
Self-Stabilizing Labeling and Ranking in Ordered Trees⋆

Ajoy K. Datta1, Stéphane Devismes2, Lawrence L. Larmore1, and Yvan Rivierre2

1 School of Computer Science, University of Nevada Las Vegas,USA,
firstname.lastname@unlv.edu ,

WWW home page:http://www.egr.unlv.edu/ ˜ lastname
2 VERIMAG UMR 5104, Université Joseph Fourier, France,

firstname.lastname@imag.fr ,
WWW home page:http://www-verimag.imag.fr/ ˜ lastname

Abstract. We propose two self-stabilizing algorithms for tree networks. The first
one computes a special label, calledguide pairof each processP in O(h) rounds
(h being the height of the tree) usingO(δP log n) space per processP , whereδP
is the degree ofP andn the number of processes in the network. Guide pairs have
numerous applications, including ordered traversal or navigation of the processes
in the tree. Our second self-stabilizing algorithm, which uses the guide pairs com-
puted by the first algorithm, solves theranking problemin O(n) rounds and has
space complexityO(b+δP log n) in each processP , whereb is the number of bits
needed to store a value. The first algorithm orders the tree processes according
to their topological positions. The second algorithm orders (ranks) the processes
according to the values stored in them.

Keywords: Self-stabilization, tree networks, tree labeling, ranking problem.

1 Introduction

Self-stabilization[4,5] is a versatile property, enabling an algorithm to withstand tran-
sient faults in a distributed system. A distributed algorithm is self-stabilizing if, after
transient faults hit the system and place it in some arbitrary global state, the system
recovers without external intervention in finite time.

An ordered treeT is a rooted tree, together with an order (called a left-to-right or-
der) on the children of every node. In this paper, we give two self-stabilizing distributed
algorithms for ordered trees. None of the two algorithms assumes knowledge of the size
of the networkn, or of a known upper bound ofn, although, as it is usual in the litera-
ture, we assume that each process can store an integer in the range1..n, usingO(log n)
space. We choose the ordered tree topologies because results in such topologies can
be easily extended to arbitrary rooted networks by composing our solutions with any
existing self-stabilizing spanning tree construction algorithm (see [5] for the literature).
However, the meaning of “traversing” or “ranking” processes in a general network is
not clear.

⋆ This work has been partially supported by the ANR projectARESA2.

http://www.egr.unlv.edu/~lastname
http://www-verimag.imag.fr/~lastname

2

(1,1)

(2,9)
(8,2)

(4,12)

(5,13)

(6,14)

(7,10)

(14,3)

(9,4)

(10,5)

(13,6)(11,7)

(12,8)

(3,11)

Fig. 1. Guide pairs.

Our first algorithm, GUIDE, com-
putes a guide pair for each process
P , which we write as P.guide =
(P.pre ind, P.post ind), whereP.pre ind
andP.post ind are the rank ofP in the
preorderandreverse postordertraversal,
respectively, of the ordered tree. Figure
1 shows an example of ordered tree la-
beled with guide pairs. The guide pairs
provide a labeling scheme that can be
used for various applications [7]. In this
work, we use these labels to navigate in
the treeT . We can define a partial order-
ing on the guide pairs as follows: We say
(i, j) ≤ (k, ℓ) if i ≤ k andj ≤ ℓ. Then,
A processQ is a member of the subtree
TP rooted atP if and only if P.guide≤
Q.guide. The guide pairs can be used to
implement routing between any two pro-
cesses of the tree. If the two nodes satisfy
the above partial ordering, then the rout-
ing path simply follows the list of ances-
tors/descendants. Otherwise, the routing
must be established via the nearest com-
mon ancestor.

Our second algorithm, RANK, uses GUIDE, hence shows anotherapplication of
guide pairs. The input of our second algorithm is a valueP.weight, of some ordered
type, for each processP . RANK computes therank of each process, which is defined
to be the index of that process if all processes were sorted bytheir weights.

1.1 Contributions

GUIDE has time complexityO(h) rounds, whereh is the height ofT . The time com-
plexity of RANK is O(n) rounds. The space complexity of GUIDE in each processP

is O(δP logn), whereδP is the degree ofP . RANK, which uses GUIDE as a subrou-
tine, has space complexityO(b+ δP logn) in each processP , whereb is the number of
bits needed to store a value. GUIDE and RANK are self-stabilizing. GUIDE issilent,
that is, it eventually reaches a terminal configuration where all actions of all processes
are disabled. RANK correctly computes the rank of every process withinO(n) rounds.
Unless the weights change, the ranking do not change once thesystem stabilizes. How-
ever, the algorithm repeatedly computes them to detect possible change of weights. If
the weights do not change, the repeated computation of RANK will be transparent to
the application that uses the output of RANK.

3

1.2 Related Work

The notion of guide pairs appeared first in [7], but that solution is not self-stabilizing.
To the best of our knowledge, there exist no self-stabilizing algorithms for computing
the guide pairs.

The only self-stabilizing solution to the ranking problem was given in [2]. This algo-
rithm works in rooted trees. Like ours, that algorithm is notsilent. Moreover, it assumes
that each process has a unique identifier in the range 1..n. The algorithm stabilizes in
Ω(n2) rounds usingO(log n) space per process. The ranking problem is related to the
sorting problem. There exist numerous self-stabilizing solutions to sorting in a tree,e.g.,
[9,8,1]. However, all those previous problems are quite different than ours.

1.3 Roadmap

In the next section, we present the model we use throughout this paper. In Section
3, we present our self-stabilizing silent algorithm for computing guide pairs. In Sec-
tion 4, we present our self-stabilizing algorithm for the ranking problem, which uses
the guide pairs. Because of space limitations, the proofs have been omitted. See the
technical report online (http://www-verimag.imag.fr/ ˜ devismes/WWW/
rapports/trRank.pdf).

2 Preliminaries

Let G = (V,E) be an undirected graph, whereV is a set of nodes andE is a set
of undirected edges linking nodes. Two nodesP,Q ∈ V are said to be neighbors if
{P,Q} ∈ E. The set ofP ’s neighbors is denoted byN(P). The degree ofP i.e.,
|N(P)|, is denoted byδP . G = (V,E) is a tree if it is connected and acyclic. A tree
T can berootedat some node, meaning that one of its nodesRoot is distinguished as
the root (all other nodes are anonymous). In a rooted treeT , we denote byP.par, the
parent of nodeP in T : If P = Root , thenP.par = P ; otherwiseP.par = Q, where
Q is the neighbor ofP that is the closest from the root (in this case,P is said to be a
child of Q in T). Let Chldrn(P) = {Q ∈ N(P) : Q.par = P}, thechildren of P in
the treeT . An ordered treeis a rooted treeT , together with an (local) order (called
a left-to-right order) on the children of every node. We denote by≺P the local order
relation among the children of nodeP . LetP1, P2, . . . Pm be the children of the root of
T in the left-to-right order. We denote byTi be the subtree rooted at anyPi. Finally, we
denote byQ ∈ Ti the fact that nodeQ is a node ofTi.

We model our network topology as an ordered treeT = (V,E), whereV is a set
of n nodes representing processes andE is a set of edges, each representing the ability
of two processes to communicate directly. (We will use the terms “node” and “process”
interchangeably.) We denote byh(P) the height of processP in T , i.e., its distance to
the root. We denote byh the height ofT , i.e., maxP∈V h(P).

http://www-verimag.imag.fr/~devismes/WWW/rapports/trRank.pdf
http://www-verimag.imag.fr/~devismes/WWW/rapports/trRank.pdf

4

2.1 Computational Model

We consider the locally shared memory model, introduced by Dijkstra [4]. In this
model, communications are carried out by locally shared variables. Each process has
the finite set of shared variables (henceforth, referred to as variables) whose domains
are finite. A processP can read its own variables and that of its neighbors, but can write
only to its own variables. We assume that every processP can read the local names of
its neighbors, so that ifQ ∈ N(P), P can tell, for example, whetherQ.par = P . Each
process writes its variables according to its (local)program. A distributed algorithm
is a collection ofn programs, each one operating on a single process. Theprogramof
each process is a finite set of actions〈label〉 :: 〈guard〉 7→ 〈statement〉. Labelsare
only used to identify actions in the discussion. Theguardof an action in the program
of a processP is a Boolean expression involving the variables ofP and its neighbors.
Thestatementof an action ofP updates one or more variables ofP . An action can be
executed only if it isenabled, i.e., its guard evaluates totrue. A process is said to be
enabledif at least one of its actions is enabled.

LetA be a distributed algorithm operating of a network of topology G. The values
of A’s variables at some processP defineA’s (local) stateof P in G. A configuration
of A in G is an instance ofA’s states of all processes inG. In the following, if there is
no ambiguity, configurations ofA in G will be simply denoted byconfigurations.

Let 7→ be the binary relation over configurations ofA in G such thatγ 7→ γ′ if
and only if it is possible for the network of topologyG to change from configuration
γ to configurationγ′ in one step ofA. An executionof A is a maximal sequence of
configurations̺ = γ0γ1 . . . γi . . . such thatγi−1 7→ γi for all i > 0. The term “maxi-
mal” means that the execution is either infinite, or ends at aterminal configuration in
which no action of any process is enabled. Each stepγi 7→ γi+1 consists of one or more
enabledprocesses executing an action. The evaluations of all guards and executions of
all statements of those actions are presumed to take place inone atomic step; this model
is calledcomposite atomicity[5].

We assume that each step from a configuration to another is driven by ascheduler,
also called adaemon. If one or more processes are enabled, the scheduler selectsat
least one of these enabled processes to execute an action. Weassume that the scheduler
is weakly fair, meaning that, every continuously enabled processP is selected by the
scheduler within finite time.

We say that a processP is neutralizedin the stepγi 7→ γi+1 if P is enabled inγi and
not enabled inγi+1, but does not execute any action between these two configurations.
The neutralization of a process represents the following situation: at least one neighbor
of P changes its state betweenγi andγi+1, and this change effectively makes the guard
of all actions ofP false.

We use the notion ofround. The first round of an execution̺ , noted̺′, is the
minimal prefix of̺ in which every process that is enabled in the initial configuration
either executes an action or becomes neutralized. Let̺′′ be the suffix of̺ starting from
the last configuration of̺ ′. The second round of̺ is the first round of̺ ′′, the third
round of̺ is the second round of̺′′, and so forth.

5

2.2 Self-stabilization and Silence

In the following, we define aspecificationas a set of executions. We said that an exe-
cution̺ satisfies the specificationSP if ̺ ∈ SP .

A distributed algorithmA is self-stabilizing with respect tothe specificationSP in
a network of topologyG if and only if there exists a set of configurationsC such that:

1. Every execution ofA in a network of topologyG starting from a configuration in
C satisfiesSP (closure).

2. Every execution ofA in a network of topologyG eventually reaches a configuration
in C (convergence).

All configurations ofC are said to be legitimate, all other configurations are said to be
illegitimate.

We say that an algorithm issilent [6] if each of its executions is finite. In other
words, starting from an arbitrary configuration, the network will eventually reach a
configuration where no process is enabled.

2.3 Composition

To simplify the design of our algorithms, we use a variant of the well-knowncollateral
composition[10]. Roughly speaking, when we collaterally compose two algorithmsA
andB, A andB run concurrently andB uses the outputs ofA in its executions. In the
variant we use, we modify the code ofB so that a process executes an action ofB only
when it has no enabled action inA.

Let A andB be two algorithms such that no variable written byB appears inA.
Thehierarchical collateral composition[3] of A andB, notedB ◦ A, is the algorithm
defined as follows:

1. B ◦ A contains all variables ofA andB.
2. B ◦ A contains all actions ofA.
3. For every action “Li :: Gi 7→ Si” of B, B ◦ A contains the action “Li ::
¬D ∧Gi 7→ Si” whereD is the disjunction of all guards of actions inA.

The following sufficient condition is given in [3] to show thecorrectness of the com-
posite algorithm:

Theorem 1. The composite algorithmB ◦ A self-stabilizes to specificationSP in a
network of topologyG assuming a weakly fair scheduler if the following conditions
hold: (i) in a network of topologyG, AlgorithmA is a silent algorithm under a weakly
fair scheduler;(ii) in a network of topologyG, AlgorithmB stabilizes toSP under a
weakly fair daemon, starting from any configuration where noaction ofA is enabled.

6

3 Computing Guide Pairs

3.1 Guide Pairs

Given an ordered treeT , the guide pair of a nodeP in T is the pair of integersi andj
such thati andj are, respectively, the rank ofP in thepreorderandreverse postorder
traversal ofT . Below, we define these notions. Recall that we denote byP1, P2, . . . Pm

the children of the root ofT in the left-to-right order, and we denote byTi be the subtree
rooted at anyPi. Thepreorder traversalof T is defined, recursively, as follows:

1. Visit the root ofT .
2. For eachi from 1 tom in increasing order, visit the nodes ofTi in preorder.

Postorder traversalT is similarly defined:

1. For eachi from 1 tom in increasing order, visit the nodes ofTi in postorder.
2. Visit the root ofT .

Preorder traversal is top-down, while postorder traversalis bottom-up. However, we can
also traverseT in reverse postorder, which is top-down, as follows.

1. Visit the root ofT .
2. Fori fromm to 1 in decreasing order, visit the nodes ofTi in reverse postorder.

If a nodeP is theith node ofT visited in a preorder traversal ofT , we say that the
preorder rankof P is i. If a nodeP is thejth node ofT visited in a reverse postorder
traversal ofT , we say that thereverse postorder rankof P is j. Write pre ind(P) and
post ind(P) for thepreorderrank andreverse postorderrank ofP , respectively. We de-
fine theguide pairof P to be the ordered pairguide(P) = (pre ind(P), post ind(P)).
Figure 1 shows an ordered tree where each process is labeled with its guide pair.

If (i, j) and(k, ℓ) are guide pairs, we write(i, j) ≤ (k, ℓ) if i ≤ k andj ≤ ℓ. Thus,
the set of guide pairs is partially ordered by≤.

Remark 1.[Property 2 in [7]] If P and Q are nodes of an ordered treeT , then
guide(P) ≤ guide(Q) if and only ifP is an ancestor ofQ.

3.2 Algorithm GUIDE

Algorithm GUIDE is a hierarchical collateral composition of two algorithms: GUIDE
= CGP◦COUNT, where both COUNT and CGP (forCompute Guide Pairs) useP.par
as input in the program of every processP . Note thatP.par either designates the actual
parent link ofP or is computed by a distributed spanning tree algorithm withwhich
GUIDE must be composed using the hierarchical collateral composition.

7

Algorithm COUNT. COUNT acts as a bottom-up wave that computes the number of
processes in each subtree. In COUNT, each processP has only one variable:P.subcount.
Moreover, each processP can compute the following function:Subcount(P) = 1 +∑

Q∈Chldrn(P) Q.subcount. Thus, the program ofP consists of the following action:

SetCnt :: P.subcount6= Subcount(P) 7→ P.subcount← Subcount(P)

Lemma 1. COUNT is self-stabilizing and silent, converges withinh+1 rounds from an
arbitrary initial configuration to a legitimate configuration whereP.subcount= |{Q ∈
TP }| for all processesP , and works under the weakly fair scheduler.

Algorithm CGP. Using the values ofsubcountcomputed by COUNT, each process
P evaluates in CGP for each of its childrenQ the number of processes beforeQ in
thepreorderandreverse postordertraversal of the treeT , respectively (using Actions
SetChldPrePred andSetChldPostPred, respectively). Then, reading these values
from its parent, each process, except the root, can compute its guide pair (using Ac-
tionsSetPreInd andSetPostInd). The guide pair of the root is(1, 1) (see Actions
SetPreInd andSetPostInd for the root).

Variables ofCGP. In CGP, each process maintains several variables. First, the follow-
ing array variable enables each non-root process to know itsindex in the local left-to-
right order of its parent:

1. P.chld[i] ∈ N(P) ∪ {⊥}, for all 1 ≤ i ≤ δP . This array is maintained by Action
SetChld. For all1 ≤ i ≤ |Chldrn(P)|, P.chld[i] is set to theith child inP ’s local
ordering ofN(P), while for all |Chldrn(P)| < i ≤ δP , P.chld[i] is set to⊥.3

Then, CGP uses the following additional variables:

2. P.pre ind,P.post ind, integers. In stabilized state, they contain thepreorderandre-
verse postorderranks of P , respectively. Thus, we will writeP.guide =
(P.pre ind, P.post ind), the guide pair ofP .

3. P.chld pre pred[i], P.chld postpred[i], integer, defined for all1 ≤ i ≤ |δP |:
– For all1 ≤ i ≤ |Chldrn(P)|, P.chld pre pred[i] is set to the number of prede-

cessors of theith child of P (that is,P.chld[i]) in thepreordertraversal ofT ;
andP.chld postpred[i] is set to the number of predecessors of theith child of
P in thereverse postordertraversal ofT .

– For all |Chldrn(P)| < i ≤ δP , P.chld pre pred[i] andP.chld postpred[i] are
set to 0.

Hence, each processP computes its guide pair to be

(P.par.chld pre pred[j] + 1, P.par.chld postpred[j] + 1)

whereP is thejth child of its parent in left-to-right order.

3 Actually, cells from index|Chldrn(P)| + 1 to δP are useless. However, as the tree may be
obtained by a spanning tree construction, we cannot know thenumber of children ofP in
advance, but this number is bounded byδP .

8

Functions ofCGP. Based on the previous variables, each processP can compute the
following functions:

– my order(P). If P is not the root and there existsi, 1 ≤ i ≤ δP.par, such that
P.par.chld[i] = P , thenmy order(P) returnsi. If the values ofP.par.chld did not
stabilize,my order(P) returns1.
Once the system has stabilized,my order(P) returns the index of the non-root pro-
cessP in the local left-to-right order of its parent.

– Chld index(Q) = |{Q′ ∈ Chldrn(P) : Q′ ≺P Q}|+1. It returns the index of the
childQ of processP in the local left-to-right order ofP .

– Eval chld(i) returns the local name of theith child of P . That is,
if ∃Q ∈ Chldrn(P) such thatChld index(Q) = i, thenEval chld(i) returns
Q; otherwise,Eval chld(i) returns⊥.

– Eval chld pre pred(i). If i = 1, thenEval chld pre pred(i) returnsP.pre ind;
else if 2 ≤ i ≤ |Chldrn(P)|, then Eval chld pre pred(i) returns
P.chld pre pred[i− 1] + P.chld[i− 1].subcount; otherwise it returns0.
Once the system has stabilized,Eval chld pre pred(i) returns the number of pre-
decessors of theith child ofP in thepreordertraversal ofT .

– Eval chld post pred(i). If i = |Chldrn(P)|, then Eval chld post pred(i)
returnsP.post ind; else if 1 ≤ i < |Chldrn(P)|, thenEval chld post pred(i)
returns P.chld postpred[i + 1] + P.chld[i + 1].subcount; otherwise
Eval chld post pred(i) returns0.
Once the system has stabilized,Eval chld post pred(i) returns the number of
predecessors of theith child ofP in the reverse postorder traversal ofT .

Actions ofCGP. Actions of CGP are given below. To simplify the presentation, we
assume priorities on actions, and list them below in the order from the highest to the
lowest priority. If several actions are enabled simultaneously at a process, only the one
of the highest priority can be executed. In other words, the actual guard of any action
“L :: G 7→ S” of processP is ¬D ∧ G, whereD is the disjunction of the guards of
all actions atP that appear before in the text.

For every processP :
SetChld :: ∃i ∈ [1..δP], 7→ ∀i ∈ [1..δP],

P.chld[i] 6= Eval chld(i) P.chld[i]← Eval chld(i)

SetChldPrePred :: ∃i ∈ [1..δP], 7→ ∀i ∈ [1..δP],
P.chld pre pred[i] 6=Eval chld pre pred(i) P.chld pre pred[i]←Eval chld pre pred(i)

SetChldPostPred :: ∃i ∈ [1..δP], 7→ ∀i ∈ [1..δP],
P.chld postpred[i] 6=Eval chld post pred(i) P.chld postpred[i]←Eval chld post pred(i)

For the root processRoot only:
SetPreInd :: Root.pre ind 6= 1 7→ Root.pre ind← 1

SetPostInd :: Root.post ind 6= 1 7→ Root.post ind← 1

For every non-root processP only:
SetPreInd :: P.pre ind6=1+P.par.chld pre pred[my order(P)] 7→ P.pre ind←1+P.par.chld pre pred[my order(P)]

SetPostInd :: P.post ind6=1+P.par.chld postpred[my order(P)] 7→ P.post ind←1+P.par.chld postpred[my order(P)]

9

Overview ofCGP. We now give an intuitive explanation of how CGP computes the
values ofP.pre ind for all P . The values ofP.post ind are computed similarly.

Suppose thatP is the ith process visited in apreorder traversal ofT . Theni is
the correct value ofP.pre ind. CGP works by computing the number of predecessors
of P , i.e., the number of processes visited beforeP is visited. Let us call that number
Num PreorderPreds(P). It is the correct value ofP.pre ind− 1.

NumPreorderPreds(Root) = 0; otherwise,Num PreorderPreds(P) is computed
by P.par and stored in the variableP.par.chld pre pred[j], whereP is thejth child
of P.par in left-to-right order. In order to compute these values forall its children,
P.par must have computed its own value ofpre ind, as well as the sizes of all of
its subtrees. Ifj = 1, thenNum PreorderPreds(P) = P.par.pre ind, sinceP.par
is the immediate predecessor of its leftmost child in thepreorder visitation. Thus,
P.par.chld pre pred[1]← P.par.pre ind.P.par.chld pre pred[2] is obtained by adding
the size of the leftmost subtree ofP.par to P.par.chld pre pred[1], since all members
of that subtree are predecessors of the second child ofP.par.

In general, the number of predecessors ofP is equal toP.par.pre ind plus the
sum of the sizes of the leftmostj − 1 subtrees ofP.par. The values of the array
P.par.chld postpredare computed from right to left, similarly.P then executes:

P.pre ind← P.par.chld pre pred[j] + 1

P.post ind← P.par.chld postpred[j] + 1

Theorem 2. GUIDE is self-stabilizing and silent, computes the guide pairs ofall pro-
cesses inO(h) rounds from an arbitrary initial configuration, and works under the
weakly fair scheduler.

4 Rank Ordering

In this section, we give an algorithm, RANK, that uses guide pairs to solve theranking
problemon an ordered tree,T . We are given a valueP.weightfor each processP in T .
(For convenience, we assume that the weights are integers.)The problem is to find the
rank of eachP . If P1, P2, . . . , Pn is the list of processes inT sorted by weight, theni
is the rank ofPi. We allow ties to be broken arbitrarily, but deterministically.

Our algorithm RANK is a hierarchical collateral composition of two algorithms:
RANK = CRK ◦ GUIDE. RANK computes the rank of each processP in T , and sets
the variableP.rank to that value. RANK is self-stabilizing, and requiresO(n) rounds
andO(b + δP logn) space for each processP .

4.1 Overview ofCRK

Flow of Packages.The key part of the algorithm CRK is theflow of packages. Each
package is an ordered pairx = (x.value, x.guide), wherex.value is its value and
x.guideis itsguide pair. We identify a package with itsguide pair. Moreover, for every
two packages,x andy, we havex ≥ y (resp.x > y) if and only if x.value≥ y.value
(resp.x.value> y.value).

10

Each package has ahome process(the node from which the package is originally
issued), although its location can be at any process in the chain between its home and
the root. The guide pair of a package is the same as the guide pair of its home process,
and its value is either the weight of its home process or the rank that CRK will assign
to its home process.

Each processP initiates its flow of packages by creating anup-packagewhose
value isP.weight. This up-package then moves to the root by successive copying. The
flow of packages is organized so that packages with smaller weights reach the root
before packages with larger weights, in a manner similar to the standard technique for
maintaining min-heap order in a tree.

After the root copies an up-package from a child, it creates adown-packagewith
the same home process as the up-package, but whose value is a number (a rank) in the
range1..n. The root maintains a counter so that the first down-package it creates has
value 1, the second value 2, and so forth. Each down-package then moves back to its
home process by copying. When its home process copies a down-package, it assigns,
or re-assigns, its rank to be the value of that package.

The purpose (in fact even the name) of the guide pair is now obvious. It is used to
guide the down-package to its home process.

Since the root copies up-packages in weight order, it creates down-packages in that
same order. Theith down-package created by the root will carry ranki and will use the
same guide pair as theith up-package copied by the root. Its home process will then be
the process whose weight is theith smallest inT .

When the root detects that it has created all down-packages,it initiates a broadcast
wave which resets the variables of CRK (except the rank and weight variables) and
starts a new epoch.

Redundant Packages.In our model of computation, if a variable of a processP is
copied by a neighborQ, it also remains atP . In the algorithm CRK, each processP can
be home to at most one package, but we cannot avoid the existence of multiple copies of
that package (up and/or down). We handle that problem by defining a package variable
currently held by a process (not necessarily its home process, rather any process on
the chain from its home to the root) as being eitheractiveor redundant. A redundant
package can freely be overwritten, but not an active package.

If x is an up-package currently held by some processQ which is not the root, thenx
is redundant ifx has already been copied byQ.par. If x is an up-package currently held
by the root, thenx is redundant if the root has already created a down-package with the
same guide pair asx. Any other up-package is active.

If x is a down-package held by some processQ which is not its home process, then
Q is redundant if it has been copied by some child ofQ. (The child that copiesx must
be the process whose subtree contains the home process ofx.) If x is a down-package
held by its home processP , thenx is redundant ifP.rank is equal to the value ofx. This
indicates thatP has already copied its rank fromx, or thatP.rank was correct beforex
arrived. Any other down-package is active.

11

Status Waves.As it is typical for distributed algorithms which are self-stabilizing, but
not silent, CRK endlessly repeats the calculation of the ranks of the processes inT . We
call one (complete) pass through this cycle of computationsan epoch. At the end of
each epoch, the variables of CRK at all processes, other thanthe variables for weight
and rank, are reset for the next epoch. If an epoch has a clean start, it will calculate
the correct rank for each process. Subsequent epochs will simply recalculate the same
value, andP.rank will never change again.

On the other hand, in case of an arbitrary initial configuration, it is possible for
incorrect values of rank to be calculated, but eventually a configuration will be reached
when the next epoch will get a clean start.

This system is controlled by thestatusvariables of the processes. At the beginning
of an epoch, a broadcast wave starting from the root changes the status of every process
from either 0 or 4 to 1, and all variables of CRK except rank andweight are set to their
initial values. When this wave reaches the leaves ofT , a convergecast wave changes
the status of all processes to 2. All computation of the ranking algorithm, as discussed
above, takes place while processes have status 2. After the root has created the last
down-package, it initiates a broadcast wave where the status of all processes changes to
3. The return convergecast wave then changes the status of all processes to 4, and when
this wave reaches the root, the new epoch begins.

Status zero is used for error correction. If any process detects that the current epoch
is erroneous, it changes its status to 0. Status 0 spreads down the tree, as well as up the
tree unless it meets a process whose status is 1. IfRoot .statusbecomes 0 (and all its
children have status 0 or 4), thenRoot initiates a status 1 broadcast wave starting a new
epoch. However, this may cause an endless cycle of0 and1 wave, going up and down
the tree, respectively. We solve this problem by adding a special rule for the non-root
processes. IfP.status= 0 andP.par.status= 1, the status 0 wave cannot move up;
instead, the status 0 wave moves down followed by status 1 wave.

4.2 Formal Definition of CRK

Variables of CRK. Let P be any process.P.par, P.guide, andP.weight are inputs
of CRK. Then, the output of CRK isP.rank, an integer. To compute this output,P

maintains the following additional variables:

1. P.up pkg andP.downpkg are respectively of package type (that is, a guide pair
and an integer) or⊥ (undefined).
If P.up pkg(resp.P.downpkg) is defined, then its home process is someQ ∈ TP .

2. P.started, Boolean.
This variable indicates whetherP has already generated its up-package during this
epoch. (P.up pkgmay or may not still contain that up-package.)

3. P.up done, Boolean.
It indicates whether all processes inTP have created their own up-package in the
current epoch and whetherTP contains no active up-package. (Active up-packages
whose home processes are inTP could exist at processes aboveP .)

4. P.status∈ [0..4].
Status variables are used to control the order of computation and to correct errors.

12

Finally,Root contains the following additional variable:

5. Root .counter∈ N

This incrementing integer variable assigns the rank to packages. It is initialized to
be0 every time a new epoch begins.

Predicates ofCRK. The predicateCleanState(P) below indicates ifP is in a good
initial or “clean” state.

CleanState(P) ≡ P.up pkg= ⊥ ∧ P.downpkg= ⊥ ∧ ¬P.started ∧ ¬P.up done

The four following predicates are used for error detection:

Is Consistent(P, g) ≡ g = P.guide ∨ ∃Q ∈ Chldrn(P), g ≥ Q.guide

Guide Error(P) ≡ (P.up pkg 6= ⊥ ∧ ¬Is Consistent(P, P.up pkg.guide)) ∨
(P.downpkg 6= ⊥ ∧ ¬Is Consistent(P, P.downpkg.guide))

StatusError(P) ≡ (P.status∈ {1, 3} ∧ P.par.status6= P.status) ∨
(P.status∈ {2, 4} ∧ ∃Q ∈ Chldrn(P), Q.status6= P.status) ∨
(P.status6= 0 ∧ P.par.status= 0) ∨
(P.status6∈ {0, 1} ∧ ∃Q ∈ Chldrn(P), Q.status= 0)

Error(P) ≡ StatusError(P) ∨
(¬CleanState(P) ∧ P.status= 1) ∨
(Guide Error(P) ∧ P.status= 2) ∨
(P.up done∧ ¬P.started ∧ P.status= 2) ∨
(P.up done∧ P.status= 2 ∧ ∃Q ∈ Chldrn(P),¬Q.up done)

We say that a guide pairg is consistent withP if the predicateIs Consistent(P, g)
is true. If Is Consistent(P, g) is false,g is the guide pair of no process in the subtree
of P . GuideError(P) = true means thatP holds a package whose home is not in
the subtree ofP . The predicateStatusError(P) indicates whetherP detects that its
status is inconsistent with those of its neighbors. Status errors are always the result of
arbitrary initializations; eventually,StatusError(P) will become false and will remain
false forever for allP . Finally, the predicateError(P) detects error in the context of the
current wave.

The four following predicates are used for flow control:

Up Redundant(P) ≡ (P 6= Root ∧ P.up pkg 6= ⊥ ∧ P.par.up pkg 6= ⊥ ∧ P.par.up pkg≥ P.up pkg) ∨
(P = Root ∧ P.up pkg 6= ⊥ ∧ P.downpkg 6= ⊥ ∧ P.downpkg.guide= P.up pkg.guide)

Down Ready(P) ≡ P.downpkg= ⊥ ∨ (P.downpkg 6= ⊥ ∧
(P.downpkg.guide 6= P.guide ∧ ∃Q ∈ Chldrn(P), Q.downpkg= P.downpkg) ∨
(P.downpkg.guide= P.guide ∧ P.rank = P.downpkg.value))

Can Start(P) ≡ ¬P.started ∧ (P.up pkg= ⊥ ∨ Up Redundant(P)) ∧ ∀Q ∈ Chldrn(P),
(¬Up Redundant(Q) ∨Q.up done) ∧ (Q.up pkg> (P.weight, P.guide) ∨Q.up done)

Can Copy Up(P,Q) ≡ Q ∈ Chldrn(P) ∧ (Q.up pkg 6= ⊥ ∧ ¬Up Redundant(Q)) ∧
(P.up pkg= ⊥ ∨ Up Redundant(P)) ∧
(P.started ∨ (P.weight, P.guide) > Q.up pkg) ∧ ∀R ∈ Chldrn(P),
R.up done∨ (¬Up Redundant(R) ∧ (R.up pkg≥ Q.up pkg ∨ R.up done)

13

P.up pkgis redundant ifUp Redundant(P) is true.Down Ready(P) states whether
P.down pkg is redundant or undefined, and thusP can create or copy a new down-
package.Can Start(P) decides whetherP can create its own package, that is, ifP

can setP.up pkg to (P.weight, P.guide). Can CopyUp(P) indicates whetherP can
copyQ.up pkg to P.up pkg. We note thatP can evaluateUp Redundant(Q) for any
Q ∈ Chldrn(P).

PredicateUp Done(P) below decides whether all processes inTP have created their
own up-package in the current epoch and whetherTP contains no active up-package.
The evaluation ofUp Done(P) gives the correct value forP.up done.

Up Done(P) ≡ P.started= true ∧ Up Redundant(P) ∧ ∀Q ∈ Chldrn(P), Q.up done

Actions of CRK. Actions of CRK are given below. To simplify the design, we assume
that the actions of CRK use the same priorities as those of CGP.

For the root processRoot only:
Err :: Error(Root) 7→ Root.status← 0

NewEpoch :: Root.status∈ {0, 4} ∧ 7→ Root.status← 1; counter← 0
∀Q ∈ Chldrn(Root), Root.up pkg← ⊥; Root.downpkg← ⊥

Q.status∈ {0, 4} Root.started←false; Root.up done←false

ConvCast :: Root.status= 1 ∧ 7→ Root.status← 2
∀Q ∈ Chldrn(Root), Q.status= 2

CreateUpPkg :: Root.status= 2 ∧ Can Start(Root) 7→ Root.up pkg.value← Root.weight
Root.up pkg.guide← Root.guide
Root.started← true

CopyUpPkg :: Root.status= 2 ∧ 7→ Root.up pkg← Q.up pkg,
∃Q ∈ Chldrn(Root), Q = min≺Root

{R ∈ Chldrn(Root),
Can CopyUp(Root, Q) Can Copy Up(Root, R)}

EndUpPkg :: Root.started ∧ Up Redundant(Root) ∧ 7→ Root.up done← true
∀Q ∈ Chldrn(Root), Q.up done

CreateDownPkg :: Down Ready(Root) ∧ 7→ counter← counter+ 1
Root.up pkg 6= ⊥ ∧ Root.downpkg.value← counter
¬Up Redundant(Root) Root.downpkg.guide← Root.up pkg.guide

SetRank :: Root.downpkg 6= ⊥∧ 7→ Root.rank← Root.downpkg.value
Root.downpkg.guide= Root.guide∧

Root.downpkg.value 6= Root.rank

BroadCast :: Root.status= 2 ∧ 7→ Root.status← 3
Root.up done∧ Down Ready(Root)

EndEpoch :: Root.status= 3 ∧ 7→ Root.status← 4
∀Q ∈ Chldrn(Root), Q.status= 4

14

For every non-root processP only:
Err :: Error(P) 7→ P.status← 0

NewEpoch :: P.par.status= 1 ∧ P.status∈ {0, 4} ∧ 7→ P.status← 1
∀Q ∈ Chldrn(P), Q.status∈ {0, 4} P.up pkg← ⊥

P.downpkg← ⊥
P.started← false
P.up done← false

ConvCast :: P.status= 1 ∧ ∀Q ∈ Chldrn(P), Q.status= 2 7→ P.status← 2

CreateUpPkg :: P.status= 2 ∧ Can Start(P) 7→ P.up pkg.value← P.weight
P.up pkg.guide← P.guide
P.started← true

CopyUpPkg :: P.status= 2 ∧ 7→ P.up pkg← Q.up pkg,
∃Q ∈ Chldrn(P),Can CopyUp(P,Q) Q = min≺P

{R ∈ Chldrn(P),
Can Copy Up(P,R)}

EndUpPkg :: P.started ∧ Up Redundant(P) ∧ 7→ P.up done← true
∀Q ∈ Chldrn(P), Q.up done

CopyDownPkg :: Down Ready(P) ∧ 7→ P.downpkg← P.par.downpkg
P.par.downpkg 6= ⊥∧

P.par.downpkg 6= P.downpkg∧
Is Consistent(P, P.par.downpkg)

SetRank :: P.downpkg 6= ⊥∧ 7→ P.rank← P.downpkg.value
P.downpkg.guide= P.guide∧

P.downpkg.value 6= P.rank

BroadCast :: P.par.status= 3 ∧ P.status= 2 ∧ 7→ P.status← 3
∀Q ∈ Chldrn(P), Q.status= 2 ∧ Down Ready(P)

EndEpoch :: P.status= 3 ∧ ∀Q ∈ Chldrn(P), Q.status= 4 7→ P.status← 4

The actions above achieve three tasks. They are (1) error correction, (2) epochs, and
(3) ranking computation (using the flow packages).

Error Correction. Action Err performs the error correction. If one process detects any
inconsistency among its state and that of its neighbors, it initiates a reset of the network
by changing its status to 0. This reset is contagious as previously explained.

Epochs. A new epoch starts by a reset initiated by ActionNewEpoch at the root: If
Root .statusis either 0 or 4, and every child ofRoot has status 0 or 4, thenRoot broad-
casts the status 1 and resets to a clean state.

When status 1 reaches the leaves, a convergecast wave startsand changes the status
of all processes to 2 by ActionConvCast, so that actual ranks computation can begin.

WhenRoot detects that there are no more up-packages in the tree, and italready
sent every down-package, it initializes a broadcast of status 3 by ActionBroadCast.
Note that there could still be active down-packages belowRoot , but there could not
be any active up-packages. Thus,Root is finished with its tasks for the current epoch.
Non-root processP propagates the status 3 by ActionBroadCast after sending all
its down-packages. There could still be active down-packages belowP , but no active
up-packages. SinceP.par.status= 3, P knows that its job for this epoch is done.

Once status 3 reaches the leaves, a convergecast of status 4 is initialized and propa-
gated by ActionEndEpoch. WhenRoot changes to status 4, the current epoch is done,
andRoot initiates a new one.

15

Ranking computation.The computation of the ranking is bottom-up and starts when
the convergecast of status 2 starts at the leaves. The flow of up-packages is organized
usingCreateUpPkg andCopyUpPkg, that is, a process either inserts its own package
in the flow or copy some package coming from a child by ensuringthat packages are
moved up in ascending order of weight. Once a processP has detected thatTP has no
active up-package, it setsP.up doneto true by ActionEndUpPkg. Root initializes the
broadcast of status 3 only afterRoot .up doneswitches to true.

Upon receiving a new up-package (that is,Root .up pkgis active), ifRoot .downpkg
is available (that is, it is either⊥ or redundant),Root is enabled to create a new down-
package to send down to the home of its up-package byCreateDownPkg. If counter=
i, thenRoot .up pkg is theith up-package copied or created byRoot , its weight is the
ith smallest weight in the network, andi will become the value of the down-package.

The new active down-package is propagated to its home process by successive copy-
ing using ActionCopyDownPkg. When it reaches its home processP , the value field of
that package contains the correct value of the rank ofP , soP updatesP.rank using
Action SetRank, if necessary.

Theorem 3. RANK is self-stabilizing, computes the ranking of all processesin O(n)
rounds from an arbitrary initial configuration, and works under the weakly fair sched-
uler.

References

1. Bein, D., Datta, A., Villain, V.: Snap-stabilizing optimal binary-search-tree. Proceedings of
the 7-th International Symposium on Self-Stabilizing Systems (2005)

2. Bourgon, B., Datta, A.K., Natarajan, V.: A self-stabilizing ranking algorithm for tree
structured networks. In: Proceedings of the First Workshopon Self-Stabilizing Systems
(WSS’95). pp. 23–28 (1995)

3. Datta, A.K., Devismes, S., Heurtefeux, K., Larmore, L.L., Rivierre, Y.: Self-stabilizing small
k-dominating sets. Tech. rep., VERIMAG (2011),http://www-verimag.imag.fr/
TR/TR-2011-6.pdf

4. Dijkstra, E.: Self stabilizing systems in spite of distributed control. Communications of the
Association of Computing Machinery 17, 643–644 (1974)

5. Dolev, S.: Self-Stabilization. The MIT Press (2000)
6. Dolev, S., Gouda, M., Schneider, M.: Memory requirementsfor silent stabilization. In:

PODC ’96: Proceedings of the fifteenth annual ACM symposium on Principles of distributed
computing. pp. 27–34 (1996)

7. Flocchini, P., Enriques, A.M., Pagli, L., Prencipe, G., Santoro, N.: Point-of-failure shortest-
path rerouting: Computing the optimal swap edges distributively. IEICE Transactions 89-
D(2), 700–708 (2006)

8. Herman, T., Masuzawa, T.: A stabilizing search tree with availability properties. In: Fifth
International Symposium on Autonomous Decentralized Systems (ISADS 2001). pp. 398–
405 (2001)

9. Herman, T., Pirwani, I.: A composite stabilizing data structure. 5th International Workshop
on Self-Stabilizing Systems (WSS 2001), Lecture Notes in Computer Science LNCS 2194,
Springer Verlag pp. 167–182 (2001)

10. Tel, G.: Introduction to distributed algorithms (2nd Ed.). Cambridge University Press (2000)

http://www-verimag.imag.fr/TR/TR-2011-6.pdf
http://www-verimag.imag.fr/TR/TR-2011-6.pdf

	Self-Stabilizing Labeling and Ranking in Ordered Trees

