeed,
we already know that p continuously satisfies ¬Ok(p) during its participation
to a reset. So, while p participates to a reset, Ok(p) is false and all actions of B
in SSBB(B) are disabled at p. Finally, as any SSBB(B) begins by a reset of the B
variables, the starting actions of SSBB(B) correspond to those of Reset(B) and,
as we already said, these actions take the request for B into account instead of
B itself.

3.4 Correctness

We now show that SSBB(B) is snap-stabilizing for the specification of the task
T and assuming the daemon D ∈ {SF,WF,UF}.

First, we deduce from Cournier et al. [2006b] the following properties on
Reset(B):

PROPERTY 3.9. From Cournier et al. [2006b], follows:

1. After Reset(B) starts a broadcast, the system reaches in finite time a con-
figuration where every process is in the feedback phase associated to this
broadcast.

2. From any initial configuration, Reset(B) can start in O(� × N 3) steps and
O(N) rounds.

3. From any initial configuration, a complete Reset(B) wave costs O(� × N 3)
steps and O(N) rounds.

4. From any initial configuration, a process p acknowledges a message not
broadcast by r at most twice.

5. From any configuration where Ok(p), a process p is guaranteed to acknowl-
edge a message broadcast by r since its second feedback.

As B is designed for solving the specific task T , its code is independent of the
variables of Reset(B) and we can make the following assumption:

ASSUMPTION 3.10. B does not write into the Reset(B) variables.

Definition 3.11 (Fair [Tel 2001]). An execution e of the composite protocol
P2 ◦|G P1 is fair with regard to Pi (i ∈ {1,2}) iff if one of these conditions holds:
(1) e is finite, (2) e contains infinitely many steps of Pi, or (3) contains an infinite
suffix in which no step of Pi is enabled.

THEOREM 3.12. SSBB(B) is a fair composition of Reset(B) and B.

PROOF. Assume, by the contradiction, that there exists at least one execution
e of SSBB(B) which is not fair. Then, e contains infinitely many steps and two
cases are possible according to Definition 3.11:

1. There exists an infinite suffix e′ of e where some actions of B are enabled
but only actions of Reset(B) are executed. Then, e′ contains infinitely many
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steps of Reset(B). Now, by Claim 3 of Property 3.9, each Reset(B) wave
is executed in a finite number of actions. So, Reset(B) executes waves in-
finitely often in e′. Reset(B) behaves as PIF which is snap-stabilizing. So,
during the first wave in e′, Reset(B) executes a complete feedback phase.
Now, when r feedbacks, r resets its B variables using B.Initr . After this
local reset, B.End ( r) becomes false and, as the B variables are no more
modified (by assumption, no action of B are executed in e′), B.End ( r) is
false forever. This implies that the starting action of Reset(B) becomes dis-
abled forever. Hence, Reset(B) cannot execute waves infinitely often in e′, a
contradiction.

2. There exists an infinite suffix e′ of e where some actions of Reset(B) are
enabled but only actions of B are executed. Then, e′ contains infinitely many
steps of B. As B does not write into the Reset(B) variables (Assumption 3.10)
and no action of Reset(B) are executed in e′. All actions of Reset(B) that are
enabled in the first configuration of e′ are continuously enabled and, by
the contradiction, D = UF: Only the unfair daemon can prevent forever a
continuously enabled action to be executed. Now, Claim 3 of Consequence
3.3 implies that the system reaches in finite time a configuration γ j where
only actions of Reset(B) are enabled. Hence, at least one enabled action of
Reset(B) is executed in γ j �→ γ j+1, a contradiction.

By Theorem 3.12, Assumption 3.10, and Claim 2 of Property 3.9, follows:

THEOREM 3.13. From any initial configuration, SSBB(B) can start in finite
time.

THEOREM 3.14. From any configuration where r starts SSBB(B), the task T
is computed according to its specifications.

PROOF. SSBB(B) starts by a Reset(B) wave. r then satisfies ¬Ok( r) until
the Reset(B) wave terminates. So, during the Reset(B) wave, r cannot executes
any action of B. In particular, r cannot initiate B before Reset(B) terminates.

By Theorem 3.12 and Assumption 3.10, B does not perturb the behavior of
Reset(B). Now, by Claim 1 of Property 3.9, after r starts a broadcast, the system
reaches in finite time a configuration γi where each process is in the feedback
phase associated to the broadcast of r. As the B variables are locally reset at
p when a process p feedbacks and no action of B is executed at p while p
participates to the Reset(B) wave (¬Ok(p)), γi corresponds to the configuration
generated by B.Init (i.e., a normal initial configuration of A). Moreover, owing
the fact that the system reaches γi results in two other consequences: (1) From
γi, no process executes any action of B before r initiates B, and (2) from γi,
the system contains no abnormal behavior related to Reset(B). Hence, when
Reset(B) terminates at r, the system is in a configuration γ j where ∀p ∈ V ,
Ok(p) (a normal initial configuration of PIF), the B variables describe the
configuration generated by B.Init, and B.End( r) = false. From γ j , no reset
will be initiated before that B.End(r) is satisfied, that is, before the decision
associated to the execution of B that r will start. So, by Claim 2 of Definition
3.7, from γ j , B executes the task T according to its specifications.
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By Remark 2.3, Theorems 3.13 and 3.14, follows:

THEOREM 3.15. SSBB(B) is snap-stabilizing for the specification of T under
the daemon D.

3.5 Complexity Analysis

We first evaluate the round complexity of SSBB(B). To that goal, we introduce
the following notation: let R(B) be the number of rounds that B requires so that
B.End (r) is continuously satisfied starting from any configuration. The first
lemma gives the delay of SSBB(B) in rounds.

THEOREM 3.16. From any initial configuration, SSBB(B) starts in O(N +
R(B)) rounds.

PROOF. Let Broadcast(r) be the guard of the starting action of PIF. By Claim
2 of Property 3.9, starting from any configuration, SSBB(B) reaches in O(N )
rounds a configuration from which Broadcast(r) is continuously satisfied until
SSBB(B) starts. After at most R(B) additional rounds, B.End (r) continuously
holds and, as a consequence, SSBB(B) starts during the next round.

The worst case of Theorem 3.16 corresponds to the number of rounds necessary
to perform a complete SSBB(B) wave except its first step. Hence, the round com-
plexity of a complete SSBB(B) wave is of the same order as the round complexity
of the delay to start a SSBB(B) wave. Hence, follows:

COROLLARY 3.17. From any initial configuration, a SSBB(B) wave is exe-
cuted in O(N + R(B)) rounds.

We now evaluate the step complexity of SSBB(B). To that goal we introduce
the following notation: Let S(B) be the maximal number of actions that B can
execute before to reach a terminal configuration with respect to the B variables.

THEOREM 3.18. From any initial configuration, SSBB(B) starts in O(� ×
N 3 + S(B) × N) steps.

PROOF. By Claim 2 of Property 3.9, O(� × N 3) actions of Reset(B) are ex-
ecuted before SSBB(B) starts. We now evaluate the number of B actions that
are executed before SSBB(B) starts. First, Reset(B) writes into the B variables
only during the feedback phase and any process (N ) executes at most two cor-
rupted feedbacks before SSBB(B) starts (by Claim 4 of Property 3.9). Then,
at most S(B) actions of B are executed between each action of Reset(B) that
writes into the B variables: Between each feedback. So, O(S(B) × N ) actions
of B are executed before SSBB(B) starts. Hence, the delay of SSBB(B) is in
O(� × N 3 + S(B) × N ) steps.

Similar to Theorem 3.16, Theorem 3.18 implies the following corollary:

COROLLARY 3.19. From any initial configuration, a SSBB(B) wave is exe-
cuted in O(� × N 3 + S(B) × N) steps.
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4. APPLICATIONS

4.1 Depth-First Token Circulation

In arbitrary rooted networks, a Depth-First Token Circulation (noted DFTC)
works as follows: A token is first created at the root and, then, passed from one
neighbor to another in a depth-first order such that every process eventually
gets it in one single circulation. We now propose a protocol called DFS (cf. Al-
gorithms 1 and 2) satisfying SSBB-Friendly(DFTC,UF): Combining DFS with
SSBB, we trivially obtain a snap-stabilizing DFTC protocol, SSBB(DFS).

Let γα be the configuration generated by DFS.Init: ∀p ∈ V , Succp = idle in
γα. We first show that DFS executes a DFTC starting from γα. In γα, Fwd-action
at r is the only enabled action. So, r creates a token by Fwd-action in γα �→ γα+1:
Using Nextr , r points out with Succr its minimal neighbor by ≺r meaning that it
is its successor. Then, at each configuration and until the circulation terminates,
exactly one process p is enabled and two cases are possible for p:

1. p satisfies (Succp = idle) ∧ (∃q ∈ Neigp :: Succq = p). In this case, q
designated p �= r and p executes Fwd -action to receive the token. By Fwd-
action, p chooses a successor, if any. For this task, two cases are possible:
a) ∀p′ ∈ Neigp, Succp′ �= idle, i.e., all its neighbors have been visited. So, p

sets Succp to done, i.e., the circulation from p is terminated.
b) Otherwise, p designates its minimal neighbor satisfying Succ = idle.

2. p satisfies Succp = q such that (q ∈ Neigp ∧ Succq = done), i.e., q was the
successor of p but the circulation from q is terminated. Then, p backtracks
the token to continue the circulation using another neighbor which is still
not visited, if any. So, p executes Bwd-action to choose a new successor as
previously.

By this mechanism, the circulation visits all processes in a depth-first order
and r executes Succr = done meaning that the circulation is terminated after
2N − 1 steps. Hence, follows:

LEMMA 4.1. From γα, DFS executes a DFTC in 2N − 1 steps (resp. rounds).

By Lemma 4.1, we know that DFS satisfies Claim 2 of the definition of SSBB-
Friendly (Definition 3.7) for a distributed unfair daemon. Now, to show that
DFS.End(r) satisfies BreakingIn(UF) (Claim 1 of Definition 3.7), we have to
prove that, starting from any configuration, DFS converges in a finite number
of steps to a terminal configuration where DFS.End(r) is satisfied (cf. Conse-
quence 3.3). The behavior of DFS from a configuration different from γα is the
following: When a process p locally detects that the system is not in a configu-
ration reachable from γα, it definitively sets Succp to done (Err-action). Below,
we will show that even if the system starts from a configuration different from
γα, the system reaches a terminal configuration where DFS.End(r) is true in
a finite number of steps. We prove this fact in two steps: (1) We first show that
every execution of DFS contains a finite number of steps; (2) we then show that
DFS.End (r) is satisfied in any terminal configuration.
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Algorithm 1. DFS for p = r

Input: Neigp: set of neighbors (locally ordered);

Variable: Succp ∈ Neigp ∪ {idle,done};
Macros:

Initp = Succp := idle;
Predp = {q ∈ Neigp :: Succq = p};
Nextp = (q = min≺p{q′ ∈ Neigp :: Succq′ = idle}) if q exists, done otherwise;

Predicates:
End(p) ≡ (Succp = done)
Forward(p) ≡ (Succp = idle)
Backward(p) ≡ (∃q ∈ Neigp :: Succp = q ∧ Succq = done)
Error(p) ≡ (Succp �=done)∧[(|Predp|�=0)∨ ((Succp=idle)∧(∃q∈Neigp::Succq �=idle))]

Actions:
Err-action :: Error(p) → Succp := done;
Fwd -action :: Forward (p) → Succp := Nextp;
Bwd -action :: Backward (p) → Succp := Nextp;

LEMMA 4.2. Starting from any configuration, DFS reaches a terminal con-
figuration in at most (� + 1) × N steps.

PROOF. It is easy to see that each process (N ) designates each of its neighbors
at most once (� actions) before definitively sets Succp to done (one action).

LEMMA 4.3. In any terminal configuration of DFS, r satisfies DFS.End (r).

PROOF. We prove this lemma by checking every configuration of DFS where
DFS.End (r) is not satisfied. We can then show that there always exist some
enabled actions in such configurations.

By Lemmas 4.2 and 4.3, DFS.End (r) satisfies Claims 1 and 4 of the BreakingIn
property under a distributed unfair daemon. Also, from γα, DFS.End (r) is sat-
isfied only when the token circulation is done (Claim 2 of BreakingIn). Finally,
by checking the actions of Algorithms 1 and 2, we can deduce that DFS.End (r)
satisfies Claim 3 of BreakingIn. Hence, follows:

LEMMA 4.4. DFS.End (r) satisfies BreakingIn(UF).

Algorithm 2. DFS for p �= r

Input: Neigp: set of neighbors (locally ordered);

Variable: Succp ∈ Neigp ∪ {idle,done};
Macros:

Initp = Succp := idle;
Predp = {q ∈ Neigp :: Succq = p};
Nextp = (q = min≺p{q′ ∈ Neigp :: Succq′ = idle}) if q exists, done otherwise;

Predicates:
Forward(p) ≡ (|Predp| = 1) ∧ (Succp = idle)
Backward(p) ≡ (∃q ∈ Neigp :: Succp = q ∧ Succq = done)
Error(p) ≡ (Succp �= done) ∧ [(|Predp| > 1) ∨ (Succp �= idle ∧ |Predp| = 0)

∨ ((Succp = idle) ∧ (∃q ∈ Neigp :: Succq = done))]

Actions:
Err-action :: Error(p) → Succp := done;
Fwd-action :: Forward(p) → Succp := Nextp;
Bwd-action :: Backward(p) → Succp := Nextp;
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By Lemmas 4.1 and 4.4, we have:

LEMMA 4.5. DFS satisfies SSBB-Friendly(DFTC,UF).

By Lemma 4.5 and Theorem 3.15, we have:

THEOREM 4.6. SSBB(DFS) is a snap-stabilizing DFTC protocol assuming a
distributed unfair daemon.

We already proposed in Cournier et al. [2004] and Cournier et al. [2005] two
snap-stabilizing DFTC protocols working under a distributed unfair daemon.
The code of DFS is simpler than the code of these solutions as well as any
self-stabilizing DFTC. Actually, the code DFS is similar to the one of the basic
non-fault-tolerant solution. The complexity analysis provided below will reveal
that SSBB(DFS) is also more efficient than the previous solutions.

4.1.1 Complexity Analysis of SSBB(DFS)

LEMMA 4.7. Starting from any configuration, DFS reaches a terminal con-
figuration in at most 2N − 1 rounds.

PROOF. By Lemma 4.1, from γα, the system reaches a terminal configuration
in 2N −1 rounds. If the initial configuration is different from γα, the corrections
are performed in parallel using Err-action and, at each correction, the corrected
process becomes disabled forever. Thus, the corrections allow to save visits and
the worst case to reach a terminal configuration actually corresponds to an
execution starting from γα.

We now compare the complexity of our solution with the previous solutions.
The main drawback of the solution in Cournier et al. [2004] is its memory re-
quirement: O(N × log N ) bits per process. In Cournier et al. [2005], we solve
this drawback by proposing a protocol using O(log N ) bits per process. Here,
the memory requirement of DFS is in O(log �) bits per process and the one
of Reset(B) is in O(log N ) bits per process. Hence, SSBB(DFS) is as efficient
in memory as the best already proposed solution [Cournier et al. 2005], that
is, O(log N ) bits per process. The snap-stabilizing DFTC protocol provided in
Cournier et al. [2004] is very efficient in time complexity: It performs a single
token circulation in O(N ) rounds and O(N 2) steps (the delay is of the same or-
der). The protocol provided in Cournier et al. [2005] is less efficient: It performs
a single token circulation in O(N 2) rounds and O(�× N 3) steps (the delay is of
the same order). The delay of SSBB(DFS) is in O(N ) rounds (by Theorem 3.16
Lemma 4.7) and O(�×N 3) steps (by Theorem 3.18 and Lemma 4.2). Then, from
any configuration, a depth-first token circulation is executed in O(N ) rounds
(by Corollary 3.16, Lemmas 4.1 and 4.7) and O(�× N 3) steps (by Corollary 3.18
and Lemma 4.2). So, the round complexity of SSBB(DFS) matches the one of
Cournier et al. [2004] and the steps complexity of SSBB(DFS) matches the one
of Cournier et al. [2005]. Thus, SSBB(DFS) is a good trade-off between the two
previous solutions.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 4, No. 1, Article 6, Publication date: January 2009.



6:16 • A. Cournier et al.

4.2 Breath-first Spanning Tree Construction

Algorithm 3. BFS for p = r

Input: Neigp: set of neighbors (locally ordered);

Constants: Parp =⊥; Levelp = 0;

Variable: Statusp ∈ {C,R,F ,D};
Macros:

Initp = Statusp := C;
Childrenp = {q ∈ Neigp :: Statusq �= C ∧ Parq = p};

Predicates:
End(p) ≡ (Statusp = D)
Finish(p) ≡ (∀q ∈ Childrenp :: Statusq = D)
NPhase(p) ≡ (Statusp=F )∧[∀q∈Neigp::(Statusq �=C)∧(q∈Childrenp⇒Statusq∈{B,D})]
Start(p) ≡ (Statusp = C) ∧ (∀q ∈ Neigp :: Statusq ∈ {C,D})
ROK(p) ≡ (Statusp = R) ∧ (∀q ∈ Childrenp :: Statusq ∈ {R,D})
Forward(p) ≡ Start(p) ∨ ROk(p)

Actions:
New-action :: NPhase(p) ∧ ¬Finish(p) → Statusp := R;
Fwd-action :: Forward(p) → Statusp := F ;
D-action :: NPhase(p) ∧ Finish(p) → Statusp := D;

In arbitrary rooted networks, a Breath-First Spanning Tree Construction,
noted BFSTC, consists in the computation of a rooted tree Tree(r) containing all
processes and such that the distance of any process along the tree to the root is
the smallest one. There exists many self-stabilizing BFSTC protocols [Huang
and Chen 1992; Johnen 1997]. Delaët et al. [2005]; propose a general scheme
allowing in particular to implement a self-stabilizing BFSTC. The protocols
proposed in Johnen [1997] and Delaët et al. [2005] work under a distributed
unfair daemon. However, except Johnen [1997], all these protocols are silent,
that is, using such protocols, the system converges to a fix point. The drawback
of such protocols is that no process is able to detect the termination of the execu-
tion. The protocol proposed in Johnen [1997] is a self-stabilizing BFSTC wave
protocol. In this protocol, each wave terminates at the root. However, as this
protocol is not snap-stabilizing, the root cannot detect when the system verifies
its specifications. As a consequence, when a wave terminates, the root cannot
detect if a breath-first spanning tree is available. Finally, the transformer in
Cournier et al. [2003] allows to design a snap-stabilizing BFSTC wave proto-
col by combining any non fault-tolerant BFSTC wave protocol [Awerbuch and
Gallager 1985] with their transformer. An important advantage of this latter
solution is that the root is now able to detect when a breath-first spanning
tree is available: Since the termination of the first wave. However, the solu-
tions obtained with this transformer works at most with a weakly fair daemon.
We now design a snap-stabilizing BFSTC wave protocol working with a dis-
tributed unfair daemon. To that goal, we propose a protocol satisfying SSBB-
Friendly(BFSTC,UF) called BFS. The code of the protocol (cf. Algorithms 3 and
4) is close to the non-fault-tolerant solution proposed in Awerbuch and gallager
[1985].

Let γα be the configuration generated by BFS.Init: ∀p ∈ V , Statusp = C
in γα. We first show that BFS builds a breath-first spanning tree from γα.
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From γα, BFS builds a breath-first spanning tree rooted at r by phases: During
the kth phase, all processes at distance k from r hook on to the tree. After
the hooking of these processes, r detects in finite time the termination of the
phase and then starts another phase if the construction is not terminated. At
the beginning of the first phase, Fwd-action at r is the only enabled action: r
executes Statusr := F in γα �→ γα+1. Then, the Hk-action of each neighbor of r,
p, becomes enabled. By executing Hk-action, each process p hooks on to the tree
rooted at r: Statusp is set to B, Parp points out to r, and Level p is set to 1. When
all neighbors of r have joined the tree, r satisfies NewPhase(r) ∧ ¬Finish(r),
that is, the first phase is done and r becomes enabled to start a new phase by
New-action. r begins the second phase by resetting the Status variables in its
tree: Statusr is set to R. Then, the neighbors of r also executes New-action to
propagate the reset. When all the neighbors of r have set their Status variable
to R, r broadcasts the F value along the tree (Fwd -action) meaning that the
neighbors at distance 2 have now to hook on to the tree. When a neighbor of r,
p, receives a F value, two cases are possible:

1. p has no neighbor at distance 2 from the root. Then, p satisfies Backtrack(p)∧
Finish(p) and sets Statusp to D using D-action meaning that its subtree is
completely built.

2. p has at least one neighbor, q, at distance 2 from the root. Then, q joins the
tree by hooking on to the minimal process satisfying Status = F (Hk-action).
When p detects that all its neighbors have joined the tree, p sets Statusp to
B using Bck-action.

When all the neighbors of r have switched their Status variable to B or D, r
detects the end of the second phase and becomes enabled to started a new phase.
Inductively, the other phases work as follows. r is enabled to start the kth phase
(k > 2) when Statusr = F ∧ ∀p ∈ Neigr , Statusp ∈ {B,D}. The kth phase begins
with a reset initiated by r (New-action). When ∀p ∈ Neigr , Statusp ∈ {R,D}, r
broadcasts a new F value into the tree meaning that the processes at distance
k from the root have now to join the tree. The F value is propagated into the
tree as follows: When a process has its parent, Parq , such that StatusParq = F , q
waits until all its children (if any) satisfies Status ∈ {R,D} and, then, broadcasts
the F value to its children (cf. Forward(q)). During this broadcast, one of these
two cases appears:

1. A F value reaches a process p such that all its children satisfy Status = D
(i.e., Backtrack(p) ∧ Finish(p)). p then sets Statusp to D (D-action) meaning
that its subtree is completely built.

2. A F value reaches a leaf f of the tree. If f has no neighbor at distance
k from the root, f satisfies Backtrack(p) ∧ Finish(p) and sets Status f to
D (D-action). Otherwise, f has at least one neighbor, q, such that q is at
distance k from r. In this case, each q joins the tree by hooking on to a process
of the tree such that Status = F (Hk-action). When f detects that all its
neighbors are in the tree (Backtrack( f ) ∧ ¬Finish( f )), f sets Status f to B
(Bck-action).
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Algorithm 4. BFS for p �= r

Input: Neigp: set of neighbors (locally ordered);

Variables: Statusp ∈ {C,R,F ,B,D}; Parp ∈ Neigp; Level p ∈ N;

Macros:
Initp = Statusp := C;
Childrenp = {q ∈ Neigp :: Statusq �= C ∧ Parq = p};
Potentialp = {q ∈ Neigp :: Statusq = F };
MinPotentialp = min({Levelq :: q ∈ Potential p});

Predicates:
Finish(p) ≡ (∀q ∈ Childrenp :: Statusq=D)
Leaf(p) ≡ [∀q ∈ Neigp :: (Parq=p) ⇒ (Statusq ∈ {C,D})]
Hook(p) ≡ (Statusp=C)∧(∃q ∈ Neigp :: Statusq=F ) ∧ Leaf (p)
NPhase(p) ≡ (Statusp=B)∧(StatusParp=R) ∧ (∀q ∈ Childrenp :: Statusq ∈ {B,D})
Forward(p) ≡ (Statusp=R)∧(StatusParp=F ) ∧ (∀q ∈ Childrenp :: Statusq ∈ {R,D})
Back(p) ≡ (Statusp=F )∧[∀q∈Neigp::(Statusq �=C)∧(q∈Childrenp

⇒Statusq∈{B,D})]
GoodR(p) ≡ (Statusp=R) ⇒ (StatusParp ∈ {R,F })
GoodF(p) ≡ (Statusp=F ) ⇒ (StatusParp=F )
GoodB(p) ≡ (Statusp=B) ⇒ (StatusParp /∈ {C,D})
GoodLevel(p) ≡ (Statusp �= C) ⇒ (Level p=LevelParp + 1)
Bad(p) ≡ ¬Good R(p) ∨ ¬Good F (p) ∨ ¬Good B(p) ∨ ¬Good Level (p)
Error(p) ≡ (Statusp �= D) ∧ Bad (p)

Actions:
Err-action :: Error(p) → Statusp := D;
Hk-action :: Hook(p) → Statusp := B; Parp := min≺p (Potentialp);

Level p := Level Parp + 1;
New-action :: NPhase(p) → Statusp := R;
Fwd-action :: Forward(p) → Statusp := F ;
Bck-action :: Back(p) ∧ ¬Finish(p) → Statusp := B;
D-action :: Back(p) ∧ Finish(p) → Statusp := D;

The B and D values are then propagated into the tree (using Bck- and
D-action) and r eventually satisfies Statusr = F ∧ ∀p ∈ Neigr , Statusp ∈ {B,D}
again. If ∃p ∈ Neigr such that Statusp = B, r starts a (k + 1)th phase (New-
action). Otherwise, the spanning tree is completely built and r Statusr to D
(D-action) meaning that the BFSTC wave is terminated.

By definition, the height of a breath-first spanning tree is equal to D where
D is the diameter of the network. So, from γα, BFS execute exactly D phases to
build the tree. Also, each phase is performed in O(D) rounds and O(N ) steps.
Hence:

LEMMA 4.8. Starting from γα, BFS builds a breath-first spanning tree in
O(D × N) steps and O(D2) rounds.

By Lemma 4.8, BFS satisfies Claim 2 of SSBB-Friendly under a distributed un-
fair daemon. We now show that BFS.End (r) satisfies BreakingIn(UF) (Claim
1 of SSBB-Friendly). To that goal, we have to prove that starting from any
configuration BFS converges in a finite number of steps into a terminal con-
figuration where BFS.End (r) is satisfied (cf. Consequence 3.3). The behavior
of BFS starting from a configuration different from γα is similar to the one of
DFS: When a process p locally detects that the system is not in a configuration
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reachable from γα, it definitively sets Statusp to D (Err-action). So, using the
same method as for Lemmas 4.2 and 4.3, we can show the two following lemmas:

LEMMA 4.9. Starting from any configuration, BFS reaches a terminal con-
figuration in O(D × N) steps.

LEMMA 4.10. In any terminal configuration of BFS, r satisfies BFS.End (r).

By Lemmas 4.9 and 4.10, BFS.End (r) satisfies Claims 1 and 4 of BreakingIn
under a distributed unfair daemon. Moreover, it is clear that from γα,
BFS.End (r) is satisfied only if a breath-first spanning tree is available (Claim
2 of BreakingIn). Finally, by checking the actions of Algorithm 3, we can state
that BFS.End (r) satisfies Claim 3 of BreakingIn. Hence, follows:

LEMMA 4.11. BFS.End (r) satisfies BreakingIn(U F ).

By Lemmas 4.8 and 4.11, we have:

LEMMA 4.12. BFS satisfies SSBB-Friendly(BFSTC,U F ).

By Lemma 4.12 and Theorem 3.15, we have:

THEOREM 4.13. SSBB(BFS) is a snap-stabilizing BFSTC wave protocol un-
der a distributed unfair daemon.

The code of BFS is close to the code of the solution of Awerbuch and Gallager
[1985]. Also, it is simpler than the code of Johnen [1997]. Below, the complexity
analysis show that SSBB(BFS) is also efficient.

4.2.1 Complexity Analysis of SSBB(BFS). BFS use O(log N ) bits per pro-
cess and Reset(B) O(log N ) bits per process. So, SSBB(BFS) requires O(log N )
bits per process. Consider now the time complexity. We begin this analysis with
the following lemma. It allows to evaluate the round complexity of SSBB(BFS).

LEMMA 4.14. Starting from any configuration, BFS reaches a terminal con-
figuration in O(D2) rounds.

PROOF. The proof is similar to the one of Lemma 4.7 (page 15).

The delay to start a breath-first spanning tree construction is in O(D2 +
N ) rounds (by Theorem 3.16 and Lemma 4.14) and O(� × N 3) steps (by
Theorem 3.18 and Lemma 4.9). Finally, starting from any configuration, a
breath-first spanning tree is computed in O(D2 + N ) rounds (by Corollary 3.16,
Lemmas 4.8 and 4.14) and O(�× N 3) steps (by Corollary 3.18 and Lemma 4.9).

5. EXTENTION: MUTUAL EXCLUSION

SSBB(DFS) allows to perform a single snap-stabilizing depth-first token circu-
lation. The snap-stabilizing property guarantees that, starting from any con-
figuration and upon a request, a token is created in finite time and this token
visits all the processes in a depth-first order. SSBB(DFS) is also able to perform
a perpetual token circulation, that is, an infinite repetition of token circulation
cycles. To that end, we just have to assume that the system is continuously
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requesting the token circulation. A common application of perpetual token cir-
culations is the mutual exclusion. In the mutual exclusion, the existence of a
special section of code, called critical section (noted 〈CS〉), is assumed. The crit-
ical section must be executed by at most one process at a time. The mutual
exclusion can be specified as follows Villain [2002]: Any process that requests
〈CS〉 enters in 〈CS〉 in finite time (liveness), and if a requesting process enters
in 〈CS〉, it executes 〈CS〉 alone (safety). Note that, in a safe environment, the
safety property is equivalent to the property “Never more that one process ex-
ecutes 〈CS〉 simultaneously” in a sense that any protocol satisfying the first
property also satisfies the second one and reciprocally. Indeed, in a safe envi-
ronment, 〈CS〉 is initially free and only the requestors can enter into 〈CS〉. Of
course, it is not the case in a faulty environment.

Using any perpetual token circulation, the mutual exclusion can be solved
as follows: A process executes its critical section only when it holds a token.
Unfortunately, SSBB(DFS) is not snap-stabilizing for the mutual exclusion.
Indeed, starting from any configuration, several corrupted tokens may circulate
simultaneously. As a consequence, processes may request and then execute the
critical section simultaneously. However, starting from any configuration, any
cycle ofSSBB(DFS) is composed of a snap-stabilizing reset of theDFS variables
followed by a single token circulation. So, after the first reset, the specification
of the mutual exclusion is verified forever and the protocol is self-stabilizing for
the mutual exclusion. Also, r can detect when a token is unique: Once r starts
the protocol, the next token that r creates is unique. The next theorem shows
that there is a way for any process (not only for r) to detect when they hold a
token which is unique.

THEOREM 5.1. Starting from any configuration, a process p is guaranteed to
receive a token that is unique since it executes Fwd-action for the third time.

PROOF. To execute Fwd -action, a process p must satisfy Succp = idle in
DFS and Ok(p) in Reset(DFS). After executing Fwd-action, p satisfies Succp �=
idle. We can remark that p will satisfy Succp = idle again only after executing
the feedback of Reset(DFS). So, p executes at least one feedback between each
execution of Fwd-action and, from the third Fwd-action, at least two feedbacks
have been already executed by p. Now, since the execution of two feedbacks
after the first Fwd-action, the feedbacks executed by p always correspond to
feedbacks of the abort messages broadcasted by r (Claim 5 of Property 3.9, page
10). After such feedbacks, each token that p will receive is unique (the reset is
snap-stabilizing).

By Theorem 5.1, we can trivially obtain an efficient self-stabilizing protocol: If
we authorize any process to execute the critical section only when it receives a
new token (Fwd-action), they execute the critical section at most twice without
satisfying the safety. We now describe how to build a snap-stabilizing mutual
exclusion using SSBB(DFS). By Theorem 5.1, from the moment when a process
becomes requestor, it just has to wait the reception of at least three tokens
and then executes the critical section when receiving the third token to satisfy
the safety of the specification (the liveness is simply ensured by the fact that
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Algorithm 5. ME , ∀p ∈ V :

Variable: Counterp ∈ {0,1,2};
Actions:

ME1 :: (Counterp = 0) → Counterp := 1; /* Starting Action */
ME2 :: (Counterp = 1) → Counterp := 2;
ME3 :: (Counterp = 2) → 〈CS〉; Counterp := 0;

the token circulation is perpetual). That is the solution we propose. Our snap-
stabilizing mutual exclusion corresponds to the following composite protocol:
ME ◦|Fwd−Guard (p) SSBB(DFS) where Fwd-Guard(p) is the guard of Fwd-action
at p in SSBB(DFS), that is, Fwd-Guard(p) ≡ (Forward(p) ∧ Ok(p)) and ME
is the protocol given in Algorithm 5 (a version with explicit request is given in
the appendix, Subsection 6). ME ◦|Fwd−Guard (p) SSBB(DFS) works as follows:

1. Since a process p requests the critical section, it waits until Countp = 0 and
then starts the execution of ME by executing ME1 while receiving a new
token by Fwd-action (following the composition rules, p always executes the
ME actions in the same steps than Fwd -action). By executing ME1, p sets
Counterp to 1 to remember that it already received one token.

2. When p receives another token (Fwd-action), it executes ME2 in the same
step. By this action, p simply increments Counterp.

3. Finally, by ME3, p executes the critical section (〈CS〉) and, then resets
Counterp to 0 (meaning that it is ready to receive another request) in the
same steps than the third Fwd -action.

By Theorem 5.1, the previous described mechanism guarantees that the safety
of the mutual exclusion is always satisfied. Also, the liveness is ensured by the
fact that SSBB(DFS) ensures that any process receives tokens infinitely often
even if the daemon is unfair. Hence, we can conclude:

THEOREM 5.2. ME ◦|Fwd−Guard (p) SSBB(DFS) is a snap-stabilizing mutual
exclusion protocol assuming a distributed unfair daemon.

Note that, starting from any configuration, our snap-stabilizing mutual exclu-
sion protocol does not prevent several processes from executing the critical sec-
tion simultaneously. However, it guarantees that each process which requests
the critical section during an execution will execute it alone. So, when sev-
eral processes execute the critical section simultaneously, none of them have
requested it before. On the contrary, since a process becomes requestor, we guar-
antee that it will enter in the critical section only when the section will be free
and when it will be the only process able to enter in; that is, it will be the only
token holder.

6. CONCLUSION

In the context of single-initiator wave protocols where decisions only occur at the
initiator (a fundamental class of distributed protocols) we show that there ex-
ists a basic property called BreakingIn which is strictly necessary for stabilizing
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protocols. Roughly speaking, this property ensures that the initiator can be in-
volved neither in a deadlock nor in a livelock. A protocol with such a property
is easy to automatically snap-stabilize using a snap-stabilizing reset proto-
col. Now, starting from a classical non-fault-tolerant protocol, we just need to
slightly modify it into a version having the BreakingIn property—which is much
easier than directly designing a self- or snap-stabilizing protocol—to obtain a
version that can be turn into a snap-stabilizing protocol using our transformer.

The major advantage of our solution compared to Cournier et al. [2003] is
that we can now bound the overhead of our transformer. In consequence and
contrary to the previous solution, we can obtain snap-stabilizing protocols work-
ing under a distributed unfair daemon, the most general daemon of our model.
Also, we can analyze the complexity of the transformed protocol. To show the
power of our method, we propose two snap-stabilizing applications designed
with our transformer: A depth-first token circulation and breath-first spanning
tree construction with termination detection. These two protocols work under
a distributed unfair daemon and are both efficient in time and space. In partic-
ular, our depth-first token circulation constitutes, until now, the best trade-off
between the time and the space complexity solving this problem. Also, these
two applications show that the requested property does not lead to provide com-
plex codes as that of stabilizing solutions [Huang and Chen 1993; Johnen 1997;
Cournier et al. 2005, 2006] but codes are in fact close to basic non-fault-tolerant
solutions and as consequence easy to prove.

Also, using a counting property of our transformer, we show how to use our
depth-first token circulation to trivially obtain a snap-stabilizing mutual ex-
clusion protocol. Finally, since BreakingIn is a property of any self-stabilizing
protocol of the same class, we can use our method to snap-stabilize such self-
stabilizing protocols Cournier et al. [2006a]. Surprisingly, in addition to snap-
stabilization, the method enhances in many cases some other characteristics of
the initial self-stabilizing protocol: The time needed for the correct execution
(the first execution in the snap-stabilizing version) is drastically reduced and/or
the fairness of the daemon can be weakened.

Of course our transformer cannot work with multi-initiator protocols. For
example, in a leader election initialized by several processors the partial com-
putations must merge into a single one but, using our transformer, each initiator
has initiated a reset. These concurrent resets may mutually cancel the work
of the partial computations. Solving this drawback will be the aim of a future
work.

APPENDIX

A.1 How to Explicitly Manage the Request?

The external request can be managed into the code of the initiator r using, for
instance, a variable Requestr ∈ {Wait,In,Out}. Requestr = Wait means that an
execution of the protocol is required. When the initialization of the protocol oc-
curs, Requestr switches from Wait to In meaning that r has taking the request
into account. Finally, Requestr switches from In to Out when the system is
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ready to receive another request. Of course, the switching of Requestr from
Wait to In and from In to Out is managed by the task itself while the switch-
ing from Out to Wait (which means that another execution of the protocol is
requested) is externally managed. Note that all other transitions (for instance,
In to Wait) are forbidden. The switching from Out to Wait can be managed
using an external action IR (i.e., Interface Request) constituted as follows:

IR :: ApplicationRequest(r) ∧ (Requestr = Out) → Requestr

: = Wait; ApplicationReleaser ;

ApplicationRequest(r) represents the predicate which is true when an appli-
cation at the initiator r requests an execution. ApplicationReleaser corresponds
to the macro which contains the code of the application that has to be executed
when the system takes the request into account. In particular, this macro must
make ApplicationRequest(r) false.

The switching from Wait to In has to be performed when the protocol
starts. So, the assignment Requestr := In has to be added into the state-
ment of each starting action. Also, a starting action can be executed only if
Requestr = Wait (the starting actions are triggered by the requests). So, the
condition Requestr = Wait has to be added into the guard of any starting
action. Finally, the switching of Requestr from In to Out has to be performed
after the termination of the protocol.

A.2 Algorithm Reset(B)

Reset(B) is a slightly modified version of PIF . It is divided into three parts:
The PIF, question, and correction parts, respectively. The PIF part is the most
important part of the protocol because it contains the actions related to the three
phases of a PIF wave: The broadcast phase, the feedback phase following the
broadcast phase, and the cleaning phase which cleans the trace of the feedback
phase so that the root is ready to broadcast a new message. The two other
parts, that is, the question and the correction parts, implement two mechanisms
allowing the snap-stabilization of the PIF part.

Reset(B) use the four following variables:

1. Pp. This variable points out to the process from which p receives a new
broadcast message. So, Pp ∈ Neigp if p �= r and Pp =⊥ if p = r (indeed,
as r is the initiator of the broadcast, r never receives any message and Pr is
a constant). A spanning tree of the network with regard to the P -values is
dynamically built during the broadcast phase.

2. Lp. Lp contains the length of the path followed by the broadcast message
from r to p. So, Lr is the constant 0 and ∀p ∈ V \ { r}, p assigns Lp to LPp +1
each time it receives a new broadcast message. This variable is used to detect
the cycles that can form some P variables in the initial configuration. Indeed,
in a P cycle, at least, one process q satisfies Lp �= LPp + 1.

3. PIFp. Informally, the variable PIFp allows to know in which phase of the
PIF the process p is. PIFp is set to B when p switches to the broadcast
phase by B-action. In particular, note that since any PIF wave starts by a
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Algorithm 6. Reset(B) for p = r

Inputs: Neigp: set of (locally) ordered neighbors of p; B: algorithm satisfying SSBB-

Friendly(T ,D);

Input-Output: Requestr ∈ {Wait,In,Out} (shared with the IR action);

Constants: Pp =⊥; Lp = 0;

Variables: PIFp ∈ {B,F ,P ,C}; Quep ∈ {Q ,R,A};
Macro:

Childp = {q ∈ Neigp :: (PIFq �= C) ∧ (Pq = p) ∧ (Lq = Lp + 1)
∧ [(PIFq �= PIFp) ⇒ (PIFp ∈ {B,P} ∧ PIFq = F )]};

Predicates:
Ok(p) ≡ (PIFp = C)
CFree(p) ≡ (∀q ∈ Neigp :: PIFq �= C)
Leaf(p) ≡ [∀q ∈ Neigp :: (PIFq �= C) ⇒ (Pq �= p)]
BLeaf(p) ≡ (PIFp = B) ∧ [∀q ∈ Neigp :: (Pq = p) ⇒ (PIFq = F )]
AnswerOk(p) ≡ (Quep = A) ∧ [∀q ∈ Neigp :: (PIFq �= C) ⇒ (Queq = A)]
Broadcast(p) ≡ (PIFp = C) ∧ Leaf (p)
Feedback(p) ≡ BLeaf (p) ∧ CFree(p) ∧ AnswerOk(p)
PreClean(p) ≡ (PIFp = F ) ∧ [∀q ∈ Neigp :: (Pq = p) ⇒ (PIFq ∈ {F ,C})]
Cleaning(p) ≡ (PIFp = P ) ∧ Leaf (p)
Require(p) ≡ (PIFp ∈ {B,F }) ∧ [(PIFp = B) ⇒ CFree(p)]

∧ [[(Quep = Q) ∧ (∀q ∈ Neigp :: (PIFq �= C) ⇒ (Queq ∈ {Q ,R}))]
∨ [(Quep = A) ∧ (∃q ∈ Neigp :: (PIFq �= C)
∧ ((Queq = Q) ∨ (q ∈ Childp ∧ Queq = R)))]]

Answer(p) ≡ (PIFp ∈ {B,F }) ∧ [(PIFp = B) ⇒ CFree(p)]
∧ (Quep = R) ∧ (∀q ∈ Childp :: Queq ∈ {W ,A})
∧ [∀q ∈ Neigp :: (PIFq �= C) ⇒ (Queq �= Q)]

Actions:
/* PIF Part */
B-action :: (B.Requestr=Wait)∧B.End (p)∧Broadcast(p) → PIFp:=B; Quep:=Q ;

B.Requestr := In;
F -action :: Feedback(p) → PIFp := F ; B.Initp;
P -action :: PreClean(p) → PIFp := P ;
C-action :: Cleaning(p) → PIFp := C;
T -action :: (B.Requestr = In) ∧ B.End(p) ∧ (PIFp = C) → B.Requestr := Out;
/* Question Part */
QR-action :: Require(p) → Quep := R;
QA-action :: Answer(p) → Quep := A;

broadcast phase initiated by r, B-action at r is the only starting action of PIF.
Then, PIFp is set to F when p switches to the feedback phase by F -action.
Finally, the cleaning phase is managed with the two states P and C. After r
detects the end of the feedback phase, r initiates using P -action a broadcast
of the P value along the spanning tree computed during the broadcast
phase to inform all the processes of this termination. Then, the processes
successively switches to C by C-action from the leaves to r meaning that
they now ready to receive another message. Hence, the PIF wave termi-
nates when r sets PIFr to C by C-action. Finally, note that two other states
exist in PIFp for p �= r: EB and EF. They are used by the correction part
only.
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Algorithm 7. Reset(B) for p �= r

Inputs: Neigp: set of (locally) ordered neighbors of p; B: algorithm satisfying SSBB-

Friendly(T ,D);

Variables: PIFp ∈ {B,F ,P ,C,E B,E F }; Pp ∈ Neigp; Lp ∈ N; Quep ∈ {Q ,R,W ,A};
Macros:

Childp = {q ∈ Neigp :: (PIFq �=C) ∧ (Pq=p) ∧ (Lq=Lp+1)
∧ [(PIFq �= PIFp) ⇒ ((PIFp ∈ {B,P} ∧ PIFq = F ) ∨ (PIFp = E B))]};

Pre Potential p = {q ∈ Neigp :: PIFq = B };
Potential p = {q ∈ Neigp :: ∀q′ ∈ Pre Potential p, Lq ≤ Lq′ };

Predicates:
Ok(p) ≡ (PIFp = C)
CFree(p)≡ (∀q ∈ Neigp :: PIFq �= C)
Leaf(p) ≡ [∀q ∈ Neigp :: (PIFq �= C) ⇒ (Pq �= p)]

BLeaf(p) ≡ (PIFp = B) ∧ [∀q ∈ Neigp :: (Pq = p) ⇒ (PIFq = F )]
AnswerOk(p) ≡ (Quep = A) ∧ [∀q ∈ Neigp :: (PIFq �= C) ⇒ (Queq = A)]
GoodPIF(p) ≡ (PIFp = C) ∨ [(PIFPp �= PIFp) ⇒ ((PIFPp = E B)

∨ (PIFp = F ∧ PIFPp ∈ {B,P}))]
GoodL(p) ≡ (PIFp �= C) ⇒ (Lp = LPp + 1)
AbRoot(p) ≡ ¬GoodPIF(p) ∨ ¬Good L(p)
EFAbRoot(p) ≡ (PIFp=EF) ∧ AbRoot(p)∧[∀q∈Neigp::(Pq=p∧Lq>Lp)⇒(PIFq∈{EF,C})]
EBroadcast(p)≡ (PIFp ∈ {B,F ,P}) ∧ [¬AbRoot(p) ⇒ (PIFPp = EB)]
EFeedback(p) ≡ (PIFp = E B) ∧ [∀q ∈ Neigp :: (Pq = p ∧ Lq > Lp) ⇒ (PIFq ∈ {E F ,C})]
Broadcast(p) ≡ (PIFp = C) ∧ (Potential p �= ∅) ∧ Leaf (p)
Feedback(p) ≡ BLeaf (p) ∧ CFree(p) ∧ AnswerOk(p)
PreClean(p) ≡ (PIFp=F ) ∧ (PIFPp=P ) ∧ [∀q ∈ Neigp :: (Pq=p) ⇒ (PIFq∈{F ,C})]
Cleaning(p) ≡ (PIFp=P ) ∧ Leaf (p)
Require(p) ≡ (PIFp ∈ {B,F }) ∧ [(PIFp = B) ⇒ CFree(p)] ∧ [[(Quep = Q)

∧ (∀q ∈ Neigp :: (PIFq �= C) ⇒ (Queq ∈ {Q ,R}))] ∨ [(Quep ∈ {W ,A})
∧ (∃q ∈ Neigp :: (PIFq �=C) ∧ ((Queq=Q) ∨ (q ∈ Childp ∧ Queq=R)))]]

Wait(p) ≡ (PIFp∈{B,F }) ∧ [(PIFp=B) ⇒ CFree(p)] ∧ (Quep=R) ∧ (QuePp=R)
∧ (∀q∈Childp :: Queq∈{W ,A}) ∧ (∀q∈Neigp :: (PIFq �=C) ⇒ (Queq �=Q))

Answer(p) ≡ (PIFp∈{B,F }) ∧ [(PIFp=B) ⇒ CFree(p)] ∧ (Quep=W ) ∧ (QuePp=A)
∧ (∀q∈Childp :: Queq∈{W ,A}) ∧ (∀q∈ Neigp :: (PIFq �=C)⇒(Queq �=Q))

Actions:
/* Correction Part */
EC-action :: E F AbRoot(p) → PIFp := C;
EB-action :: E Broadcast(p) → PIFp := E B;
EF-action :: E Feedback(p) → PIFp := E F ;
/* PIF Part */
B-action :: Broadcast(p) → PIFp := B; Pp := min≺p (Potential p);

Lp := LPp + 1; Quep := Q ;
F -action :: Feedback(p) → PIFp := F ; B.Initp;
P -action :: PreClean(p) → PIFp := P ;
C-action :: Cleaning (p) → PIFp := C;
/* Question Part */
QR-action :: Require(p) → Quep := R;
QW-action :: Wait(p) → Quep := W ;
QA-action :: Answer(p) → Quep := A;

4. Quep. This variable is used in the question part. Roughly speaking, since a
process receives a message broadcast by the root, this part controls that it
switches to the feedback phase only after all its neighbors have received the
message.
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A.3 Explicit Request in ME
We define the variable Requestp ∈ {Wait,In,Out} into the code of any pro-
cess p to manage the requests for the critical section. Using Requestp, ME
◦|Fwd−Guard (p) SSBB(DFS) works as follows:

1. When a process p requests the critical section (i.e., Requestp = Wait), it
waits the reception of a new token by Fwd-action. When it executes Fwd -
action, p also executes ME1 in the same step. By executing ME1, p initializes
Counterp to 1 (to remember that it already received one token) and switches
Requestp to In (meaning that the request has been taken into account).

2. When p receives another token (Fwd-action), it satisfies Requestp = In ∧
Counterp = 1. It then executes ME2 in the same step than Fwd-action. By
this action, p simply increments Counterp.

3. Finally, by ME3, p executes the critical section (< CS >) and, then, switches
Requestp to Out (meaning that the requested critical section has been exe-
cuted by p) in the same steps than the third Fwd -action.

Algorithm 8. ME , ∀p ∈ V :

Variables: Requestp ∈ {Wait,In,Out}; Counterp ∈ {1,2};
Actions:

ME1 :: (Requestp = Wait) → Counterp := 1; Requestp := In;
ME2 :: (Requestp = In) ∧ (Counterp = 1) → Counterp := 2;
ME3 :: (Requestp = In) ∧ (Counterp = 2) → 〈CS〉; Requestp := Out;
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