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1 Introduction

Self-stabilization [2–4] is an elegant approach to forward failure recovery: re-
gardless of the global state to which the failure drives the system, after the
failures stop, a self-stabilizing system is guaranteed to resume correct oper-
ation within finite time. This guarantee comes at the expense of temporary
safety violation in the sense that a self-stabilizing system may behave in-
correctly as it recovers, without a user of the system being notified of this
misbehavior.

Bui et al [5] introduce the related concept of snap-stabilization which guaran-
tees that a protocol immediately operates correctly, regardless of the arbitrary
initial state of the system. Snap-stabilization offers stronger fault-tolerance
properties than self-stabilization: regardless of the global state to which the
failure drives the system, after the failures stop, a snap-stabilizing system
immediatly resumes correct behavior.

The notion of safety that is guaranteed by snap-stabilization is orthogonal
to the notion of safety that is guaranteed by super-stabilization [6] or safe
stabilization [7]. In [6,7], some safety predicates on configurations and exe-
cutions are preserved at all times while the system is running. Of course,
not all safety predicates can be guaranteed when the system is started from
an arbitrary global state. In contrast, snap-stabilization’s notion of safety is
user-centric: when the user initiates a request, then the received response is
correct. However, between the request and the response, the system can be-
have arbitrarily (except from giving an erroneous response to the user). In
the snap-stabilizing model, all user safety predicates can be guaranteed while
recovering from arbitrary states. Then, if the system user is sensitive to safety
violation, snap-stabilization becomes an attractive option.

However, nearly every snap-stabilizing protocol presented so far assumes a
high level communication model in which any process is able to read the
states of every communication neighbor and update its own state in a sin-
gle atomic step (this model is often referred to as the shared memory model
with composite atomicity in the literature). Designing protocols with forward
recovery properties (such as self-stabilizing and snap-stabilizing ones) using
lower level communication models such as asynchronous message-passing is
rather challenging. In such models, a process may either send a message to a
single neighbor or receive a message from a single neighbor (but not both) to-
gether with some local computations; also messages in transit could be lost or
duplicated. It is especially important to consider these low level models since
Varghese and Jayaram [8] prove that simple process crashes and restarts and
unreliable communication channels can drive protocols to arbitrary states.
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1.1 Related works

Several papers investigate the possibility of self-stabilization in message pass-
ing systems [9–17]. The crucial assumption for communication channels is
their boundedness. That is, whether or not processes are aware of the max-
imum number of messages that can be in transit in a particular channel.
Gouda and Multari [9] show that for a wide class of problems such as the
alternating bit protocol (ABP), deterministic self-stabilization is impossible
using bounded memory per process when channel capacities are unbounded.
They also present a self-stabilizing version of the ABP with unbounded chan-
nels that uses unbounded memory per process. Afek and Brown [11] present
a self-stabilizing ABP replacing unbounded process memory by an infinite se-
quence of random numbers. Katz and Perry [10] derive a self-stabilizing ABP
to construct a self-stabilizing snapshot protocol. In turn, the snapshot proto-
col allows to transform almost all non-stabilizing protocols into self-stabilizing
ones. Delaët et al [17] propose a method to design self-stabilizing protocols
with bounded memory per process in message passing systems with unreliable
channels with unbounded capacity for a class of fix-point problems. Awer-
buch et al [18] introduce the property of local correctability and demonstrate
that protocols that are locally correctable can be self-stabilized using bounded
memory per process in spite of unbounded capacity channels. Guaranteeing
self-stabilization with bounded memory per process for general (i.e. ABP-
like) specifications requires considering bounded capacity channels [12–16]. In
particular, Varghese [14] presented such self-stabilizing solutions for a wide
class of problems, e.g. token circulation and propagation of information with
feedback (PIF).

A number of snap-stabilizing protocols are presented in the literature. In
particular, PIF is the “benchmark” application for snap-stabilization [19,20].
Moreover [21,22] present token circulation protocols. Snap-stabilization has
also been investigated for fix-point tasks such as binary search tree construc-
tion [23] and cut-set detection [24]. Following the scheme of [10], Cournier et
al [25] propose a method to add snap-stabilization to a large class of proto-
cols. To our knowledge, the only paper that deals with snap-stabilization in
message passing networks is [26]. However the snap-stabilizing snapshot pro-
tocol that is presented in [26] for multi-hops networks relies on the assumption
that there exists an underlying snap-stabilizing protocol for one-hop message
transmission, we do not make such an assumption here. To date, the question
whether this assumption can be implemented remains open.
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1.2 Our contribution

In this paper, we address the problem of snap-stabilization in one-hop message-
passing systems. Our contribution is twofold:

(1) We show that contrary to the high level shared memory model, snap-
stabilization is strictly more difficult to guarantee than self-stabilization
in the low level message passing model. In more detail, for nontrivial
distributed problem specifications, there exists no snap-stabilizing (even
with unbounded memory per process) solution in message-passing sys-
tems with unbounded yet finite capacity channels. This is in contrast to
the self-stabilizing setting, where solutions with unbounded memory per
process [9], unbounded sequences of random numbers [11], or operating
on a restricted set of specifications [17,18] do exist.

(2) We prove that snap-stabilization in the low level message passing model is
feasible when channels have bounded capacity. Our proof is constructive
both for dynamic and fix-point distributed specifications, as we present
snap-stabilizing protocols for PIF and mutual exclusion.

1.3 Outline

The rest of the paper is organized as follows. We define the message-passing
model in Section 2. In the same section, we describe the notion of snap-
stabilization and problem specifications. In Section 3, we exhibit a wide class
of problems that have no snap-stabilizing solution in message-passing systems
with unbounded capacity channels. We present snap-stabilizing algorithms for
the message-passing systems with bounded capacity channels in Section 4. We
conclude the paper in Section 5.

2 Preliminaries

2.1 Computational Model

We consider distributed systems having n processes and a fully-connected topol-
ogy: any two distinct processes can communicate by sending messages through
a bidirectionnal link, i.e., two channels in the opposite direction.

A process is an asynchronous sequential deterministic machine that uses a local
memory, a local algorithm, and input/output capabilities. The local algorithm
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modifies the state of the process memory, and sends/receives messages through
channels.

We assume that the channels incident to a process are locally distinguished
by a channel number. For the sake of simplicity, every process numbers its
channels from 1 to n − 1, and in the code of any process we simply denote
by the label q the number of the channel incoming from the process q. 1 We
assume that the channels are FIFO (meaning that messages are received in
the order they are sent) but not necessarily reliable (messages can be lost).
However they all satisfy the following fairness property: if a sender process s
sends infinitely many messages to a receiver process r, then infinitely many
messages are eventually received by r from s. Any message that is never lost
is received in finite but unbounded time.

The messages are of the following form: 〈message-type,message-value〉. The
message-value field is omitted if the message does not carry any value. A
message may also contain more than one message-value.

A protocol is a collection of n local algorithms, one held by each process. A
local algorithm consists of a collection of actions. Any action is of the following
form:

〈label〉 :: 〈guard〉 → 〈statement〉
A guard is a boolean expression over the variables of a process and/or an input
message. A statement is a sequence of assignments of the process variables
and/or message sends. An action can be executed only if its guard is true. We
assume that the actions are atomically executed, meaning that the evaluation
of the guard and the execution of the corresponding statement, if executed,
are done in one atomic step. An action is enabled when its guard is true. Any
continuously enabled action is executed within finite yet unbounded time.

We reduce the state of each process to the state of its local memory, and the
state of each link to its content. The global state of the system, referred to
as configuration, is defined as the product of the states of the memories of
processes and the contents of the links.

We describe a distributed system as a transition system [27] S = (C, 7→,I)
such that: C is a set of configurations, 7→ is a binary transition relation on C,
and I ⊆ C is the set of initial configurations. Here, we only consider systems
S = (C, 7→,I) such that I = C, meaning that any possible configuration can
be initial.

An execution of S is a maximal sequence of configurations γ0, . . . , γi−1, γi, . . .
such that: γ0 ∈ I and ∀i > 0, γi−1 7→ γi∧γi−1 6= γi. Any transition γi−1 7→ γi is

1 The label q does not denote the identifier of q. When necessary, we will use the
notation IDq to denote the identifier of q.
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called a step and materializes the fact that some processes and/or links change
their states. A process changes its state by executing an enabled action of its
local algorithm. The state of a link is modified each time a message is sent,
received, or lost.

2.2 Snap-Stabilization

In the following, we call specification a predicate defined over sequences of
configurations.

Definition 1 (Snap-Stabilization [5]) Let SPT be a specification. A proto-
col P is snap-stabilizing for SPT if and only if starting from any configuration,
any execution of P satisfies SPT .

It is important to note that snap-stabilization is suited for user-centric specifi-
cations. Such specifications are based on a sequence of actions (request, start,
etc.) rather than a particular subset of configurations (e.g., the legitimate
configurations) and are composed of two main properties:

(1) Start. Upon an external (w.r.t. the protocol) request, a process (called the
initiator) starts within finite time a distributed computation of specific
task T 2 by executing a special type of action called starting action.

(2) User-Safety. Any computation of T that has been started is correctly
performed.

In snap-stabilization, we consider the system after the last fault occurs: hence
we study the behavior of the system from an arbitrary configuration, yet con-
sidered as the initial one, and we assume that no more faults occur. Starting
from such an arbitrary configuration (i.e., after the end of faults), any snap-
stabilizing protocol always guarantee the start and the user-safety prop-
erties. Hence, snap-stabilization is attractive for system users: when a user
make a request, it has the guarantee that the requested task will be cor-
rectly performed regardless of the initial configuration of the system under
the assumption that no further error occurs. We do not have such a guarantee
with self-stabilizing protocols. Indeed, while a snap-stabilizing protocol en-
sures that any request is satisfied despite the arbitrary initial configuration, a
self-stabilizing protocol often needs to repeat its computations an unbounded
number of times before guaranteeing the proper processing of any request.

2 E.g., a broadcast, a circulation of a single token,. . .
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3 Message-Passing Systems with Unbounded Capacity Channels

Alpern and Schneider [28] observe that a specification is an intersection of
safety and liveness properties. They define a safety property as a set of “bad
things” that must never happen. We now introduce the notion of safety-
distributed specifications and show that no problem having such a specifica-
tion admits a snap-stabilizing solution in message-passing systems with finite
yet unbounded capacity channels. Intuitively, safety-distributed specification
has a safety property that depends on the behavior of more than one pro-
cess. That is, certain process behaviors may satisfy safety if done sequentially,
while violate it if done concurrently. For example, in mutual exclusion, any
requesting process must eventually execute the critical section but if several
requesting processes execute the critical section concurrently, the safety is vi-
olated. Roughly speaking, the class of safety-distributed specifications includes
all distributed problems where processes need to exchange messages in order
to preclude any safety violation.

The following three definitions are used to formalize the safety-distributed
specifications.

Definition 2 (Abstract Configuration) We call an abstract configuration
any configuration restricted to the state of the processes (i.e., the state of each
link has been removed).

Definition 3 (State-Projection) Let γ be a configuration and p be a pro-
cess. The state-projection of γ on p, denoted φp(γ), is the local state of p
in γ. Similary, the state-projection of γ on all processes, denoted φ(γ), is
the product of the local states of all processes in γ (n.b. φ(γ) is an abstract
configuration).

Definition 4 (Sequence-Projection) Let s = γ0,γ1, . . . be a configuration
sequence and p be a process. The sequence-projection of s on p, denoted Φp(s),
is the state sequence φp(γ0),φp(γ1), . . . Similary, the sequence-projection of s
on all processes, denoted Φ(s), is the abstract configuration sequence φ(γ0),φ(γ1),
. . .

Definition 5 [Safety-Distributed] A specification SP is safety-distributed if
there exists a sequence of abstract configurations BAD, called bad-factor, such
that:

(1) For each execution e, if there exist three configuration sequences e0, e1,
and e2 such that e = e0e1e2 and Φ(e1) = BAD, then e does not satisfy SP.

(2) For each process p, there exists at least one execution ep satisfying SP
where there exist three configuration sequences e0p, e1p, and e2p such that
ep = e0pe

1
pe

2
p and Φp(e

1
p) = Φp(BAD).

7



Almost all classical problems of distributed computing have safety-distributed
specifications including all synchronization and resource allocation problems.
For example, in mutual exclusion a bad-factor is any sequence of abstract
configurations where several requesting processes execute the critical section
concurrently. For the PIF, the bad-factor consists in the sequence of abstract
configurations where the initiator decides of the termination of a PIF it started
while some other processes are still broadcasting the message.

We now consider a message-passing system with unbounded capacity channels
and show the impossibility of snap-stabilization for safety-distributed specifi-
cations in that case. Since most of classical synchronization and resource al-
location problems are safety-distributed, this result prohibits the existence of
snap-stabilizing protocols in message-passing systems if no further assumption
is made.

We prove the theorem by showing that a ”bad” execution can be obtained by
filling the communication channels with messages entailing an unsafe state,
and no process can detect that those messages occur due to errors because of
the safety-distributed nature of the specification.

Theorem 1 There exists no safety-distributed specification that admits a
snap-stabilizing solution in message-passing systems with unbounded capacity
channels.

Proof. Let SP be a safety-distributed specification and BAD = α0,α1,. . . be
a bad-factor of SP .

Assume, for the purpose of contradiction, that there exists a protocol P that
is snap-stabilizing for SP . By Definition 5, for each process p, there exists
an execution ep of P that can be split into three execution factors e0p, e

1
p =

βp
0 ,βp

1 ,. . . , and e2p such that ep = e0pe
1
pe

2
p and Φp(e

1
p) = Φp(BAD). Let us denote

by MesSeqqp the ordered sequence of messages that p receives from any process
q in e1p. Consider now the configuration γ0 such that:

(1) φ(γ0) = α0.
(2) For all pairs of distinct processes p and q, the link {p,q} has the following

state in γ0:
(a) The messages in the channel from q to p are exactly the sequence

MesSeqqp (keeping the same order).
(b) The messages in the channel from p to q are exactly the sequence

MesSeqpq (keeping the same order).

(It is important to note that we have the guarantee that γ0 exists because
we assume unbounded capacity channels. Assuming channels with a bounded
capacity c, no configuration satisfies (2) if there are at least two distinct pro-
cesses p and q such that |MesSeqqp| > c.)
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As P is snap-stabilizing, γ0 is a possible initial configuration of P . To obtain
the contradiction, we now show that there is an execution starting from γ0
that does not satisfy SP . By definition, φ(γ0) = α0. Consider a process p
and the two first configurations of e1p: β

p
0 and βp

1 . Any message that p receives
in βp

0 7→ βp
1 can be received by p in the first step from γ0: γ0 7→ γ1. Now,

φp(γ0) = φp(β
p
0). So, p can behave in γ0 7→ γ1 as in βp

0 7→ βp
1 . In this case,

φp(γ1) = φp(β
p
1). Hence, if each process q behaves in γ0 7→ γ1 as in the first step

of its execution factor e1q, we obtain a configuration γ1 such that φ(γ1) = α1. By
induction principle, there exists an execution prefix starting from γ0 denoted
PRED such that Φ(PRED) = BAD. As P is snap-stabilizing, there exists
an execution SUFF that starts from the last configuration of PRED. Now,
merging PRED and SUFF we obtain an execution of P that does not satisfy
SP – this contradicts the fact that P is snap-stabilizing. 2

The proof of Theorem 1 hinges on the fact that after some transient faults
the configuration may contain an unbounded number of arbitrary messages.
Note that a safety-distributed specification involves more than one process
and thus requires the processes to communicate to ensure that safety is not
violated. However, with unbounded channels, each process cannot determine
if the incoming message is indeed sent by its neighbor or is the result of faults.
Thus, the communication is thwarted and the processes cannot differentiate
safe and unsafe behavior.

4 Message-Passing Systems with Bounded Capacity Channels

We now consider systems with bounded capacity channels. In such systems,
we assume that if a process sends a message in a channel that is full, then
the message is lost. For the sake of simplicity, we restrict our study to sys-
tems with single-message capacity channels. The extension to an arbitrary but
known bounded message capacity is straightforward (by applying the princi-
ples described in [14,16,18]).

Below, we propose two snap-stabilizing protocols for fully-connected networks
(Algorithms 1 and 3) respectively for the PIF (Propagation of Information with
Feedback) and mutual exclusion problems. The mutual exclusion algorithm is
obtained using several PIFs.
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4.1 PIF for Fully-Connected Networks

4.1.1 Principle

Informally, the PIF algorithm (also called echo algorithm) can be described
as follows: upon a request, a process – called initiator – starts the first phase
of the PIF by broadcasting a data message m into the network (the broadcast
phase). Then, each non-initiator acknowledges 3 to the initiator the receipt of
m (the feedback phase). The PIF terminates by a decision event at the initia-
tor. 4 This decision is taken following the acknowledgments for m, meaning
that when the decision event for the message m occurs, the last acknowleg-
ments the initiator delivers from all other processes are acknowledgments for
m.

Note that any process may need to initiate a PIF. Thus, any process can be
the initiator of a PIF and several PIFs may run concurrently. Hence, any PIF
protocol has to cope with concurrent PIFs.

More formally, the PIF problem can be specified as follows:

Specification 1 (PIF-Exec) An execution e satisfies Predicate PIF-Exec if
and only if e satisfies the following two properties:

(1) Start. Upon a request to broadcast a message m, a process p starts a PIF
of m.

(2) User-Safety. During any PIF of some message m started by p:
• Every process other than p receives m.
• p receives acknowledgments for m from all other processes.
• p executes the decision event in finite time, this decision is taken fol-

lowing the acknowledgments for m.

We now outline a snap-stabilizing implementation of the PIF called PIF
(the code is provided in Algorithm 1). In the following (and in the rest of
the paper), the message-values will be replaced by “−” when they have no
impact on the reasonning.

A basic PIF implementation requires the following input/output variables:

• The variable Reqp is used to manage the requests at the process p. The
value of Reqp belongs to {Wait,In,Done}. Reqp = Wait means that a PIF is

3 An acknowledgment is a message sent by the receiving process to inform the
sender about data it has correctly received (cf. [27]).
4 That is, an event that causally depends on an action at each process (this defini-
tion comes from [27]).
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requested. Reqp = In means that the protocol is currently executing a PIF.
Reqp = Done means no PIF is under execution, i.e., the protocol is waiting
for the next request.
• The buffer variable BMesp is used to store the message to broadcast.
• The array FMesp[1 . . . n− 1] is used to store acknowledgments, i.e., FMesp[q]

contains the acknowledgment for the broadcast message coming from q.

Using these variables, the protocol proceeds as follows: assume that a user
wants to broadcast a message m from process p. It waits until the current PIF
terminates (i.e., until Reqp = Done) even if the current PIF is due to a fault,
and then notifies the request to p by setting BMesp to m and Reqp to Wait.
Consequently to this request, a PIF is started (in particular, Reqp is set to In).
The current PIF terminates when Reqp is set to Done (this latter assignment
corresponds to the decision event). Between the start and the termination,
the protocol has to generate two types of events at the application level. First,
a “B-receive〈m〉 from p” event at each other process q. When this event
occurs, the application at q is assumed to process the broadcast message m
and put an acknowledgment Ackm into FMesq[p]. The protocol then transmits
FMesq[p] to p: this generates a “F-receive〈Ackm〉 from q” event at p so that
the application at p can access the acknowledgment.

Note that the protocol has to operate correctly despite arbitrary messages in
the channels left after the faults. Note also that messages may be lost. To
counter the message loss the protocol repeatedly sends duplicate messages.
To deal with the arbitrary initial messages and the duplicates, we mark each
message with a flag that ranges from 0 to 4. Two arrays are used to manage
the flag values:

• In Statep[q], process p stores a flag value that it attaches to the messages
it sends to its qth neighbor.
• In NStatep[q], p stores the flag of the last message it has accepted from its
qth neighbor.

Using these two arrays, our protocol proceeds as follows: when p starts a
PIF, it initializes Statep[q] to 0, for every index q. The PIF terminates when
Statep[q] ≥ 4 for every index q.

During the PIF, p repeatedly sends 〈PIF,BMesp,−,Statep[q], −〉 to every pro-
cess q such that Statep[q] < 4. When a process q receives 〈PIF,B,−,pState,−〉
from p, q updates NStateq[p] to pState. Then, if pState < 4, q sends 〈PIF,−,
FMesq[p],−,NStateq[p]〉 to p. Finally, p increments Statep[q] only when it re-
ceives a 〈PIF,−,F ,−,qNState〉 message from q such that qNState = Statep[q]
and qNState < 4.

The main idea behind the algorithm is as follows: assume that p starts to
broadcast the message m. While Statep[q] < 4, Statep[q] is incremented only
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when p received a message 〈PIF,−,F ,−,qNState〉 from q such that qNState
= Statep[q]. So, Statep[q] will be equal to 4 only after p successively receives
〈PIF,−,F ,−,qNState〉 messages from q with the flag values 0,1,2, and 3. Now,
initially there is at most one message in the channel from p to q and at
most another one in the channel from q to p. So these messages can only
cause at most two increments of Statep[q]. Finally, the arbitrary initial value
of NStateq[p] can cause at most one increment of Statep[q]. Hence, since
Statep[q] = 3, we have the guarantee that p will increment Statep[q] to 4 only
after it receives a message sent by q after q receives a message sent by p. That
is, this message is a correct acknowledgment of m by q.

It remains to describe the generation of the B-receive and F-receive events:

• Any process q receives at least four copies of the broadcast message from p.
But, q generates a B-receive event only once for each broadcast message
from p: when q switches NStateq[p] to 3.
• After it starts, p is sure to receive the correct feedback from q since it receives

from q a 〈PIF,−,F ,−, qNState〉 message such that qNState = Statep[q] =
3. As previously, to limit the number of events, p generates a F-receive
event only when it switches Statep[q] from 3 to 4. The next copies are
ignored.

4.1.2 Correctness

Below, we prove that Algorithm PIF is a snap-stabilizing PIF algorithm for
fully-connected networks. Note that the principle of proof is similar to [26].
However, the proof details are quite different, mainly due to the fact that our
communication model is weaker than the one used in [26]. Remember that
in [26], authors abstract the activity of communication links by assuming an
underline snap-stabilizing ARQ data link algorithm. Here, we just assume that
links are fair-lossy and FIFO.

The proof of snap-stabilization of PIF consists in showing that, despite the
arbitrary initial configuration, any execution of PIF always satisfies the start
and the user-safety properties of Specification 1.

Considering an arbitrary initial configuration, we state the start property
(Corollary 1) in two steps:

(S1) We first prove that each time a user wants to broadcast a message from
some process p, then it can eventually submit its request to the process
(i.e. it is eventually enabled to execute Reqp ← Wait).

(S2) We then prove that once a request has been submitted to some process p ,
the process starts (i.e., executes action A1) the corresponding PIF within
finite time.

12



Algorithm 1 Protocol PIF for any process p
Constant: n: integer

Variables:

Reqp ∈ {Wait,In,Done} : input/output

BMesp, FMesp[1 . . . n− 1] : inputs

Statep[1 . . . n− 1] ∈ {0,1,2,3,4}n−1, NStatep[1 . . . n− 1] ∈ {0,1,2,3,4}n−1 : internals

Actions:

A1 :: (Reqp = Wait) → Reqp ← In /∗ Start ∗/

for all q ∈ [1 . . . n− 1] do Statep[q]← 0

A2 :: (Reqp = In) → if (∀q ∈ [1 . . . n− 1], Statep[q] = 4) then

Reqp ← Done /∗ Termination ∗/

else

for all q ∈ [1 . . . n− 1] do

if (Statep[q] < 4) then

send〈PIF,BMesp,FMesp[q],Statep[q],NStatep[q]〉 to q

A3 :: receive〈PIF,B,F ,qState,pState〉 → if (NStatep[q] 6= 3) ∧ (qState = 3) then

from channel q generate a “B-receive〈B〉 from channel q” event

NStatep[q]← qState

if (Statep[q] = pState) ∧ (Statep[q] < 4) then

Statep[q]← Statep[q] + 1

if (Statep[q] = 4) then

generate a “F-receive〈F 〉 from channel q” event

if (qState < 4) then

send〈PIF,BMesp,FMesp[q],Statep[q],NStatep[q]〉 to q

To prevent the aborting of a previous PIF, a user can initiate a request at
some process p only if Reqp = Done. Hence, to show (S1), we show that from
any configuration where Reqp ∈ {Wait, In}, the system eventually reaches a
configuration where Reqp = Done. This latter claim is proven in two stages:

• We first show in Lemma 1 that from any configuration where Reqp = Wait,
in finite time the system reaches a configuration where Reqp = In.
• We then show in Lemma 3 that from any configuration where Reqp = In,

in finite time the system reaches a configuration where Reqp = Done.

Lemma 1 Let p be any process. From any configuration where Reqp = Wait,
in finite time the system reaches a configuration where Reqp = In.

Proof. When Reqp = Wait, action A1 is continuously enabled at p and by
executing A1, p sets Reqp to In. 2

The next technical lemma is used in the proof of Lemma 3.

Lemma 2 Let p and q be two distinct processes. From any configuration where
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(Reqp = In) ∧ (Statep[q] < 4), Statep[q] is incremented in finite time.

Proof. Assume, for the sake of contradiction, that Reqp = In and Statep[q] =
i with i < 4 but Statep[q] is never incremented. Then, Reqp = In and
Statep[q] = i hold forever and by checking actions A2 and A3, we know that:

• p only sends to q messages of the form 〈PIF,−,−,i,−〉.
• p sends such messages infinitely many times.

As a consequence, q eventually only receives from p messages of the form
〈PIF,−,−,i,−〉 and q receives such messages infinitely often. By action A3,
NStateq[p] = i eventually holds forever. From that point, any message that
q sends to p is of the form 〈PIF,−,−,−,i〉. Also, as i < 4 and q receives
infinitely many messages from p, q sends infinitely many messages of the form
〈PIF,−,−,−,i〉 to p. Hence, p eventually receives 〈PIF,−,−,−,i〉 from q and,
as a consequence, increments Statep[q] (see action A3) — a contradiction. 2

Lemma 3 Let p be any process. From any configuration where Reqp = In, in
finite time the system reaches a configuration where Reqp = Done.

Proof. Assume, for the sake of contradiction, that from some configuration
Reqp 6= Done forever. Then, Reqp = In eventually holds forever by Lemma
1. Now, by Lemma 2 and owing the fact that for every index q, Statep[q]
cannot decrease while Reqp = In, we can deduce that p eventually satisfies
“∀q ∈ [1 . . . n− 1],Statep[q] = 4” forever. In this case, p eventually sets Reqp
to Done by action A2 — a contradiction. 2

As explained before, Lemmas 1 and 3 proves (S1). Lemma 1 also implies (S2)
because A1 (the starting action) is the only action where Reqp is set to In.
Hence, we have the following corollary:

Corollary 1 (Start) Starting from any configuration, PIF always satisfies
the start property of Specification 1.

Still considering an arbitrary initial configuration, we now state the user-
safety property (Corollary 2), that is, during any PIF of some message m
started by p:

(U1) Every process other than p receives m.
(U2) p receives acknowledgments for m from all other processes.
(U3) p executes the decision event 5 in finite time, this decision is taken fol-

lowing the acknowledgments for m.

We first show (U1) and (U2) in Lemma 5.

5 Remember that the decision event corresponds to the statement Reqp ← Done.
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The next technical lemma is used in the proof of Lemma 5.

Lemma 4 Let p and q be two distinct processes. After p starts a PIF (action
A1), p switches Statep[q] from 2 to 3 only if the three following conditions
hold:

(1) Any message in the channel from p to q is of the form 〈PIF,−,−,i,−〉
with i 6= 3.

(2) NStateq[p] 6= 3.
(3) Any message in the channel from q to p is of the form 〈PIF,−,−,−,j〉

with j 6= 3.

Proof. p starts a PIF with action A1. By executing A1, p sets Statep[q] to 0.
From that point, Statep[q] can only be incremented one by one until reaching
value 4. Let us study the three first increments of Statep[q]:

• From 0 to 1. Statep[q] switches from 0 to 1 only after p receives a mes-
sage 〈PIF,−,−,−,0〉 from q. As the link {p,q} always contains at most one
message in the channel from q to p, the next message that p will receive
from q will be a message sent by q.
• From 1 to 2. From the previous case, we know that Statep[q] switches from

1 to 2 only when p receives 〈PIF,−,−,−,1〉 from q and this message was sent
by q. From actions A2 and A3, we can then deduce that NStateq[p] = 1 held
when q sent 〈PIF,−,−,−,1〉 to p. From that point, NStateq[p] = 1 holds
until q receives from p a message of the form 〈PIF,−,−,i,−〉 with i 6= 1.
• From 2 to 3. The switching of Statep[q] from 2 to 3 can occurs only after
p receives a message mes1 = 〈PIF,−,−,−,2〉 from q. Now, from the previous
case, we can deduce that p receives mes1 consequently to the reception by
q of a message mes0 = 〈PIF,−,−,2,−〉 from p. Now:

(a) As the link {p,q} always contains at most one message in the channel from
p to q, after receiving mes0 and until Statep[q] switches from 2 to 3, every
message in transit from p to q is of the form 〈PIF,−,−,i,−〉 with i 6= 3
(Condition 1 of the lemma) because after p starts to broadcast a message,
p sends messages of the form 〈PIF,−,−,3,−〉 to q only when Statep[q] = 3.

(b) After receiving mes0, NStateq[p] 6= 3 until q receives 〈PIF,−,−,3,−〉.
Hence, by (a), after receiving mes0 and until (at least) Statep[q] switches
from 2 to 3, NStateq[p] 6= 3 (Condition 2 of the lemma).

(c) After receiving mes1, Statep[q] 6= 3 until p receives 〈PIF,−,−,−,3〉 from
q. As p receives mes1 after q receives mes0, by (b) we can deduce that
after receiving mes1 and until (at least) Statep[q] switches from 2 to 3,
every message in transit from q to p is of the form 〈PIF,−,−,−,j〉 with
j 6= 3 (Condition 3 of the lemma).

Hence, when p switches Statep[q] from 2 to 3, the three conditions 1, 2, and
3 are satisfied, which proves the lemma.
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2

Lemma 5 Starting from any configuration, if p starts a PIF of some message
m (action A1), then:

• All other process eventually receive m.
• p eventually receives acknowledgments for m from all other processes.

Proof. p starts a PIF of m by executing action A1: p switches Reqp from
Wait to In and sets Statep[q] to 0, for every index q. Then, Reqp remains
equal to In until p decides by setting Reqp to Done. Now, p decides in finite
time by Lemma 3 and when p decides, we have Statep[q] = 4, ∀q ∈ [1 . . . 0]
(action A2). From the code of Algorithm 1, this means that for every index q,
Statep[q] is incremented one by one from 0 to 4. By Lemma 4, for every index
q, Statep[q] is incremented from 3 to 4 only after:

• q receives a message sent by p of the form 〈PIF,m,−,3,−〉, and then
• p receives a message sent by q of the form 〈PIF,−,−,3,−〉.

When q receives 〈PIF,m,−,3,−〉 from p for the first time, it generates the event
“B-receive〈m〉 from channel p” and then starts to send 〈PIF,−,F ,−,3〉 mes-
sages to p. 6 From that point and until p decides, q only receives 〈PIF,m,−,3,−〉
message from p. So, from that point and until p decides, any message that
q sends to p acknowledges the reception of m. Since, p receives the first
〈PIF,−,F ,−,3〉 message from q, p generates a “F-receive〈F 〉 from channel
q” event and then sets Statep[q] to 4.

Hence, for every process q, the broadcast of m generates a “B-receive〈m〉
from channel p” event at q and the associated “F-receive〈F 〉 from channel
q” event at p, which proves the lemma. 2

The next lemma proves (U3).

Lemma 6 Starting from any configuration, during any PIF of some message
m started by p, (1) p executes a decision event (i.e., Reqp ← Done) in finite
time and (2) this decision is taken following the acknowledgments for m.

Proof. First, during any PIF of some message m started by p, p decides in
finite time by Lemma 3.

Let q be a process such that q 6= p. We now show the second part of the
lemma by proving that between the start of the PIF of m and the corresponding

6 q sends a 〈PIF,−,F ,−,3〉 message to p (at least) each time it receives a
〈PIF,m,−,3,−〉 message from p.
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decision, p generates exactly one “F-receive〈F 〉 from channel q” event where
F is an acknowlegdment sent by q for m.

First p starts a PIF of m by executing action A1: p switches Reqp from Wait to
In and sets Statep[q] to 0. Then, Reqp remains equal to In until p decides by
setting Reqp to Done. When p decides, we have Statep[q] = 4, for every index
q. From the code of Algorithm 1, we know that exactly one “F-receive〈F 〉
from channel q” event occurs at p before p decides: when p switches Statep[q]
from 3 to 4. Lemma 4 implies that F is an acknowledgment for m sent by q
and the lemma is proven. 2

By Lemmas 5 and 6, follows:

Corollary 2 (User-Safety) Starting from any configuration, PIF always
satisfies the User-Safety property of Specification 1.

By Corollaries 1 and 2, follows:

Theorem 2 PIF is snap-stabilizing to Specification 1.

Below, we give an additionnal property of PIF , this property will be used in
the snap-stabilization proof of ME (Subsection 4.2).

Property 1 If p starts a PIF in the configuration γ0 and the PIF terminates
at p in the configuration γk, then any message that was in a channel from and
to p in γ0 is no longer in the channel in γk.

Proof. Assume that a process p starts a PIF in the configuration γ0. Then,
as PIF is snap-stabilizing to Specification 1, we have the guarantee that for
every p’neighbor q, at least one broadcast message crosses the channel from
p to q and at least one acknowledgment message crosses the channel from q
to p during the PIF-computation. Now, we assumed that each channel has a
single-message capacity. Hence, every message that was in a channel from and
to p in the configuration γ0 has been received or lost when the PIF terminates
at p in configuration γk. 2

4.2 Mutual Exclusion for Fully-Connected Networks

4.2.1 Specification

We now consider the problem of mutual exclusion. The mutual-exclusion spec-
ification requires that a special section of code, called the critical section, is
executed by at most one process at any time. A snap-stabilizing mutual exclu-
sion protocol (only) guarantees its safety property when the process requests
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the critical section after the faults stop [25]. The safety property is not other-
wise guaranteed. Hence, we specify the mutual exclusion protocol as follows:

Specification 2 (ME-Exec) An execution e satisfies Predicate ME-Exec if
and only if e satisfies the following two properties:

(1) Start. Upon a request, a process enters the critical section in finite time.
(2) User-Safety. If a requested process enters the critical section, then it

executes the critical section alone.

In order to simplify the design of our mutual exclusion algorithm, we pro-
pose below an identifier-discovery algorithm, IDL, that is a straightforword
extension of PIF .

4.2.2 Identifier-Discovery

Algorithm 2 Protocol IDL for any process p
Constants: n, IDp: integers

Variables:

Reqp ∈ {Wait,In,Done} : input/output

minIDp ∈ N, IDTabp[1 . . . n− 1] ∈ Nn−1 : outputs

Actions:

A1 :: (Reqp = Wait) → Reqp ← In /∗ Start ∗/

minIDp ← IDp; PIF .BMesp ← IDL

PIF .Reqp ← Wait

A2 :: (Reqp = In) ∧ (PIF .Reqp = Done) → Reqp ← Done /∗ Termination ∗/

A3 :: B-receive〈IDL〉 from channel q → PIF .FMesp[q]← IDp

A4 :: F-receive〈ID〉 from channel q → IDTabp[q]← ID; minIDp ← min(minIDp,ID)

IDL assumes that each process has a unique identifier (IDp denotes the iden-
tifier of the process p) and uses three variables at each process p:

• Reqp ∈ {Wait,In,Done}. The purpose of this variable is the same as in PIF .
• minIDp. After a complete computation of IDL, minIDp contains the minimal

identifier of the system.
• IDTabp[1 . . . n]. After a complete computation of IDL, IDTabp[q] = IDq.

When requested at p, IDL evaluates the identifiers of all other processes and
the minimal identifier of the system using PIF . The results of the computa-
tion are available for p since p decides. Based on the specification of PIF , it
is easy to see that IDL is snap-stabilizing to the following specification:

Specification 3 (ID-Discovery-Exec) An execution e satisfies Predicate
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ID-Discovery-Exec if and only if e satisfies the following two properties:

(1) Start. When requested, a process p starts in finite time to discover the
identifiers of the processes.

(2) User-Safety. Any identifier-discovery started by p terminates in finite
time by a decision event at p and when the decision occurs, we have:
• ∀q ∈ [1 . . . n− 1], IDTabp[q] = IDq.
• minIDp = min({IDq, q ∈ [1 . . . n− 1]} ∪ {IDp}).

Theorem 3 IDL is snap-stabilizing for Specification 3.

4.2.3 Principle

We now describe a snap-stabilizing mutual exclusion protocol calledME (Al-
gorithm 3). ME also uses the variable Req with the same meaning as previ-
ously:ME .Reqp is to Wait when the process p is requested to execute the crit-
ical section. Process p is then called a requestor and we assume thatME .Reqp
cannot be set to Wait again until ME .Reqp = Done, i.e., until its current
request is done.

The main idea behind the protocol is the following: we assume identifiers
on processes and the process with the smallest identifier – called the leader
– bounces a single token to every process using a variable called Val, this
variable ranges over {0 . . . n− 1}. The Val variable of the leader L designates
which process holds the token: process p holds the token if and only if either
p = L and ValL = 0 or p 6= L and ValL is equal to the number of its channel
incoming from p. A process can access the critical section only if it holds the
token. Thus, the processes continuously ask the leader to know if they hold
the token.

When a process learns that it holds the token:

(1) It first ensures that no other process can execute the critical section (due
to the arbitrary initial configuration, some other processes may wrongly
believe that they also hold the token).

(2) It then executes the critical section if it wishes to (it may refuse if it is
not a requestor)

(3) Finally, it notifies to the leader that it has terminated Step (2) so that
the leader passes the token to another process.

To apply this scheme, ME is executed in phases from Phase 0 to 4 in such
way that each process goes through Phase 0 infinitely often. After a request, a
process p can access the critical section only after executing Phase 0: indeed p
can access the critical section only ifME .Reqp = In and p switchesME .Reqp
from Wait to In only in Phase 0. Hence, our protocol just ensures that after
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executing Phase 0, a process always executes the critical section alone. Below,
we describe the five phases of our protocol:

Phase 0. When a process p is in Phase 0, it requests a computation of IDL to
collect the identifiers of all processes and to evaluate which one is the leader.
It also sets ME .Reqp to In if ME .Reqp = Wait. It then switches to Phase 1.

Phase 1. When a process p is in Phase 1, p waits for the termination of IDL.
Then, p requests a PIF of the message ASK to know if it is the token holder
and switches to Phase 2. Upon receiving a message ASK from the channel p,
any process q answers YES if Valq = p, NO otherwise. Of course, p will only
take the answer of the leader into account.

Phase 2. When a process p is in Phase 2, it waits for the termination of
the PIF requested in Phase 1. After the PIF terminates, p knows if it is the
token holder. If p holds the token, it requests a PIF of the message EXIT and
switches to Phase 3. The goal of this message is to force all other processes
to restart to Phase 0. This ensures that no other process believes to be the
token holder when p accesses the critical section. Indeed, due to the arbitrary
initial configuration, some process q 6= p may believe to be the token holder, if
q never starts Phase 0. On the contrary, after restarting to 0, q cannot receive
positive answer from the leader until p notifies to the leader that it releases
the critical section.

Phase 3. When a process p is in Phase 3, it waits for the termination of the
current PIF. After the PIF terminates, if p is the token holder, then:

(1) p executes the critical section and switches ME .Reqp from In to Done if
ME .Reqp = In, and then

(2) (a) Either, p is the leader and switches Valp from 0 to 1.
(b) Or, p is not the leader and requests a PIF of the message EXITCS to

notify to the leader that it releases the critical section. Upon receiving
such a message, the leader increments its variable Val modulus n+ 1
to pass the token to another process.

In any case, p terminates Phase 3 by switching to Phase 4.

Phase 4. When a process p is in Phase 4, it waits for the termination of the
last PIF and then switches to Phase 0.

4.2.4 Correctness

We begin the proof of snap-stabilization of ME by showing that, despite the
arbitrary initial configuration, any execution ofME always satisfies the user-
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Algorithm 3 Protocol ME for any process p
Constants: n, IDp: integers

Variables:

Reqp ∈ {Wait,In,Done} : input/output

Php ∈ {0,1,2,3,4}, Valp ∈ {0 . . . n− 1}, Answersp[1 . . . n− 1] ∈ {true,false}n−1 : internals

Predicate:

Winner(p)≡(IDL.minIDp=IDp∧Valp=0)∨(∃q∈[1 . . . n− 1], Answersp[q]∧IDL.IDTabp[q]=IDL.minIDp)

Actions:

A0 :: (Php = 0) → IDL.Reqp ← Wait

if Reqp = Wait then Reqp ← In /∗ Start ∗/

Php ← Php + 1

A1 :: (Php = 1) ∧ (IDL.Reqp = Done) → PIF .BMesp ← ASK; PIF .Reqp ← Wait

Php ← Php + 1

A2 :: (Php = 2) ∧ (PIF .Reqp = Done) → if Winner(p) then

PIF .BMesp ← EXIT; PIF .Reqp ← Wait

Php ← Php + 1

A3 :: (Php = 3) ∧ (PIF .Reqp = Done) → if Winner(p) then

if Reqp = In then

critical section; Reqp ← Done /∗ Termination ∗/

if IDL.minIDp = IDp then

Valp ← 1

else

PIF .BMesp ← EXITCS; PIF .Reqp ← Wait

Php ← Php + 1

A4 :: (Php = 4) ∧ (PIF .Reqp = Done) → Php ← 0

A5 :: B-receive〈ASK〉 from channel q → if Valp = q then

PIF .FMesp[q]← YES

else

PIF .FMesp[q]← NO

A6 :: B-receive〈EXIT〉 from channel q → Php ← 0; PIF .FMesp[q]← OK

A7 :: B-receive〈EXITCS〉 from channel q → if Valp = q then Valp←(Valp+1)mod(n+1)

PIF .FMesp[q]← OK

A8 :: F-receive〈YES〉 from channel q → Answersp[q]← true

A9 :: F-receive〈NO〉 from channel q → Answersp[q]← false

A10 :: F-receive〈OK〉 from channel q → /∗ do nothing ∗/
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safety property of Specification 2.

Assume that a process p is a requestor, i.e.,ME .Reqp = Wait. Then, p cannot
enters the critical section before executing action A0. Indeed:

• p enters the critical section only if ME .Reqp = In, and
• action A0 is the only action of ME allowing p to set ME .Reqp to In.

Hence, to show the user-safety property of Specification 2 (Corollary 3), we
have to prove that, despite the initial configuration, after p executes action
A0, if p enters the critical section, then it executes the critical section alone
(Lemma 9).

Lemma 7 Let p be a process. Starting from any configuration, after p executes
A0, if p enters the critical section, then all other processes have switched to
Phase 0 at least once.

Proof. After p executes A0, to enter the critical section (in A3) p must exe-
cute the three actions A1, A2, and A3 successively. Also, to execute the critical
section in action A3, p must satisfy the predicate Winner(p). The value of the
predicate Winner(p) depends on (1) the IDL computation requested in A0
and (2) the PIF of the message ASK requested in A1. Now, these two compu-
tations are done when p executes A2. So, the fact that p satisfies Winner(p)
when executing A3 implies that p also satisfies Winner(p) when executing A2.
As a consequence, p requests a PIF of the message EXIT in A2. Now, p executes
A3 only after this PIF terminates. Hence, p executes A3 only after every other
process executes A6 (i.e., the feedback of the message EXIT): by this action,
every other process switches to Phase 0. 2

Definition 6 (Leader) We call Leader the process with the smallest identi-
fier. In the following, this process will be denoted by L.

Definition 7 (Favour) We say that the process p favours the process q if
and only if (p = q ∧ Valp = 0) ∨ (p 6= q ∧ Valp = q).

Lemma 8 Let p be a process. Starting from any configuration, after p executes
A0, p enters the critical section only if L favours p until p releases the critical
section.

Proof. By checking all the actions of Algorithm 3, we can observe that after
p executes A0, to enter the critical section p must execute the four actions A0,
A1, A2, and A3 successively. Moreover, p executes a complete IDL-computation
between A0 and A1. Thus:

(1) IDL.minIDp = IDL when p executes A3.
(2) Also, from the configuration where p executes A1, all messages in the
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channels from and to p have been sent after p requests IDL in action A0
(Property 1, page 17).

Let us now study the following two cases:

• p = L. In this case, when p executes A3, to enter the critical section p must
satisfy Valp = ValL = 0 by (1). This means that L favours p (actually
itself) when p enters the critical section. Moreover, as the execution of A3 is
atomic, L favours p until p releases the critical section and this closes the
case.
• p 6= L. In this case, when p executes A3, p satisfies IDL.minIDp = IDL by

(1). So, p executes the critical section only if ∃q ∈ [1 . . . n − 1] such that
IDL.IDTabp[q] = IDL∧Answersp[q] = true (see Predicate Winner(p)). For
that, p must receive a feedback message YES from L during the PIF of the
message ASK requested in action A1. Now, L sends such a feedback to p only if
ValL = p when the “B-receive〈ASK〉 from p” event occurs at L (see action
A5). Also, since L satisfies ValL = p, L updates Valp only after receiving an
EXITCS message from p (see action A7). Now, by (2), after L feedbacks YES
to p, L receives an EXITCS message from p only if p broadcasts EXITCS to L
after releasing the critical section (see action A3). Hence, L favours p until
p releases the critical section and this closes the case.

2

Lemma 9 Let p be a process. Starting from any configuration, if p enters the
critical section after executing A0, then it executes the critical section alone.

Proof. Assume, for the sake of contradiction, that p enters the critical section
after executing A0 but executes the critical section concurrently with another
process q. Then, q also executes action A0 before executing the critical section
by Lemma 7. By Lemma 8, we have the following two property:

• L favours p during the whole period where p executes the critical section.
• L favours q during the whole period where q executes the critical section.

This contradicts the fact that p and q executes the critical section concurrently
because L always favours exactly one process at a time. 2

Corollary 3 (User-Safety) Starting from any configuration,ME always sat-
isfies the user-safety property of Specification 2.

We now show that, despite the arbitrary initial configuration, any execution
of ME always satisfies the start property of Specification 2 (Lemma 4). As
previously, this proof is made in two steps:

23



(S1) We first prove that each time a user want to execute the critical section
at some process p, then it is eventually able to submit its request to the
process (i.e. it is eventually enabled to execute ME .Reqp ← Wait).

(S2) We then prove that once a request has been submitted to some process
p, the process enters the critical section in finite time.

To prevent the aborting of the previous request, a user can submit a request
at some process p only ifME .Reqp = Done. Hence, to show (S1), we show that
from any configuration where ME .Reqp ∈ {Wait, In}, the system eventually
reaches a configuration where ME .Reqp = Done. This latter claim is proven
in two stages:

• We first show in Lemma 11 that from any configuration whereME .Reqp =
Wait, in finite time the system reaches a configuration whereME .Reqp = In.
• We then show in Lemma 13 that from any configuration whereME .Reqp =
In, in finite time the system reaches a configuration where Reqp = Done.

The next technical lemma is used in the proof of Lemma 11

Lemma 10 Starting from any configuration, every process p switches to Phase
0 infinitely often.

Proof. Consider the following two cases:

• “B-receive〈EXIT〉” events occur at p infinitely often. Then, each time such
an event occurs at p, p switches to Phase 0 (see A6) and this closes the case.
• Only a finite number of “B-receive〈EXIT〉” events occurs at p. In this case,
p eventually reaches a configuration from which it no longer executes action
A6. From this configuration, Php can only be incremented modulus 5 and
depending of the value of Php, we have the following possibilities:
· Php = 0. In this case, A0 is continuously enabled at p. Hence, p eventually

sets Php to 1 (see action A0).
· Php = i with 0 < i ≤ 4. In this case, action Ai is eventually continuously

enabled due to the termination property of IDL and PIF . By executing
Ai, p increments Php modulus 5.

Hence, if only a finite number of “B-receive〈EXIT〉” events occurs at p,
then Php is incremented modulus 5 infinitely often and this closes the case.

2

Lemma 11 Let p be any process. From any configuration where ME .Reqp =
Wait, in finite time the system reaches a configuration where ME .Reqp = In.

Proof. Assume thatME .Reqp = Wait. Lemma 10 implies that p eventually
executes action A0. By action A0, ME .Reqp is set to In. 2
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The next technical lemma is used in the proof of Lemma 13.

Lemma 12 Starting from any configuration, ValL is incremented modulus
n+ 1 infinitely often.

Proof. Assume, for the sake of contradiction, that there are a finite number
of increments of ValL (modulus n+ 1). We can then deduce that L eventually
favours some process p forever.

In order to prove the contradiction, we first show that (*) assuming that L
favours p forever, only a finite number of “B-receive〈EXIT〉” events occurs
at p. Towards this end, assume, for the sake of contradiction, that an infinite
number of “B-receive〈EXIT〉” events occurs at p. Then, as the number of
processes is finite, there is a process q 6= p that broadcasts EXIT messages
infinitely often. Now, every PIF terminates in finite time. So, q performs in-
finitely many PIF of the message EXIT. In order to start another PIF of the
message EXIT, q must then successively execute actions A0, A1, A2. Now, when
q executes A2 after A0 and A1, IDL.minIDq = IDL and either (1) q = L and,
as q 6= p, ValL 6= 0, or (2) L has feedback NO to the PIF of the message ASK

started by q because ValL = p 6= q. In both cases, q satisfies ¬Winner(q) and,
as a consequence, does not broadcast EXIT (see action A3). Hence, q eventually
stops to broadcast EXIT — a contradiction.

Using Property (*), we now show the contradiction. By Lemma 10, p switches
to Phase 0 infinitely often. By (*), we know that p eventually stops executing
action A6. So, from the code of Algorithm 3, we can deduce that p eventually
successively executes actions A0, A1, A2, A3, and A4 infinitely often. Consider the
first time p successively executes A0, A1, A2, A3, and A4 and study the following
two cases:

• p = L. Then, Valp = 0 and IDL.minIDp = IDp when p executes A3 because
p executes a complete IDL-computation between A0 and A1 and IDL is
snap-stabilizing to Specification 3. Hence, p updates Valp to 1 when exe-
cuting A3 — a contradiction.
• p 6= L. Then, IDL.minIDp = IDL when p executes A3 because p executes a

complete IDL-computation between A0 and A1 and IDL is snap-stabilizing
to Specification 3. Also, p receives YES from L because p executes a complete
PIF of the message ASK between A1 and A2 and PIF is snap-stabilizing to
Specification 1. Hence, p satisfies the predicate Winner(p) when executing
A3 and, as a consequence, requests a PIF of the message EXITCS in action
A3. This PIF terminates when p executes A4: from this point on, we have the
guarantee that L has executed action A7. Now, by A7, L increments ValL —
a contradition.

2
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Lemma 13 Let p be any process. From any configuration where ME .Reqp =
In, in finite time the system reaches a configuration where ME .Reqp = Done.

Proof. Assume, for the sake of contradiction, that from a configuration where
Reqp = In the system never reaches a configuration where Reqp = Done. From
the code of Algorithm 3, we can then deduce that Reqp = In holds forever. In
this case there are two possibilities:

• p no longer executes A3, or
• p satisfies ¬Winner(p) each time it executes A3.

Consider then the following two cases:

• p = L. Then, Valp 6= 0 eventually holds forever — a contradiction to Lemma
12.
• p 6= L. In this case, p no longer starts any PIF of the message EXITCS.

Now, every PIF terminates in finite time. Hence, eventually there is no
more “B-receive〈EXITCS〉 from p” event at L. As a consequence, ValL
eventually no longer switches from value p to (p+ 1) mod (n+ 1) — which
contradicts Lemma 12.

2

As explained before, Lemmas 11 and 13 proves (S1). Lemma 13 also implies
(S2) because a process switchesME .Reqp from In to Done only after executing
the critical section. Hence, we have the following corollary:

Corollary 4 (Start) Starting from any configuration, ME always satisfies
the start property of Specification 2.

By Corollaries 3 and 4, follows:

Theorem 4 ME is snap-stabilizing to Specification 2.

5 Conclusion

We addressed the problem of snap-stabilization in one-hop message-passing
systems and presented matching negative and positive results. On the neg-
ative side, we showed that snap-stabilization is impossible for a wide class
of specifications – namely, the safety-distributed specifications – in message-
passing systems where the channel capacity is finite yet unbounded. On the
positive side, we showed that snap-stabilization is possible (even for safety-
distributed specifications) in message-passing systems if we assume a bound
on the channel capacity. The proof is constructive, as we presented the first
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three snap-stabilizing protocols for message-passing systems with a bounded
channel capacity. These protocols respectively solve the PIF and mutual ex-
clusion problem in a fully-connected network.

On the theoretical side, it is worth observing that the results presented in this
paper can be extended to general topologies using the approach presented
in [26], and then to general specifications that admit a Katz and Perry trans-
former [10]. Yet, the possible extension to networks where nodes are subject
to permanent, i.e., crash faults, remains open. On the practical side, our re-
sults imply the possibility of implementing snap-stabilizing protocols on real
networks. Actually implementing them is a future challenge.
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