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Abstract. A snap-stabilizing protocol, starting from any arbitrary ini-
tial configuration, always behaves according to its specification. In [4],
we presented the first snap-stabilizing depth-first search (DFS) wave
protocol for arbitrary rooted networks working under an unfair daemon.
However, this protocol needs O(NN ) states per processors (where N is
the number of processors) and needs ids on processors. In this paper,
we propose an original snap-stabilizing solution for this problem with a
strongly enhanced space complexity, i.e., O(∆2 × N) states where ∆ is
the degree of the network. Furthermore, this new protocol does not need
a completely identified network: only the root needs to be identified, i.e.,
the network is semi-anonymous.

1 Introduction

In an arbitrary rooted network, a Depth-First Search (DFS) Wave is initiated
by the root. In this wave, all the processors are sequentially visited in depth-first
search order. This scheme has many applications in distributed systems. For
example, the solution of this problem can be used for solving mutual exclusion,
spanning tree computation, constraint programming, routing, or synchroniza-
tion.

The concept of self-stabilization [7] is the most general technique to design a
system tolerating arbitrary transient faults. A self-stabilizing system, regardless
of the initial states of the processors and messages initially in the links, is guar-
anteed to converge to the intended behavior in finite time. Snap-stabilization
was introduced in [2]. A snap-stabilizing protocol guaranteed that it always be-
haves according to its specification. In other words, a snap-stabilizing protocol
is also a self-stabilizing protocol which stabilizes in 0 time unit. Obviously, a
snap-stabilizing protocol is optimal in stabilization time.

Related Works. Several self-stabilizing (but not snap-stabilizing) wave protocols
based on the depth-first token circulation (DFTC) have been proposed for ar-
bitrary rooted networks, e.g., [9,11,10,6]. All these papers have a stabilization
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time in O(D × N) rounds where N is the number of processors and D is the di-
ameter of the network. The protocols proposed in [11,10,6] attempted to reduce
the memory requirement from O(∆×N) [9] to O(∆) states per processor where
∆ is the degree of the network. However, the correctness of all the above proto-
cols is proven assuming a (weakly) fair daemon. Roughly speaking, a daemon is
considered as an adversary which tries to prevent the protocol to behave as ex-
pected, and fairness means that the daemon cannot prevent forever a processor
to execute an enabled action.

The first snap-stabilizing DFTC has been proposed in [12] for tree networks.
In arbitrary networks, a universal transformer providing a snap-stabilizing ver-
sion of any (neither self- nor snap-) protocol is given in [3]. Obviously, combining
this protocol with any DFTC protocol, we obtain a snap-stabilizing DFTC pro-
tocol for arbitrary networks. However, the resulting protocol works assuming a
weakly fair daemon only. Indeed, it generates an infinite number of snapshots,
independently of the token progress. Therefore, the number of steps per wave
cannot be bounded. Finally, we propose in [4] the first snap-stabilizing DFS pro-
tocol for arbitrary rooted network assuming an unfair daemon, i.e., the weakest
scheduling assumption. In contrast with the previous solutions, the time com-
plexity of each wave of the protocol can now be bounded in terms of steps.

Contribution. The protocol of [4] works on identified networks and needs O(NN )
states per processor. In this paper, we reduce this space complexity to O(∆2×N)
states per processor using a method similar to that in [1]. This new solution
also works assuming an unfair daemon. Moreover, our protocol does not need
a completely identified network: only the root needs to be identified, i.e., the
network is semi-anonymous. Unfortunately, the time complexities of our protocol
are greater than those in [4]: a complete DFS Wave needs O(N2) rounds and
O(N3) steps instead of O(N) rounds and O(N2) steps. Nevertheless, the gain of
space requirement is such that the worst time complexities are a minor drawback.

Outline of the Paper. The rest of the paper is organized as follows: in Section 2,
we describe the model in which our protocol is written. Moreover, in the same
section, we give a formal statement of the Depth-First Search Wave Protocol
solved in this paper. In Section 3, we present the protocol and the intuitive ideas
of its correctness (due to the lack of space, the proof of correctness has been
omitted). Finally, we make concluding remarks in Section 4.

2 Preliminaries

Network. We consider a network as an undirected connected graph G = (V ,
E) where V is a set of processors (|V | = N) and E is the set of bidirectional
communication links. We consider networks which are asynchronous and rooted,
i.e., among the processors, we distinguish a particular processor called root. We
denote the root processor by r. A communication link (p, q) exists if and only if
p and q are neighbors. Every processor p can distinguish all its links. To simplify
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the presentation, we refer to a link (p, q) of a processor p by the label q. We
assume that the labels of p, stored in the set Neigp, are locally ordered by ≺p.
We assume that Neigp is a constant and shown as an input from the system.

Computational Model. In our model, each processor executes the same program
except r. We consider the local shared memory model of computation. The pro-
gram of every processor consists in a set of shared variables (henceforth, referred
to as variables) and a finite set of actions. A processor can write to its own
variable only, and read its own variables and that of its neighbors. Each action
is constituted as follows: < label > :: < guard > → < statement > . The guard
of an action in the program of p is a boolean expression involving variables of p
and its neighbors. The statement of an action of p updates one or more variables
of p. An action can be executed only if its guard is satisfied. We assume that the
actions are atomically executed, i.e., the evaluation of a guard and the execution
of the corresponding statement, if executed, are done in one atomic step.

The state of a processor is defined by the value of its variables. The state
of a system is the product of the states of all processors. We will refer to the
state of a processor and the system as a (local) state and (global) configuration,
respectively. We note C the set of all possible configuration of the system. Let
γ ∈ C and A an action of p (p ∈ V ). A is said enabled in γ if the guard of A is
satisfied in γ. Processor p is said to be enabled in γ if it has an enabled action
in γ.

Let a distributed protocol P be a collection of binary transition relations
denoted by �→, on C. A computation of a protocol P is a maximal sequence of
configurations e = (γ0,γ1,...,γi,γi+1,...), such that for i ≥ 0, γi �→ γi+1 (called a
step) if γi+1 exists, else γi is a terminal configuration. Maximality means that
the sequence is either finite (and no action of P is enabled in the terminal
configuration) or infinite. All computations considered in this paper are assumed
to be maximal. The set of all possible computations of P is denoted by E .

As we have already said, each execution is decomposed into steps. Each step
is shared into three sequential phases atomically executed: (i) every processor
evaluates its guard, (ii) a daemon (also called scheduler) chooses some enabled
processors, and (ii) the chosen processors execute some of their enabled actions.
When these three phases are done, the next step begins.

A daemon can be defined in terms of fairness and distributivity. In this paper,
we use the notion of weakly fairness: if a daemon is weakly fair, then every
continuously enabled processor is eventually chosen (by the daemon) to execute
an action. We also use the notion of unfairness: the unfair daemon can forever
prevent a processor to execute an action except if it is the only enabled processor.
Concerning the distributivity, we assume that the daemon is distributed meaning
that, at each step, if one or more processor are enabled, then the daemon chooses
at least one (possibly more) of these processors to execute actions.

We consider that any processor p executed a disabling action in the compu-
tation step γi �→ γi+1 if p was enabled in γi and not enabled in γi+1, but did
not execute any action between these two configurations. (The disabling action
represents the following situation: at least one neighbor of p changes its state
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between γi and γi+1, and this change effectively made the guard of all actions
of p false.)

To compute the time complexity, we use the definition of round [8]. This de-
finition captures the execution rate of the slowest processor in any computation.
Given a computation e (e ∈ E), the first round of e (let us call it e′) is the mini-
mal prefix of e containing the execution of one action (an action of the protocol
or the disabling action) of every enabled processor from the first configuration.
Let e′′ be the suffix of e such that e = e′e′′. The second round of e is the first
round of e′′, and so on.

In order to make our protocol more readable, we design it as a composition
of four algorithms. In this composition, if a processor p is enabled for k of the
combined algorithms, then, if the daemon chooses it, p executes an enabled
action of each of the k algorithms, in the same step. Variables, predicates, or
macros of Algorithm A used by Algorithm B are shown as inputs in Algorithm
B.

Snap-Stabilizing Systems. Snap-stabilization [2] is a general concept which can
be apply to several kinds of distributed protocol. However, the protocol presented
in this paper is a wave protocol as defined by Tel in [13]. So, we now propose a
simpler definition of snap-stabilization holding for wave protocols:

Definition 1. [Snap-stabilization for Wave Protocols] Let T be a task, and SPT
a specification of T . A wave protocol P is snap-stabilizing for SPT if and only
if: (i) at least one processor eventually executes a particular action of P, and
(ii) the result obtained with P from this particular action always satisfies SPT .

Specification of the Depth-First Search Wave Protocol.

Specification 1. Let Visited be a set of processors. A finite computation e ∈ E
is called a DFS Wave if and only if: (i) r initiates the DFS Wave by initializing
Visited with r, (ii) all other processors are then sequentially included in Visited
in DFS order, and (iii) r eventually detects the termination of the process.

Remark 1. So, in the practice, to prove that our protocol is snap-stabilizing
we have to show that every execution of the protocol satisfies: (i) r eventually
initiates a DFS Wave, and (ii) thereafter, the execution satisfies Specification 1.

3 Algorithm

We now present an informal description of our DFS Wave protocol (see Algo-
rithms 1 to 8 for the formal description). Along this description, we will give
the main keys to understand why our protocol is snap-stabilizing. For a sake of
clarity, we divided our protocol, referred to as Algorithm DFS, into four phases:

1. The visiting phase (Algorithms 1 and 2) sequentially visits the processors in
depth-first search order: Starting from r, the visit progresses as deeply as
possible in the network. When the visit cannot progress anymore (i.e., the
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visit reaches a processor with a completely visited neighbourhood), the visit
backtracks to the latest visited processor having some non-visited neighbors,
if any. The visit terminates when it backtracks to r and r has a completely
visited neighbourhood.

2. The cleaning phase (Algorithms 3 and 4) cleans the trace of the last visiting
phase so that the root is eventually ready to initiate another visiting phase
again. The cleaning phase is initiated only when the visiting phase is entirely
done.

3. The confirmation phase (Algorithms 5 and 6) prevents to forgot some proces-
sors in the visiting phase initiated by the root (especially when the system
contains some erroneous behaviors). The confirmation phase is performed
each time the protocol needs to be sure that all the neighbors of the latest
visited processor have been visited by the normal visiting phase, i.e., the
visiting phase from the root. Indeed, since the system starts from any con-
figuration, some visiting phases can be rooted at another processor than r,
i.e., the abnormal visiting phases.

4. The abnormal trees’ deletion (Algorithms 7 and 8) erases all the abnormal
visiting phases.

In order to more precisely describe this four phases, we first present how to imple-
ment a non self-stabilizing DFS protocol (visiting phase and cleaning phase).
We then explain the problems appearing when we use this protocol in a self-
stabilizing1 context and how to solve them (abnormal trees’ deletion, confirma-
tion phase, ...). In particular, we will present some tools used for insuring the
snap-stabilization of our protocol, i.e., the optimality of our protocol in terms of
stabilization time.

Algorithm 1. Visiting Phase for p = r
Inputs:
on read: Neigp: set of neighbors (locally ordered);

Childp: macro of the abnormal trees’ deletion;
on read/write: Quep: variable of the confirmation phase;

Constants: Lp = 0; Parp =⊥;

Variable: Sp ∈ Neigp ∪ {idle, rdone};
Macro:
Nextp = (q = min≺p{q′ ∈ Neigp :: Sq′ = idle}) if q exists, rdone otherwise;
RealChildp = {q ∈ Childp :: Eq �= Ep ⇒ Ep = B}; /∗ valid for Sp �= idle only ∗/
Predicates:
End(p) ≡ (∀q ∈ Neigp :: Sq �= idle ⇒ Parq �= p)
AnswerOK(p) ≡ (Quep = A) ∧ (∀q ∈ Neigp :: Sq �= idle ⇒ Queq = A)
Forward(p) ≡ (Sp = idle) ∧ (∀q ∈ Neigp :: Sp = idle)
Backward(p) ≡ (∃q ∈ Neigp :: Sp = q ∧ Parq = p ∧ Sq = done)

∧ [AnswerOK(p) ∨ (∃q ∈ Neigp :: Sq = idle)]
Actions:
F -action :: Forward(p) → Sp := Nextp; Quep := Q;
B-action :: Backward(p) → Sp := Nextp;

1 Remember that our snap-stabilizing protocol is a self-stabilizing protocol which sta-
bilizes in 0 time unit.
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Visiting Phase. In our non self-stabilizing protocol, each processor p maintains
two variables to implement this phase2:

- ∀p ∈ V , Sp ∈ Neigp ∪ {idle, done} if p �= r and Sp ∈ Neigp ∪ {idle,
rdone} if p = r. Sp = idle means that p is ready to be visited. Sp = q
such that q ∈ Neigp means that p participates to a visiting phase and its
successor in the visit is its neighbor q (respectively, p is called the predecessor
of q). Finally, Sp is set to done (resp. rdone if p = r) when the visit locally
terminates at p.

- ∀p ∈ V , Parp is used for keeping a mark of the DFS spanning tree computed
by the protocol. Indeed, Parp designates the parent of p in the traversal:
when p is visited for the first time, it designates its predecessor with Parp.
Obviously, r never has any parent. So, we state that Parr is the constant ⊥.

Since our protocol is non self-stabilizing, any execution must start from particu-
lar configurations. We call these configurations the normal initial configurations.
Here, there is only one normal initial configuration for our protocol and it is de-
fined as follows: ∀p ∈ V , Sp = idle. In this configuration, the root r initiates a
visiting phase by pointing out using Sr to its minimal neighbor p in the local
order ≺r (F -action). By this action, r becomes the only visited processor. Then,
at each step, exactly one processor p is enabled and two cases are possible:

a) Sp = idle and ∃q ∈ Neigp such that Sq = p. In this case, p �= r and p
executes F -action to be visited for the first time. First, p points out to q (its
predecessor) using Parp. Then, p computes Sp as follows:

- If p has still some non-visited neighbors, i.e., ∃p′ ∈ Neigp such that
Sp′ = idle, then p chooses its minimal non-visited neighbor by ≺p as its
successor in the traversal.

- Otherwise p sets Sp to done.
b) Sp = q (q ∈ Neigp) and Sq = done, i.e., the visiting phase backtracks to p

because the visit from q is terminated. In this case p executes B-action:
- If p has still some non-visited neighbors, then it updates Sp by pointing

out to a new successor (its minimal non-visited neighbor by ≺p).
- Otherwise it sets Sp to done (resp. rdone if p = r).

Therefore, step by step, the visiting phase dynamically built a spanning tree
of the network rooted at r (w.r.t. the Par variable), noted Tree(r). It is easy
to see that this phase follows a DFS order and the number of steps required
for the phase is 2N − 1. Moreover, since the behavior is sequential, the number
of rounds is the same. Finally, Sr is eventually set to rdone meaning that the
visiting phase is terminated for all processors. By this latter action, r initiates
the cleaning phase.

Cleaning Phase. The aim of the cleaning phase is to erase the trace of the last
visiting phase in order to bring the system in the normal initial configuration
2 This phase does not exactly correspond to Algorithms 1 and 2. Indeed, we will see

later that this phase must be modified in order to run correctly in a self-stabilizing
context.
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Algorithm 2. Visiting Phase for p �= r
Inputs:
on read: Neigp: set of neighbors (locally ordered);

Childp: macro of the abnormal trees’ deletion;
on read/write: Quep: variable of the confirmation phase;

Ep: variable of the abnormal trees’ deletion;
Variables: Sp ∈ Neigp ∪ {idle, wait, done, rdone}; Parp ∈ Neigp; Lp ∈ N;

Macros:
WaitOrDonep = wait if (Sp = idle), done otherwise;
Nextp = (q = min≺p{q′ ∈ Neigp :: Sq′ = idle}) if q exists, WaitOrDonep otherwise;
Predp = {q ∈ Neigp :: Sq = p ∧ Eq = C};
RealChildp = {q ∈ Childp :: Eq �= Ep ⇒ Ep = B}; /∗ valid for Sp �= idle only ∗/
Predicates:
End(p) ≡ (∀q ∈ Neigp :: Sq �= idle ⇒ Parq �= p)
AnswerOK(p) ≡ (Quep = A) ∧ (∀q ∈ Neigp :: Sq �= idle ⇒ Queq = A)
Forward(p) ≡ (Sp = idle) ∧ (|Predp| = 1) ∧ End(p)
WaitOk(p) ≡ Normal(p) ∧ (Sp = Wait) ∧ [AnswerOK(p) ∨ (∃q ∈ Neigp :: Sq = idle)]
Backward(p) ≡ Normal(p) ∧ (∃q ∈ Neigp :: Sp = q ∧ Parq = p ∧ Sq = done)

∧ [AnswerOK(p) ∨ (∃q ∈ Neigp :: Sq = idle)]
BadSucc(p) ≡ Normal(p) ∧ AnswerOk(p)

∧ (∃q ∈ Neigp :: Sp = q ∧ q /∈ RealChildp ∧ Sq �= idle)
Actions:
F -action :: Forward(p) → Parp := (q ∈ Predp); Sp := Nextp;

Quep := Q; Lp := LParp + 1; Ep := C;
Fbis-action :: WaitOk(p) → Sp := Nextp;
B-action :: Backward(p) → Sp := Nextp;
IE-action :: BadSucc(p) → Sp := Nextp;

Algorithm 3. Cleaning Phase for p = r
Inputs:
on read: Neigp: set of neighbors (locally ordered);

End(p): predicate of the visiting phase;
on read/write: Sp: variable of the visiting phase;

Predicate:

Clean(p) ≡ (Sp = rdone) ∧ End(p) ∧ (∀q ∈ Neigp :: Sq ∈ {idle, rdone})
Action:

C-action :: Clean(p) → Sp := idle;

again (∀p ∈ V , Sp = idle). Only the root can detect if the visiting phase is
entirely done: when r sets Sr to rdone. Since the root detects the end of the vis-
iting phase, the rdone value is propagated toward the leaves of Tree(r) following
the Par variables (RD-action) to inform all processors of this termination (to
that goal, we add the state rdone into the definition of Sp, ∀p ∈ V \ {r}). Then,
each leaf of Tree(r) successively cleans itself by setting its S variable to idle
(C-action). Therefore, the system eventually reaches the normal initial configu-
ration again. This phase adds 2N −1 steps and the number of additional rounds
is 2H + 1 where H is the height of the tree computed during the visiting phase
(n.b., H is bounded by N − 1).

We presented a non self-stabilizing DFS protocol. Of course, in the context
of self-stabilization, this protocol does not work correctly. So, we must modify
its existing actions as well as we must add some other actions. In particular, we
introduce the confirmation phase to guarantee that a visiting phase initiated by
the root eventually visits all processors. This latter point is crucial to obtain a
snap-stabilizing protocol.
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Algorithm 4. Cleaning Phase for p �= r
Inputs:
on read: Neigp: set of neighbors (locally ordered);

Parp: variable of the visiting phase;
End(p): predicate of the visiting phase;
Normal(p): predicate of the abnormal trees’ deletion;

on read/write: Sp: variable of the visiting phase;

Predicates:
RdonePar(p) ≡ Normal(p) ∧ (Sp = done) ∧ (SParp = rdone)
Clean(p) ≡ Normal(p) ∧ (Sp = rdone) ∧ End(p) ∧ (∀q ∈ Neigp :: Sq ∈ {idle, rdone})
Actions:
RD-action :: RdonePar(p) → Sp := rdone;
C-action :: Clean(p) → Sp := idle;

Modifying the Existing Actions. Starting from any arbitrary configuration, the
system may contain successors’ cycles. We detect this error by using a new
variable L for each processor. For the root, Lr is the constant 0. Each other
processor p dynamically computes its L variable each time it executes F -action:
Lp := Lq +1 where q is the predecessor of p (n.b., p does not execute F -action if
it has several predecessors). Typically, Lp contains the length of the path from
the root r to p w.r.t. the variable Par. Obviously, in a cycle of successors, at
least one processor p satisfies Lp �= LParp + 1.

In the visiting phase, we have shown that a visited processor p sets Sp to done
(resp. rdone if p = r) when all its neighbors have been visited. In the non self-
stabilizing context, p can easily detect when all neighbors are visited: when ∀p′ ∈
Neigp, Sp′ �= idle. However, in a self-stabilizing scheme, since some neighbors of
p may belong to abnormal visiting phases, this condition is not sufficient. So, in
order to guarantee that every neighbor of p is visited, we introduce a new phase,
the confirmation phase. The aim of this phase is to insure that a processor p,
participating to a visiting phase initiated by r, sets Sp to done (resp. rdone if
p = r) only when its neighbourhood is completely visited by the visiting phase
from r. To apply this concept, we add the state wait into the definition of Sp,
∀p ∈ V \ {r} and we change F -action of the initial protocol: when a processor
p �= r receives a visiting phase (F -action) and satisfies ∀p′ ∈ Neigp, Sp′ �= idle,
it now sets Sp to wait instead of done (see Macros Nextp and WaitOrDonep).
This action initiates the confirmation phase. We now describe in details the
confirmation phase.

Confirmation Phase. To implement this phase, we introduce a new variable Quep

for each processor p: Quep ∈ {Q, R, W , A} if p �= r and Quep ∈ {Q, R, A} if
p = r. The Q and R value are used for resetting the part of the network which is
concerned by the confirmation phase. The W value corresponds to the request of
a processor: “Have I terminated my visiting phase?”. The A value corresponds
to the answer sending by the root (n.b., the root is the only processor able to
generate a A value). We now explain how this phase works.

The confirmation phase concerns processors such that S �= idle only. Variable
Quep of a processor p is initialized by F -action of the visiting phase: Quep := Q.
This value forces all its neighbors satisfying S �= idle to execute Que := R (R-
action). When all the neighbors of p have reset, p also executes Quep := R. Then,
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the R values are propagated up as far as possible following the Par variable (R-
action). By this mechanism, the A values are deleted in the Par paths of p and
its neighbors (in particular, the A values present since the initial configuration).
Thus, from now on, when a A value reaches a requesting processor, this value
cannot come from anyone but r and the processor obviously belongs to the nor-
mal visiting phase. Now, as we have seen before, a processor q (q �= r) eventually
waits a confirmation from the root that all its neighbors are visited (Sq = wait).
In this case, q and its neighbors satisfying S = done execute W -action3, i.e.,
Que := W meaning that they are now waiting for an answer from r. W value
is propagated toward the root if possible (a processor p propagates the W value
when all its children satisfies Que /∈ {Q, R}). When the W value reaches the
children of r, r executes its A-action: it sends an answer (A) to its children and
so on. So, if q and its neighbors receive this answer (A), q is sure that it and
all its neighbors belong to Tree(r). In this case, q satisfies AnswerOk(q) and
executes Fbis-action to set Sq to done meaning that the visiting phase from it
is now terminated and so on.

We now explain why a visited processor needs to initiate the confirmation
phase only once: when it executes F -action. Assume that a processor of the vis-
iting phase initiated by r, p, has a neighbor q such that q belongs to an abnormal
visiting phase. We have already seen that, when p is visited for the first time
(F -action), it also executes Quep := Q. This action initiates the confirmation
phase and forces q to execute Queq := R (R-action). This value erases all A
values in the Par path of q. Since only r can generate a A value, q never receives
any A. Thus, p cannot satisfy AnswerOk(p) while q belongs to an abnormal
visiting phase. As a consequence, p cannot set Sp to done (resp. rdone if p = r)
while one of its neighbor belongs to an abnormal visiting phase (see Fbis-action
and B-action).

Unfortunately, starting from the normal initial configuration, this phase
strongly slows down the initial protocol, nevertheless, it does not generate any
deadlock. The worst case (starting from the normal initial configuration) is ob-
tained with a computed tree of height in O(N) with a number of leaves also
in O(N) at a distance in O(N) of the root. In that case, Θ(N) W -actions are
initiated by these leaves. So, the complexity is in Θ(N2) steps. Due to the se-
quentiality along the path from a requesting leaf to the root, the complexity in
terms of rounds is also in Θ(N2).

Of course, we have now to deal with abnormal configurations. We first in-
troduce a new action in the visiting phase to remove some deadlock due to the
variables’ initial configurations of the visiting phase itself.

IE-Action. To prevent the system from any deadlock, we add IE-action to solve
a case which can only appear in the initial configuration: The active end of
Tree(r) (i.e., the only processor p ∈ Tree(r) such that End(p) ∧ Sp /∈ {done,

3 Starting from an arbitrary configuration, the neighbors of q satisfying S = done can
belong to Tree(r), so, they must also receive an acknowledgment from r so that q
knows that they are not in an abnormal visiting phase.
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Algorithm 5. Confirmation Phase for p = r
Inputs:
on read: Neigp: set of neighbors (locally ordered);

Sp: variable of the visiting phase;
RealChildp: predicate of the visiting phase;

Variable: Quep ∈ {Q, R, A};
Predicates:
Require(p) ≡ (Sp �= idle) ∧ [[Quep = Q∧ (∀q ∈ Neigp :: Sq �= idle ⇒ Queq ∈ {Q, R})]

∨ [Quep = A ∧ (∃q ∈ Neigp :: (Sq �= idle ∧ Queq = Q)
∨ (q ∈ RealChildp ∧ Queq = R))]]

Answer(p) ≡ (Sp �= idle) ∧ (Quep = R) ∧ (∀q ∈ RealChildp :: Queq ∈ {W ,A})
∧ (∀q ∈ Neigp :: Sq �= idle ⇒ Queq �= Q)

Actions:
R-action :: Require(p) → Quep := R;
A-action :: Answer(p) → Quep := A;

Algorithm 6. Confirmation Phase for p �= r
Inputs:
on read: Neigp: set of neighbors (locally ordered);

Sp, Parp: variables of the visiting phase;
RealChildp: macro of the visiting phase;
End(p): predicate of the visiting phase;
Normal(p): predicate of the abnormal trees’ deletion;

Variable: Quep ∈ {Q, R, W , A};
Predicates:
Require(p) ≡ Normal(p) ∧ (Sp �= idle)

∧ [[Quep = Q ∧ (∀q ∈ Neigp :: Sq �= idle ⇒ Queq ∈ {Q,R})]
∨ [Quep ∈ {W ,A}∧ (∃q ∈ Neigp :: (Sq �= idle ∧ Queq = Q)
∨ (q ∈ RealChildp ∧ Queq = R))]]

WaitAnswer(p) ≡ Normal(p) ∧ (Sp �= idle) ∧ (Quep = R) ∧ (QueP arp = R)
∧ (∀q ∈ Neigp :: Sq �= idle ⇒ Queq �= Q)
∧ [End(p) ⇒ (Sp �= rdone∧ (Sp ∈ Neigp ⇒ SSp �= idle))]
∧ [¬End(p) ⇒ (∀q ∈ RealChildp :: Queq ∈ {W ,A})]

Answer(p) ≡ Normal(p) ∧ (Sp �= idle) ∧ (Quep = W ) ∧ (QueP arp = A)
∧ (∀q ∈ RealChildp :: Queq ∈ {W , A})
∧ (∀q ∈ Neigp :: Sq �= idle ⇒ Queq �= Q)

Actions:
R-action :: Require(p) → Quep := R;
W -action :: WaitAnswer(p) → Quep := W ;
A-action :: Answer(p) → Quep := A;

rdone}) can designate as successor a processor q (i.e., Sp = q) such that q be-
longs to Tree(r). Now, thanks to the confirmation phase, p eventually knows
that it does not designate a “good” successor because p and q receives an ac-
knowledgment (A) from r. So, p eventually changes its successor by IE-action.
In the following, IE-action is considered as an action of the visiting phase. This
action is enough to break the deadlock of the visiting phase rooted at r. This
action (and the confirmation phase associated) does not add a significant cost.

We need now to deal with abnormal visiting phases, i.e., visiting phases
rooted at another processor than r. The abnormal trees’ deletion we now intro-
duce erases these abnormal visiting phases.

Abnormal Trees’ Deletion. We first explain how to detect the abnormal visiting
phases. In a normal visiting phase, each non-root processor p must maintain
some properties based on the value of its variables and that of its parent. We
list these conditions below:
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1. If p is involved in the DFS Wave (Sp �= idle) and p is designated as successor
by its parent (SParp = p) then Sp must be different of the rdone value.
Indeed, the rdone value is generated by the root only and is propagated
down in the spanning tree.

2. If p is involved in the DFS Wave and p is not designated as successor by
its parent (SParp �= p) then the visiting phase from p is terminated, i.e.,
Sp ∈ {done, rdone}.

- If Sp = rdone then its parent, Parp, must satisfy SParp = rdone. Indeed,
the rdone value is propagated from the root to the leaves of Tree(r) after
the end of the visiting phase.

- If Sp = done then, as SParp �= p, the visiting phase has backtracked to
Parp (by B-action). So, either Parp points out to another successor,
i.e., SParp ∈ NeigParp \ {p}; or the visiting phase from Parp is also
terminated, i.e., SParp ∈ {done, rdone}. More simply, if SParp �= p and
Sp = done then, SParp /∈ {idle, wait}.

3. Finally, if p is involved in the DFS Wave and p satisfies 1. and 2. (Predicate
GoodPar(p)) then its level Lp must be equal to one plus the level of its
parent (Predicate GoodLevel(p)).

If one of these conditions is not satisfied by p then AbRoot(p) is true. Now,
starting from any configuration, p may satisfy AbRoot. We can then remark
that the abnormal visiting phase from p shapes an abnormal tree noted Tree(p):
∀q ∈ V , q ∈ Tree(p) if and only if there exists a sequence of nodes (p0 = p), ...,
pi, ..., pk such that, ∀i ∈ [1...k], pi ∈ Childpi−1 (among the neighbors designating
pi−1 with Par, only those satisfying S �= idle ∧ ¬AbRoot are considered as pi−1
children).

We now explain how the protocol cleans these abnormal trees. In order to
clean the abnormal tree Tree(p), we cannot simply set Sp to idle. Since some
processors in the visiting phase can be in Tree(p). If we simply set Sp to idle,
then p can participate again to the visiting phase of the tree of which it was the
root. As we do not assume the knowledge of any bound on the L values (we may
assume that the maximum value of L is any upper bound of N), this scheme
can progress infinitely often, and the system contains an abnormal tree which
can prevent the progression of the tree of the normal visiting phase (Tree(r)).
We solve this problem by paralyzing the progress of any abnormal tree before
removing it. First, a processor p can be visited from its neighbor q only if q
satisfies Sq = p and Eq = C (see Predp). Then, if p hooks on to Tree(q) (F -
action), it also executes Ep := C. If q is an abnormal root, then it sets its
variable Eq to B and broadcasts this value in its tree (and only in its tree).
When q receives an acknowledgment of all its children (Value F of Variable E),
it knows that all the processors p of its tree have Ep = F and no processor
can now participate in the visiting phase from any p. So, q can leave its tree
(EC-action) and it will be no more visited by this abnormal visit. Thus, by this
mechanism, all the abnormal trees eventually disappear.

The management of the E variables adds new kind of errors. Indeed, ∀p,
q ∈ V such that Sp �= idle ∧ Sq �= idle ∧ Parq = p ∧ ¬AbRoot(q), p and
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Algorithm 7. Abnormal trees’ Deletion for p = r
Inputs:
on read: Neigp: set of neighbors (locally ordered);

Sp, Parp, Lp: variables of the visiting phase;
Constant: Ep = C;

Macros:
Childp = {q ∈ Neigp :: Parq = p ∧ Sq �= idle ∧ Lq = Lp + 1 /∗ valid for Sp �= idle only ∗/

∧ (Sp = q ⇒ Sq �= rdone) ∧ [[Sp �= q] ⇒ [(Sq = rdone ∧ Sp = rdone) ∨ (Sq = done)]]};

q must satisfy (Ep, Eq) ∈ {(B,C), (B,B), (B,F ), (F ,F ), (C,C)}. Predicates
FCorrection(p), BCorrection(p), and CCorrection(p) allows to detect if this
condition is not satisfied by p and q. Now, we can remark that these kinds of
error are local and can only appear in the initial configuration. So, we simply
correct it by executing Sq := idle and Eq := C (EC-action).

To remove an abnormal tree, any processor in the tree has at most three
actions to execute. So, the additional cost of this phase is in Θ(N) by tree for
both steps and rounds. So, in the worst case (Θ(N) abnormal trees), the cost is
in Θ(N2) steps but is still in Θ(N) rounds because trees are removed in parallel.

Nevertheless, the presence of abnormal trees in the system involves an over-
cost in terms of steps for the visiting, cleaning, and confirmation phases, respec-
tively (the overcost in terms of rounds is not significant because the abnormal
trees are removed in Θ(N) rounds). Indeed, each time a processor p initiates a
question (in the confirmation phase), this question can be propagated to (in the
worst case) all the processors of the network. So, the overcost is O(N) steps for
each processor (O(N)) of each tree (O(N)), i.e., O(N3) steps. Concerning now
the visiting phase, a processor p such that p �= r can execute an action of the vis-
iting phase while it is in an abnormal tree (because of the initial configuration)
or can hook on to abnormal tree by F -action. But, in both cases, a confirmation
phase will be initiated (by p or one of its descendants) before p executes another
action of the visiting phase. As explained before, this phase will lock the visiting
phase for p until it leaves its tree. In the same way, p may execute its cleaning
phase once (RD-action and C-action) to leave its tree but the next time it hook
on to an abnormal tree, it will be lock by the confirmation phase and will ex-
ecute no action of the cleaning phase until it leaves the tree by the abnormal
trees’ deletion. So, the overcost is O(1) steps for each processor (O(N)) of each
tree (O(N)), i.e., O(N2) steps. Hence, globally, the presence of abnormal trees
in the system involves an overcost in terms of steps which is significant for the
confirmation phase only: O(N3) steps.

Snap-stabilization of the Protocol. From the previous discussion, we know that,
from normal configurations (i.e., configurations containing no abnormal trees),
a traversal rooted at r is completely performed (i.e., visiting, cleaning, and con-
firmation phases) in O(N2) steps. Also, we know that the presence of abnormal
trees in the system involves an overcost of O(N3) steps (mainly due to the con-
firmation phase). Finally, these abnormal trees are removed from the systems in
O(N2) actions of the abnormal trees’ deletion. So, despite the daemon (weakly
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Algorithm 8. Abnormal trees’ Deletion for p �= r
Inputs:
on read: Neigp: set of neighbors (locally ordered);

Parp, Lp: variables of the visiting phase;
on read/write: Sp: variable of the visiting phase;

Variable: Ep ∈ {B, F , C};
Macros:
Childp = {q ∈ Neigp :: Parq = p ∧ Sq �= idle ∧ Lq = Lp + 1 /∗ valid for Sp �= idle only ∗/

∧ (Sp = q ⇒ Sq �= rdone)
∧ [[Sp �= q] ⇒ [(Sq = rdone ∧ Sp = rdone) ∨ (Sq = done ∧ Sp /∈ {idle, wait})]]};

Predicates:
GoodLevel(p) ≡ (Sp �= idle) ⇒ (Lp = LParp + 1)
GoodPar(p) ≡ (Sp �= idle) ⇒ [[SParp = p ⇒ Sp �= rdone]

∧ [(SParp �= p) ⇒ ((Sp = rdone ∧ SP arp = rdone)
∨ (Sp = done ∧ SParp /∈ {idle, wait}))]]

AbRoot(p) ≡ GoodPar(p) ⇒ ¬GoodLevel(p)
FreeError(p) ≡ (Sp �= idle) ⇒ (Ep = C)
BadC(p) ≡ (Sp �= idle ∧ Ep = C ∧ EP arp = F )
Normal(p) ≡ ¬AbRoot(p) ∧ FreeError(p) ∧ ¬BadC(p)
BError(p) ≡ (Sp �= idle) ∧ (Ep = C) ∧ [¬AbRoot(p) ⇒ (EParp = B)]

∧ (∀q ∈ Childp :: Eq = C)
FError(p) ≡ (Sp �= idle) ∧ (Ep = B) ∧ [¬AbRoot(p) ⇒ (EParp = B)]

∧ (∀q ∈ Childp :: Eq = F )
FAbRoot(p) ≡ (Ep = F ) ∧ AbRoot(p)
BCorrection(p) ≡ (Sp �= idle) ∧ (Ep = B) ∧ ¬AbRoot(p) ∧ (EParp �= B)
FCorrection(p) ≡ (Sp �= idle) ∧ (Ep = F ) ∧ ¬AbRoot(p) ∧ (EParp = C)
CCorrection(p) ≡ (Sp �= idle) ∧ (Ep = C) ∧ ¬AbRoot(p) ∧ (EParp = F )
CError(p) ≡ FAbRoot(p) ∨ BCorrection(p) ∨ FCorrection(p) ∨ CCorrection(p)
Actions:
EB-action :: BError(p) → Ep := B;
EF -action :: FError(p) → Ep := F ;
EC-action :: CError(p) → Ep := C; Sp := idle;

fair or unfair), the abnormal trees cannot prevent forever the progression of the
visiting phase rooted at r. Then, the normal visiting phase terminates at r in a
finite number of steps (O(N3)). After this termination, the trace of the visiting
phase are erased by the cleaning phase in Θ(N) steps. So, it is easy to see that,
in the worst case, if the daemon tries to prevent r to initiate a new visiting phase,
the system eventually reaches the normal initial configuration. In this configu-
ration, r is the only enabled processor and F -action is the only enabled action
at r. So, r executes F -action in the next step and we obtain a contradiction.
Hence, from any configuration, the visiting phase starts at r after O(N3) steps.

Since r executes F -action, the visiting phase (rooted at r) sequentially pro-
gresses as deeply as possible in the network. When the visit cannot progress any
more, the visit backtracks to the latest visited processor having some non-visited
neighbors, if any. The visit terminates when it backtracks to r and r considers
that its neighbourhood is completely visited. Obviously, to be DFS, the tra-
versal performed by the visiting phase must not backtrack too earlier, i.e., the
traversal must backtrack from p only when ∀q ∈ Neigp, q ∈ Tree(r). Now, this
property is guaranteed by the confirmation phase. Indeed, since p hooks on to
the normal tree (Tree(r)) by F -action, the confirmation phase insures p will
executes Sp = done (resp. rdone if p = r) only when ∀q ∈ Neigp, q ∈ Tree(r).
Finally, we have already seen that the visiting phase rooted at r is executed in
O(N3) steps.
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Hence, by Definition 1, it is easy to see that Algorithm DFS is snap-
stabilizing for Specification 1 under an unfair daemon (see [5] for a detailed
proof).

Complexity Issues. From the previous explanations, we can deduce that the
delay to start a DFS Wave is O(N3) steps and O(N2) rounds, respectively.
Similarly, a complete DFS Wave is executed in O(N3) steps and O(N2) rounds,
respectively. Consider now the space requirement. We do not make any bound
on the value of the L variable but it is easy to see that Algorithm DFS remains
valid if we bound the maximal value of L by N . So, by taking account of the
other variables, we can deduce that Algorithm DFS is in O(∆2 × N) states.

4 Conclusion

We proposed in [4] the first snap-stabilizing DFS wave protocol for arbitrary
rooted networks assuming an unfair daemon. Until this paper, it was the only
snap-stabilizing protocol solving this problem. Like in [4], the snap-stabilizing
DFS wave protocol presented in this paper does not use any pre-constructed
spanning tree and does not need to know the size of the network. Moreover,
it is also proven assuming an unfair daemon. However, using this protocol, a
complete DFS Wave is executed in O(N2) rounds and O(N3) steps while we
obtain O(N) rounds and O(N2) steps in [4] for the same task. But, our new
solution brings some strong enhancements. In one hand, the new protocol works
on a semi-anonymous network instead of a completely identified network. In the
other hand, it requires O(∆2 × N) states per processor instead of O(NN ).
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