
Robust Stabilizing Leader Election�

Carole Delporte-Gallet1, Stéphane Devismes2, and Hugues Fauconnier1

1 LIAFA, Université D. Diderot (France)
{cd,hf}@liafa.jussieu.fr

2 LaRIA, Université de Picardie Jules Verne (France)
stephane.devismes@u-picardie.fr

Abstract. We mix two approaches of the fault-tolerance: robustness
and stabilization. Using these approaches, we propose leader election al-
gorithms that tolerate both transient and crash failures. Our goal is to
show the implementability of the robust self- and/or pseudo- stabilizing
leader election in various systems with weak reliability and synchrony
assumptions. We try to propose, when it is possible, communication-
efficient implementations. Also, we exhibit some assumptions required
to obtain robust stabilizing leader election algorithms. Our results show
that the gap between robustness and stabilizing robustness is not really
significant when we consider fix-point problems such as leader election.

1 Introduction

Two kinds of faults are usually considered: the transient and crash failures. The
stabilization introduced by Dijkstra in 1974 [2] is a general technique to design
algorithms tolerating transient failures. However, such stabilizing algorithms are
usually not robust: they do not withstand crash failures. Conversely, robust al-
gorithms are usually not designed to go through transient failures (n.b., some
robust algorithms tolerate the loss of messages, e.g., [3]). There is some papers
that deal with both stabilization and crash failures, e.g., [4,5,6,7]. In [4], Gopal
and Perry propose techniques for transforming robust protocols in a synchronous
network into robust self-stabilizing versions. Beauquier and Kekkonen-Moneta
introduce in [6] the first self-stabilizing failure detector implementation in a syn-
chronous system. In [5], authors prove that robust self-stabilization cannot be
achieved in asynchronous networks for a wide range of problems including leader
election even when self-stabilization or robustness alone can be done.

We are interested in designing leader election algorithms that tolerate tran-
sient and crash failures. Actually, we focus on finding stabilizing solutions in
message-passing with the possibility of some process crashes. The impossibility
results in [8,5] constraints us to make some assumptions on the link and process
synchrony. So, we look for the weakest assumptions allowing to obtain stabilizing
leader election algorithm in a system where some processes may crash.

Leader election has been extensively studied in both stabilizing (e.g., [9,10])
and robust (e.g., [11,12]) areas. In particular, note that in the robust systems,
� The full version of this paper in available on the HAL server, see [1].

T. Masuzawa and S. Tixeuil (Eds.): SSS 2007, LNCS 4838, pp. 219–233, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

220 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

leader election is also considered as a failure detector. Such a failure detector,
called Ω, is important because it has been shown in [13] that it is the weakest
failure detector with which one can solve the consensus.

The notion of stabilization appears with the concept of self-stabilization: a
self-stabilizing algorithm, regardless of the initial configuration of the system,
guarantees that the system reaches in a finite time a configuration from which
it cannot deviate from its intended behavior. In [14], Burns et al introduced
the more general notion of pseudo-stabilization. A pseudo-stabilizing algorithm,
regardless of the initial configuration of the system, guarantees that the sys-
tem reaches in a finite time a configuration from which it does not deviate from
its intended behavior. These two notions guarantee the convergence to a correct
behavior. However, the self-stabilization also guarantees that since the system re-
covers a legitimate configuration, it remains in a legitimate configuration forever:
the closure property. In contrast, a pseudo-stabilizing algorithm only guarantees
an ultimate closure: the system can move from a legitimate configuration to an
illegitimate one but eventually it remains in a legitimate configuration forever.

We study the problem of implementing robust self- and/or pseudo- stabilizing
leader election in various systems with weak reliability and synchrony assump-
tions. We try to propose, when it is possible, communication-efficient implemen-
tations: an algorithm is communication-efficient if it eventually only uses n − 1
unidirectionnal links (where n is the number of processes), which is optimal
[15]. Communication-efficiency is quite challenging in the stabilizing area be-
cause stabilizing implementations often require the use of heartbeats which are
heavy in terms of communication. In this paper, we first show that the notions
of immediate synchrony and eventually synchrony are in some sense equivalent
concerning the stabilization. Hence, we only consider synchrony properties that
are immediate. In the systems we study: (1) all the processes are synchronous
and can communicate with each other but some of them may crash and, (2) some
links may have some synchrony or reliability properties. Our starting point is a
full synchronous system noted S5. We show that a self-stabilizing leader election
can be communication-efficiently done in such a system. We then show that such
strong synchrony assumptions are required in the systems we consider to obtain
a self-stabilizing communication-efficient leader election. Nevertheless, we also
show that a self-stabilizing leader election that is not communication-efficient
can be obtained in some weaker systems: any system where there exists at least
one path of synchronous links between each pair of alive processes (S3) and any
system having a timely bi-source1 (S4). In addition, we show that we cannot
implement any self-stabilizing leader election without these assumptions. Hence,
we then consider the pseudo-stabilization. We show that communication-efficient
pseudo-stabilizing leader election can be done in various weak models: any sys-
tem S4 and any system having a timely source2 and fair links (S2). Using a
previous result of Aguilera et al ([3]), we recall that communication-efficiency

1 A timely bi-source is a synchronous process having all its links that are synchronous.
2 A timely source is a synchronous process having all its output links that are syn-

chronous.

Robust Stabilizing Leader Election 221

Table 1. Implementability of the robust stabilizing leader election

S5 S4 S3 S2 S1 S0
Communication-Efficient Self-Stabilization Yes No No No No No
Self-Stabilization Yes Yes Yes No No No
Communication-Efficient Pseudo-Stabilization Yes Yes ? Yes No No
Pseudo-Stabilization Yes Yes Yes Yes Yes No

cannot be done if we consider now systems having at least one timely source but
where the fairness of all the links is not required (S1). However, we show that a
non-communication-efficient pseudo-stabilizing solution can be implemented in
such systems. Finally, we conclude with the basic system where all links can be
asynchronous and lossy (S0): the leader election can be neither pseudo- nor self-
stabilized in such a system ([8,5]). Table 1 summarizes our results.

It is important to note that the solutions we propose are essentially adapted
from previous existing robust algorithms provided, in particular, in [11,3]. Actu-
ally, the motivation of the paper is not to propose new algorithms. Our goal is
merely to show some required assumptions to obtain self- or pseudo- stabilizing
leader election algorithms in systems where some processes may crash. In par-
ticular, we focus on the borderline assumptions where we go from the possibility
to have self-stabilization to the possibility to have pseudo-stabilization only. An-
other interesting aspect of adaptating previous existing robust algorithms is to
show that, for fix-point problems3 such as leader election, the gap between ro-
bustness and stabilizing robustness is not really significant: in such problems,
adding the stabilizing property is quite easy.

Roadmap. In the next section, we present the model for our systems. We then
consider the problem of the robust stabilizing leader election in various kinds of
systems (Sections 3 to 8). We conclude with the future works in Section 9.

2 Preliminaries

2.1 Distributed Systems

We consider distributed systems where each process can communicate with each
other through directed links: there is a directed link from each process to all
the others. We denote the communication network by the digraph G = (V , E)
where V = {1,...,n} is the set of n processes (n > 1) and E the set of directed
links. A collection of distributed algorithms run on the system. These algorithms
can be seen as automata that enable processes to coordinate their activities. We
modelize the executions of a distributed algorithm A in the system S by the pair
(C,�→) where C is the set of configurations and �→ is a collection of binary transi-
tion relations on C such that for each transition γi−1 �→ γi we have γi−1 �= γi. A
configuration consists in the state of each process and the collection of messages
3 Roughly speaking, a problem is a fix-point problem if the problem can be expressed

by some invariant properties of some variables.

222 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

in transit at a given time. The state of a process is defined by the values of its
variables. An execution of A is a maximal sequence γ0,τ0,γ1,τ1,. . .,γi−1,τi−1,γi,. . .
such that ∀i ≥ 1, γi−1 �→ γi and the transition γi−1 �→ γi occurs after time elapse
τi−1 time units (τi−1 ∈ R+). For each configuration γ in any execution e, we
denote by −→eγ the suffix of e starting in γ, ←−eγ denotes the associated prefix. We
call specification a particular set of executions.

2.2 Self- and Pseudo- Stabilization

Definition 1 (Self-Stabilization [2]). An algorithm A is self-stabilizing for
a specification F in the system S if and only if in any execution of A in S, there
exists a configuration γ such that any suffix starting from γ is in F .

Definition 2 (Pseudo-Stabilization [14]). An algorithm A is pseudo-stabili-
zing for a specification F in the system S if and only if in any execution of A
in S, there exists a suffix that is in F .

Robust Stabilization. Here, we not only consider the transient failures: our sys-
tems may go through transient and crash failures. We assume that some pro-
cesses may be crashed in the initial configuration. We also assume that the links
are not necessary reliable during the execution. In the following, we will show
that despite these constraints, it is possible (under some assumptions) to design
stabilizing algorithms. Note that the fact that we only consider initial crashes is
not a restriction (but rather an assumption to simplify the proofs) because we
focus on the leader election which is a fix-point problem: in such problems, the
safety properties do not concern the whole execution but only a suffix.

2.3 Informal Model

Processes. Processes execute by taking steps. In a step a process executes two ac-
tions in sequence: (1) either it tries to receive one message from another process,
or sends a message to another process, or does nothing, and then (2) changes its
state. A step need not to be instantaneous, but we assume that each action of a
step takes effect at some instantaneous moment during the step. The configura-
tion of the system changes each time some steps take effect: if there is some steps
that take effect at time ti, then the system moves from a configuration γi−1 to
another configuration γi (γi−1 �→ γi) where γi−1 was the configuration of the
system during some time interval [ti−1, ti[and γi is the configuration obtained
by applying on γi−1 all actions of the steps that take effect at time ti.

A process can fail by permanently crashing, in which case it definitively stops
to take steps. A process is alive at time t if it is not crashed at time t. Here,
we consider that all processes that are alive in the initial configuration are alive
forever. An alive process executes infinitely many steps. We consider that any
subset of processes may be crashed in the initial configuration.

We assume that the execution rate of any process cannot increase indefini-
tively: there exists a non-null lower bound on the time required by the alive

Robust Stabilizing Leader Election 223

processes to execute a step4. Also, every alive process is assumed to be timely:
it satisfies a non-null upper bound on the time it requires to execute each step.
Finally, our algorithms are structured as a repeat forever loop with a bounded
number of steps in each loop iteration. So, each alive process satisfies a lower
and an upper bound, resp. noted α and β, on the time it needs to execute an
iteration of its repeat forever loop. We assume that each process knows α and β.

Links. Processes can send messages over a set of directed links. There is a
directed link from each process to all the others. A message m carries a type T
in addition to its data D: m = (T ,D) ∈ {0,1}∗ × {0,1}∗. For each incoming link
(q,p) and each type T , the process p has a message buffer, Bufferp[q,T], that
can hold at most one single message of type T . Bufferp[q,T] =⊥ when it holds
no message. If q sends a message m to p and the link (q,p) does not lose m, then
Bufferp[q,T] is eventually set to m. When it happens, we say that message m is
delivered to p from q (n.b., we make no assumption on the delivrance order). If
Bufferp[q,T] was set to some previous message, this message is then overwritten.
When p takes a step, it may choose a process q and a type T to read the contents
of Bufferp[q,T]. If Bufferp[q,T] contains a message m (i.e., Bufferp[q,T] �=⊥),
then we say that p receives m from q and Bufferp[q,T] is reset to ⊥.

A link (p,q) is timely if there exists a constant δ such that, for every execution
and every time t, each message m sent to q by p at time t is delivered to q from
p within time t + δ (any message that is initially in a timely link is delivered
within time δ). A link (p,q) is eventually timely if there exists a constant δ for
which every execution satisfies: there is a time t such that every message m that
p sends to q at time t′ ≥ t is delivered to q from p by time t′ + δ (any message
that is already in an eventually timely link at time t is delivered within time
t + δ). We assume that every process knows δ. We also assume that δ > β. A
link which is neither timely nor eventually timely can be arbitrary slow, or can
lose messages. A fair link (p,q) satisfies: for each type of message T , if p sends
infinitely many messages of type T to q, then infinitely many messages of type
T are delivered to q from p. A link (p,q) is reliable if every message sent by p to
q is eventually delivered to q from p.

Particular Caracteristics. A timely source (resp. an eventually timely source) [3]
is an alive process having all its output links that are timely (resp. eventually
timely). A timely bi-source (resp. an eventually timely bi-source) [16] is an alive
process having all its (input and output) links that are timely (resp. eventually
timely). We call timely routing overlay (resp. eventually timely routing overlay)
any strongly connected graph G′ = (V ′,E′) where V ′ is the subset of all alive
processes and E′ a subset of timely (resp. eventually timely) links.

Finally, note that the notions of timeliness and eventually timeliness are
“equivalent” in (pseudo- or self-) stabilization in a sense that every stabiliz-
ing algorithm in a system S having some timely links is also stabilizing in the
system S′ where S′ is the same system as S except that all the timely links in
S are eventually timely in S′, and reciprocally (see Theorems 1 and 2).
4 Except for the first step that we allow to not satisfy this lower bound.

224 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

Theorem 1. Let S be a system having some timely links. Let S′ be the same
system as S except that all the timely links in S are eventually timely in S′. An
algorithm A is pseudo-stabilizing for the specification F in the system S if and
only if A is pseudo-stabilizing for the specification F in the system S′.

Proof. By definition, a timely link is also an eventually timely link. Hence, we
trivially have: if A is pseudo-stabilizing for F in S′, then A is also pseudo-
stabilizing for F in S.

Assume now that A is pseudo-stabilizing for F in S but not pseudo-stabilizing
for F in S′. Then, there exists an execution e of A in S′ such that no suffix of e
is in F . Let γ be the configuration of e from which all the eventually timely links
of S′ are timely. As no suffix of e is in F , no suffix of −→eγ is in F too. Now, −→eγ is
a possible execution of A in S because (1) γ is a possible initial configuration of
S (S and S′ have the same set of configurations and any configuration can be
initial) and (2) every eventually timely link of S′ is timely in −→eγ . Hence, as no
suffix of −→eγ is in F , A is not pseudo-stabilizing for F in S — a contradiction. �

Following a proof similar to the one of Theorem 1, we have:

Theorem 2. Let S be a system having some timely links. Let S′ be the same
system as S except that all the timely links in S are eventually timely in S′. An
algorithm A is self-stabilizing for the specification F in the system S if and only
if A is self-stabilizing for the specification F in the system S′.

Communication-Efficiency. An algorithm is communication-efficient [11] if there
is a time from which it uses only n − 1 unidirectional links.

Systems. We consider six systems denoted by Si, i ∈ [0...5] (see Figure 1). All
these systems satisfy: (1) the value of the variables of every alive process can
be arbitrary in the initial configuration, (2) every link can initially contain a
finite but unbounded number of messages, and (3) except if we explicitly state,
each link between two alive processes is neither fair nor timely (we just assume
that the messages cannot be corrupted). The system S0 corresponds to the basic
system where no further assumptions are made: in S0, the links can be arbitrary
slow or lossy. In S1, we assume that there exists at least one timely source (whose
identity is unknown). In S2, we assume that there exists at least one timely source
(whose identity is unknown) and every link is fair. In S3, we assume that there
exists a timely routing overlay. In S4, we assume that there exists at least one
timely bi-source (whose identity is unknown). In S5, all links are timely.

2.4 Robust Stabilizing Leader Election

In the leader election, each process p has a variable Leaderp that holds the
identity of a process. Intuitively, eventually all alive processes should hold the
identity of the same process forever and this process should be alive. Formally,
there exists an alive process l and a time t such that at any time t′ ≥ t, every
alive process p satisfies Leaderp = l.

Robust Stabilizing Leader Election 225

System Properties
S0 Links: arbitrary slow, lossy, and initially not necessary empty

Processes: can be initially crashed, timely forever otherwise
Variables: initially arbitrary assigned

S1 S0 with at least one timely source

S2 S0 with at least one timely source and every link is fair

S3 S0 with a timely routing overlay

S4 S0 with at least one timely bi-source

S5 S0 except that all links are timely

S0

S1

S2

S3

S4

S5

Fig. 1. Systems considered in this paper (S → S ′ means S ′ ⊂ S)

3 Communication-Efficient Self-Stabilizing Leader
Election in S5

We first seek a communication-efficient self-stabilizing leader election algorithm
in system S5. To get the communication-efficiency, we proceed as follows: Each
process p periodically sends ALIVE to all other processes only if it thinks to be
the leader, i.e., only if Leaderp = p (Lines 16-18 of Algorithm 1).

Any process p such that Leaderp �= p always chooses as leader the process
from which it receives ALIVE the most recently (Lines 6-13). When a process
p such that Leaderp = p receives ALIVE from q, it sets Leaderp to q if q < p
(Lines 6-13). By this method, there eventually exists at most one alive process
p such that Leaderp = p.

Finally, every process p such that Leaderp �= p uses a counter that is incre-
mented at each loop iteration to detect if there is no alive process q such that
Leaderq = q (Lines 21-27). When the counter becomes greater than a well-chosen
value, p can deduce that there is no alive process q such that Leaderq = q. In
this case, p simply elects itself by setting Leaderp to p (Line 24) in order to
guarantee the liveness of the election: in order to ensure that there eventually
exists at least one process q such that Leaderq = q.

To apply the previously described method, Algorithm 1 uses only one message
type: ALIVE and two counters: SendT imerp and ReceiveT imerp. Any process p
such that Leaderp = p uses the counter SendT imerp to periodically send ALIVE
to the other processes. ReceiveT imerp is used by each process p to detect when
there is no alive process q such that Leaderq = q. These counters are incremented
at each iteration of the repeat forever loop in order to evaluate a particular time
elapse. Using the lower and upper bound on the time to execute an iteration
of this loop (i.e., α and β), each process p knows how many iterations it must
execute before a given time elapse passed. For instance, a process p must count

δ/α� loop iterations to wait at least δ times.

Theorem 3. Algorithm 1 implements a communication-efficient self-stabilizing
leader election in system S5.

226 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

Algorithm 1. Communication-Efficient Self-Stabilizing Leader Election on S5

Code for each process p:

1: variables:
2: Leaderp ∈ {1,...,n}
3: SendTimerp, ReceiveTimerp : non-negative integers
4:
5: repeat forever
6: for all q ∈ V \ {p} do
7: if receive(ALIVE) from q then
8: if (Leaderp �= p) ∨ (q < p) then
9: Leaderp ← q
10: end if
11: ReceiveTimerp ← 0
12: end if
13: end for
14: SendTimerp ← SendTimerp + 1
15: if SendTimerp ≥
δ/β� then
16: if Leaderp = p then
17: send(ALIVE) to every process except p
18: end if
19: SendTimerp ← 0
20: end if
21: ReceiveTimerp ← ReceiveTimerp + 1
22: if ReceiveTimerp > 8�δ/α then
23: if Leaderp �= p then
24: Leaderp ← p
25: end if
26: ReceiveTimerp ← 0
27: end if
28: end repeat

4 Self-Stabilizing Leader Election in S4

We first prove that we cannot implement any communication-efficient self-stabi-
lizing leader election algorithm in S2 and S4. To that goal, we show that it is
impossible to implement such an algorithm in a stronger system: S−5 where S−5
is any system S0 having (1) all its links that are reliable and (2) all its links that
are timely except at most one which can be neither timely nor eventually timely.

Lemma 1. Let A be any self-stabilizing leader election algorithm in S−5 . In
any execution of A, any alive process p satisfies: from any configuration where
Leaderp �= p, ∃k ∈ R+ such that p modifies Leaderp if it receives no message
during k times.

Proof. Assume, by the contradiction, that there exists an execution e where
there is a configuration γ from which a process p satisfies Leaderp = q forever
with q �= p while p does not receive a message anymore. As A is self-stabilizing,
it can start from any configuration. So, −→eγ is a possible execution. Let γ′ be a
configuration which is identical to γ except that q is crashed in γ′. Consider any
execution eγ′ starting from γ′ where p did not receive a message anymore. As
p cannot distinguish −→eγ and eγ′ , it behaves in eγ′ as in −→eγ : it keeps q as leader
while q is crashed — a contradiction. �

Theorem 4. There is no communication-efficient self-stabilizing leader election
algorithm in system S−5 .

Robust Stabilizing Leader Election 227

Proof. Assume, by the contradiction, that there exists a communication-efficient
self-stabilizing leader election algorithm A in system S−5 .

Consider any execution e where no process crashes and all the links behave as
timely. By Definition 1 and Lemma 1, there exists a configuration γ in e such that
in any suffix starting from γ: (1) there exists an alive process l such that any alive
process p satisfies Leaderp = l forever, and (2) messages are received infinitely
often through at least one input link of each alive process except perhaps l.

Communication-efficiency and (2) implies that messages are received infinitely
often in −→eγ through exactly n − 1 links of the form (q,p) with p �= l. Let E′ ⊂ E
be the subset containing the n − 1 links where messages transit infinitely often
in −→eγ .

Consider now any execution e′ identical to e except that there is a time after
which a certain link (q,p) ∈ E′ arbitrary delays the messages. (q,p) can behave
as a timely link an arbitrary long time, so, e and e′ can have an arbitrary large
common prefix. In particular, e′ can begin with any prefix of e of the form ←−eγe′′

with e′′ a non-empty prefix of −→eγ . Now, after any prefix ←−eγe′′, (q,p) can start to
arbitrary delay the messages and, in this case, p eventually changes its leader
by Lemma 1. Hence, for any prefix ←−eγe′′, there is a possible suffix of execution
in S−5 where p changes its leader: for some executions of A in S−5 there is no
guarantee that from a certain configuration the leader does not change anymore.
Hence, A is not self-stabilizing in S−5 — a contradiction. �

By definition, any system S−5 is also a system S2 and any system S−5 having
n ≥ 3 processes is a particular case of system S4. Hence:

Corollary 1. There is no communication-efficient self-stabilizing leader elec-
tion algorithm in systems S2 and S4 with n ≥ 3 processes.

Since S4 is a particular case of systems S3, Corollary 1 also holds for S3. How-
ever, a (non-communication-efficient) self-stabilizing leader election algorithm
can be trivially implemented for S3, henceforth for S4 too, as explained af-
terwards. Any system S3 is characterized by the existence of a timely routing
overlay. Using this characteristic, our solution works as follows: (1) every pro-
cess p periodically sends an (ALIVE,1,p) message through all its links; (2) when
receiving an (ALIVE,k,r) message from a process q, a process p retransmits an
(ALIVE,k + 1,r) message to all the other processes except q if k < n − 1. Us-
ing this method, we have the guarantee that, any alive p periodically receives
an (ALIVE,−,q) message for each other alive process q. Each process can then
locally compute in an Alives set the list of all alive processes. Once the list is
known by each alive process, designate a leader is easy: each alive process just
outputs the smallest process of its Alives set.

5 Pseudo-Stabilizing Communication-Efficient Leader
Election in S4

We now show that, contrary to self-stabilizing leader election, pseudo-stabilizing
leader election can be communication-efficiently done in S4. To that goal, we

228 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

Algorithm 2. Communication-Efficient Pseudo-Stabilizing Leader Election on S4

Code for each process p:

1: variables:
2: Leaderp ∈ {1,...,n}
3: SendTimerp, ReceiveTimerp , Roundp: non-negative integers
4:
5: procedure StartRound(s)
6: if p �= (s mod n + 1) then
7: send(START,s) to s mod n + 1
8: end if
9: Roundp ← s
10: SendTimerp ←
δ/β�
11: end procedure
12:
13: repeat forever
14: for all q ∈ V \ {p} do
15: if receive (ALIVE,k) or (START,k) from q then
16: if Roundp > k then
17: send(START,Roundp) to q
18: else
19: if Roundp < k then
20: StartRound(k)
21: end if
22: ReceiveTimerp ← 0
23: end if
24: end if
25: end for
26: ReceiveTimerp ← ReceiveTimerp + 1
27: if ReceiveTimerp > 8�δ/α then
28: if p �= (Roundp mod n + 1) then
29: StartRound(Roundp + 1)
30: end if
31: ReceiveTimerp ← 0
32: end if
33: SendTimerp ← SendTimerp + 1
34: if SendTimerp ≥
δ/β� then
35: if p = (Roundp mod n + 1) then
36: send(ALIVE,Roundp) to every process except p
37: end if
38: Leaderp ← (Roundp mod n + 1)
39: SendTimerp ← 0
40: end if
41: end repeat

study an algorithm provided in [11]. In this algorithm (Algorithm 2), each process
p executes in rounds Roundp = 0, 1, 2, . . ., where the variable Roundp keeps
p’s current round. For each round r a unique process, lr = r mod n + 1, is
distinguished: lr is called the leader of the round. The goal here is to make all
alive processes converge to a round value having an alive process as leader.

When starting a new round k, a process p (1) informs the leader of the round,
lk, by sending it a (START,k) message if p �= lk (Line 6-8), (2) sets Roundp to
k (Line 9), and (3) forces SendT imerp to �δ/β� (Line 10) so that (a) p sends
(ALIVE,k) to all other processes if p = lk (Lines 35-37) and (b) p updates
Leaderp (Line 38). While in the round r, the leader of the round lr periodi-
cally sends (ALIVE,r) to all other processes (Lines 33-40). A process p modifies
Roundp only in two cases: (i) if p receives an ALIVE or START message with
a round value bigger than its own (Lines 19-20), or (ii) if p does not recently
receive an ALIVE message from its round leader q �= p (Lines 26-32). In case (i),

Robust Stabilizing Leader Election 229

p adopts the round value in the message. In case (ii), p starts the next round
(Line 29). Case (ii) allows a process to eventually choose as leader a process
that correctly communicates. Case (i) allows the round values to converge. Intu-
itively, the algorithm is pseudo-stabilizing because, the processes with the upper
values of rounds eventually designates as leader an alive process that correctly
communicates forever (perhaps the bi-source) thanks to (ii) and, then, the other
processes eventually adopt this leader thanks to (i).

Theorem 5. Algorithm 2 implements a communication-efficient pseudo-stabi-
lizing leader election in system S4.

6 Impossibility of Self-Stabilizing Leader Election in S2

To prove that we cannot implement any self-stabilizing leader election algorithm
in S2, we show that it is impossible to implement such an algorithm in a par-
ticular case of S2: let S−3 be any system S2 having all its links that are reliable
but containing no eventually timely overlay.

Let m be any message sent at a given time t. We say that a message m’ is older
than m if and only if m’ was initially in a link or m’ was sent at a time t′ such that
t′ < t. We call causal sequence any sequence p0,m1,...,mi,pi,mi+1,...,pk−1,mk

such that: (1) ∀i, 0 ≤ i < k, pi is a process and mi+1 is a message, (2) ∀i,
1 ≤ i < k, pi receives mi from pi−1, and (3) ∀i, 1 ≤ i < k, pi sends mi+1
after the reception of mi. By extension, we say that mk causally depends on p0.
Also, we say that mk is a new message that causally depends on p0 after the
message mk′ if and only if there exists two causal sequences p0,m1,...,pk−1,mk

and p0,m1′ ,...,pk′−1,mk′ such that m1′ is older than m1.

Lemma 2. Let A be any self-stabilizing leader election algorithm in S−3 . In
every execution of A, any alive process p satisfies: from any configuration where
Leaderp �= p, ∃k ∈ R+ such that p changes its leader if it receives no new
message that causally depends on Leaderp during k times.

Proof. Assume, by the contradiction, that there exists an execution e where
there is a configuration γ from which a process satisfies Leaderp = q forever
with q �= p while from γ p does not receive anymore a new message that causally
depends on q. As A is self-stabilizing, it can start from any configuration. So, −→eγ

is a possible execution of A. Let γ′ be a configuration that is identical to γ except
that q is crashed in γ′. As p only received messages that do not causally depend
on q in −→eγ (otherwise, this means that from γ, p eventually receives at least one
new message that causally depends on q in e), there exists a possible execution
−→eγ′ starting from γ′ where p received exactly the same messages as in −→eγ (the
fact that q is crashed just prevents p from receiving the messages that causally
depend on q). Hence, p cannot distinguish −→eγ and −→eγ′ and p behaves in −→eγ′ as
in −→eγ : it keeps q as leader forever while q is crashed: A is not a self-stabilizing
leader election algorithm — a contradiction. �

230 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

Theorem 6. There is no self-stabilizing leader election algorithm in system S−3 .

Proof. Assume, by the contradiction, that there exists a self-stabilizing leader
election algorithm A in system S−3 . By Definition 1, in any execution of A, there
exists a configuration γ such that in any suffix starting from γ there exists a
unique leader and this leader no more changes. Let e be an execution of A where
no process crashes and every link is timely. Let l be the alive process which is
eventually elected in e. Consider now any execution e′ identical to e except that
there is a time after which there is at least one link in each path from l to some
process p that arbitrary delays messages. Then, e and e′ can have an arbitrary
large common prefix. Hence, we can construct executions of A beginning with
any prefix of e where l is eventually elected (during this prefix, every link behaves
as a timely link) but in the associated suffix, any causal sequence of messages
from l to p is arbitrary delayed and, by Lemma 2, p eventually changes its leader
to a process q �= l. Thus, for any prefix ←−e of e where a process is eventually
elected, there exists a possible execution having ←−e as prefix and an associated
suffix −→e in which the leader eventually changes. Hence, for some executions of
A, we cannot guarantee that from a certain configuration the leader will no more
change: A is not self-stabilizing — a contradiction. �

Intuitively, Theorem 6 means that self-stabilization is impossible for a weaker
system than S3, in particular, S2. Hence:

Corollary 2. There is no self-stabilizing leader election algorithm in system S2.

7 Communication-Efficient Pseudo-Stabilizing Leader
Election in S2

From Corollary 2, we know that there does not exist any self-stabilizing leader
election algorithm in S2. We now show that pseudo-stabilizing leader elections
exist in S2. Furthermore we can achieve communication-efficiency. The solution
we propose is an adaptation of an algorithm provided in [3].

To obtain communication-efficiency, Algorithm 3 uses the same principle as
Algorithm 1: Each process p periodically sends ALIVE to all other processes only
if it thinks it is the leader. However, this principle cannot be directly applied in
S2: if the only source happens to be a process with a large ID, the leadership
can oscillate among some other alive processes infinitely often because these
processes can be alternatively considered as crashed or alive.

To fix the problem, Aguilera et al propose in [3] that each process p stores in
an accusation counter, Counterp[p], how many time it was previously suspected
to be crashed. Then, if p thinks that it is the leader, it periodically sends ALIVE
messages with its current value of Counterp[p] (Lines 23-29). Any process stores
in an Actives set its own ID and that of each process it recently received an
ALIVE message (Lines 8 and 12-16). Also, each process keeps the most up-to-
date value of accusation counter of any process from which it receives an ALIVE
message. Finally, any process q periodically chooses as leader the process having

Robust Stabilizing Leader Election 231

Algorithm 3. Communication-Efficient Pseudo-Stabilizing Leader Election on S2

Code for each process p:

1: variables:
2: Leaderp ∈ {1,...,n}, OldLeaderp ∈ {1,...,n}
3: SendTimerp, ReceiveTimerp : non-negative integers
4: Counterp[1...n], Phasep[1...n]: arrays of non-negative integers
5: Collectp, OtherActivesp : sets of non-negative integers
6:
7: macros:
8: Activesp = OtherActivesp ∪ {p}
9:
10: repeat forever
11: for all q ∈ V \ {p} do
12: if receive(ALIVE,qcnt,qph) from q then
13: Collectp ← Collectp ∪ {q}
14: Counterp[q] ← qcnt
15: Phasep[q] ← qph
16: end if
17: if receive(ACCUSATION,ph) from q then
18: if ph = Phasep[p] then
19: Counterp[p]← Counterp[p] + 1
20: end if
21: end if
22: end for
23: SendTimerp ← SendTimerp + 1
24: if SendTimerp ≥
δ/β� then
25: if Leaderp = p then
26: send(ALIVE,Counterp[p],Phasep[p]) to every process except p
27: end if
28: SendTimerp ← 0
29: end if
30: ReceiveTimerp ← ReceiveTimerp + 1
31: if ReceiveTimerp > 5�δ/α then
32: OtherActivesp ← Collectp

33: if Leaderp /∈ Activesp then
34: send(ACCUSATION,Phasep[Leaderp]) to Leaderp

35: end if
36: OldLeaderp ← Leaderp

37: Leaderp ← r such that (Counterp[r],r) = min{(Counterp[q],q) : q ∈ Activesp}
38: if (OldLeaderp = p) ∧ (Leaderp �= p) then
39: Phasep[p]← Phasep[p] + 1
40: end if
41: Collectp ← ∅
42: ReceiveTimerp ← 0
43: end if
44: end repeat

the smallest accusation value among the processes in its Activesq set (IDs are
used to break ties). After choosing a leader, if the leader of q changes, q sends an
ACCUSATION message to its previous leader (Lines 33-35). The hope is that
the counter of each source remains bounded, and, as a consequence, the source
with the smallest counter is eventually elected.

However, the accusation counter of any source may increase infinitely often.
Indeed, a source s can stop to consider itself as the leader: when s selects another
process p as its leader. In this case, the source volontary stops sending ALIVE
messages (for the communication efficiency), each other process that considered
s as its leader eventually suspects s, and sends ACCUSATION messages to s.
These messages cause incrementations of s’accusation counter. Later, due to the

232 C. Delporte-Gallet, S. Devismes, and H. Fauconnier

quality of the output links of p, p can also increase its accusation counter and
then the source may obtain the leadership again.

Aguilera et al add a mechanism so that a source increments its own accusation
counter only a finite number of times. A process now increments its accusation
counter only if it receives a “legitimate” accusation: an accusation due to the
delay or the loss of one of its ALIVE message. To detect if an accusation is
legitimate, each process p saves in Phasep[p] the number of times it loses the
leadership in the past and includes this value in each of its ALIVE messages (Line
26). When a process q receives an ALIVE message from p, it also saves the phase
value sent by p in Phaseq[p] (Line 15). Hence, when q wants to accuse p, it now
includes its own view of p’s phase number in the ACCUSATION message it sends
to p (Line 34). This ACCUSATION message will be considered as legitimate by p
only if the phase number it contains matches the current phase value of p (Lines
18-20). Moreover, whenever p loses the leadership and stops sending ALIVE
message voluntary, p increments Phasep[p] and does not send the new value to
any other process (Line 38-40): this effectively causes p to ignore all the spurious
ACCUSATION messages that result from its voluntary silence.

Theorem 7. Algorithm 3 implements a communication-efficient pseudo-stabi-
lizing leader election in system S2.

8 Pseudo-Stabilizing Leader Election in S1

Let S−1 be any system S0 with an eventually timely source and n ≥ 3 processes.
In [3], Aguilera et al show that there is no communication-efficient leader election
algorithm in system S−1 . Now, any pseudo-stabilizing leader election algorithm
in S1 is also a pseudo-stabilizing leader election algorithm in S−1 by Theorem 2.

Theorem 8. There is no communication-efficient pseudo-stabilizing leader elec-
tion algorithm in system S1 with n ≥ 3 processes.

By Theorem 8, there is no communication-efficient pseudo-stabilizing leader elec-
tion algorithm in system S1 with n ≥ 3 processes. However, using similar tech-
niques as those previously used in the paper, we can adapt the robust but non
communication-efficient algorithm for S−1 given in [?] to obtain a pseudo-stabi-
lizing but non communication-efficient leader election algorithm for S1.

9 Future Works

There is some possible extensions to this work. First, getting a communication-
efficient leader election in a system having a timely routing overlay remains an
open question. Then, we can study robust stabilizing leader election in systems
where only a given number of processes may crash. It could be interesting to
extend these algorithms and results to other models like those in [18,12] and
other communication topologies. Finally, we can study the implementability of
robust stabilizing decision problems.

Robust Stabilizing Leader Election 233

Acknowledgements. We are grateful to Ajoy K. Datta for his interesting remarks.

References

1. Delporte-Gallet, C., Devismes, S., Fauconnier, H.: Robust stabilizing leader
election. Technical report, LIAFA (2007) available at the following address,
http://hal.archives-ouvertes.fr/hal-00167935/fr/

2. Dijkstra, E.: Self stabilizing systems in spite of distributed control. Communica-
tions of the Association of the Computing Machinery 17, 643–644 (1974)

3. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing
omega with weak reliability and synchrony assumptions. In: PODC 2003, pp. 306–
314 (2003)

4. Gopal, A.S., Perry, K.J.: Unifying self-stabilization and fault-tolerance (preliminary
version). In: PODC, pp. 195–206 (1993)

5. Anagnostou, E., Hadzilacos, V.: Tolerating transient and permanent failures (ex-
tended abstract). In: Schiper, A. (ed.) WDAG 1993. LNCS, vol. 725, pp. 174–188.
Springer, Heidelberg (1993)

6. Beauquier, J., Kekkonen-Moneta, S.: Fault-tolerance and self-stabilization: Im-
possibility results and solutions using failure detectors. Int. J of Systems Sci-
ence 28(11), 1177–1187 (1997)

7. Hutle, M., Widder, J.: Self-stabilizing failure detector algorithms. In: Parallel and
Distributed Computing and Networks, pp. 485–490 (2005)

8. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-
efficient leader election and consensus with limited link synchrony. In: PODC, pp.
328–337 (2004)

9. Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election.
IEEE Transactions on Parallel and Distributed Systems 8(4), 424–440 (1997)

10. Beauquier, J., Gradinariu, M., Johnen, C.: Memory space requirements for self-
stabilizing leader election protocols. In: PODC 1999, pp. 199–207. ACM Press,
New York (1999)

11. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable leader elec-
tion. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 108–122. Springer,
Heidelberg (2001)

12. Malkhi, D., Oprea, F., Zhou, L.: Omega meets paxos: Leader election and stability
without eventual timely links. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724,
pp. 199–213. Springer, Heidelberg (2005)

13. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. J. ACM 43(4), 685–722 (1996)

14. Burns, J.E., Gouda, M.G., Miller, R.E.: Stabilization and pseudo-stabilization.
Distrib. Comput. 7(1), 35–42 (1993)

15. Larrea, M., Fernández, A., Arévalo, S.: Optimal implementation of the weakest
failure detector for solving consensus. In: SRDS, pp. 52–59 (2000)

16. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Consensus with
byzantine failures and little system synchrony. In: DSN, pp. 147–155 (2006)

17. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing
omega with weak reliability and synchrony assumptions. journal version of [3](Un-
published)

18. Hutle, M., Malkhi, D., Schmid, U., Zhou, L.: Brief announcement: Chasing the
weakest system model for implementing omega and consensus. In: Datta, A.K.,
Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 576–577. Springer, Heidelberg
(2006)

http://hal.archives-ouvertes.fr/hal-00167935/fr/

	Robust Stabilizing Leader Election
	Introduction
	Preliminaries
	Distributed Systems
	Self- and Pseudo- Stabilization
	Informal Model
	Robust Stabilizing Leader Election

	Communication-Efficient Self-Stabilizing Leader Election in S_5
	Self-Stabilizing Leader Election in S_4
	Pseudo-Stabilizing Communication-Efficient Leader Election in S_4
	Impossibility of Self-Stabilizing Leader Election in S_2
	Communication-Efficient Pseudo-Stabilizing Leader Election in S_2
	Pseudo-Stabilizing Leader Election in S_1
	Future Works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

