Self-Stabilizing Labeling and Ranking in Ordered Trees

Ajoy K. Datta!, Stéphane DevismésLawrence L. Larmorg and Yvan Rivierré

L School of Computer Science, University of Nevada Las Veld&s,
firstname.lastname@unlv.edu ,
WWW home pagehttp://www.egr.unlv.edu/ ~ lastname
2 VERIMAG UMR 5104, Université Joseph Fourier, France,
firstname.lasthame@imag.fr ,
WWW home pagehttp://www-verimag.imag.fr/ ~ lastname

Abstract. We propose two self-stabilizing algorithms for tree netigoiT he first
one computes a special label, caltpdde pairof each proces® in O(h) rounds
(h being the height of the tree) usiiig(d» log n) space per proceds, wheredp

is the degree aP andn the number of processes in the network. Guide pairs have
numerous applications, including ordered traversal oigadion of the processes
in the tree. Our second self-stabilizing algorithm, whisksithe guide pairs com-
puted by the first algorithm, solves trenking problemin O(n) rounds and has
space complexity (b+4dr log n) in each proces®, whereb is the number of bits
needed to store a value. The first algorithm orders the treeepses according
to their topological positions. The second algorithm osdeanks) the processes
according to the values stored in them.

Keywords: Self-stabilization, tree networks, tree labeling, ragkmoblem.

1 Introduction

Self-stabilizatior{4l5] is a versatile property, enabling an algorithm to witind tran-
sient faults in a distributed system. A distributed alduoritis self-stabilizing if, after
transient faults hit the system and place it in some arlyitgdobal state, the system
recovers without external intervention in finite time.

An ordered tree7 is a rooted tree, together with an order (called a left-tivror-
der) on the children of every node. In this paper, we give bstabilizing distributed
algorithms for ordered trees. None of the two algorithmsass knowledge of the size
of the networkn, or of a known upper bound of, although, as it is usual in the litera-
ture, we assume that each process can store an integer antpe r.n, usingO(log n)
space. We choose the ordered tree topologies becausesriessiich topologies can
be easily extended to arbitrary rooted networks by comgposin solutions with any
existing self-stabilizing spanning tree constructioroaiignm (see([5] for the literature).
However, the meaning of “traversing” or “ranking” proces$e a general network is
not clear.

* This work has been partially supported by the ANR profsRESA.

http://www.egr.unlv.edu/~lastname
http://www-verimag.imag.fr/~lastname

Our first algorithm, GUIDE, com-
putes aguide pair for each process
P, which we write as P.guide =
(P.pre.ind, P.postind), whereP.pre_ind
and P.postind are the rank ofP in the
preorderandreverse postordetraversal,
respectively, of the ordered tree. Figure
shows an example of ordered tree la-
beled with guide pairs. The guide pairs
provide a labeling scheme that can be
used for various applications|[7]. In this
work, we use these labels to navigate in
the tree7. We can define a partial order-
ing on the guide pairs as follows: We say
(1,7) < (k,0)if i < kandj < /. Then,

A process is a member of the subtree
Tp rooted atP if and only if P.guide < (13,6)
@.guide The guide pairs can be used to
implement routing between any two pro-
cesses of the tree. If the two nodes satisfy (6,14)
the above partial ordering, then the rout-
ing path simply follows the list of ances-
tors/descendants. Otherwise, the routing
must be established via the nearest com-
mon ancestor.

Our second algorithm, RANK, uses GUIDE, hence shows anatpplication of
guide pairs. The input of our second algorithm is a valeeight of some ordered
type, for each procesB. RANK computes theank of each process, which is defined
to be the index of that process if all processes were sortékdiyweights.

(2.9)

(3,11)

Fig. 1. Guide pairs.

1.1 Contributions

GUIDE has time complexity)(h) rounds, wheré is the height of7". The time com-
plexity of RANK is O(n) rounds. The space complexity of GUIDE in each prod@ss
is O(6p logn), whered, is the degree oP. RANK, which uses GUIDE as a subrou-
tine, has space complexi®y(b + ¢, logn) in each proces®, whereb is the number of
bits needed to store a value. GUIDE and RANK are self-stabdi. GUIDE issilent,
that is, it eventually reaches a terminal configuration wtedk actions of all processes
are disabled. RANK correctly computes the rank of every gssavithinO(n) rounds.
Unless the weights change, the ranking do not change onsg$tem stabilizes. How-
ever, the algorithm repeatedly computes them to detecitgesshange of weights. If
the weights do not change, the repeated computation of RANIKbes/transparent to
the application that uses the output of RANK.

1.2 Related Work

The notion of guide pairs appeared firstlin [7], but that sotuts not self-stabilizing.
To the best of our knowledge, there exist no self-stabijjatgorithms for computing
the guide pairs.

The only self-stabilizing solution to the ranking problerasigiven in[[2]. This algo-
rithm works in rooted trees. Like ours, that algorithm is sitent. Moreover, it assumes
that each process has a unique identifier in the range The algorithm stabilizes in
2(n?) rounds using)(log n) space per process. The ranking problem is related to the
sorting problemThere exist numerous self-stabilizing solutions to sgrin a treee.q,
[QI8[1]. However, all those previous problems are quitked#nt than ours.

1.3 Roadmap

In the next section, we present the model we use through@iptper. In Section
[3, we present our self-stabilizing silent algorithm for qmrting guide pairs. In Sec-
tion[4, we present our self-stabilizing algorithm for thekiag problem, which uses
the guide pairs. Because of space limitations, the proofe baen omitted. See the
technical report onlinehttp://www-verimag.imag.fr/ ~ devismes/WWW/
rapports/trRank.pdf).

2 Preliminaries

Let G = (V, E) be an undirected graph, whetéis a set of nodes and is a set
of undirected edges linking nodes. Two nodes) € V are said to be neighbors if
{P,Q} € E. The set ofP’s neighbors is denoted by¥(P). The degree off i.e.,
|N(P)|, is denoted byp. G = (V, E) is atreeif it is connected and acyclic. A tree
T can berootedat some node, meaning that one of its noflest is distinguished as
theroot (all other nodes are anonymous). In a rooted feeve denote byP.par, the
parent of nodeP in T7: If P = Root, thenP.par = P; otherwiseP.par = @, where
Q is the neighbor ofP that is the closest from the root (in this caggjs said to be a
child of @ in 7). LetChldrn(P) = {Q € N(P) : Q.par = P}, thechildrenof P in
the tree7. An ordered treeis a rooted tre€/, together with an (local) order (called
a left-to-right order) on the children of every node. We denay < p the local order
relation among the children of node Let P, P, ... P, be the children of the root of
T in the left-to-right order. We denote ljy be the subtree rooted at aRy. Finally, we
denote by € 7; the fact that nodé€) is a node of7;.

We model our network topology as an ordered tfee- (V, E), whereV is a set
of n nodes representing processes &hid a set of edges, each representing the ability
of two processes to communicate directly. (We will use thmgg‘node” and “process”
interchangeably.) We denote by P) the height of proces® in T, i.e, its distance to
the root. We denote by the height ofT, i.e., maxpcy h(P).

http://www-verimag.imag.fr/~devismes/WWW/rapports/trRank.pdf
http://www-verimag.imag.fr/~devismes/WWW/rapports/trRank.pdf

2.1 Computational Model

We consider the locally shared memory model, introduced RQigsa [4]. In this
model, communications are carried out by locally sharedhiséers. Each process has
the finite set of shared variables (henceforth, referredsteaaiables) whose domains
are finite. A proces#® can read its own variables and that of its neighbors, but acéa w
only to its own variables. We assume that every pro¢esan read the local names of
its neighbors, so that f) € N(P), P can tell, for example, wheth&).par = P. Each
process writes its variables according to its (logatjgram A distributed algorithm
is a collection ofn programs each one operating on a single process. giogramof
each process is a finite set of actiqhsbel) :: (guard) — (statement). Labelsare
only used to identify actions in the discussion. Theard of an action in the program
of a process” is a Boolean expression involving the variablesoénd its neighbors.
The statemenbf an action ofP updates one or more variables®f An action can be
executed only if it isenabledi.e., its guard evaluates to-ue. A process is said to be
enabledf at least one of its actions is enabled.

Let A be a distributed algorithm operating of a network of topglég The values
of A’s variables at some procesgsdefineA’s (local) stateof P in G. A configuration
of Ain G is an instance of’s states of all processes . In the following, if there is
no ambiguity, configurations odl in G will be simply denoted bygonfigurations

Let — be the binary relation over configurations.dfin G such thaty — ' if
and only if it is possible for the network of topolody to change from configuration
~ to configuratiomy’ in one step ofd. An executionof A is a maximal sequence of
configurationsy = 971 such thaty;,_; — ~; for all « > 0. The term “maxi-
mal” means that the execution is either infinite, or endstatrminal configuration in
which no action of any process is enabled. Each step ~;1 consists of one or more
enabledprocesses executing an action. The evaluations of all guard executions of
all statements of those actions are presumed to take placeiatomic step; this model
is calledcomposite atomicit{5].

We assume that each step from a configuration to anothewisrdoy ascheduler
also called adaemon If one or more processes are enabled, the scheduler satects
least one of these enabled processes to execute an acti@ssWme that the scheduler
is weakly fair meaning that, every continuously enabled prodess selected by the
scheduler within finite time.

We say that a proceg3is neutralizedn the stepy; — ~;+1 if Pis enablediny; and
not enabled iny; 11, but does not execute any action between these two configinsat
The neutralization of a process represents the followituptdn: at least one neighbor
of P changes its state betweenand~,, 1, and this change effectively makes the guard
of all actions ofP false.

We use the notion ofound The firstround of an executionp, notedy’, is the
minimal prefix of o in which every process that is enabled in the initial confgion
either executes an action or becomes neutralizeds’'Lbe the suffix ofp starting from
the last configuration of’. The second round af is the first round ofo”, the third
round ofg is the second round @f’, and so forth.

2.2 Self-stabilization and Silence

In the following, we define apecificationas a set of executions. We said that an exe-
cutionp satisfies the specificatiohP if p € SP.

A distributed algorithmA is self-stabilizing with respect tthe specificatiort' P in
a network of topology~ if and only if there exists a set of configuratiahisuch that:

1. Every execution ofd in a network of topology starting from a configuration in
C satisfiesS P (closurg.

2. Every execution afl in a network of topology- eventually reaches a configuration
in C (convergence

All configurations ofC are said to be legitimate, all other configurations are satakt
illegitimate.

We say that an algorithm isilent [6] if each of its executions is finite. In other
words, starting from an arbitrary configuration, the netwaill eventually reach a
configuration where no process is enabled.

2.3 Composition

To simplify the design of our algorithms, we use a varianteftvell-knowncollateral
compositiorf10]. Roughly speaking, when we collaterally compose tvwgmathms.A
andB, A andB run concurrently and uses the outputs o4 in its executions. In the
variant we use, we modify the code Bfso that a process executes an actios ainly
when it has no enabled action i

Let A and B be two algorithms such that no variable written Byappears inA.
Thehierarchical collateral compositiof3] of .4 and 3, noted’5 o A4, is the algorithm
defined as follows:

1. B o A contains all variables ofl andB.
2. B o A contains all actions afl.

3. For every actionL; : G; — S;” of B, Bo A contains the actionE;
=D AG; — S;”whereD is the disjunction of all guards of actions.iq

The following sufficient condition is given in_[3] to show tlerrectness of the com-
posite algorithm:

Theorem 1. The composite algorithi® o A self-stabilizes to specificatiofiP in a
network of topologyz assuming a weakly fair scheduler if the following condition
hold: (7) in a network of topology, Algorithm A is a silent algorithm under a weakly
fair scheduler;(ii) in a network of topology~, Algorithm B stabilizes toS P under a
weakly fair daemon, starting from any configuration whereantion of A4 is enabled.

6

3 Computing Guide Pairs

3.1 Guide Pairs

Given an ordered treg, the guide pair of a nod® in 7 is the pair of integers and;j
such that andj are, respectively, the rank &f in the preorderandreverse postorder
traversal of7". Below, we define these notions. Recall that we denotBby, ... P,
the children of the root of in the left-to-right order, and we denote fiybe the subtree
rooted at anyP;. Thepreorder traversabf 7 is defined, recursively, as follows:

1. Visit the root of 7.
2. For each from 1 tom in increasing order, visit the nodesgfin preorder

Postorder traversdl is similarly defined:

1. For each from 1 tom in increasing order, visit the nodesffin postorder
2. Visit the root of 7.

Preorder traversal is top-down, while postorder travesdabttom-up. However, we can
also traversd in reverse postordemhich is top-down, as follows.

1. Visit the root ofT.
2. Fori fromm to 1 in decreasing order, visit the nodes/pin reverse postorder

If a nodeP is thei*® node of7 visited in a preorder traversal @f, we say that the
preorder rankof P is i. If a nodeP is thej*" node of7 visited in a reverse postorder
traversal of7, we say that theeverse postorder ran&f P is j. Write pre_ind(P) and
postind(P) for thepreorderrank andeverse postordenank of P, respectively. We de-
fine theguide pairof P to be the ordered paguidg P) = (pre_ind(P), postind(P)).
Figureld shows an ordered tree where each process is labigteidsvguide pair.

If (¢,7) and(k, ¢) are guide pairs, we writg, j) < (k,¢) if i < kandj < ¢. Thus,
the set of guide pairs is partially ordered 8y

Remark 1.[Property 2 in [7]] If P and Q are nodes of an ordered trég, then
guidg P) < guidgQ®) if and only if P is an ancestor af).

3.2 Algorithm GUIDE

Algorithm GUIDE is a hierarchical collateral compositiohtero algorithms: GUIDE
= CGPo COUNT, where both COUNT and CGP (f@ompute Guide PaijuseP.par
as inputin the program of every proca3sNote thatP.par either designates the actual
parent link of P or is computed by a distributed spanning tree algorithm wiktich
GUIDE must be composed using the hierarchical collatenadpusition.

Algorithm COUNT. COUNT acts as a bottom-up wave that computes the number of
processes in each subtree. In COUNT, each praédsss only one variabld?.subcount
Moreover, each proced3 can compute the following functiorBubcountP) = 1 +
ZQeChldrn(P) Q.subcountThus, the program aP consists of the following action:

SetCnt :: P.subcount£ SubcountP) — P.subcounk— SubcountP)

Lemma 1. COUNTIs self-stabilizing and silent, converges withia- 1 rounds from an
arbitrary initial configuration to a legitimate configurath whereP.subcount= |{Q €
Tp}| for all processed”, and works under the weakly fair scheduler.

Algorithm CGP. Using the values ofubcountcomputed by COUNT, each process
P evaluates in CGP for each of its childréhthe number of processes befapein

the preorderandreverse postordetraversal of the treg, respectively (using Actions
SetChldPrePred and SetChldPostPred, respectively). Then, reading these values
from its parent, each process, except the root, can comfsuggiide pair (using Ac-
tions SetPreInd andSetPostInd). The guide pair of the root i6l, 1) (see Actions
SetPreInd andSetPostInd for the root).

Variables ofCGP. In CGP, each process maintains several variables. Fiesfottow-
ing array variable enables each non-root process to knowdex in the local left-to-
right order of its parent:

1. Pchidi] € N(P)u{Ll},foralll <i < §,. This array is maintained by Action
SetChld. For all1 < i < |Chldrm(P)|, P.chid[i] is set to the*® child in P’s local
ordering of N (P), while for all |Chldrn(P)| < i < dp, P.chid]i] is settol B

Then, CGP uses the following additional variables:

2. P.preind, P.postind, integers. In stabilized state, they containpieorderandre-
verse postorderranks of P, respectively. Thus, we will writeP.guide =
(P.pre.ind, P.postind), the guide pair of.

3. P.chld.pre_pred]i], P.chld_postpred], integer, defined for all < i <|dp|:

— Foralll <4 < |Chldrn(P)|, P.chld_pre_pred[i] is set to the number of prede-
cessors of thé'® child of P (that is, P.chld[i]) in the preordertraversal ofT;
and P.chld_postpred}] is set to the number of predecessors ofifiechild of
P in thereverse postordetraversal of7 .

— For all |Chldrn(P)| < i < ép, P.chld_pre_pred[:] and P.chld_postpred] are
setto 0.

Hence, each procegscomputes its guide pair to be

(P.par.chld_pre_pred[j] + 1, P.par.chld_postpredj] + 1)

whereP is thej** child of its parent in left-to-right order.

3 Actually, cells from indexChldrn(P)| 4 1 to 6 are useless. However, as the tree may be
obtained by a spanning tree construction, we cannot knowtineber of children ofP in
advance, but this number is boundedday

Functions ofCGP. Based on the previous variables, each prodesan compute the
following functions:

— my.order(P). If P is not the root and there exists1 < i < Jppar, such that
P.par.chld[i] = P, thenmy.order(P) returnsi. If the values ofP.par.chld did not
stabilize,my_order(P) returnsl.

Once the system has stabilizedy_order(P) returns the index of the non-root pro-
cessP in the local left-to-right order of its parent.

— Chld_index(Q) = |{Q" € Chldrn(P) : Q' <p Q}|+ 1. It returns the index of the
child @ of processP in the local left-to-right order of.

— Bval_chld(i) returns the local name of theé'™ child of P. That is,
if 3Q € Chldrn(P) such thatChld_index(Q) = 1, then Eval_chld(i) returns
Q; otherwise Eval_chld(i) returnsL.

— Ewval_chld_pre_pred(i). If i = 1, thenEval_chld_pre_pred(i) returnsP.pre.ind;
else if 2 < ¢ < |Chldr(P)|, then Ewval_chld_pre_pred(i) returns
P.chld_pre_predi — 1] + P.chld[i — 1].subcountotherwise it return$.

Once the system has stabilizétlyal_chld_pre_pred(i) returns the number of pre-
decessors of th&" child of P in thepreordertraversal of7 .

— FEwal_chld_post_pred(i). If i« = |Chldrn(P)|, then Eval_chld_post_pred(i)
returnsP.postind; else if1 < i < |Chldrn(P)|, then Eval_chld_post_pred(i)
returns P.chldpostpred: + 1] + P.chldi + 1].subcount otherwise
Eval_chld_post_pred(i) returns0.

Once the system has stabilizeBlyal_chld_post_pred(i) returns the number of
predecessors of th&" child of P in the reverse postorder traversalfof

Actions of CGP. Actions of CGP are given below. To simplify the presentatioe
assume priorities on actions, and list them below in the roirben the highest to the
lowest priority. If several actions are enabled simultarsipat a process, only the one
of the highest priority can be executed. In other words, tttaad guard of any action
“L :: G+ S"of processP is —D A G, whereD is the disjunction of the guards of
all actions atP that appear before in the text.

For every processP:

SetChld ¢ Ji € [1..6p], — Vi€ [1..0p],

P.chld[i] # Eval_chld(z) P.chid[?] < Eval_chld(i)
SetChldPrePred :: 3i € [1..6p], — Vi€ [1..0p],

P.chidpre_predji]# Eval_-chld-pre_pred(i) P.chldpre_predji]«+— Eval_chld_pre_pred(i)
SetChldPostPred :: Ji € [1..6p], — Vi e [1..0p],

P.chld_postpred[:]# Eval_chld_post_pred(i) P.chld-postpred[i]«— Eval_-chld_post_pred(i)

For the root processRoot only:
SetPreInd :: Root.predind # 1 +— Root.preiind < 1

SetPostInd :: Root.postind # 1 — Root.postind + 1

For every non-root processP only:
SetPreInd :: P.pre.ind##1+ P.par.chldprepredmy.order(P)] + P.pre.ind<—1+ P.par.chld.pre_predmy.order(P)]

SetPostInd :: P.postind#1+ P.par.chldpostpredmy.order(P)] — P.postind« 1+ P.par.chld.postpredmy.order(P)]

Overview ofCGP. We now give an intuitive explanation of how CGP computes the
values ofP.pre.ind for all P. The values ofP.postind are computed similarly.

Suppose thaP is thei*" process visited in @reordertraversal of7. Theni is
the correct value oP.pre_ind. CGP works by computing the number of predecessors
of P, i.e.,the number of processes visited befétés visited. Let us call that number
NumPreorderPredg P). It is the correct value oP.pre_ind — 1.

NumPreorderPreds Root) = 0; otherwise Num.PreorderPredg P) is computed
by P.par and stored in the variablg.par.chld_pre_predj], whereP is the j*" child
of P.par in left-to-right order. In order to compute these values dbirits children,
P.par must have computed its own value pfe_ind, as well as the sizes of all of
its subtrees. Ifj = 1, thenNumPreorderPred§P) = P.par.pre.ind, since P.par
is the immediate predecessor of its leftmost child in pheorder visitation. Thus,
P.par.chld pre_pred1] + P.par.pre.ind. P.par.chld _pre_pred[2] is obtained by adding
the size of the leftmost subtree Bfpar to P.par.chld pre pred[1], since all members
of that subtree are predecessors of the second chittioair.

In general, the number of predecessorsfofs equal toP.par.pre.ind plus the
sum of the sizes of the leftmogt— 1 subtrees ofP.par. The values of the array
P.par.chld_postpredare computed from right to left, similarly? then executes:

P.pre.ind + P.par.chld pre predj] + 1
P.postind < P.par.chld_postpred[;] + 1

Theorem 2. GUIDE is self-stabilizing and silent, computes the guide pairalbpro-
cesses irO(h) rounds from an arbitrary initial configuration, and works der the
weakly fair scheduler.

4 Rank Ordering

In this section, we give an algorithm, RANK, that uses guidesto solve theanking
problemon an ordered tred,. We are given a valu€.weightfor each proces® in 7.
(For convenience, we assume that the weights are integérs problem is to find the
rank of eachP. If Py, P, ..., P, is the list of processes ifi sorted by weight, then
is the rank ofP;. We allow ties to be broken arbitrarily, but deterministiga

Our algorithm RANK is a hierarchical collateral compositiof two algorithms:
RANK = CRK o GUIDE. RANK computes the rank of each procdss 7, and sets
the variableP.rank to that value. RANK is self-stabilizing, and requir@$n) rounds
andO(b + 0, logn) space for each process

4.1 Overview of CRK

Flow of Packages.The key part of the algorithm CRK is tHeow of packagesEach

package is an ordered pair = (z.value z.guide), wherez.valueis its value and

x.guideis itsguide pair. We identify a package with itguide pair. Moreover, for every
two packagesy andy, we haver > y (resp.z > y) if and only if z.value > y.value

(resp.z.value> y.valud.

10

Each package hashome proceséthe node from which the package is originally
issued), although its location can be at any process in thm dietween its home and
the root. The guide pair of a package is the same as the guiidefits home process,
and its value is either the weight of its home process or thk tlaat CRK will assign
to its home process.

Each procesd initiates its flow of packages by creating ap-packagevhose
value isP.weight This up-package then moves to the root by successive appyire
flow of packages is organized so that packages with small@ghtgereach the root
before packages with larger weights, in a manner similahécstandard technique for
maintaining min-heap order in a tree.

After the root copies an up-package from a child, it creatds\an-packagevith
the same home process as the up-package, but whose valueriam(a rank) in the
rangel..n. The root maintains a counter so that the first down-packageates has
value 1, the second value 2, and so forth. Each down-packagenoves back to its
home process by copying. When its home process copies a gdaekage, it assigns,
or re-assigns, its rank to be the value of that package.

The purpose (in fact even the name) of the guide pair is novioolsv It is used to
guide the down-package to its home process.

Since the root copies up-packages in weight order, it csadde/n-packages in that
same order. Thé¢" down-package created by the root will carry rardad will use the
same guide pair as th&" up-package copied by the root. Its home process will then be
the process whose weight is tfi€& smallest in7 .

When the root detects that it has created all down-packiégesiates a broadcast
wave which resets the variables of CRK (except the rank anghveariables) and
starts a new epoch.

Redundant Packages.In our model of computation, if a variable of a procd3ss
copied by a neighbap, it also remains aP. In the algorithm CRK, each proceBscan
be home to at most one package, but we cannot avoid the ecesdémultiple copies of
that package (up and/or down). We handle that problem byidgfapackage variable
currently held by a process (not necessarily its home psygather any process on
the chain from its home to the root) as being eithetive or redundant A redundant
package can freely be overwritten, but not an active package

If = is an up-package currently held by some procgsghich is not the root, them
is redundantifc has already been copied Bypar. If x is an up-package currently held
by the root, therr is redundant if the root has already created a down-packébéhe
same guide pair as. Any other up-package is active.

If « is a down-package held by some proc@sshich is not its home process, then
Q is redundant if it has been copied by some childf(The child that copies must
be the process whose subtree contains the home procegsibk: is a down-package
held by its home proced3, thenx is redundant if°.rankis equal to the value af. This
indicates thaf’ has already copied its rank fram or thatP.rank was correct before
arrived. Any other down-package is active.

11

Status Waves.As it is typical for distributed algorithms which are setékilizing, but
not silent, CRK endlessly repeats the calculation of th&sari the processes in. We
call one (complete) pass through this cycle of computatamspoch At the end of
each epoch, the variables of CRK at all processes, othertligavariables for weight
and rank, are reset for the next epoch. If an epoch has a daaniswill calculate
the correct rank for each process. Subsequent epochs mpllysrecalculate the same
value, andP.rank will never change again.

On the other hand, in case of an arbitrary initial configaratiit is possible for
incorrect values of rank to be calculated, but eventuallgrefiguration will be reached
when the next epoch will get a clean start.

This system is controlled by thetatusvariables of the processes. At the beginning
of an epoch, a broadcast wave starting from the root chahgestatus of every process
from either O or 4 to 1, and all variables of CRK except rank aeifjht are set to their
initial values. When this wave reaches the leave§ pa convergecast wave changes
the status of all processes to 2. All computation of the naglalgorithm, as discussed
above, takes place while processes have status 2. Afteiotliehas created the last
down-package, it initiates a broadcast wave where thesstditall processes changes to
3. The return convergecast wave then changes the statupodegsses to 4, and when
this wave reaches the root, the new epoch begins.

Status zero is used for error correction. If any processctietkat the current epoch
is erroneous, it changes its status to 0. Status O spreadsttieviree, as well as up the
tree unless it meets a process whose status is Rodt.statusbecomes 0 (and all its
children have status 0 or 4), thé&wot initiates a status 1 broadcast wave starting a new
epoch. However, this may cause an endless cycdleanfd1 wave, going up and down
the tree, respectively. We solve this problem by adding &iapeule for the non-root
processes. IP.status= 0 and P.par.status= 1, the status 0 wave cannot move up;
instead, the status 0 wave moves down followed by status &.wav

4.2 Formal Definition of CRK

Variables of CRK. Let P be any processP.par, P.guide and P.weightare inputs
of CRK. Then, the output of CRK i€.rank, an integer. To compute this outpug,
maintains the following additional variables:

1. P.up_pkgand P.downpkg are respectively of package type (that is, a guide pair
and an integer) ot (undefined).
If P.up_pkg(resp.P.downpkg is defined, then its home process is saghe 7Tp.

2. P.started Boolean.
This variable indicates whethét has already generated its up-package during this
epoch. P.up_pkgmay or may not still contain that up-package.)

3. P.up_.done Boolean.
It indicates whether all processesi have created their own up-package in the
current epoch and wheth@p contains no active up-package. (Active up-packages
whose home processes arefip could exist at processes abaie)

4. P.statuse [0..4].
Status variables are used to control the order of computatiol to correct errors.

12

Finally, Root contains the following additional variable:

5. Root.countere N
This incrementing integer variable assigns the rank to pgek. It is initialized to
be0 every time a new epoch begins.

Predicates of CRK. The predicate&Clean State P) below indicates ifP is in a good
initial or “clean” state.

CleanStatg P) = P.uppkg= 1 A P.downpkg= 1 A —P.started A =P.up.done

The four following predicates are used for error detection:

Is_ConsistentP, g) = g = P.guide vV 3Q € Chldrn(P), g > Q.guide

GuideError(P) = (P.uppkg# L A —ls_ConsistentP, P.up_pkgguide))
(P.downpkg# L A —ls_ConsistentP, P.downpkgguide))

StatusError(P) = (P.statuse {1,3} A P.par.status# P.statug Vv
(P.statuse {2,4} A 3JQ € Chldrn(P), Q.status# P.statug V
(P.status# 0 A P.par.status= 0) V
(P.status¢Z {0,1} A 3Q € Chldrn(P), Q.status= 0)
Error(P) = StatusError(P) Vv

(—CleanStaté P) A P.status= 1) V

(GuideError(P) A P.status= 2) V

(P.updone A —P.started A P.status= 2) Vv

(P.updone A P.status= 2 A 3Q € Chldrn(P), =Q.up-done

We say that a guide pairis consistent withP if the predicatds_ConsistentP, g)
is true. IfIs_ConsistentP, g) is false,g is the guide pair of no process in the subtree
of P. GuideError(P) = true means that’ holds a package whose home is not in
the subtree ofP. The predicateStatusError (P) indicates whetheP detects that its
status is inconsistent with those of its neighbors. Statig®are always the result of
arbitrary initializations; eventualitatusError (P) will become false and will remain
false forever for allP. Finally, the predicat&rror (P) detects error in the context of the
current wave.

The four following predicates are used for flow control:

Up_RedundartP) = (P # Root A P.uppkg# L A P.par.uppkg## L A P.par.up_pkg> P.up_pkg) vV
(P = Root A P.uppkg# L A P.downpkg# L A P.downpkgguide= P.up_pkg.guide)

DownReady P) = P.downpkg= L V (P.downpkg# L A
(P.downpkgguide# P.guide A 3Q € Chldrn(P), Q.downpkg = P.downpkg) Vv
(P.downpkgguide= P.guide A P.rank = P.downpkgvalue))

CanStart(P) = —P.started A (P.up.pkg= L V Up_RedundarntP)) A VQ € Chldrn(P),
(—Up-Redundant@Q) V Q.up-done A (Q.up-pkg > (P.weight P.guide) v Q.up.done

CanCopyUp(P, Q) = Q € Chldrn(P) A (Q.uppkg# L A —Up-Redundart®)) A
(P.up_pkg= L V Up_Redundar(tP)) A
(P.started v (P.weight P.guide) > Q.up-pkg) A VR € Chldrn(P),
R.updone Vv (—Up_RedundantR) A (R.up-pkg> Q.up-pkg VvV R.up-done

13

P.up_pkgis redundant iUp_Redundar(tP) is true.Down ReadyP) states whether
P.downpkgis redundant or undefined, and thEscan create or copy a new down-
packageCan Start P) decides whetheP can create its own package, that is HAf
can setP.up_pkgto (P.weight P.guide). CanCopy Up(P) indicates whetheP can
copy Q.up_pkgto P.up_pkg We note thatP can evaluatéJp_Redundar(t)) for any
Q@ € Chidrn(P).

PredicateUp_Dong P) below decides whether all processes/i have created their
own up-package in the current epoch and wheffiecontains no active up-package.
The evaluation obJp_Don€g P) gives the correct value fdP.up_.done

Up_Dong(P) = P.started= true A Up_RedundantP) A VQ € Chldrn(P), Q.updone

Actions of CRK. Actions of CRK are given below. To simplify the design, welasg
that the actions of CRK use the same priorities as those of. CGP

For the root process Root only:

Err :: Error(Root) — Root.status« 0
NewEpoch . Root.statuse {0,4} A — Root.status« 1; counter<— 0
VQ € Chldrn(Root), Root.uppkg <— L; Root.downpkg+«— L
Q.statuse {0,4} Root.started— false; Root.up-done— false
ConvCast :: Root.status= 1 A — Root.status<«— 2

VQ € Chldrn(Root), Q.status= 2

CreateUpPkg :: Root.status= 2 A CanStart(Root) — Root.up_pkgvalue <— Root.weight
Root.up_pkgguide +— Root.guide
Root.started < true

CopyUpPkg it Root.status= 2 A — Root.uppkg < Q.up_pkg,
3Q € Chldrn(Root), Q = min<, {R € Chldm(Root),
Can.CopyUp(Root, Q) CanCopy.Up(Root, R)}
EndUpPkg :: Root.started A Up_Redundar(tRoot) A +— Root.up.done<— true
VQ € Chldrn(Root), Q.up-done
CreateDownPkg :: DownReady Root) A — counter<« counter+ 1
Root.uppkg# L A Root.downpkg.value +— counter
—Up_RedundantRoot) Root.downpkg.guide <— Root.up_pkg.guide
SetRank :: Root.downpkg# L A — Root.rank «+— Root.downpkg.value

Root.downpkgguide = Root.guide A
Root.downpkg.value# Root.rank

BroadCast :: Root.status= 2 A — Root.status<— 3
Root.up-done A DownReady Root)

EndEpoch :: Root.status= 3 A — Root.status<— 4
VQ € Chldrn(Root), Q.status= 4

14

For every non-root processP only:

Err :: Error(P) P.status<— 0
NewEpoch :: P.par.status= 1 A P.statuse {0,4} A P.status<+— 1
VYQ € Chldm(P), Q.statuse {0,4} P.uppkg+ L
P.downpkg < L
P.started<— false
P.up_done«+ false
ConvCast :: P.status= 1 A VQ € Chldrn(P), Q.status= 2 — P.status« 2
CreateUpPkg :: P.status= 2 A CanStart(P) — P.up_pkgvalue <+ P.weight
P.up_pkgguide +— P.guide
P.started<— true
CopyUpPkg :: P.status= 2 A — P.up_pkg <+ Q.up-pkg
3Q € Chldrn(P), CanCopyUp(P, Q) Q = min< , {R € Chldn(P),
CanCopyUp(P, R)}
EndUpPkg :: P.started A Up_.Redundar(tP) A — P.updone< true
VQ € Chldrn(P), Q.up-done
CopyDownPkg :: DownReadyP) A — P.downpkg < P.par.downpkg
P.par.downpkg # L A
P.par.downpkg # P.downpkgA
Is_ConsistentP, P.par.downpkg)
SetRank :: P.downpkg# L A — P.rank < P.downpkgvalue
P.downpkgguide= P.guideA
P.downpkgvalue# P.rank
BroadCast :: P.par.status= 3 A P.status= 2 A — P.status<— 3
V@ € Chldrn(P), Q.status= 2 A DownReadyP)
EndEpoch :: P.status= 3 A VQ € Chldr(P), Q.status= 4 — P.status« 4

The actions above achieve three tasks. They are (1) ernaatan, (2) epochs, and
(3) ranking computation (using the flow packages).

Error Correction. Action Err performs the error correction. If one process detects any
inconsistency among its state and that of its neighbonsitiates a reset of the network
by changing its status to 0. This reset is contagious asquelyi explained.

Epochs. A new epoch starts by a reset initiated by ActiewEpoch at the root: If
Root.statusis either 0 or 4, and every child dfoot has status 0 or 4, thelRoot broad-
casts the status 1 and resets to a clean state.
When status 1 reaches the leaves, a convergecast wavasthtlanges the status
of all processes to 2 by ActiofonvCast, so that actual ranks computation can begin.
When Root detects that there are no more up-packages in the tree, atrdady
sent every down-package, it initializes a broadcast ofistdtby ActionBroadCast.
Note that there could still be active down-packages beltawt, but there could not
be any active up-packages. Thiigot is finished with its tasks for the current epoch.
Non-root process® propagates the status 3 by ActiBroadCast after sending all
its down-packages. There could still be active down-paekdgelowP, but no active
up-packages. SincB par.status= 3, P knows that its job for this epoch is done.

Once status 3 reaches the leaves, a convergecast of statumtidlized and propa-
gated by ActiorEndEpoch. When Root changes to status 4, the current epoch is done,
and Root initiates a new one.

15

Ranking computationThe computation of the ranking is bottom-up and starts when
the convergecast of status 2 starts at the leaves. The flow-phokages is organized
usingCreateUpPkg andCopyUpPkg, that is, a process either inserts its own package
in the flow or copy some package coming from a child by ensuthiag) packages are
moved up in ascending order of weight. Once a proé¢ebsis detected thgtr has no
active up-package, it selBup_doneto true by ActionEndUpPkg. Root initializes the
broadcast of status 3 only aft@oot.up_-doneswitches to true.
Upon receiving a new up-package (that®ept.up_pkgis active), if Root.downpkg
is available (that is, it is eithet or redundant)Root is enabled to create a new down-
package to send down to the home of its up-packagerbyteDownPkg. If counter=
i, then Root.up_pkgis thei*" up-package copied or created Ryot, its weight is the
i*? smallest weight in the network, adavill become the value of the down-package.
The new active down-package is propagated to its home pbgesiccessive copy-
ing using ActionCopyDownPkg. When it reaches its home procd3sthe value field of
that package contains the correct value of the ranR 00 P updatesP.rank using
Action SetRank, if necessary.

Theorem 3. RANK is self-stabilizing, computes the ranking of all processe®(n)
rounds from an arbitrary initial configuration, and works der the weakly fair sched-
uler.

References

1. Bein, D., Datta, A., Villain, V.: Snap-stabilizing optahbinary-search-tree. Proceedings of
the 7-th International Symposium on Self-Stabilizing 8ys$ (2005)

2. Bourgon, B., Datta, A.K., Natarajan, V.: A self-staliig ranking algorithm for tree
structured networks. In: Proceedings of the First WorksbopSelf-Stabilizing Systems
(WSS'95). pp. 23-28 (1995)

3. Datta, A.K., Devismes, S., Heurtefeux, K., Larmore, | Rivierre, Y.: Self-stabilizing small
k-dominating sets. Tech. rep., VERIMAG (201h}fp://www-verimag.imag.fr/
TR/TR-2011-6.pdf

4. Dijkstra, E.: Self stabilizing systems in spite of distried control. Communications of the
Association of Computing Machinery 17, 643—644 (1974)

5. Doley, S.: Self-Stabilization. The MIT Press (2000)

6. Dolev, S., Gouda, M., Schneider, M.: Memory requiremebtssilent stabilization. In:
PODC '96: Proceedings of the fifteenth annual ACM symposiarRonciples of distributed
computing. pp. 27-34 (1996)

7. Flocchini, P., Enriques, A.M., Pagli, L., Prencipe, Gan®ro, N.: Point-of-failure shortest-
path rerouting: Computing the optimal swap edges disttiblyt IEICE Transactions 89-
D(2), 700-708 (2006)

8. Herman, T., Masuzawa, T.: A stabilizing search tree withilability properties. In: Fifth
International Symposium on Autonomous Decentralized Syst(ISADS 2001). pp. 398—
405 (2001)

9. Herman, T., Pirwani, I.: A composite stabilizing datausture. 5th International Workshop
on Self-Stabilizing Systems (WSS 2001), Lecture Notes im@ater Science LNCS 2194,
Springer Verlag pp. 167-182 (2001)

10. Tel, G.: Introduction to distributed algorithms (2nd. E€ambridge University Press (2000)

http://www-verimag.imag.fr/TR/TR-2011-6.pdf
http://www-verimag.imag.fr/TR/TR-2011-6.pdf

	Self-Stabilizing Labeling and Ranking in Ordered Trees

