
From Self- to Snap- Stabilization

Alain Cournier, Stéphane Devismes, and Vincent Villain

LaRIA CNRS FRE 2733
University of Picardie Jules Verne, Amiens, France

firstname.lastname@u-picardie.fr

http://www.laria.u-picardie.fr/~lastname

Abstract. A snap-stabilizing protocol, starting from any configuration,
always behaves according to its specification. In this paper, we propose
a light semi-automatic method allowing to snap-stabilize self-stabilizing
wave protocols for arbitrary networks with a unique initiator. To that
goal, we consider such a self-stabilizing protocol A. We then slightly
update A to obtain a protocol B that can be automatically transformed,
using a black box protocol, into a snap-stabilizing protocol. B is easy to
obtain from A compared to the design of a snap-stabilizing protocol.

1 Introduction

The quality of a distributed system depends on its tolerance to faults. Many
fault-tolerant schemes have been proposed. For instance, self-stabilization [1]
allows to design a system tolerating arbitrary transient faults. A self-stabilizing
system, regardless of the initial states of the processors and messages initialy in
the links, is guaranteed to converge into the intended behavior in finite time.
Recently, a new paradigm called snap-stabilization has been introduced in [2].
A snap-stabilizing protocol guarantees that, starting from any configuration, it
always behaves according to its specification. In other words, a snap-stabilizing
protocol is a self-stabilizing protocol which stabilizes in 0 time unit. Designing
and proving self- or snap- stabilizing protocols is usually a complicated task.
That is why some protocols, called transformers, were proposed to automatically
perform such a task, e.g., [3,4]. In [3], Katz and Perry design a protocol that
transforms almost all non-self-stabilizing protocols into self-stabilizing protocols.
In [4], the authors propose a transformer providing a snap-stabilizing version of
any protocol which can be self-stabilized with the transformer of [3], but, this
transformer is designed in a higher level model than the one used in [3]. The
transformers of [3,4] use heavy mechanisms to transform an initial protocol into
a self- or snap- stabilizing protocol and the overcost of the stabilization is often
difficult to evaluate. Indeed, they use snapshots to regulary evaluate a predicate
defined on the variables of the protocol to transform. This predicate characterizes
the normal configurations of the system. This technique is used for preventing
the system from deadlocks and livelocks. The main drawbacks of these solutions
are: (i) such a predicate is generally difficult to formalize; (ii) the number of
snapshots used by the transformer protocol cannot be bounded compared to

A.K. Datta and M. Gradinariu (Eds.): SSS 2006, LNCS 4280, pp. 199–213, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



200 A. Cournier, S. Devismes, and V. Villain

the number of actions of the initial protocol. In this paper, we propose a light
semi-automatic method allowing to snap-stabilize self-stabilizing wave protocols
for arbitrary networks with a unique initiator. To that goal, we consider such
a self-stabilizing protocol A. We then slightly update A to obtain a protocol
B that can be automatically transformed, using a black box protocol, into a
snap-stabilizing protocol. B is easy to obtain from A compared to the design of
a snap-stabilizing protocol. In contrast with the solution in [4], our black box
does not use any snapshot to snap-stabilize B and keeps the same fairness as the
protocol to transform. Finally, to show the feasibility of our method, we propose
to transform a self-stabilizing depth-first token circulation of Huang and Chen
[5] into a snap-stabilizing token circulation.

The rest of the paper is organized as follows. In Section 2, we describe the
model. In Section 3, we present and justify how our black box works. A sketch of
proof and the complexity analysis are provided in Section 4. We show in Section
5 how to snap-stabilize the protocol of [5]. Finally, we conclude in Section 6.

2 Preliminaries

We consider a network as an undirected connected rooted graph G = (V ,E,r)
where V is a set of processors, E is the set of bidirectional asynchronous commu-
nication links, and r ∈ V . The particular processor r, called root, corresponds to
the protocol initiator. In the network, a communication link (p,q) exists if and
only if p and q are neighbors. Every processor p can distinguish all its links. To
simplify the presentation, we refer to a link (p,q) of a processor p by the label
q. We assume that the labels of p, stored in the set Ngp, are locally ordered
by ≺p. We also use the following notations: respectively, N is the size, Δ the
degree, and D the diameter of the network. Our protocols are semi-uniform, i.e.,
each processor executes the same program except r. We consider a local shared
memory model of computation (see [6]) where the program of every processor
consists in a set of shared variables (henceforth, referred to as variables) and an
ordered finite set of actions inducing a priority. This priority follows the order
of appearance of the actions into the text of the protocol. A processor can write
to its own variable only, and read its own variables and that of its neighbors.
Each action is constitued as follows: < label > :: < guard > → < statement > .
The guard of an action in the program of p is a boolean expression involving
variables of p and its neighbors. The statement of an action of p updates one
or more variables of p. An action can be executed only if its guard is satisfied.
The state of a processor is defined by the value of its variables. The state of a
system is the product of the states of all processors. We will refer to the state of
a processor and the system as a (local) state and (global) configuration, respec-
tively. We note C the set of all configurations of the system. Let γ ∈ C and A
an action of p (p ∈ V ). A is said enabled at p in γ if and only if the guard of
A is satisfied by p in γ. Processor p is said to be enabled in γ if and only if at
least one action is enabled at p in γ. When several actions are simultaneously
enabled at a processor p: only the priority enabled action can be activated. Let a



From Self- to Snap- Stabilization 201

distributed protocol P be a collection of binary transition relations denoted by
�→, on C. An execution of a protocol P is a maximal sequence of configurations
e = (γ0,γ1,...,γi,γi+1,...) such that, ∀i ≥ 0, γi �→ γi+1 (called a step) if γi+1 exists,
else γi is a terminal configuration. Maximality means that the sequence is either
finite (and no action of P is enabled in the terminal configuration) or infinite.
All executions considered here are assumed to be maximal. E is the set of all
executions of P . As we already said, each execution is decomposed into steps.
Each step is shared into three sequential phases atomically executed: (i) every
processor evaluates its guards, (ii) a daemon chooses some enabled processors,
(iii) each chosen processor executes its priority enabled action. When the three
phases are done, the next step begins. A daemon can be defined in terms of fair-
ness and distribution. There exists several kinds of fairness assumption. In this
paper, we consider the strongly fairness, weakly fairness, and unfairness assump-
tion. Under a strongly fair daemon, every processor that is enabled infinitively
often is chosen by the daemon infinitively often to execute an action. When a
daemon is weakly fair, every continuously enabled processor is eventually chosen
by the daemon. Finally, the unfair daemon is the weakest scheduling assumption:
it can forever prevent a processor to execute an action except if it is the only
enabled processor. To simplify the notation, we will denote (when necessary) the
strongly fair, weakly fair, and unfair daemon by SF , WF , and UF . Concerning
the distribution, we assume that the daemon is distributed meaning that, at each
step, if one or more processors are enabled, then the daemon chooses at least
one of these processors to execute an action. We consider that any processor p is
neutralized in the step γi �→ γi+1 if p was enabled in γi and not enabled in γi+1,
but did not execute any action in γi �→ γi+1. To compute the time complexity,
we use the definition of round [7]. This definition captures the execution rate of
the slowest processor in any execution. The 1st round of e ∈ E , noted e′, is the
minimal prefix of e containing the execution of one action or the neutralization
of every enabled processor from the initial configuration. Let e′′ be the suffix of
e such that e = e′e′′. The 2nd round of e is the 1st round of e′′, and so on.

Definition 1 (Wave Protocol [6]). A wave protocol is a protocol P that sat-
isfies the following requirements: (i) each execution of P (called wave) is finite
and contains at least an action of decision; (ii) each action of decision is causally
preceded by an action of each processor.

Definition 2 (Snap-stabilization). Let T be a task, and ST a specification of
T . A protocol P is snap-stabilizing for ST if and only if ∀e ∈ E, e satisfies ST .

Consider a wave protocol having a unique initiator, r, and performing a specific
task in a safe system. In the safe system, starting from a pre-defined configura-
tion called normal starting configuration, r initiates the protocol by executing
a special action called initialization action. This initialization occurs upon an
external (w.r.t. the protocol) request. Before this request, all the processors are
“asleep” (i.e., disabled). In particular, r is on standby of a request. Similary, at
the termination of the protocol, the processors become asleep again until the
next request occurs at the initiator. In contrast, in a self-stabilizing system, the



202 A. Cournier, S. Devismes, and V. Villain

protocols achieve a convergence to a specified behavior of the system in a finite
time. So, the execution of the first waves of such a protocol may not satisfy its
specification and, as a consequence, the waves have to be repeated so that the
system eventually satisfies its specification. Hence, self-stabilizing protocols are
inherently cyclic and the notion of request is simply kept in the background.
On the contrary, the snap-stabilization guarantees that after the first initial-
ization action, the execution of the protocol works as expected (i.e., according
to its specification). Thus, snap-stabilization does not require to design cyclic
protocols and the initialization of the protocols is similar to the one in a safe
system, i.e., the initialization is assumed to occur only upon an external request
(see [4] for further details). So, in our protocols, we will explicitly mention this
external request using the shared variable Reqr ∈ {W ,I,O} (noted P .Reqr for
the specific protocol P). We consider Reqr as an input into the algorithm of
the protocol initiator (r). Reqr = W means that an execution of the protocol is
required. When the initialization of the protocol occurs, Reqr switches from W
to I meaning that r has taking in account of the request. Finally, Reqr switches
from I to O at the termination of the wave meaning that the system is now
ready to receive another request. Of course, the switching of Reqr from W to
I and from I to O is managed by the task itself while the switching from O to
W (which means that another execution of the protocol is required) is managed
externally. Note that all other transitions (for instance, I to W ) are forbidden.
The external action, noted IR, that manages the switching from O to W is of
the following form:

IR :: AppliReq(r) ∧ (Reqr = O) → Reqr := W ; AppliReleaser ;

AppliReq(r) is a predicate which is true when an application of the initia-
tor r needs an execution of the snap-stabilizing protocol. AppliReleaser is a
macro which contains the code of the application that has to be executed when
the system takes the request into account. In particular, this macro has to
make AppliReq(r) false. In the following, we will assume that, since satisfied,
AppliReq(r) is continuously satisfied until IR is executed.

From Definitions 1, 2, and the above discussion, follows:

Remark 1. Let T be a task, ST a specification of T , and P a wave protocol with
one initiator, r. To prove that P is snap-stabilizing for ST , we must show that
any execution of P satisfies two conditions: (i) since r requests a P wave, the
requested P wave is initiated in a finite time; (ii) from any configuration where
r has initiated a P wave, the system computes T according to ST .

3 The Approach

Principle. Let A be a self-stabilizing protocol with a unique initiator, r, designed
for stabilizing to a specific task T . In addition, assume that the decision actions
are at the root only. We want to snap-stabilize A without using the snapshot



From Self- to Snap- Stabilization 203

Algorithm 1. Reset(B) for p = r
Input: Ngp: set of (locally) ordered neighbors of p;

Constants: Pp =⊥; Lp = 0;

Variables: Sp ∈ {B,F ,P ,C}; Quep ∈ {Q,R,A};
Macro: Cldp={q∈ Ngp::(Sq �=C)∧(Pq=p)∧(Lq=Lp+1)∧[(Sq �=Sp)⇒(Sp∈{B,P}∧Sq=F )]};
Predicates:
CF (p) ≡ (∀q ∈ Ngp :: Sq �= C)
Leaf(p) ≡ [∀q ∈ Ngp :: (Sq �= C) ⇒ (Pq �= p)]
BLeaf(p) ≡ (Sp = B) ∧ [∀q ∈ Ngp :: (Pq = p) ⇒ (Sq = F )]
AnsOk(p) ≡ (Quep = A) ∧ [∀q ∈ Ngp :: (Sq �= C) ⇒ (Queq = A)]
Bst(p) ≡ (Sp = C) ∧ Leaf(p)
Fck(p) ≡ BLeaf(p) ∧ CF (p) ∧ AnsOk(p)
PreC(p) ≡ (Sp = F ) ∧ [∀q ∈ Ngp :: (Pq = p) ⇒ (Sq ∈ {F ,C})]
Clean(p) ≡ (Sp = P ) ∧ Leaf(p)
Requi(p) ≡ (Sp∈{B,F})∧[(Sp=B)⇒CF (p)]∧[[(Quep=Q)∧(∀q∈Ngp::(Sq �=C)⇒(Queq∈{Q,R}))]

∨ [(Quep=A) ∧ (∃q∈Ngp::(Sq �=C) ∧ ((Queq=Q)∨(q∈Cldp∧Queq=R)))]]
Ans(p) ≡ (Sp ∈ {B,F}) ∧ [(Sp = B) ⇒ CF (p)] ∧ (Quep = R)

∧ (∀q∈Cldp::Queq∈{W ,A}) ∧ [∀q∈Ngp::(Sq �=C)⇒(Queq �=Q)]
Actions:
PIF Part:
B-action :: (B.Reqp = W ) ∧ B.Endp ∧ Bst(p) → Sp := B; Quep := Q; B.Reqp := I;
F -action :: Fck(p) → Sp := F ; B.Initp; B.Endp := false;
P -action :: PreC(p) → Sp := P ;
C-action :: Clean(p) → Sp := C;
T -action :: (B.Reqp = I) ∧ B.Endp ∧ (Sp = C) → B.Reqp := O;
Question Part:
QR-action :: Requi(p) → Quep := R;
QA-action :: Ans(p) → Quep := A;

techniques. In [3,4], the snapshots are used for detecting deadlocks and livelocks
in the execution of the initial protocol. Since A is self-stabilizing, we know that,
starting from any configuration, it will never generates deadlocks or livelocks.
We now propose to slightly modify A to obtain a protocol B which is automat-
ically snap-stabilized by a black box protocol. From now on, we note SSBB(B)
the snap-stabilizing version of B obtained with our Snap-Stabilizing Black Box
(SSBB). By Remark 1, the code of B must insure the following property:

(i) Starting from any configuration and upon an external request on r, r even-
tually initiates SSBB(B).

(ii) As soon as SSBB(B) is initiated, it executes the task T as expected.

First, by (i), starting from any configuration, the system must reach a config-
uration from which SSBB(B) can properly start. This implies that when the
root requests an execution of SSBB(B), SSBB(B) must start in a finite time
but without aborting a previously initiated computation of T . One way to get
this property is to use in B a variable B.Endr such that when r is ready to
decide in A, then r is also ready to decide in B and sets B.Endr to true. Also,
since B.Endr is equal to true, the initialization actions of B (at r) have to be
disabled until SSBB(B) can execute the computation of T as expected (ii). To
that goal, we have just to modify the guards of the initialization actions of A
so that they become disabled when B.Endr = true. B.Endr will be set to false
by SSBB(B) when the system will be in a configuration from which SSBB(B)
can execute the computation of T as expected (ii). Assuming the existence of



204 A. Cournier, S. Devismes, and V. Villain

B.Endr and the associated modifications in B, we now just need to reset the
variables of B since B.Endr is true in order to verify (ii). To that goal, ∀p ∈ V ,
all the variables assignments required to generate a normal starting configura-
tion of A have to be stored in a macro of B noted B.Initp. For sake of clarity,
we note B.Init the set of the macros B.Initp defined on all the processors p.
Using B.Init, the reset phase is trivially initiated at the initialization action of
SSBB(B) and, as soon as the reset terminates, B.Endr is set to false and B
executes the task T as A in a non-faulty situation. In particular, this means
that the initialization action of SSBB(B) corresponds to the the initialization
action of reset and, of course, SSBB(B) will take in account of the requests
for B (using B.Reqr) instead of B itself. SSBB(B) will reset the B variables
(using B.Init) so that the system reaches a normal starting configuration of A
and, then, give the execution control to B so that it performs the task T . A
well-known technique to perform a reset in distributed systems is based on the
Propagation of Information with Feedback (PIF). Some PIF protocols for arbi-
trary networks have been proposed in the snap-stabilizing literature, e.g., [8,9].
A PIF scheme can be informally described as follows: the initiator, r, starts the
protocol by broadcasting a message m (broadcast phase), then, ∀p ∈ V \ {r}, p
will send an acknowledgment to r for the receipt of m (feedback phase). Using the
PIF scheme, the reset protocol can be performed as follows: (i) r broadcasts an
“abort” message, (ii) upon the reception of the message, the processors abort
the execution of B, (iii) finally, the processors reset their B variables during
the feedback phase. To implement SSBB, we need to use a snap-stabilizing PIF
protocol working under a distributed unfair daemon. Indeed, we want to apply
our technique to self-stabilizing protocols working with any daemon, so, we need
a reset protocol that works with the most general daemon. Such a protocol is
provided in [9].

Snap-Stabilizing PIF. A snap-stabilizing PIF protocol satisfies the following
specification: starting from any configuration, when r has a message m to broad-
cast, it starts the broadcast in a finite time. Then, ∀p ∈ V \ {r}, p will both
receive m and send an acknowledgment (for the receipt of m) which will reach r
in a finite time.

Theorem 1 ([9]). The PIF protocol proposed in [9] is snap-stabilizing under a
distributed unfair daemon.

As the distributed unfair daemon is the most general daemon, Theorem 1 im-
plies that the protocol of [9], called PIF , works with any daemon. The another
important consequence of Theorem 1 is that, starting from any configuration,
each PIF wave performed by PIF is bounded in terms of steps. We now roughly
present the main actions and variables of PIF (see [9] for details). PIF is di-
vided in three parts: the PIF, question, and correction parts. The PIF part is
the most important part of the protocol because it contains the actions related
to the three phases of a PIF wave: the broadcast phase, the feedback phase
following the broadcast phase, and the cleaning phase which cleans the trace
of the feedback phase so that the root is ready to broadcast a new message.



From Self- to Snap- Stabilization 205

The two other parts of the algorithm implement two mechanisms allowing the
snap-stabilization of the PIF part. Due to the lack of space, we do not present
these mechanisms here. Informally, the PIF part maintains in every processor
p a variable crucial for SSBB: Sp. Indeed, Sp allows to know in which phase
of the PIF the processor p is. Sp is set to B when p switches to the broadcast
phase (B-action). Then, Sp is set to F when p switches to the feedback phase
(F -action). The cleaning phase is managed with two states: P and C. After r
detects the end of the feedback phase (r is the last processor which switches to
the feedback phase), r initiates the propagation of the P value into the S vari-
ables following the computed spanning tree in order to inform all the processor
of this termination (P -action). Then, the processors successively switches to C
(C-action) in a bottom up fashion (from the leaves of the spanning tree to r)
meaning that they now ready to receive another broadcast message. Hence, the
PIF wave terminates when r sets Sr to C (C-action). Finally, note that two more
states exists in Sp for p �= r: EB and EF . But, they are used by the correction
part only. So, we do not explain the goal of these states here.

Property 1. From [9], follows:

1. After r initiates a broadcast (B-action), the system eventually reaches a
configuration where every processor is in the feedback phase associated to
the broadcast of r.

2. From any configuration, r executes B-action in at most 9N − 1 rounds and
O(Δ × N3) steps.

3. From any configuration, a complete PIF wave costs at most 15N − 3 rounds
and O(Δ × N3) steps.

Remark 2. By Property 1, from any configuration, r executes B-action at most
9N−1 rounds. Actually, this time complexity corresponds to the following worst
case: the maximal number of rounds starting from any configuration before the
system reaches a configuration where B-action at r is the only enabled action of
the system (see the technical report for details [10]).

SSBB Protocol. To build SSBB(B), we use the following composition technique.
This composition technique is closed to the hierarchical composition of Gouda
and Herman [11]. Let P1 and P2 be two protocols. The composition of P1 and
P2, noted P2 ◦|G P1, is the program satisfying the following conditions:

- P2 ◦|G P1 contains all the variables and actions of P1 and P2.
- G is a predicate defined on the variables of P1.
- Any action Li :: Hi → Si in P2 is replaced by Li :: G ∧ Hi → Si in P2 ◦|G P1.

Following these rules, SSBB(B) = B ◦|Ok(p) Reset(B) with Ok(p) ≡ (Sp = C).
Reset(B) is a slightly modified PIF (Algorithms 1 and 2). It is used for resetting
the B variables when it is necessary. To that goal, we modify the guard of its
initialization action: B-action at r (the initialization action of SSBB(B)) so that
it is enabled only when a request for B occurs at the root (B.Reqr = W ) and
B.Endr = true (to avoid the aborting a previous initiated wave of B). Also,
we modify the F -action to reset the B variables using B.Initp (∀p ∈ V ) and to



206 A. Cournier, S. Devismes, and V. Villain

set B.Endr to false (for the root only and so that the actions of B at r will be
unlocked at the end of the reset) during the feedback phase. We use the predicate
Ok(p) in the composition so that any processor p aborts its local execution of B
when receiving the reset and until the local termination of the reset at p. Indeed,
we already know that p continuously satisfies Sp �= C during its participation to
a reset. So, while p participates to a reset, Ok(p) is false and any action of B in
SSBB(B) is disabled at p. Finally, we add an action, noted T -action, so that r
switches B.Reqr from I to O at the termination of each wave of SSBB(B).

Algorithm 2. Reset(B) for p �= r
Input: Ngp: set of (locally) ordered neighbors of p;

Variables: Sp ∈ {B,F ,P ,C,EB,EF}; Pp ∈ Ngp; Lp ∈ �; Quep ∈ {Q,R,W ,A};
Macros:
Cldp = {q∈Ngp::(Sq �=C)∧(Pq=p)∧(Lq=Lp+1)∧[(Sq �=Sp)⇒((Sp∈{B,P}∧Sq=F )∨(Sp=EB))]};
PPotp = {q ∈ Ngp :: Sq = B };
Potp = {q ∈ Ngp :: ∀q′ ∈ PPotp, Lq ≤ Lq′};
Predicates:
CF (p) ≡ (∀q ∈ Ngp :: Sq �= C)
Leaf(p) ≡ [∀q ∈ Ngp :: (Sq �= C) ⇒ (Pq �= p)]
BLeaf(p) ≡ (Sp = B) ∧ [∀q ∈ Ngp :: (Pq = p) ⇒ (Sq = F )]
AnsOk(p) ≡ (Quep = A) ∧ [∀q ∈ Ngp :: (Sq �= C) ⇒ (Queq = A)]
GoodS(p) ≡ (Sp = C) ∨ [(SPp �= Sp) ⇒ ((SPp = EB) ∨ (Sp = F ∧ SPp ∈ {B,P}))]
GoodL(p) ≡ (Sp �= C) ⇒ (Lp = LPp + 1)
AbR(p) ≡ ¬GoodS(p) ∨ ¬GoodL(p)
EFAbR(p) ≡ (Sp=EF ) ∧ AbR(p) ∧ [∀q∈Ngp :: (Pq=p∧Lq>Lp)⇒(Sq∈{EF ,C})]
EBst(p) ≡ (Sp ∈ {B,F ,P}) ∧ [¬AbR(p) ⇒ (SPp = EB)]
EFck(p) ≡ (Sp = EB) ∧ [∀q ∈ Ngp :: (Pq = p ∧ Lq > Lp) ⇒ (Sq ∈ {EF ,C})]
Bst(p) ≡ (Sp = C) ∧ (Potp �= ∅) ∧ Leaf(p)
Fck(p) ≡ BLeaf(p) ∧ CF (p) ∧ AnsOk(p)
PreC(p) ≡ (Sp = F ) ∧ (SPp = P ) ∧ [∀q ∈ Ngp :: (Pq = p) ⇒ (Sq ∈ {F ,C})]
Clean(p) ≡ (Sp = P ) ∧ Leaf(p)
Requi(p) ≡ (Sp ∈ {B,F}) ∧ [(Sp = B) ⇒ CF (p)] ∧ [[(Quep = Q) ∧ (∀q ∈ Ngp ::

(Sq �= C) ⇒ (Queq ∈ {Q,R}))] ∨ [(Quep ∈ {W ,A}) ∧ (∃q ∈ Ngp :: (Sq �= C)
∧ ((Queq = Q) ∨ (q ∈ Cldp ∧ Queq = R)))]]

Wait(p) ≡ (Sp ∈ {B,F}) ∧ [(Sp = B) ⇒ CF (p)] ∧ (Quep = R) ∧ (QuePp = R)
∧ (∀q ∈ Cldp :: Queq ∈ {W ,A}) ∧ (∀q ∈ Ngp :: (Sq �= C) ⇒ (Queq �= Q))

Ans(p) ≡ (Sp ∈ {B,F}) ∧ [(Sp = B) ⇒ CF (p)] ∧ (Quep = W ) ∧ (QuePp = A)
∧ (∀q ∈ Cldp :: Queq ∈ {W ,A}) ∧ (∀q ∈ Ngp :: (Sq �= C) ⇒ (Queq �= Q))

Actions:
Correction Part:
EC-action :: EFAbR(p) → Sp := C;
EB-action :: EBst(p) → Sp := EB;
EF -action :: EFck(p) → Sp := EF ;
PIF Part:
B-action :: Bst(p) → Sp:=B; Pp:=min≺p(Potp); Lp:=LPp+1; Quep:=Q;
F -action :: Fck(p) → Sp := F ; B.Initp;
P -action :: PreC(p) → Sp := P ;
C-action :: Clean(p) → Sp := C;
Question Part:
QR-action :: Requi(p) → Quep := R;
QW -action :: Wait(p) → Quep := W ;
QA-action :: Ans(p) → Quep := A;

4 Correctness

Let A be self-stabilizing wave protocol under a daemon D such that A has a
unique initiator (r) and such that the decision actions of A are at r only. Let T be



From Self- to Snap- Stabilization 207

the task solved by A in a self-stabilizing manner. Let B the modified version of A
according to the explanation provided in Section 3. We now prove that SSBB(B)
is snap-stabilizing for the specification of T under D (D ∈ {SF ,WF ,UF}). First,
as A is designed to solve the specific task T only, we make the following remark
about B:

Remark 3. B does not write into the Reset(B) variables.

We now show that SSBB(B) is a fair composition of Reset(B) and B.

Definition 3 (Fair Execution [6]). An execution e of the composite protocol
P2 ◦|G P1 is fair w.r.t. Pi (i ∈ {1,2}), if one of these conditions holds: (i) e is
finite, (ii) e contains infinitively many steps of Pi, or (iii) e contains an infinite
suffix in which no step of Pi is enabled.

From Assumption 3, it is easy to see that the number of steps of each protocol
in a wave of the composition is finite, so we can deduce the following theorem.

Theorem 2. SSBB(B) is a fair composition of Algorithms Reset(B) and B.

Since Algorithm A allows r to restart the protocol infinitely often it is clear that
B sets B.Endr to false in a finite time. So, the system needs a computation of
T , SSBB(B) is initiated in a finite time and the two next lemmas are proved.

Lemma 1. Starting from any configuration where B.Reqr = W , SSBB(B) is
initiated in a finite time.

The next lemma shows that since r requests a computation of T , the system
eventually takes this request into account by executing B.Reqr := W .

Lemma 2. Starting from any configuration where r requests a SSBB(B) wave,
r executes IR in a finite time.

By Lemmas 1 and 2, the following theorem holds. This theorem means that,
since r requests an execution of SSBB(B), SSBB(B) is initiated in a finite time.

Theorem 3. Starting from any configuration where r requests a SSBB(B) wave,
the requested SSBB(B) wave is eventually initiated.

The next theorem shows that each computation of T initiated by r is executed as
expected. This result is based on the snap-stabilizing reset of B when r initiates
SSBB(B).

Theorem 4. From any configuration where r initiates SSBB(B), the system
computes T as expected.

By Remark 1, Theorems 3 and 4, follows:

Theorem 5. SSBB(B) is snap-stabilizing for the specification of T under D.



208 A. Cournier, S. Devismes, and V. Villain

4.1 Complexity Analysis

Space Complexity. Let M(A) be the memory requirement of A. B differs from
A by just a boolean at r. So, the memory requirement of B is in the same order
than A and by taking into account of Reset(B), follows:

Theorem 6. The memory requirement of SSBB(B) is O(log(N) + log(Δ) +
M(A)) bits per processor.

Time Complexity. In the following, we assume that A is self-stabilizing under
D such that D ∈ {WF ,UF}. So, let R1(A) be the maximal number of rounds
starting from any configuration before r decides in A and let R2(A) be the
maximal number of rounds that A requires to perform T starting from the
configuration generated by B.Init.

Theorem 7. If A is self-stabilizing under D such that D∈{WF ,UF}, then,
starting from any configuration where r requests a SSBB(B) wave, the requested
SSBB(B) wave is initiated in O(N + R1(A) + R2(A)) rounds.

Proof. Assume that, from a configuration γi, r requests a wave of SSBB(B)
(i.e., AppliReq(r) is satisfied). According to B.Reqr, three cases are possible:

- B.Reqr = O in γi. In such a configuration, IR is enabled (the guard of IR
is AppliReq(r) ∧ (B.Reqr = O)). Also, no action of SSBB(B) can modify
B.Reqr until B.Reqr is set to W by IR (see Algorithms 1 and 2). So, IR
is continuously enabled at r and, r executes IR, i.e., B.Reqr := W , in at
most one round. Then, B.Reqr is continuously equal to W until r initiates
SSBB(B) by B-action (see Algorithms 1 and 2). Also, as B does not write
into the Reset(B) variables (Assumption 3), in the worst case, the system
reaches a configuration γj from which Bst(r) is continuously satisfied and
no action of Reset(B) different of B-action at r is enabled until r executes
B-action in at most 9N − 2 rounds by Property 1 (Claim 2) and Remark
2. This configuration corresponds to a configuration of PIF where every
processor are waiting for a new broadcast, i.e., ∀p ∈ V , Sp = C. Now, in
at most R1(A) rounds from γj , the system reaches a configuration γk from
which B.Endr is continuously true. Thus, B-action becomes continuously
enabled at r from γk and r executes B-action in the next round. Hence,
starting from any configuration where B.Reqr = O, SSBB(B) is initiated in
at most 9N + R1(A) rounds.

- B.Reqr = I in γi. As B does not write into the Reset(B) variables (As-
sumption 3), in the worst case, the system reaches a configuration γj from
which Bst(r) is continuously satisfied and no action of Reset(B) different of
B-action at r is enabled until r executes B-action in at most 9N − 2 rounds
by Property 1 (Claim 2) and Remark 2. This configuration corresponds to
a configuration of PIF where every processor are waiting for a new broad-
cast, i.e., ∀p ∈ V , Sp = C. Then, in at most R1(A) rounds from γj, the
system reaches a configuration from which B.Endr is continuously true. As
B-action is disabled until B.Reqr = W , two rounds are necessary so that



From Self- to Snap- Stabilization 209

B.Reqr switches from I to O by T -action (Bst(r) ⇒ (Sr = C)) and from O
to W by Action IR. Then, B-action will be continuously enabled at r and
r will execute it in the next round. Hence, starting from any configuration
where B.Reqr = I, SSBB(B) is initiated in at most 9N +R1(A)+1 rounds.

- B.Reqr = W in γi. In this case, the system has to perform a complete
SSBB(B) wave before r satisfies B.Reqr = O. A SSBB(B) wave becomes
by a reset of the B variables (a Reset(B) wave). B does not write into the
Reset(B) variables by Assumption 3. So, actions of Reset(B) are executed
like in PIF except for B-action at r (which now also depends on B.Endr).
So, compared to the round complexities of a complete PIF wave (at most
15N −3 rounds, by Property 1 (Claim 3) and similary to the previous cases,
we have an additional cost of R1(A) rounds before SSBB(B) starts. After
the initialization action (B-action at r), B.Reqr = I and Reset(B) works
with a same cost than PIF . So, the cost of the reset is globally at most
15N + R1(A)− 3 rounds. After the reset, the system is in the configuration
generated by B.Init (SSBB(B) is snap-stabilizing by Theorem 5) and R2(A)
additional rounds are necessary to perform the specific task T . Finally, after
performing T , SSBB(B) terminates the wave with T -action: B.Reqr := O
(this latter action is executed in at most one round). After T -action, the
system is in a configuration where ∀p ∈ V , Sp = C, i.e., the normal starting
configuration of PIF (indeed, Property 1 implies that the abnormal behavior
related to PIF are erased from the system during the first wave), B.Reqr =
O, and B.Endr = true. From such a configuration, the root executes IR
followed by B-action in the two next steps (resp. rounds): they are the only
enabled action of the system. Hence, starting from any configuration where
B.Reqr = W , SSBB(B) is initiated in at most 15N +R1(A)+R2(A) rounds.

�

Corollary 1. If A is self-stabilizing under D such that D∈{WF ,UF}, then,
starting from any configuration, a complete requested SSBB(B) wave is executed
in O(N + R1(A) + R2(A)) rounds.

For the following result, we assume that A is self-stabilizing under D = UF .
We have proved that, if A is self-stabilizing under D = UF , then SSBB(B)
is snap-stabilizing under D = UF . This means, in particular, that B can only
execute a finite number of actions between each action of Reset(B). Actually,
this number of actions, noted S(A), is equal to the maximal number of steps
starting from any configuration so that A decides and then reaches a configura-
tion from which r executes an initialization action (n.b., in the worst case, the
unfair daemon prevents A to execute an initialization action until the system
reaches a configuration where only the initialization actions are enabled). Ac-
tually, in B, this number corresponds to the maximal number of actions that
B can execute to set B.Endr to true and then reaches a configuration where
none of its actions are enabled (the initialization actions are disabled because
B.Endr = true).



210 A. Cournier, S. Devismes, and V. Villain

Theorem 8. If A is self-stabilizing under D = UF , then, starting from any
configuration where r requests a SSBB(B) wave, the requested SSBB(B) wave is
initiated in O(Δ × N3 × S(A)) steps.

Proof. In the proof of Theorem 7, we have seen that, in the worst case, a
requested SSBB(B) wave is initiated after a complete non-requested wave of
SSBB(B). By Property 1 (Claim 3), we know that this non-requested wave
contains O(Δ × N3) actions of Reset(B) (i.e., the steps complexities of PIF
provided in [10] except for a constant factor due to the T -action). Also, we
have stated that at most S(A) actions of B are executed between each action of
Reset(B). Hence, a loose estimate of the delay to start a requested SSBB(B)
wave is the product of these two complexities and the theorem holds. �

Corollary 2. If A is self-stabilizing under D = UF , then, starting from any
configuration, a complete requested SSBB(B) wave is executed in O(Δ × N3 ×
S(A)) steps.

5 Example

In this section, we propose to snap-stabilize the self-stabilizing depth-first token
circulation (DFTC) protocol of Huang and Chen [5] using our transformer. In
the following, the protocol of Huang and Chen will be denoted by DFS.

Protocol DFS. In arbitrary rooted networks, a DFTC protocol works as follows:
a token is first created at the root and, then, is passed from one processor to
another in the depth-first order such that every processor eventually gets it
during a single traversal. From [5], follows:

Theorem 9 ([5]). DFS is a self-stabilizing DFTC protocol assuming a weakly
fair daemon.

Informally, DFS is divided in two parts. The first part manages the token cir-
culation strictly speaking. The other part handles abnormal behaviors due to
the initial configuration. We first focus on the token circulation part. This part
maintains two variables: D and C. D is a descendant pointer variable; C, a color
variable. The token circulation uses two colors: 1 and 2. At the beginning of a
new circulation, the root switches to a color different from the color of all the
other processors. A processor having the token searches its neighbors to find one
with a different color. The processor then passes the token to the neighbor if
such a neighbor exists. Otherwise, it backtracks the token to its parent - the
processor which passed the token to it. A processor changes its color to the color
of its parent when its receives the token. In this way, all visited processors in
the current circulation have the same color of the root, and all unvisited proces-
sors have a different color. The descendant relationship is indicated by variable
D and this relationship is destroyed by letting Dp := NULL when the token
backtracks from p. Starting from the root and tracing through the descendant



From Self- to Snap- Stabilization 211

pointers, a segment of processors can be described with the token on the front
of it. The segment lengthens when the token moves to an unvisited processor,
and shrinks when the token backtracks. The token finally backtracks to the root
when all the processors are visited. The root then changes its color and initiates
a new circulation. We now explain the error handling strategy. First, due to the
initial configuration, the D value of some processors may describe a cycle. A
level variable L is thus used for detecting such cycles. The level of the root is
fixed to 0. Levels of others processors have a value from 1 to n − 1. During a
circulation, a processor computes its level when it receive the current token for
the first time: its level is set to one plus the level of its parent. When a processor
p is in a segment and does not satisfy Lp = Lq + 1 where q is its parent, it know
that it is in a cycle. So, p break the circle by setting Dp to NULL. Then, the
system may contain some illegal segments, i.e., the segment rooted at another
processor than r. To erase such illegal segments, the protocol uses an additionnal
color: ERROR. The root of an illegal segment knows it is in an error state and
hence changes its color to ERROR. The error color then propagates along the D
pointers to the front of the segment. When the parent of the front processor sees
the color of the front processor is already changed to ERROR, it drops the front
processor away by setting the pointer D to NULL. The dropped processor then
recovers itself by changing its color to a normal one. Repeating the dropping
and recovering process will correct the processors on the illegal segments.

How to snap-stabilize DFS using SSBB. First, we know that:
- DFS is a protocol with a unique initiator: r.
- The decision actions of DFS occurs at r only: the token finally backtracks

to the root when all the processors are visited.

So, by Theorem 5, we know that a slightly modified version of DFS can be
snap-stabilized by SSBB. According to the principles exposed in Section 3, we
now explain how to modify DFS into DFS′ such that SSBB(DFS ′) is a snap-
stabilizing DFTC protocol assuming a weakly fair daemon:
1. A boolean variable Endr must be declared in DFS.
2. In DFS, r decides when setting Dr to NULL. So, we must modify each

action of DFS such that Dr := NULL appears in its statement so that
each time Dr := NULL is executed, Endr := true is also executed.

3. We add the condition ¬Endr at the guard of the initialization of the token
circulation action at r.

4. Finally, we know that a normal starting configuration of DFS satisfies
∀p, q ∈ V , Dp = NULL ∧ Cp = Cq ∧ Cp �= ERROR. So, a normal starting
configuration of DFS can be the following: ∀p ∈ V , Dp = NULL ∧ Cp = 1.
Hence, we can define in DFS the macro Initp (∀p ∈ V ) with the following
assignments: Dp := NULL;Cp := 1.

With such modifications, we obtain a protocol DFS ′ and, by Theorem 5, the
following theorem holds:

Theorem 10. SSBB(DFS ′) is a snap-stabilizing DFTC protocol assuming a
weakly fair daemon.



212 A. Cournier, S. Devismes, and V. Villain

DFS of Huang and Chen does not works assuming an unfair daemon. Indeed,
under an unfair daemon, a possible execution of DFS is the following: the pro-
tocol can perform infinitively often uncomplete token circulation because some
isolated processors p satisfying Dp = NULL ∧ Cp = ERROR remains in the
network. This is due to the fact that a processor that holds the token from the
root simply ignores its neighbors such that D = NULL ∧ C = ERROR. How-
ever, starting from any configuration, if the unfair daemon eventually blocks the
progression the legal segment, then this blocking can last only a finite number
of steps because the number of actions that can be executed, the actions on
the legal segment apart, is finite. So, this means that the unfair daemon can-
not prevent forever the tokens from the root to circulate in the network. This
also implies that the unfair daemon cannot prevent forever the root to decide.
Transposed to DFS′, these properties insures that:

1. Only a finite number of actions of DFS ′ can be executed before Endr :=
true.

2. Since Endr = true, only a finite number of actions of DFS ′ can be executed
before Reset(DFS′) moves (indeed, since Endr = true, the initialization
action of DFS′ are disabled until F -action at r sets Endr to false).

Clearly, 1. and 2. implies the following theorem:

Theorem 11. SSBB(DFS ′) is a snap-stabilizing DFTC protocol assuming an
unfair daemon.

By Theorem 7, we know that, starting from any configuration, a requested wave
of SSBB(DFS ′) is initiated in O(N +R1(DFS)+R2(DFS)) where R1(DFS) is
the maximal number of rounds starting from any configuration before r decides
in DFS and R2(DFS) be the maximal number of rounds that DFS requires to
perform a DFTC starting from a configuration γi where ∀p ∈ V , Dp = NULL
∧ Cp = 1. In the same way, by Corollary 1, starting from any configuration,
a complete requested wave of SSBB(DFS ′) is executed in O(N + R1(DFS) +
R2(DFS). Clearly, starting from any configuration, r decides in DFS in O(N)
rounds and starting from γi, a DFTC is also performed in O(N) rounds. So,
R1(DFS) and R2(DFS) are both in O(N) rounds and follows:

Theorem 12. Starting from any configuration, a requested DFTC is initiated
(resp. performed) using SSBB(DFS ′) in O(N) rounds.

This latter result is very surprising because DFS alone stabilizes in Ω(D × N)
rounds. Actually, Theorems 11 and 12 show that our transformer (SSBB) allows
not only to snap-stabilize some self-stabilizing protocols but also, in some case,
it enhances the fairness and the time complexity of the protocols. We conjecture
that we can obtain the same results with the self-stabilizing protocols in [12,13].

6 Conclusion

We propose a semi-automatic method to snap-stabilize self-stabilizing wave pro-
tocols for arbitrary networks with one initiator and such that their decision



From Self- to Snap- Stabilization 213

actions are at the initiator only. The snap-stabilizing solution we obtain with
our technique works at least with the same daemon than the self-stabilizing
protocol to snap-stabilizing. But, in some case like the DFTC protocol of [5],
we obtain a solution working with a weaker scheduling assumption. Also, the
solution we obtain could be better in time complexities than the self-stabilizing
protocol we want to transform. For instance, despite the DFTC protocol of [5]
stabilizes in Ω(D × N) rounds, its snap-stabilizing version executes a requested
DFTC (as expected) in O(N) rounds.

References

1. Dijkstra, E.: Self stabilizing systems in spite of distributed control. Communica-
tions of the Association of the Computing Machinery 17 (1974) 643–644

2. Bui, A., Datta, A., Petit, F., Villain, V.: State-optimal snap-stabilizing PIF in tree
networks. In: Proceedings of the Fourth Workshop on Self-Stabilizing Systems,
Austin, Texas, USA, IEEE Computer Society Press (1999) 78–85

3. Katz, S., Perry, K.: Self-stabilizing extensions for message-passing systems. Dis-
tributed Computing 7 (1993) 17–26

4. Cournier, A., Datta, A., Petit, F., Villain, V.: Enabling snap-stabilization. In:
23th International Conference on Distributed Computing Systems (ICDCS 2003),
Providence, Rhode Island USA, IEEE Computer Society Press (2003) 12–19

5. Huang, S., Chen, N.: Self-stabilizing depth-first token circulation on networks.
Distributed Computing 7 (1993) 61–66

6. Tel, G.: Introduction to distributed algorithms. Cambridge University Press, Cam-
bridge, UK (Second edition 2001)

7. Dolev, S., Israeli, A., Moran, S.: Uniform dynamic self-stabilizing leader election.
IEEE Transactions on Parallel and Distributed Systems 8(4) (1997) 424–440

8. Blin, L., Cournier, A., Villain, V.: An improved snap-stabilizing PIF algorithm.
In: DSN SSS’03 Workshop: Sixth Symposium on Self-Stabilizing Systems (SSS’03),
LNCS 2704 (2003) 199–214

9. Cournier, A., Devismes, S., Villain, V.: Snap-stabilizing PIF and useless computa-
tions. In: The Twelfth International Conference on Parallel and Distributed Sys-
tems (ICPADS’06). Volume 1., Minneapolis, USA, IEEE Computer Society Press
P2612 (2006) 39–46

10. Cournier, A., Devismes, S., Villain, V.: Snap-stabilizing PIF and useless computa-
tions. Technical Report LaRIA-2006-04, LaRIA, CNRS FRE 2733 (2006) Available
at www.laria.u-picardie.fr/∼devismes/LaRIA-2006-04.pdf.

11. Gouda, M.G., Herman, T.: Adaptive programming. IEEE Trans. Softw. Eng. 17(9)
(1991) 911–921

12. Johnen, C., Beauquier, J.: Space-efficient distributed self-stabilizing depth-first
token circulation. In: Proceedings of the Second Workshop on Self-Stabilizing Sys-
tems, Las Vegas (UNLV), USA, Chicago Journal of Theoretical Computer Science
(1995) 4.1–4.15

13. Datta, A., Johnen, C., Petit, F., Villain, V.: Self-stabilizing depth-first token cir-
culation in arbitrary rooted networks. In: SIROCCO’98, The 5th International
Colloquium On Structural Information and Communication Complexity Proceed-
ings, Carleton University Press (1998) 229–243


	Introduction
	Preliminaries
	The Approach
	Correctness
	Complexity Analysis

	Example
	Conclusion

